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Discrete Duality Finite Volume Method Applied
to Linear Elasticity

Benjamin Martin and Frédéric Pascal

Abstract We present the Discrete Duality Finite Volume method (DDFV)for solv-
ing the linear elasticity problem on unstructured mesh applied to solids undergoing
mechanical loads. The procedure is described in detail for three dimensional prob-
lems and some theoretical results are provided: the discrete problem is well-posed,
stable and convergent. A number of numerical test problems demonstrates the abil-
ity of this finite volume scheme to approach the solution and some comparisons with
the conventional finite element method are provided.
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1 Motivation

The finite volume method is extensively used in computational fluid dynamics, on
its part the finite element method is the conventional tool for solving solid mechan-
ics. However there is a multitude of physical problems combining fluid and solid
mechanics where finite volume methods appear to be a pertinent alternative. Let us
quote for instance fluid-structure interaction, deformation of geomechanical reser-
voir, or even the frost heave problem in freezing soils wherethe moving frozen
fringe introduces a discontinuity in the physical parameters. The finite volume ap-
proach for elasticity problems has already been discussed and published in [3], [15],
[17], [18] for cell-vertex formulations, in [12] for cell centered formulation with a
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decoupled strategy for each component, in [6] and [7] for a coupled cell-center ver-
sion. In this study, we address the DDFV implementation for solving linear elastic-
ity. Let us recall that the principle of the DDFV discretization consists in integrating
the system both over a given primal mesh and a dual mesh built from the primal
one. Presentation, convergence analysis and numerical tests of DDFV for diffusion,
convection-diffusion and Stokes problems are available in[1], [2], [4], [8], [10],
[11], [13], [14].

We limit ourselves to the simplest mathematical model of a linear elastic solid
which consists in finding the displacementu ∈ R

3 such that

−divσ(u) = f on Ω , u = g on ΓD , σ(u) ·n = h on ΓN (1)

wheren is the outward normal,∂Ω =ΓD∪ΓN and where the stress tensorσ depends
on u by the Hooke relation that links the strain tensor and the trace of the gradient

σ(u) = λDivu+2µDu with Du =
∇u+(∇u)T

2
and Divu = divu Id . (2)

For sake of clarity, we assume thatΩ is a bounded polyhedral subset ofR
3 and that

the Lamé coefficientsλ andµ are constant.

2 Finite volume discretization

A mesh ofΩ is defined by the three sets{M,M
∗
,D}, corresponding to the primal,

dual and diamond mesh. They form a non overlapping partitionof Ω , so that

Ω =
⋃

D∈D

D =
⋃

K∈M

K =
1
2

⋃

K∗∈M∗

K∗
.

The setM is a conforming triangulation of tetraedra. Each element K in M is sup-
plied with a centerxK , in practice the barycenter of K and∂M denotes the set of
faces on the boundary of the domain. The elements ofM

∗ are polygons K∗ cor-
responding to the primal mesh verticesxK∗ . These polygons are the union of all
tetrahedra spanned, for each facess= K ∩L or s= K ∩ ∂Ω havingxK∗ as vertex,
by xK∗ himself,xK or xL if it exists,xs the center of the faces, and one of the other
vertices of the faces. In order to take into account the boundary conditions, the dual
mesh is splitted into the internal volumes and the boundary ones corresponding to
vertices on the boundary:M∗ =M

∗i ∪M
∗b. On its side, diamond cell D inD asso-

ciated to the internal faces= K∩L is the union of the two tetrahedra DK,s and DL,s

spanned by the faces and respectively by the centersxK andxL (see Figure 1a).
For the boundary faces= K ∩ ∂Ω , the corresponding diamond cell is reduced to
the tetrahedron DK,s. The number of primal and dual cells is denoted byτ and the
number of diamond cell byδ .
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2.1 Discrete operators

The idea of the DDFV discretization is to construct gradientand divergence oper-
ators that are under discrete duality relation by a formula that mimics the Green
fomula for continuous functions (see for instance [5] for a detailed construction). A
discrete unknownuK (resp.uK∗ ) is associated to each volume K (resp. K∗) of the
primal mesh (resp. dual mesh). They are gathered and denotedby

uτ = (uK , uK∗)K∈M,K∗∈M∗ .

For a vector fielduτ in (Rd)τ , we define on each diamond cell a consistent dis-
crete gradient operator∇Duτ = (∇Duτ)D∈D in (Md(R))

δ and a consistent dis-
crete divergence operator divDuτ = (divDuτ )D∈D in R

δ such that on the inter-
nal face s = K ∩ L and for the associated diamond cell D= DK,s ∪ DL,s, the

gradient is given by∇Duτ =
|DK,s|

|D| ∇DK,suτ +
|DL,s|

|D| ∇DL,suτ and the divergence by

divDuτ =
|DK,s|

|D| divDK,suτ +
|DL,s|

|D| divDL,suτ where for K, we take

∇DK,suτ =
1

3 | DK,s |
(us−uK)⊗NKs+

1
3 | DK,s |

d

∑
i=1

ui ⊗ (Ni−1−Ni+1) (3)

divDK,suτ =
1

3 | DK,s |
(us−uK) ·NKs+

1
3 | DK,s |

d

∑
i=1

ui · (Ni−1−Ni+1) . (4)

Here| · | denotes the measure and(xi)
d
i=1, respectively(ui)

d
i=1, the vertices of the
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Fig. 1 (a) Primal and diamond cell - (b) Normal orientations in the diamond cell

faces, respectively the corresponding unknowns, with the local numbering conven-
tion x0 = xd. The outward normals are defined by (see Figure 1b)



4 Benjamin Martin and Frédéric Pascal

NKs =
d

∑
i=1

Ns,i−1,i with Ns,i−1,i =
1
2
(xi − xs)∧ (xi−1− xs)

Ni =
1
2
(xK − xs)∧ (xi − xs)

(5)

andus is chosen in order to satisfy the continuity of fluxes (see 7).Otherwise, on
a boundary faces∈ ∂M and for the corresponding diamond cell D= DK,s, the
gradient and the divergence are simply∇Duτ = ∇DK,suτ and divDuτ = divDK,suτ but
us depending on the boundary datas is explicited in (8).

2.2 The DDFV scheme

For uτ in (Rd)τ , we are now able to define the discrete strain tensorD
Duτ =

(DDuτ)D∈D and the divergence oneDivDuτ = (DivDuτ )D∈D by

D
Duτ =

∇Duτ +(∇Duτ )T

2
, DivDuτ = divDuτ Id ∀D ∈D . (6)

After extending this definition to each tetrahedron that composes the diamond cell,
we can specify that the displacementus at an internal faces= K ∩L has to satisfy
the continuity of the fluxes

(λDivDK,suτ +2µDDK,suτ)NKs =−(λDivDL,suτ +2µDDL,suτ)NLs. (7)

Now for a tensor fieldξD in (Md(R))
δ , we define a consistent approximation of

the discrete divergence operator equal to

(divMξD
,divM

∗
ξD) =

(

(divKξD)K∈M,(divK∗
ξD)K∗∈M∗

)

with

divKξD =
1

| K | ∑
s∈∂K

ξ DNKs and divK∗
ξD =

1
| K∗ | ∑

s∋xK∗

ξ DNK∗s

and where D is the diamond cell associated to the faces. NK∗s is the normal to∂K∗

pointing outward K∗ and it can be explicited using local numbering and applying
formula (5):

NK∗s =

{

NK
i+1−NK

i−1+NL
i+1−NL

i−1 for an internal faces= K∩L
Ni+1−Ni−1+Ns,i−1,i +Ns,i,i+1 for a boundary faces= K ∩∂Ω

where we assume thatxK∗ = xK
i (resp.xK∗ = xL

i ) in the volume K (resp. L).

Let us now denotefM = (fK)K∈M andfM
∗i
= (fK∗

)K∗∈M∗i , wherefK andfK∗

are the average of the external forcef on primal and dual cells. Then the DDFV
scheme, written here, for sake of simplicity, only for displacement boundary condi-
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tions, consists in findinguτ ∈ (Rd)τ such that















−divM(λDivDuτ +2µDDuτ ) = fM

−divM
∗i
(λDivDuτ +2µDDuτ ) = fM

∗i

us = g(xs), ∀s∈ ∂M
uK∗ = g(xK∗), ∀K∗ ∈M

∗b
.

(8)

2.3 Existence, stability and convergence results

Applying discrete Green formula, Korn and Poincaré inequalities, divergence equal-
ity and approximation results on the center value projection operator (see [14]), we
prove that the numerical scheme is well-posed, stable and convergent:

Theorem 1. Under the assumption that mes(ΓD) 6= 0, the DDFV scheme for linear
elasticity(8) yields to a symmetric positive definite system of linear equations. So it
admits exactly one solutionuτ ∈ (Rd)τ

Theorem 2. Let uτ ∈ (Rd)τ be the solution of the discrete problem(8). Then there
exists a constant C depending only on the regularity of the mesh such that

µ || ∇Duτ ||22 +
λ
3
|| DivDuτ ||22≤C || fτ ||22 (9)

Theorem 3. Assuming that the exact solution of the continuous problem(1) is reg-
ular enough then there exists a constant C depending only on the regularity of the
mesh, such that

|| u−uτ ||2 + || ∇u−∇Duτ ||2≤Csize(M) (10)

3 Numerical experiments

The DDFV method has been implemented in two and three dimensions. Free and
imposed traction conditions (described in [16]) are also taken into account. Both
homogeneous and non homogeneous test cases are considered.Comparisons are
made with the analytical solution or with the clasical finiteelement one.

3.1 Two dimensional examples

Following a study of [9], we apply the code to a simple test case with analytical solu-
tion in order to study the convergence properties. The geometry of the homogeneous
square plate and the specified boundary conditions are shownin Figure 2(a). Lamé
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Fig. 2 (a) Geometry and test setup - (b)L1 andL2 nors of the error between the analytical and the
numerical displacement.

coefficients(λ ,µ) = (2.9109
,1.9109) correspond to Young modulus and Poisson

ratio(E,ν) = (5109
,0.3). The displacementg is null onΓ boundary and the traction

is imposed onγ1 andγ2 boundaries:

g|γ1
=

(

((2µ +λ )y−2λ )10−2

µ(1−2y)10−2

)

g|γ2
=

(

µ(x−2)10−2

(−2(2µ +λ )x+λ )10−2

)

.

The external force is equal tof = (µ +λ )10−2(2,−1) and the corresponding exact
displacement isu = xy10−2(1,−2). The comparison between the analytical and nu-
merical displacement obtained for various primal meshes are plotted in Figure 2(b)
with an order of convergence of one.

The second example concerns a domain with non homogeneous material prop-
erties. The plate (without deformation) is composed of the part [0,3]× [0,1] with a
hole inside and(λ ,µ) = (5.6,2.6) and the part[3,4]× [0,1] with (λ ,µ) = (10,8).
Null displacement is imposed on the left side of the domain, aload of 1 (resp. a dis-
placement of 1) is imposed on the right side for Figure 3 (resp. for Figure 4). There
is a free traction elsewhere. The deformed domain obtained with the present scheme
(above) and with the conventional finite element method (below) are plotted. In both
case, solution are similar, the largest differences are observed in the load one.

3.2 Three dimensional test

The domain is the unit cube with an embedding condition on thebottom (z= 0),
imposed displacement(0,0,−0.5) on the top (z= 1) simulating a compression of
the domain (see Figure 5b) and free traction conditions on the vertical sides of the
cube. For Lamé coefficients(λ ,µ) = (28.8,19.2), the solution is compared with the
P1 finite element one on a series of meshes: Figure 5a shows thebehavior of the
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Fig. 3 Deformed domain for the non homogeneous case with an imposedload on the right. DDFV
above and FE below
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Fig. 4 Deformed domain for the non homogeneous case with an imposeddisplacement on the
right. DDFV above and FE below

error inL2 andL1 norms and reveals that the DDFV solution of the linear elasticity
problem converges as we expect.
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