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Discrete Duality Finite Volume M ethod Applied
to Linear Elasticity

Benjamin Martin and Frédéric Pascal

Abstract We present the Discrete Duality Finite Volume method (DDF&f)solv-
ing the linear elasticity problem on unstructured meshiegdgb solids undergoing
mechanical loads. The procedure is described in detaihfeetdimensional prob-
lems and some theoretical results are provided: the despreblem is well-posed,
stable and convergent. A number of numerical test problesnsodistrates the abil-
ity of this finite volume scheme to approach the solution amescomparisons with
the conventional finite element method are provided.
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1 Motivation

The finite volume method is extensively used in computatifina dynamics, on
its part the finite element method is the conventional tookfiving solid mechan-
ics. However there is a multitude of physical problems caning fluid and solid
mechanics where finite volume methods appear to be a pertftemative. Let us
quote for instance fluid-structure interaction, deformatf geomechanical reser-
voir, or even the frost heave problem in freezing soils whéee moving frozen
fringe introduces a discontinuity in the physical paramreté&he finite volume ap-
proach for elasticity problems has already been discussgablished in [3], [15],
[17], [18] for cell-vertex formulations, in [12] for cell ceered formulation with a
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decoupled strategy for each component, in [6] and [7] forwpted cell-center ver-
sion. In this study, we address the DDFV implementation &dviag linear elastic-
ity. Let us recall that the principle of the DDFV discretimat consists in integrating
the system both over a given primal mesh and a dual mesh boiiit fhe primal
one. Presentation, convergence analysis and numeritabfd3DFV for diffusion,
convection-diffusion and Stokes problems are availablgLjn[2], [4], [8], [10],
[11], [13], [14].

We limit ourselves to the simplest mathematical model ohadr elastic solid
which consists in finding the displacement R3 such that

—divo(u)y=fonQ, u=g on lp, o(u)-n=h on Iy (1)

wheren is the outward normaf Q = I'p Uy and where the stress tengbdepends
onu by the Hooke relation that links the strain tensor and theet the gradient

Ou+ (Ou)T

o(u) =ADivu+2uDu  with Du= 5

and Divu=divuld. (2)
For sake of clarity, we assume thatis a bounded polyhedral subset®t and that
the Lamé coefficientd andu are constant.

2 Finite volume discretization

A mesh ofQ is defined by the three sef$)t, *, ©}, corresponding to the primal,
dual and diamond mesh. They form a non overlapping partéfa@, so that

Q=|JD= UK:% U K.

De® Kem K*em*

The setht is a conforming triangulation of tetraedra. Each elememnt Bi is sup-
plied with a centex, in practice the barycenter of K amdt denotes the set of
faces on the boundary of the domain. The element®ibfare polygons K cor-
responding to the primal mesh vertices:. These polygons are the union of all
tetrahedra spanned, for each fasesK NL or s= KNdJdQ havingxy+ as vertex,
by xk+ himself,xx or x if it exists, Xs the center of the facg and one of the other
vertices of the face. In order to take into account the boundary conditions, tied d
mesh is splitted into the internal volumes and the boundags@orresponding to
vertices on the boundar§it* = M UM, On its side, diamond cell D i® asso-
ciated to the internal face= K NL is the union of the two tetrahedrad and D_ s
spanned by the faceand respectively by the centexg andx_ (see Figure 1a).
For the boundary face= KN odQ, the corresponding diamond cell is reduced to
the tetrahedron Rs. The number of primal and dual cells is denotedrbgnd the
number of diamond cell by.
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2.1 Discrete operators

The idea of the DDFV discretization is to construct grademd divergence oper-
ators that are under discrete duality relation by a formh&t mimics the Green
fomula for continuous functions (see for instance [5] foregailed construction). A
discrete unknownik (resp.ug-) is associated to each volume K (resp) f the
primal mesh (resp. dual mesh). They are gathered and delpted

u' = (UK , Uk JKeo, K*eom -

For a vector fieldu” in (RY)?, we define on each diamond cell a consistent dis-
crete gradient operatdi®u’ = (0Pu?)pep in (#g(R))® and a consistent dis-
crete divergence operator diu’ = (divPu’)pep in R such that on the inter-

nal faces= KnNL and for the associated diamond cell=6Dk sU D s, the

gradient is given by1Pu? = %DDK‘SUT + %DDL‘SUT and the divergence by

. D . D .
divPu? = %dIVDK»SUT + %dlvmsuT where for K, we take

d

1
OPksy? = (US* UK) ® Nks+ m i;Ui ® (Nifl - Ni+1) (3

_

3| Dks]|
d

divPxsu’ = ;(u —uk) - Nk +; Ui-(Ni—1—Niz1).  (4)

3|DK,s| s s 3|DK,s|i; i— i+

Here| - | denotes the measure apd)?_,, respectively(u;)? ,, the vertices of the

X3

(b)

Fig. 1 (a) Primal and diamond cell - (b) Normal orientations in tieabnd cell

faces, respectively the corresponding unknowns, with the locahbering conven-
tion xg = Xg. The outward normals are defined by (see Figure 1b)



4 Benjamin Martin and Frédéric Pascal

d
. 1
Nks = Z‘Ns,ifl,i with  Ngj_1j = E(Xi —Xs) A (Xi—1— Xs)
i= (5)

1
Ni ==

> (XK — Xs) A (Xj — Xs)

andus is chosen in order to satisfy the continuity of fluxes (seeOtherwise, on
a boundary face € 99t and for the corresponding diamond cell-DDg s, the
gradient and the divergence are simpRu” = [0P«su” and diu? = divP<su’ but
us depending on the boundary datas is explicited in (8).

2.2 The DDFV scheme

For u” in (RY)?, we are now able to define the discrete strain teff38u’ =
(DPu”)pep and the divergence origiv® u” = (DivPu?)pep by

Dyt Dy T\T
DPYT = w , DvPuT=diPu'ld YDe®.  (6)

After extending this definition to each tetrahedron that poses the diamond cell,
we can specify that the displacementat an internal face = K NL has to satisfy
the continuity of the fluxes

(ADivPKsUT + 2uDPsuT)Ngs = —(ADiVPLsu™ + 2uDPLsu™)NLs.  (7)

Now for a tensor fiel® in (.#y4(R))°, we define a consistent approximation of
the discrete divergence operator equal to

(div™ED divTT ED) = ((diVKEQ)KGDﬁv (diVK*EQ)K*em*)
with

1
K"

1 "
divikE® = — F EPNks and divk E° = EPNg -
KT 2 PR
and where D is the diamond cell associated to the $abk+4 is the normal tadK*
pointing outward K and it can be explicited using local numbering and applying

formula (5):

Noo. — 4 N2 = Ni<3 +NE =N for an internal faces = K N L
K'™ I Niz1—Ni_1+Nsj_1;+ Nsj i1 for a boundary facs = KN aQ

where we assume that: = xK (respxg = xiL) in the volume K (resp. L).

Let us now denoté™ = (fK)xon andf™" = (fX") . oy, wherefK andfK’
are the average of the external forfcen primal and dual cells. Then the DDFV
scheme, written here, for sake of simplicity, only for desgment boundary condi-
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tions, consists in finding” € (R%)” such that

—div' (ADivPuT +2uD®u’) = ™M
—div™" (ADIVPUT + 2uD®uT) =
Us=0g(Xs), Vs om

Uk = g(Xgk+), VK* €,

(8)

2.3 Existence, stability and convergence results

Applying discrete Green formula, Korn and Poincaré inditjaa, divergence equal-
ity and approximation results on the center value projeatiperator (see [14]), we
prove that the numerical scheme is well-posed, stable ameecgent:

Theorem 1. Under the assumption that n{ég) # O, the DDFV scheme for linear
elasticity(8) yields to a symmetric positive definite system of linear &#gqosa. So it
admits exactly one solutiarf € (RY)?

Theorem 2. Letu” € (RY)T be the solution of the discrete problgB). Then there
exists a constant C depending only on the regularity of thehnsech that

AL
ol Di’uf||§+§ I DivRuUT |3<C 7|3 9)

Theorem 3. Assuming that the exact solution of the continuous prol§lErs reg-
ular enough then there exists a constant C depending onlh@megularity of the
mesh, such that

[[u—u" |2+ || Ou—DO®u’ ||2< CsizegdM) (10)

3 Numerical experiments

The DDFV method has been implemented in two and three dimesskree and
imposed traction conditions (described in [16]) are ald@mainto account. Both
homogeneous and non homogeneous test cases are cons{diengoarisons are
made with the analytical solution or with the clasical firstement one.

3.1 Two dimensional examples

Following a study of [9], we apply the code to a simple teseaaish analytical solu-
tion in order to study the convergence properties. The gagraéthe homogeneous
square plate and the specified boundary conditions are simokigure 2(a). Lamé
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Fig. 2 (a) Geometry and test setup - (b) andL? nors of the error between the analytical and the
numerical displacement.

coefficients(A, u) = (2.91¢°,1.910°) correspond to Young modulus and Poisson
ratio (E,v) = (510%,0.3). The displacemengis null onI” boundary and the traction
is imposed ory; andy, boundaries:

_((u+A)y—21)102 ([ u(x—2)102
e = <M(12y>102 ) e = ((2(2u+/\)x+/\)1cr2> :

The external force is equal fo= (i +A)1072(2,—1) and the corresponding exact
displacement is = xy10~2 (1, —2). The comparison between the analytical and nu-
merical displacement obtained for various primal meshegkntted in Figure 2(b)
with an order of convergence of one.

The second example concerns a domain with non homogenedagahprop-
erties. The plate (without deformation) is composed of thet |9, 3] x [0, 1] with a
hole inside andA, u) = (5.6,2.6) and the par{3,4] x [0, 1] with (A, i) = (10,8).
Null displacement is imposed on the left side of the domaload of 1 (resp. a dis-
placement of 1) is imposed on the right side for Figure 3 (rémpFigure 4). There
is a free traction elsewhere. The deformed domain obtairithdfae present scheme
(above) and with the conventional finite element methodx{lughre plotted. In both
case, solution are similar, the largest differences arergkd in the load one.

3.2 Three dimensional test

The domain is the unit cube with an embedding condition onbibidom ¢ = 0),
imposed displacemeri,0,—0.5) on the top £= 1) simulating a compression of
the domain (see Figure 5b) and free traction conditions ervértical sides of the
cube. For Lamé coefficien{d , u) = (28.8,19.2), the solution is compared with the
P1 finite element one on a series of meshes: Figure 5a shoviettawior of the



DDFV for Linear Elasticity 7

1
0.5 B
0 1 I 1
0 0.5 1 1.5 2 25 3 35 4 4.5
1 T T
0.5 B
0 1 I
0 0.5 1 15 2 25 3 35 4 4.5

Fig. 3 Deformed domain for the non homogeneous case with an impoadan the right. DDFV
above and FE below
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Fig. 4 Deformed domain for the non homogeneous case with an impdispthcement on the
right. DDFV above and FE below

error inL2 andL! norms and reveals that the DDFV solution of the linear atégti
problem converges as we expect.
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