
HAL Id: hal-00798766
https://hal.science/hal-00798766v1

Preprint submitted on 10 Mar 2013 (v1), last revised 20 Mar 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast nonparametric estimation for convolutions of
densities

Christophe Chesneau, Fabienne Comte, Fabien Navarro

To cite this version:
Christophe Chesneau, Fabienne Comte, Fabien Navarro. Fast nonparametric estimation for convolu-
tions of densities. 2013. �hal-00798766v1�

https://hal.science/hal-00798766v1
https://hal.archives-ouvertes.fr


Fast nonparametric estimation for convolutions of densities

Christophe Chesneau1, Fabienne Comte2 and Fabien Navarro1,3
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Abstract

The present paper is concerned with the problem of estimating the convolution of
densities. We propose an adaptive estimator based on kernel methods, Fourier analysis
and the Lepski method. We study its L2-risk properties. Fast and new rates of conver-
gence are determined for a wide class of unknown functions. Numerical illustrations, on
both simulated and real data, are provided to assess the performances of our estimator.

AMS 2000 Subject Classifications: 62G07, 62G20.
Keywords. Convolution of densities. Kernel estimation. Minimax rate. Nonparametric
estimation.

1 Introduction

1.1 Problem statement and motivations

Many quantities of interest in actuarial or financial sciences involve sums of random vari-
ables. For example, in the individual risk model, the total amount of claims on a portfolio
of insurance contracts is modeled as the sum of all claims on the individual policies. There-
fore, probability density functions of sums of random variables are of particular interest.
Typically, such functions are not available in a closed form. Hence, in order to compute
functionals of sums of random variables, estimation methods are often used.
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Let (Ω,A,P) be a probability space, f the unknown density function of a random variable
X : Ω → R, n a positive integer, X1, . . . , Xn a n i.i.d. sample of X, m a positive integer
and g the m-fold convolution defined by

g(x) = ?mf(x) =

∫
. . .

∫
f(x− x2 − . . .− xm)f(x2) . . . f(xm)dx2 . . . dxm. (1.1)

Let us note that g is the density of the random variable S =
∑m

v=1Xv. We aim to estimate
g from X1, . . . , Xn. Sums of random variables occur in many situations in insurance and
finance, for example, such a sum appears when considering the aggregate claims X1 + . . .+
Xm of an insurance portfolio during a certain reference period (e.g. a month or a year).
From actuarial point of view, one is often interested in the density function of S and m
could be interpreted as the expected number of claims in a specified period. Moreover,
the random variable S arises naturally in reliability theory as the lifetime of a system of m
identical components. A detailed application in the field of health insurance can be found in
Panjer and Willmot (1992). Other applications and examples, are indicated in Frees (1994).
Zhang (2007) considers the estimation of sums of functions of observable and unobservable
variables and provides examples in the field of data confidentiality problems and network.
In the case of dependence between the random variables Xv, Cherubini et al. (2011) study
the problem of capital allocation between risks when the sum of losses is bounded.

1.2 Previous work

The most famous nonparametric procedures are those developed by Frees (1994) and Saave-
dra and Cao (2000). Frees (1994) constructed a kernel based estimator using the random
variables Sσ =

∑m
v=1Xσ(v), where σ ∈ {combinations of m elements (σ(1), . . . , σ(m)) of

{1, . . . , n}}. Saavedra and Cao (2000) explored another point of view: the plug-in estima-
tor ĝ = ?mf̂ , where f̂ denotes a standard kernel estimator for f . These two estimators enjoy
good mean integrated squared error (global L2 -risk) and asymptotic normality properties
(see, e.g., Frees (1994), Saavedra and Cao (2000), Ahmad and Fan (2001), Ahmad and
Mugdadi (2003), Prakasa Rao (2004), Schick and Wefelmeyer (2004, 2007), Du and Schick
(2007) and Giné and Mason (2007)). In particular, (Saavedra and Cao, 2000, Theorems 3
and 4)) show that ĝ = ?mf̂ attains the parametric rate of convergence 1/n under the global
L2-risk (or mean integrated square error MISE) if m ≥ 2, f four times differentiable with
fourth derivative continuous, supx∈R |f (j)(x)| < ∞ for j ∈ {0, 1, 2, 3, 4} and the functions
f ′′ and f (4) are integrable. However, to the best of our knowledge, there is no similar result
under less restrictive assumption on f (or g).

1.3 Contributions and relation to prior work

In this study we introduce a new kernel estimator ĝh, where h denotes the bandwidth. It is
based on Fourier analysis following the spirit of, e.g., Fan (1991) and Caroll and Hall (1988)
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for the standard deconvolution density problem “f ? k”, where k denotes a known density.
In the first part, we establish sharp upper bounds for the pointwise and global L2-risks
of our estimator. Rates of convergence are determined under mild assumptions on f ; we
only suppose that f belongs to Sobolev balls with smoothness parameter β > 0. We show
the influence of β on the performances of ĝh and the best possible bandwidth choice. In
particular, for each risks, we determine a constant υm > 0 such that our estimator attains
the parametric rate of convergence 1/n for β > υm. When β ∈ (0, υm), this result does not
hold; we exhibit a new rate of convergence depending on β. To the best of our knowledge,
this phenomenon was never shown before. Let us mention that ĝh is not adaptive since
the best h depends on the unknown β. However, for real data applications, such prior
knowledge is not available.

This point motivates a second part devoted to the adaptive estimation of g. Focusing on
the global L2-risk, we develop a “Lepski method” (see, e.g., Lepski (1990) and Goldenshluger
and Lepski (2010)) constructing an efficient estimator ĥ of the best bandwidth h for ĝh,
whatever the smoothness of g. This yields an adaptive estimator ĝĥ. We then study its
rates of convergence under the global L2-risk and assuming that f belongs to Sobolev
balls with smoothness parameter β > 0. To be more specific, we prove that, if m ≥ 2
and β > 1/(2m(m − 1)), ĝĥ attains the parametric rate of convergence 1/n. When β ∈
(0, 1/(2m(m − 1))], its rate of convergence is deteriorated by β. These asymptotic results
are very sharp since they are close to those obtained by ĝh with the best nonadaptive h. The
only difference is an extra logarithmic term when β ∈ (0, 1/(2m(m− 1))]. We illustrate its
performances via a simulation study and a real-data example is also provided to illustrate
the application of the proposed estimator in a realistic situation.

1.4 Paper organization

The rest of the paper is organized as follows. Section 2 introduces our estimation procedure.
The results are presented in Section 3. Simulated examples as well as a real-data application
are provided in Section 4. The proofs are postponed to Section 5.

2 Estimation procedure

2.1 Notations

For any a ∈ R, we set [a] the integer part of a and, for any (a, b) ∈ R2, we denote a ∧ b =
min(a, b).

For any p ≥ 1, we set

Lp(R) =

{
f : R→ R; ||f ||p =

(∫ ∞
−∞
|f(x)|pdx

)1/p
}
.
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Assuming that f ∈ L1(R), we define the Fourier transform of f by

f∗(t) =

∫ ∞
−∞

f(x)e−ixtdx, t ∈ R. (2.1)

Remark 2.1 Let us recall that, if f ∈ L1(R) ∩ L2(R), the Fourier inverse formula yields
that f is the inverse Fourier transform of f∗ and can be written as

f(x) =
1

2π

∫ ∞
−∞

eixyf∗(y)dy, x ∈ R. (2.2)

Let L > 0 and α > 0. We define the Sobolev space S(α,L) by

S(α,L) =

{
f ∈ L1(R) ∩ L2(R),

∫ ∞
−∞

(1 + x2)α|f∗(x)|2dx ≤ L
}
.

2.2 Estimator

We consider the kernel estimator for f :

f̂h(x) =
1

nh

n∑
v=1

K

(
x−Xv

h

)
,

where K denotes the sinus cardinal kernel, i.e.,

K(x) =
sin(πx)

πx
, x ∈ R, (2.3)

and h is a positive real number (called the ”bandwidth”).

Remark 2.2 Let us mention that other choices of kernel functions K are possible (see,
e.g., Tsybakov (2004)). In this study we focus our attention on the sinus cardinal kernel
because it is compactly supported in the Fourier domain. Indeed, we have K∗(t) = 1[−π,π](t),
t ∈ R.

In view of (2.1), a natural plug-in estimator for f∗ is given by:

f̂∗h(t) =

∫ ∞
−∞

f̂h(x)e−ixtdx = f̃∗(t)1[−π/h,π/h](t),

where f̃∗ denotes the empirical Fourier transform of f , i.e.,

f̃∗(t) =
1

n

n∑
v=1

eitXv . (2.4)
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Using the Fourier inverse formula (2.2) and the standard convolution equality: (?mf)∗(t) =
(f∗(t))m, observe that

g(x) =
1

2π

∫ ∞
−∞

(?mf)∗(t)eitxdt =
1

2π

∫ ∞
−∞

(f∗(t))meitxdt. (2.5)

Another plug-in in (2.5) yields the following estimator for g:

ĝh(x) =
1

2π

∫ π/h

−π/h
(f̃∗(t))meitxdt. (2.6)

2.3 A selection method for h

Let us now develop a bandwidth selection based on the so-called “Lepski method” and the
global L2-risk of ĝh. First of all, let us define

ĝh,h′(x) =
1

2π

∫ π(1/h∧1/h′)

−π(1/h∧1/h′)
(f̃∗(t))me−itxdt, x ∈ R,

V (h) = κ
2π(log(n))m

hnm

with κ > 0, and
A(h) = sup

h′∈Hn

(
‖ĝh,h′ − ĝh′‖22 − V (h′)

)
+
.

Then we consider the following estimator for the optimal bandwidth h of ĝh under the global
L2-risk:

ĥ = argmin
h∈Hn

(A(h) + V (h)), (2.7)

where

Hn =

{
hk,

1

hk
= k ∈ {1, 2, . . . , nm − 1, nm}

}
.

Using ĥ (2.7) and ĝh (2.6), we consider the plug-in estimator ĝĥ for g.
Further details about the Lepski method can be found in, e.g., Lepski (1990), Golden-

shluger and Lepski (2010) and Comte and Genon-Catalot (2012).

3 Results

3.1 Performances of ĝh under the pointwise L2-risk

Let us start by the following remark.
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Remark 3.1 If f is a density such that f ∈ S(β, L), then supu∈R(1 + u2)β|f∗(u)|2du :=
B < +∞ (since u 7→ (1 + u2)β|f∗(u)|2 is continuous and integrable over R), and∫

(1 + u2)mβ|g∗(u)|2du ≤ Bm−1

∫
(1 + u2)β|f∗(u)|2du < Bm−1L,

so that g ∈ S(α,M) with α = mβ and M = Bm−1L. As m if fixed, we can still consider
that α can be small (but then β is even smaller).

Proposition 3.1 below investigates the performance of ĝh under the pointwise L2-risk.

Proposition 3.1 Consider the model described in Section 1 and let ĝh be given by (2.6).

Upper bound for the pointwise L2-risk. Then, if g∗ ∈ L1(R), we have

E
(
(ĝh(x)− g(x))2

)
≤ C

 1

h2nm
+

1

n
+

(∫
|t|≥π/h

|g∗(t)|dt

)2
 .

Rate of convergence. Assume that f ∈ S(β, L) for β, L > 0. Then for m ≥ 2 there exists a
constant C > 0 such that

E
(
(ĝh(x)− g(x))2

)
≤ Crn, (3.1)

where

Case (i) (ii) (iii)
m ≥ 2, β ≥ 1/m m ≥ 2, β ≥ 1/(m(m− 1)) β ∈ (0, 1/(m(m− 1)))

h O(n−1/2) O(n−m/(2(mβ+1))) O(n−m/(2(mβ+1)))

rn n−1 n−1 n−m
2β/(mβ+1)

In (i), observe that ĝh is adaptive (since h = O(n−1/2) does not depend on β) and
attains the parametric rate of convergence 1/n. The cases (ii) and (iii) are complementary.
In (ii), ĝh is non-adaptive but still attains 1/n. In (iii), 1/n does not hold and ĝh is still
non-adaptive.

3.2 Performances of ĝh

Proposition 3.2 below investigates the performance of ĝh under the global L2-risk.

Proposition 3.2 Consider the model described in Section 1 and let ĝh be defined by (2.6).
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Upper bound for the global L2-risk. Then, if g∗ ∈ L2(R), there exists a constant C > 0 such
that

E
(
‖ĝh − g‖22

)
≤ C

(
1

hnm
+

1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)
.

Rates of convergence. Assume that f ∈ S(β, L) for β, L > 0. Then there exists a constant
C > 0 such that

E
(
‖ĝh − g‖22

)
≤ Crn,

where

Case (iv) (v) (vi)
m ≥ 2, β ≥ 1/(2m) m ≥ 2, β ≥ 1/(2m(m− 1)) β ∈ (0, 1/(2m(m− 1)))

h O(n−1) O(n−m/(2mβ+1)) O(n−m/(2mβ+1))

rn n−1 n−1 n−2m2β/(2mβ+1)

The proof of Proposition 3.2 is based on a suitable decomposition of the global L2-risk,
moments inequality for (2.4) and technical elements related to the Fourier analysis.

As in Proposition 3.1, Proposition 3.2 shows that, in (iv), the procedure ĝh is adaptive
and attains the parametric rate of convergence 1/n. The cases (v) and (vi) are comple-
mentary. In (v), ĝh is non-adaptive but still attains 1/n. In (vi), the rate of convergence
1/n is deteriorated and ĝh is still non-adaptive.

When m = 1 is considered in (vi), the rate of convergence becomes the standard one
for the density estimation problem via kernel method, i.e., rn = n−2β/(2β+1) (see, e.g.,
Tsybakov (2004)).

To the best of our knowledge, for the considered problem, Propositions 3.1 and 3.2 are
the first results introducing the unknown smoothness of f to study the asymptotic rates of
convergence attained by an estimator for g. For instance, the parametric rate of convergence
1/n is also attained by the kernel method of Saavedra and Cao (2000) (see (Saavedra and
Cao, 2000, Theorems 3 and 4)). However, it is established with more restrictive conditions
on f , compared to (iv), i.e., f four times differentiable with fourth derivative continuous,
supx∈R |f (j)(x)| <∞ for j ∈ {0, 1, 2, 3, 4} and the functions f ′′ and f (4) are integrable.

Naturally, the performances of ĝh deeply depends on h. We see in Propositions 3.1 and
3.2 that its optimal value depends on the unknown smoothness parameter β. In order to
estimate it efficiently via the observations, a selection method was proposed in Section 2.3.
The next section is devoted to the performances of the resulting adaptive estimator ĝĥ.

3.3 Performances of ĝĥ

Theorem 3.1 below explores the performances of ĝĥ under the global L2-risk.
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Theorem 3.1 Consider the model described in Section 1. Let ĝĥ be defined by (2.6) with

h = ĥ from (2.7).

Upper bound for the global L2-risk. Then, if g∗ ∈ L2(R), there exist two constants κ and
C > 0 such that

E(‖ĝĥ − g‖
2
2) ≤ C

(
inf
h∈Hn

(
1

hnm
+

∫
|t|≥π/h

|g∗(t)|2 + V (h)

)
+

1

n

)
.

Rates of convergence. Assume that f ∈ S(β, L) for β, L > 0. Then there exists a constant
C > 0 such that

E
(
‖ĝĥ − g‖

2
2

)
≤ Crn,

where

Case (vii) (viii)
m ≥ 2, β > 1/(2m(m− 1)) β ∈ (0, 1/(2m(m− 1))]

rn n−1
(

log(n)
n

)2m2β/(2mβ+1)

Theorem 3.1 shows that our adaptive procedure ĝĥ attains similar rates of convergence to
those attained by ĝh with the optimal non-adaptive h. The only difference is a a logarithmic
loss for β ∈ (0, 1/(2m(m− 1))].

4 Numerical experiments

For simplicity in the following simulation study, we have added the superscript m on g to
denote the m-th convolution power. We consider the problem of estimating the density gm
of the sum of a fixed number m of i.i.d. random variables, emphasizing the case m = 2.
We demonstrate the usefulness of the adaptive kernel estimator ĝm,ĥon both simulated and
real data examples. The numerical experiments have been carried out using Matlab.

4.1 Computational aspects

A computationally-efficient procedure for kernel density estimation has been given by Sil-
verman (1982, 1986), with extensions by Jones and Lotwick (1984). The main idea of this
approach is to express kernel estimator as a convolution of the data with the kernel and
use a Fast Fourier Transform (FFT) to perform the convolution (see e.g. Silverman (1986)
Section 3.5). The estimator proposed in this paper is based on the same idea, therefore
FFT-based method are well suited for its implementation. The resulting estimator ĝm,h
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Figure 1: Test densities f (solid) and g2 (dashed) (the 2-fold convolution power of f).

is simple to implement and fast which allows us to perform the selection procedure in a
reasonable time for various sample sizes.

The original observations were generated from an i.i.d. sample of random variables
X1, . . . , Xn. Three test functions, representing different degrees of smoothness were used
(see Figure 1),

(a) the standard normal distribution N (0, 1),

(b) the Claw distribution 1
2N (0, 1) +

∑4
l=0N

(
l/2− 1, (1/2)2

)
,

(c) the uniform distribution U(−1, 1).

For numerical implementation, we consider an interval [a, b] that cover the range of
the data and the density estimates were evaluated at M = 2r equally spaced points ti =
a + (b − a)/M , i = 0, 1, . . . ,M − 1, between a and b, with r = 8, b = −a = 5 and M is
the number of discretization points. The constant κ is taken equal to 1 and the normalized
sinc Kernel (2.3) were used throughout all experiments. Our results are based on N = 500
simulated data sets and the MISE was approximated by the average of the Integrated
Squared Error (ISE) over the N replicates.

4.2 Bandwidth selection procedure

We have considered the case where m = 2 to illustrate the finite sample behavior of the
adaptive estimator ĝm,ĥ, constructed with the data-driven bandwidth selection procedure
described in the Section 2. Note that, although we focused on m = 2 the approach can
easily handle other values of m.

In order to reduce, the computational cost of the selection procedure and improve the
numerical efficiency of the resulting estimator, we have reduced the cardinality of the fi-
nite set of bandwidth Hn. Indeed, a proper choice of an initial grid Hn allows to reduce
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ĝ2,ĥ
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Figure 2: (a): True density (dotted), density estimates (red) and sample of 20 estimates
(gray) out of 100 proposed to the selection algorithm obtained with a sample of n = 1000
data. (b): Graph of the the function A(h) + V (h) against the smoothing parameter h and
(shifted) MISE(h). The red circle represents the global minimizer of A(h) + V (h) and the
blue circle represents the global minimizer of MISE(h).

considerably the computational time involved in the bandwidth selection procedure and
consequently in the estimation of ĝm,ĥ. Thus, in each case, the grid of h values that we

have considered consisted of 100 values from 0.2ĥ0 to 1.2ĥ0 where ĥ0 = n−m/5 denotes
a pilot bandwidth generally selected from a reference rule, like Silverman’s rule of thumb
(see e.g. Silverman (1986)). Thus, in practice, for each value of h ∈ Hn, the function
A(h) + V (h) has been computed from a single simulation and then, we have minimized
(2.7) numerically over the grid Hn. This step can be easily and quickly computed (thanks
to the FFT-algorithm). The results are depicted in Figures 2 and 3 for n-samples of sizes
1000 et 2000. Figures 2(b) 3(b) also contain a plot of the function A(h) + V (h) against
the smoothing parameter h and a vertical shift of the curve MISE(h) is also overlayed for
visualization purposes. For each density, it is clear from the figures, that the value of ĥ is
the unambiguous minimizer of A(h) + V (h). One notes that selection is already very effec-
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g2
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Figure 3: (a): True density (dotted), density estimates (red) and sample of 20 estimates
(gray) out of 100 proposed to the selection algorithm obtained with a sample of n = 2000
data. (b): Graph of the function A(h) + V (h) against the smoothing parameter h and
(shifted) MISE(h). The red circle represents the global minimizer of A(h) + V (h) and the
blue circle represents the true MISE-minimizing bandwidth hMISE.

tive for n = 1000, ĥ provides a decent approximation, fairly close to hMISE and even closer
when the sample size n grows (i.e. n = 2000), for all test densities. When n = 1000, for the
Gaussian density, the bandwidth which minimizes MISE(h) in this case is hMISE = 0.12520
and ĥ = 0.12543. In this case, for the Claw and the uniform densities, we obtained re-
spectively hMISE = 0.12517, ĥ = 0.12540 and hMISE = 0.12547, ĥ = 0.12542. Note that,
the selection procedure also give good results on smaller sample sizes (e.g. for n = 100
and the Gaussian density, hMISE = 0.3980 and ĥ = 0.3888). Therefore, without any prior
smoothness knowledge on the unknown density, our adaptive estimator is very effective to
estimate each of the three densities.
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Table 1: 1989 total hospital charges (in dollars) for 33 females aged 30-49 hospitalized for
circulatory disorders from a Wisconsin Hospital (see Frees (1994)).

2337 2179 2348 4765 2088 2872 1924 2294 2182 2138 1765
2467 3609 2141 1850 3191 3020 2473 1898 7787 6169 1802
2011 2270 3425 3558 2315 1642 5878 2101 2242 5746 3041
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Figure 4: (a) Our estimator ĝ2,ĥ (red) for the sum of two claims and a sample of 4 estimates

ĝ2,h (gray) out of 100 used to the selection algorithm. (b): Graph of A(h)+V (h) against the
smoothing parameter h (in a log-log scale). The red circle represents the global minimizer
ĥ of A(h) +V (h) and the gray circles represent the values of h corresponding to the ĝh plot
in (a)

Real data example

In this section a real data application of the bandwidth selection method is given. In
insurance, a typical example is the sum of insurance claims, where (Xv)v=1,...,n are individual
insurance claims and S =

∑m
v=1Xv is the sum of m claims and m could be interpreted as

the expected number of claims in a specified period (e.g. one month). In this illustration, we
consider the hospital data example, reported and analyzed in Frees (1994) and we discuss
the case m = 2. The data in Table 1 consist of measurements of the 1989 total charges for
33 patients at a Wisconsin Hospital

The bandwidth was also chosen by grid search minimization, over an equally spaced
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space grid of 100 values from hmin = 9 to hmax = 450. Figure 4(a) depicts density estimate
and show histogram of the sum of claims for m = 2. Figure 4(b) contain a plot of the
function A(h) + V (h) against the smoothing parameter h and the red circle represents the
global minimizer ĥ of A(h) + V (h). The density estimates depicted by the gray lines in
Figure 4(a) are based on the bandwidths marked by the gray circles in Figure 4(b).

Conclusion and perspectives

We have constructed a new adaptive estimator ĝĥ for g using kernel methods, Fourier
analysis and the Lepski method. Theorems 3.2 and 3.1 show the good performances of ĝĥ
in terms of rates of convergence under the global L2-risk over S(β, L). The agreement of
our simulations with our theoretical findings show that our estimator is quite effective on
both simulated and real data sets. Possible perspectives of this work are to

• remove the extra logarithmic term in the case β ∈ (0, 1/(2m(m− 1)] via another
adaptive estimator,

• extend our estimation procedure to another problem as the one of Zijaeva (1975), i.e.,
estimate the density g of X1 + Y1 from n i.i.d. observations X1, . . . , Xn with density
f1 and n i.i.d. observations Y1, . . . , Yn with density f2,

All these points need further investigations that we leave for future works.

5 Proofs

In the following, the quantity C denotes a generic constant that does not depend on n. Its
value may change from one term to another (it can depend on the fixed m).

5.1 Intermediary results

Proposition 5.1 Let f∗ be (2.1) and f̃∗ be (2.4). For any positive integer v, there exists
a constant C > 0 such that

sup
t∈R

E
(
|f̃∗(t)− f∗(t)|2v

)
≤ C 1

nv
.

Proof of Proposition 5.1. First of all, let us recall the Rosenthal inequality (see Rosenthal
(1970) ).
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Lemma 5.1 (Rosenthal’s inequality) Let n be a positive integer, p ≥ 2 and U1, . . . , Un
be n zero mean independent random variables such that supv∈{1,...,n} E(|Uv|p) < ∞. Then
there exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
v=1

Uv

∣∣∣∣∣
p)
≤ C

 n∑
v=1

E (|Uv|p) +

(
n∑
v=1

E
(
U2
v

))p/2 .

Let t ∈ R. We have

f̃∗(t)− f∗(t) =
1

n

n∑
v=1

Uv(t), Uv(t) = eitXv − E(eitX1).

Note that U1(t), . . . , Un(t) are i.i.d. with E(U1(t)) = 0, |U1(t)| ≤ 1 and E(|U1(t)|2) ≤ 1. For
any positive integer v, the Rosenthal inequality yields the existence of a constant C > 0
such that

E
(
|f̃∗(t)− f∗(t)|2v

)
=

1

n2v
E

∣∣∣∣∣
n∑
v=1

Uv(t)

∣∣∣∣∣
2v
 ≤ C 1

nv
.

Proposition 5.1 is proved.

�

Lemma 5.2 Let (u, v) ∈ C2 such that |u| ≤ 1 and |v| ≤ 1. Then, for any integer m ≥ 1,
we have

|um − vm| ≤ |u− v|m +Dm|u− v||v|,
with Dm = (3m − 2m − 1)/2.

Proof of Lemma 5.2. For m = 1, the desired inequality is obviously satisfied with Dm = 0.
Let us now investigate the case m ≥ 2. The binomial theorem yields

um − vm =

m−1∑
k=0

(
m

k

)
vk(u− v)m−k

= (u− v)m + (u− v)v
m−2∑
k=0

(
m

k + 1

)
vk(u− v)m−2−k.

The triangular inequality and |u| ≤ 1 and |v| ≤ 1 give

|um − vm| ≤ |u− v|m +Dm|u− v||v|,

with

Dm = 2m−2
m−2∑
k=0

(
m

k + 1

)
2−k =

1

2
(3m − 2m − 1).

Lemma 5.2 is proved.
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5.2 Proof of the main results

5.2.1 Proof of Proposition 3.1

Upper bound for the pointwise L2 risk. Set

gh(x) =
1

2π

∫ π/h

−π/h
g∗(t)eitxdt =

1

2π

∫ π/h

−π/h
(f∗(t))meitxdt, x ∈ R. (5.1)

Using the elementary inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, we obtain

E
(
(ĝh(x)− g(x))2

)
≤ 2(P +Q), (5.2)

where
P = E

(
(ĝh(x)− ḡh(x))2

)
, Q = (ḡh(x)− g(x))2.

Upper bound for Q. The Fourier inverse formula yields

Q =

(
1

2π

∫
|t|≥π/h

g∗(t)eitxdt

)2

≤

(
1

2π

∫
|t|≥π/h

|g∗(t)|dt

)2

. (5.3)

Upper bound for Q. We have

P = E

( 1

2π

∫ π/h

−π/h
(ĝ∗h(t)− g∗(t))eitxdt

)2


≤ E

( 1

2π

∫ π/h

−π/h
|(f̃∗(t))m − (f∗(t))m|dt

)2


≤

(
1

2π

∫ π/h

−π/h

(
E
(
|(f̃∗(t))m − (f∗(t))m|2

))1/2
dt

)2

, (5.4)

where the last line follows from the Fubini theorem (write the squared integral as a
multiple integral) and the Cauchy-Schwarz inequality.

It follows from the inequalities |f̃∗(t)| ≤ 1, |f∗(t)| ≤ ||f ||1 = 1, Lemma 5.2 and the
elementary inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, that

|(f̃∗(t))m − (f∗(t))m|2 ≤ 2
(
|f̃∗(t)− f∗(t)|2m +D2

m|f̃∗(t)− f∗(t)|2|f∗(t)|2
)
,

with Dm = (3m − 2m − 1)/2.
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Proposition 5.1 implies the existence of a constant C > 0 such that

E
(
|(f̃∗(t))m − (f∗(t))m|2

)
≤ 2

(
E
(
|f̃∗(t)− f∗(t)|2m

)
+D2

m|f∗(t)|2E
(
|f̃∗(t)− f∗(t)|2

))
≤ C

(
1

nm
+

1

n
|f∗(t)|2

)
. (5.5)

By (5.4), (5.5), the elementary inequalities
√
|x+ y| ≤

√
|x| +

√
|y|, and (x + y)2 ≤

2(x2 + y2), (x, y) ∈ R2, and
∫ π/h
−π/h |f

∗(t)|dt ≤ ||f∗||1, we have

P ≤ C

(∫ π/h

−π/h

(
1

nm
+

1

n
|f∗(t)|2

)1/2

dt

)2

≤ C

 1

nmh2
+

1

n

(∫ π/h

−π/h
|f∗(t)|dt

)2
 ≤ C ( 1

nmh2
+

1

n

)
. (5.6)

Combining (5.2), (5.3) and (5.6), we obtain

E
(
(ĝh(x)− g(x))2

)
≤ C

 1

h2nm
+

1

n
+

(∫
|t|≥π/h

|g∗(t)|dt

)2
 . (5.7)

Rates of convergence. Since
∫
|f∗(t)|2(1 + t2)βdt ≤ L, recalling that this implies that

|f∗(t)|2(1 + t2)β ≤ B, we have(∫
|t|≥π/h

|g∗(t)|dt

)2

=

(∫
|t|≥π/h

|f∗(t)|mdt

)2

=

(∫
|t|≥π/h

(
|f∗(t)|(1 + t2)β/2

)2 (
|f∗(t)|(1 + t2)β/2

)m−2
(1 + t2)−mβ/2dt

)2

≤ (1 + (π/h)2)−mβBm−2L2 ≤ Ch2mβ. (5.8)

(i) m ≥ 2, β ≥ 1/m: The inequalities (5.7) and (5.8) and h = O(n−1/2) give

E
(
(ĝh(x)− g(x))2

)
≤ C

(
1

nm−1
+

1

n
+ n−mβ

)
≤ C 1

n
.
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(ii) m ≥ 2, β ≥ 1/(m(m− 1)): It follows from (5.7) and (5.8) and h = O(n−m/(2(mβ+1)))
that

E
(
(ĝh(x)− g(x))2

)
≤ C

(
n−m

2β/(mβ+1) +
1

n
+ n−m

2β/(mβ+1)

)
≤ C 1

n
.

(iii) β ∈ (0, 1/(m(m− 1))): Similarly to the previous case, we have

E
(
(ĝh(x)− g(x))2

)
≤ C

(
n−m

2β/(mβ+1) +
1

n
+ n−m

2β/(mβ+1)

)
≤ Cn−m2β/(mβ+1).

The proof of Proposition 3.1 is complete. �

5.2.2 Proof of Proposition 3.2.

Upper bound for the global L2-risk. Recall that ḡh is defined in equation (5.1). The
elementary inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, yields

E
(
‖ĝh − g‖22

)
≤ 2(R+ S), (5.9)

where
R = E

(
‖ĝh − gh‖22

)
, S = ‖gh − g‖22.

Upper bound for R. The Parseval theorem gives

R =
1

2π

∫ π/h

−π/h
E
(
|(f̃∗(t))m − (f∗(t))m|2

)
dt (5.10)

Owing to the Parseval theorem, we have∫ π/h

−π/h
|f∗(t)|2dt ≤ ||f∗||22 = 2π||f ||22 ≤ C. (5.11)

It follows from (5.10), (5.5) and (5.11) that

R ≤ C

(
1

hnm
+

1

n

∫ π/h

−π/h
|f∗(t)|2dt

)
≤ C

(
1

hnm
+

1

n

)
. (5.12)

Upper bound for S. Using the Parseval theorem, we get

S =

∫
|t|≥π/h

|g∗(t)|2dt. (5.13)

Combining (5.9), (5.12) and (5.23), we obtain

E
(
‖ĝh − g‖22

)
≤ C

(
1

hnm
+

1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)
. (5.14)
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Rates of convergence. Let us recall that, since f ∈ S(β, L), then g ∈ S(α,M) with
α = mβ and M = Bm−1L (see Remark 3.1). Therefore∫
|t|≥π/h

|g∗(t)|2dt ≤
(
1 + (π/h)2

)−mβ ∫
|t|≥π/h

(1 + t2)mβ|g∗(t)|2dt ≤ CLh2mβ. (5.15)

(iv) m ≥ 2 and β ≥ 1/(2m): It follows from (5.14) and (5.15) with h = O(n−1) that

E
(
‖ĝh − g‖22

)
≤ C

(
1

nm−1
+

1

n
+ n−2mβ

)
≤ C 1

n
.

(v) m ≥ 2 and β ≥ 1/(2m(m− 1)): The choice h = O(n−m/(2mβ+1)) in the bounds
(5.14) and (5.15) yields

E
(
‖ĝh − g‖22

)
≤ C

(
n−2m2β/(2mβ+1) +

1

n
+ n−2m2β/(2mβ+1)

)
≤ C 1

n
.

(vi) β ∈ (0, 1/(2m(m− 1))): Proceeding as for the previous point, we obtain

E
(
‖ĝh − g‖22

)
≤ C

(
n−2m2β/(2mβ+1) +

1

n
+ n−2m2β/(2mβ+1)

)
≤ Cn−2m2β/(2mβ+1).

This ends the proof of Proposition 3.2.

�

5.2.3 Proof of Theorem 3.1.

Upper bound for the global L2-risk. Let h ∈ Hn be fixed. The Minkowski inequality
and the elementary inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2), (x, y, z) ∈ R3, yield

E
(
‖ĝĥ − g‖

2
2

)
≤ 3(E

(
‖ĝĥ − ĝh,ĥ‖

2
2

)
+ E

(
‖ĝh,ĥ − ĝh‖

2
2

)
+ E

(
‖ĝh − g‖22

)
).

By definition of A(h), we have

E
(
‖ĝĥ − ĝh,ĥ‖

2
2

)
≤ E(A(h)) + E(V (ĥ)),

the definition of A(ĥ) yields

E
(
‖ĝh,ĥ − ĝh‖

2
2

)
≤ E(A(ĥ)) + V (h)

and Proposition 3.2 gives

E
(
‖ĝh − g‖22

)
≤ C

(
1

hnm
+

1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)
.
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Therefore, owing to the definition of ĥ, we have

E
(
‖ĝĥ − g‖

2
2

)
≤ 3(E(A(h)) + E(V (ĥ) +A(ĥ)) + V (h)) + C

(
1

hnm
+

1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)

≤ 6(E(A(h)) + V (h)) + C

(
1

hnm
+

1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)
, (5.16)

where

E(A(h)) = E
(

sup
h′∈Hn

(
‖ĝh,h′ − ĝh′‖22 − V (h′)

)
+

)
. (5.17)

Upper bound for E(A(h)). Let us introduce the following functions:

gh(x) =
1

2π

∫ π/h

−π/h
g∗(t)eitxdt, x ∈ R

and

gh,h′(x) =
1

2π

∫ π(1/h∧1/h′)

−π(1/h∧1/h′)
g∗(t)eitxdt, x ∈ R.

Observe that

ĝh′ − ĝh,h′ = ĝh′ − gh′ − (ĝh,h′ − gh,h′) + gh′ − gh,h′ .

Using again the Minkowski inequality and the elementary inequality (x + y + z)2 ≤
3(x2 + y2 + z2), (x, y, z) ∈ R3, we obtain

||ĝh′ − ĝh,h′ ||22 ≤ 3
(
||ĝh′ − gh′ ||22 + ||ĝh,h′ − gh,h′ ||22 + ||gh′ − gh,h′ ||22

)
.

Set D = [−π/h′,−π(1/h∧1/h′))]∪ [π(1/h∧1/h′)), π/h′]. The Parseval theorem yields

‖gh′ − gh,h′‖22 =
1

2π

∫
D
|g∗(t)|2dt ≤

∫
|t|≥π/h

|g∗(t)|2dt = ‖gh − g‖22.

In the same way, we prove that

‖ĝh,h′ − gh,h′‖22 ≤ ‖ĝh′ − gh′‖22.

Then
‖ĝh′ − ĝh,h′‖22 ≤ 6‖ĝh′ − gh′‖22 + 3‖g − gh‖22. (5.18)
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It follows from (5.17), (5.18) and the Parseval theorem that

E(A(h)) ≤ 6U + 3

∫
|t|≥π/h

|g∗(t)|2dt, (5.19)

where

U = E
(

sup
h′∈Hn

(‖ĝh′ − gh′‖22 − V (h′)/6)+

)
.

Upper bound for U . Let us consider the random event

Ω(u) =
{
|f̃∗(u)− f∗(u)| ≤ τ

√
log(n)/n

}
Let us set

vn =
h′

2π
V (h′) = κ

(log(n))m

nm
.

Owing to the Parseval theorem and Lemma 5.2, we have

‖ĝh′ − gh′‖22 − V (h′)/6 =
1

2π

∫ π/h′

−π/h′
|(f̃∗(t))m − (f∗(t))m|2dt− V (h′)/6

≤ 1

π

(∫ π/h′

−π/h′

(
|f̃∗(t)− f∗(t)|2m1Ω(t) − vn/12

)
dt+

∫ π/h′

−π/h′
|f̃∗(t)− f∗(t)|2m1Ωc(t)dt

+D2
m

∫ ∞
−∞
|f̃∗(t)− f∗(t)|2|f∗(t)|2dt

)
.

Therefore
U ≤ C(R+ S + T ), (5.20)

where

R =
nm∑
k=1

E

((∫ π/hk

−π/hk

(
|f̃∗(t)− f∗(t)|2m1Ω(t) − vn/12

)
dt

)
+

)
,

S =

nm∑
k=1

∫ π/hk

−π/hk
E
(
|f̃∗(t)− f∗(t)|2m1Ωc(t)

)
dt

and

T =

∫ ∞
−∞

E
(
|f̃∗(t)− f∗(t)|2

)
|f∗(t)|2dt.

Evaluation of R. On Ω(t), we have

|f̃∗(t)− f∗(t)| ≤ τ
√

log(n)

n
.
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Therefore, taking τ large enough, we have∫ π/hk

−π/hk

(
|f̃∗(t)− f∗(t)|2m1Ω(t) − vn/12

)
dt ≤ 0.

Hence
R = 0. (5.21)

Upper bound for S. Following Neumann (1997), we apply Bernstein Inequality and
get that

P(Ω(t)c) = P

(∣∣∣∣∣ 1n
n∑
k=1

(e−itXk − E(e−itXk))

∣∣∣∣∣ ≥ τ√log(n)/n

)
≤ 2(exp(−τ2 log(n)/4) + exp(−3τ

√
n log(n)/4)).

Thus, taking τ ≥ 2 + p implies

P(Ωc(t)) ≤ Cn−p. (5.22)

Applying the Cauchy-Schwarz inequality, Lemma 5.1 with v = 2m, (5.22) with p =
m+ 2 and 1/hk ≤ nm, we obtain

S ≤
nm∑
k=1

∫ π/hk

−π/hk

(
E(|f̃∗(t)− f∗(t)|4m)

)1/2
(P(Ωc(t)))1/2 dt

≤ C 1

nm+p/2

nm∑
k=1

1

hk
≤ C 1

n(p−m)/2
= C

1

n
. (5.23)

Note that we get κ ≥ 4 +m for the constant in the definition of V (h).

Upper bound for T . Using Lemma 5.1 with v = 1 and applying the Parseval theorem,
we get

T ≤ C 1

n
||f∗||22 ≤ C

1

n
||f ||22 ≤ C

1

n
. (5.24)

Putting (5.20), (5.21), (5.23) and (5.24) together, we have

U ≤ C 1

n
. (5.25)

Combining (5.19) and (5.25), we get

E(A(h)) ≤ C

(
1

n
+

∫
|t|≥π/h

|g∗(t)|2dt

)
. (5.26)
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Finally, from (5.16) and (5.26), we obtain

E(‖ĝĥ − g‖
2
2) ≤ C

(
1

hnm
+

∫
|t|≥π/h

|g∗(t)|2 + V (h) +
1

n

)
. (5.27)

We obtain the desired result by taking the infimum of h over Hn.

Rates of convergence.

(vii) m ≥ 2, β > 1/(2m(m− 1)): It follows from (5.27) and (5.15) with h = [n−m/(2mβ+1)]
that

E(‖ĝĥ − g‖
2
2) ≤ C

(
n−2m2β/(2mβ+1) + (log(n))mn−2m2β/(2mβ+1) +

1

n

)
≤ C 1

n
.

(viii) β ∈ (0, 1/(2m(m− 1))]: Putting (5.27) and (5.15) together with

h =

[(
(log(n))m

n

)m/(2mβ+1)
]

we obtain

E(‖ĝĥ−g‖
2
2) ≤ C

((
(log(n))m

n

)2m2β/(2mβ+1)

+
1

n

)
≤ C

(
(log(n))m

n

)2m2β/(2mβ+1)

.

Theorem 3.1 is complete.

�
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