Keywords: Mathematics Subject Classification. Primary 60G50, 60G51; Secondary 60K25, 60F17 Lévy processes, Heavy traffic, Functional limit theorems, Mittag-Leffler distribution

   

Convergence of the all-time supremum of a Lévy process in the heavy-traffic regime

CONVERGENCE OF THE ALL-TIME SUPREMUM OF A L ÉVY PROCESS IN THE HEAVY-TRAFFIC REGIME

K.M. KOSI ŃSKI, O.J. BOXMA, AND B. ZWART Abstract. In this paper we derive a technique of obtaining limit theorems for suprema of Lévy processes from their random walk counterparts. For each a > 0, let {Y (a) n : n ≥ 1} be a sequence of independent and identically distributed random variables and {X → R, for some random variable R and some function Δ(•). We utilize this result to present a number of limit theorems for suprema of Lévy processes in the heavy-traffic regime.

Introduction

For each a > 0, let X (a) ≡ {X (a) t : t ≥ 0} be a Lévy process such that μ (a) := EX (a) 1 < 0. Along with the Lévy process X (a) define X(a) = sup t≥0 X (a) t . Since μ (a) < 0 assures that X (a) drifts to -∞, the all-time supremum X(a) is a proper random variable for each a > 0. Now if μ (a) ↑ 0 as a ↓ 0, then X(a) → ∞. From this fact a natural question arises: How fast does X(a) grow as a ↓ 0? The main purpose of this paper is to answer the above question by considering the discrete approximation of a Lévy process by a random walk. For each a > 0, let {Y 1 , then the limiting distribution of X(a) can be derived from the limiting distribution of S(a) . In doing so we shall utilize a bound by Willekens [START_REF] Willekens | On the supremum of an infinitely divisible process[END_REF]. Loosely speaking, this bound allows to derive certain properties of Lévy processes via their corresponding random walk approximations (see also Doney [9]). The advantage of this approach is that the problem on how fast does S(a) grow as a ↓ 0 has been treated extensively and various methods have been developed. One major reason why the behaviour of S(a) has been studied is that it is well-known that the stationary distribution of the waiting time of a customer in a single-server firstcome-first-served GI/GI/1 queue coincides with the distribution of the maximum of a corresponding random walk. The condition on the mean of the random walk becoming small (a ↓ 0) means in the context of a queue that the traffic load tends to 1. Thus, the problem under consideration (in the random walk setting) may be seen as the investigation of the growth rate of the stationary waiting-time distribution in a GI/GI/1 queue. This is one of the most important problems in queueing theory that is referred to as the heavytraffic approximation problem. The question was first posed by Kingman (see [START_REF] Kingman | The heavy traffic approximation in the theory of queues[END_REF] for an extensive discussion on the early results). It has been solved in various settings by, e.g., Prokhorov [START_REF] Ju | Transition phenomena in queueing processes[END_REF], Boxma and Cohen [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF], Resnick and Samorodnitsky [START_REF] Resnick | A heavy traffic limit theorem for workload processes with heavy tailed service requirements[END_REF], Szczotka and Woyczyński [START_REF] Szczotka | Heavy-tailed dependent queues in heavy traffic[END_REF] and many others. Surprisingly, there are no results in the literature on the heavy-traffic limit theorems for Lévy-driven (fluid) queues. Our approach however allows to translate each single result in the random walk setting to its analogue in the Lévy setting, thereby providing a range of fluid heavy-traffic limit theorems. Our main result, Theorem 1, states: under some mild conditions, Δ(a) S(a) d → R if and only if Δ(a) X(a) d → R, for some random variable R and some function Δ(•). The remainder of the paper is organized as follows. In Section 2 we fix notation and give some necessary preliminaries. Section 3 contains the main result of this paper, Theorem 1, and its proof. Instances of this theorem applied to the results by Boxma and Cohen [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF], Shneer and Wachtel [START_REF] Shneer | Heavy-traffic analysis of the maximum of an asymptotically stable random walk[END_REF] and Szczotka and Woyczyński [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF] (see also Czysto lowski and Szczotka [START_REF] Czysto | Queueing approximation of suprema of spectrally positive Lévy process[END_REF]) are presented in Section 4 and conclude the paper.

Preliminaries and notation

All the stochastic objects are assumed to be defined on the probability space (Ω, F, P) endowed with a standard filtration F = {F t : t ≥ 0}, that is F is an increasing, rightcontinuous family of complete sub-σ-fields of F. Let us begin by fixing the notation for Lévy processes. A real-valued stochastic process X ≡ {X t : t ≥ 0}, with X 0 = 0, is said to be a Lévy process with respect to the filtration F if it is adapted to F, X s -X t is independent of F t and distributed as X s-t for any 0 ≤ t < s. Moreover we assume that the sample paths of X are càdlàg (right-continuous with left limits), so that X is strong Markov. Let ψ be the Lévy characteristic exponent of X so that Ee iuXt = e -tψ (u) , for all u ∈ R. In this case, for some σ > 0 and δ ∈ R, ψ has the form

ψ(u) = iδu + 1 2 σ 2 u 2 + |x|<1 1 -e iux + iux ν(dx) + |x|≥1 1 -e iux ν(dx),
where ν is the Lévy measure (on R\{0}) satisfying R (1∧x 2 )ν(dx) < ∞. We only consider nondeterministic processes X, which is synonymous with σ 2 + ν(R \{0}) > 0. We say that:

X is centered if EX t = 0 for all t; spectrally positive if ν(-∞, 0) = 0; spectrally negative if ν(0, ∞) = 0.
If X 1 has a stable distribution with index α ∈ (0, 2] then we say that X is an α-stable Lévy process and denote it by L (α) . For more background on Lévy processes we refer the reader to [START_REF] Bertoin | Lévy Processes[END_REF] and references therein. For a Borel set B, we denote by D(B) the space of real-valued càdlàg functions on B equipped with the usual Skorokhod J 1 topology, see, e.g., [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]Chapter VI].

In the sequel we will encounter the Mittag-Leffler distribution, see, e.g., [4, p. 329]. A positive random variable M L α is said to have a Mittag-Leffler distribution with parameter α ∈ (0, 1] if its Laplace-Stieltjes transform (LST) is given by 

E exp(-sM L α ) = 1 1 + s α .
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Observe that M L 1 has the 1-exponential distribution. We will also make use of some standard notation. For two functions f , g we shall write

f (x) ∼ g(x) as x → x 0 ∈ [0, ∞] to mean lim x→x 0 f (x)/g(x) = 1.
The class of regularly varying functions with index α shall be denoted by RV α .

In what follows we shall also write

X(a) = sup t≥0 X (a) t , S(a) = max n≥0 S (a) n ,
where, for each a > 0, {X < 0 and μ (a) ↑ 0 as a ↓ 0. Then, for some random variable R,

(1) Δ(a) max n≥0 S (a) n d → R ⇐⇒ Δ(a) sup t≥0 X (a) t d → R, as a ↓ 0, where Δ(•) is a normalizing function such that Δ(a)X (a)
1 → 0 almost surely.

Remark 1. The assumptions of the above theorem are natural:

• μ (a) ↑ 0 assures that, for each a, X(a) and S(a) are finite random variables. Moreover X(a) and S(a) tend to infinity with a. Therefore the function Δ(•) tends to zero and can be seen as the speed of convergence in (1). • Δ(a)X (a) 1 → 0 is satisfied in all typical applications; for instance when X (a) t = X tat for a fixed Lévy process X, see Section 4.1 and Section 4.2; or there exists a function d(a) → ∞ such that X On the other hand, for any x 0 > 0, We use an argument similar to the one in [START_REF] Maulik | Tail asymptotics for exponential functionals of Lévy processes[END_REF][START_REF] Willekens | On the supremum of an infinitely divisible process[END_REF]. Define τ (a) (x) = inf{t ≥ 0 : Δ(a)X (a) t > x}, so that τ (a) is a stopping time [2, Corollary 8]. Now the second term on the right hand side of the above inequality can be bounded from above by

P Δ(a) X(a) > x ≤ P Δ(a) max n≥0 X (a) n > x -x 0 + P Δ(a) X(a) > x, Δ(a) max n≥0 X (a) n ≤ x -x 0 = P Δ(a) S(a) > x -x 0 + P Δ(a) X(a) > x, Δ(a) max n≥0 X (a) n ≤ x -x 0 .
P τ (a) (x) < ∞, Δ(a) inf t∈[τ (a) (x),τ (a) (x)+1] X (a) t -X (a) τ (a) (x) ≤ -x 0 = P τ (a) (x) < ∞ P Δ(a) inf t∈[0,1] X (a) t ≤ -x 0 ,
where we used the strong Markov property in the last equality. Thus,

P Δ(a) X(a) > x P Δ(a) inf t∈[0,1] X (a) t > -x 0 ≤ P Δ(a) S(a) > x -x 0 . Now Δ(a)X (a) 1 (3) 
→ 0 a.s. implies that the finite-dimensional distributions of {Δ(a)X (a) t : t ∈ [0, 1]} converge to zero a.s. and thus by [START_REF] Skorokhod | Limit theorems for stochastic processes with independent increments[END_REF] the whole process converges to 0 in D[0, 1]. Applying the continuous mapping theorem with the infimum (over [0, 1]) map yields Δ(a) inf t∈[0,1] X (a) t → 0. Thus, combining formulas ( 2) and (3) we get

R(x) ≤ lim inf a→0 P Δ(a) X(a) > x ≤ lim sup a→0 P Δ(a) X(a) > x ≤ R(x -x 0 ).
The thesis follows by letting x 0 → 0. Remark 2. In the subsequent section, we shall use the if part of Theorem 1 to derive various limit theorems for suprema of Lévy processes. It is worth noting however that the only if part could be used as well to derive limit theorems for suprema of random walks. A variation of this approach has been undertaken in Szczotka and Woyczyński [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF], where first a heavy-traffic limit theorem is derived in continuous time and then this theorem is used to claim an analogous behaviour in discrete time.

Special instances

Theorem 1 provides a tool for translating limit theorems for random walks to their analogues in the Lévy setting. In this section we shall focus our attention on some seminal results about the convergence of the maxima of random walks and reformulate them to the Lévy case. We illustrate each special case that we consider with a remark that explains an alternative way of obtaining the particular result via a direct approach undertaken in the literature. These remarks, albeit short, are rigorous enough to act as alternative proofs. Let us start with the case in which the underlying processes are spectrally positive, which is closely related to the queueing setting via the compound Poisson process. 4.1. Spectrally positive processes. For a sequence of zero mean, i.i.d. random variables {Y, Y n : n ≥ 1}, the question of how fast does S(a) = max n≥0 (S nna) grow as a ↓ 0 was first posed by Kingman [START_REF] Kingman | The single server queue in heavy traffic[END_REF][START_REF] Kingman | On queues in heavy traffic[END_REF]. Kingman in his proof assumed exponential moments of |Y | and used Wiener-Hopf factorization to obtain the Laplace transform of S(a) . Prokhorov [START_REF] Ju | Transition phenomena in queueing processes[END_REF] generalized Kingman's result to the case when only the second moment of Y is finite. His approach was based on the functional Central Limit Theorem. These two approaches have become classical and have both been used to prove various heavy-traffic results. The analytical approach of Kingman was used by Boxma and Cohen [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF] (see also Cohen [6]) to study the limiting behaviour of S(a) in the case of infinite variance. They proved that 

Δ(ρ(a)) sup t≥0 (X t -at) d → M L α-1 , as ρ(a) ↑ 1,
where Δ(x) = d(x)/μ and d(x) is such that

(4) r(d(x)) ∼ d(x) 1 -x x μ α , as x ↑ 1.
See also [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF][START_REF] Resnick | A heavy traffic limit theorem for workload processes with heavy tailed service requirements[END_REF] for possible refinements of the assumption on regular variation in this special case.

Remark 3. It is possible to prove Proposition 1 using a direct approach like the one in [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF]. Let X (a) t = X tat, a > μ, then the Pollaczek-Khinchine formula (see, e.g., [START_REF] Asmussen | Applied Probability and Queues[END_REF] Chapter IX) yields

Ee -λ X(a) = λϕ a (0) ϕ a (λ) < ∞, for λ > 0,
where ϕ a (λ) = log E exp(-λ(X 1a)). Substituting ϕ a (λ) = λϕ a (0) + r(λ) yields

λϕ a (0) ϕ a (λ) = 1 1 + r(λ) λϕ a (0)
, where we assumed σ = 0 for simplicity. Let λ = sΔ(ρ(a)) with Δ(•) as in Proposition 1.

Using [START_REF] Bingham | Regular Variation[END_REF]Theorem 8.1.6] one infers that, under the assumption ν(x, ∞) ∈ RV -α , r is a regularly varying function at 0 with index α. We necessary have d(x) ↓ 0, as x ↑ 1. Hence, as ρ(a) ↑ 1,

r(λ) λϕ a (0) ∼ s μ α-1 r(d(ρ(a))) d(ρ(a))(a -μ) = s α-1 μ α r(d(ρ(a))) d(ρ(a)) ρ(a) 1 -ρ(a) ∼ s α-1 .
4.2. Asymptotically stable processes. Proposition 1 limits the class of Lévy processes under consideration to spectrally positive. Further improvements of the result from [START_REF] Boxma | Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions[END_REF] by Furrer [START_REF] Furrer | Risk Theory and Heavy-Tailed Lévy Processes[END_REF] and Resnick and Samorodnitsky [START_REF] Resnick | A heavy traffic limit theorem for workload processes with heavy tailed service requirements[END_REF] assumed that the random walk belongs to the domain of attraction of a spectrally positive stable law and relied on functional limit theorems. Shneer and Wachtel [START_REF] Shneer | Heavy-traffic analysis of the maximum of an asymptotically stable random walk[END_REF] relaxed this assumption to allow the random walk to belong to the domain of attraction of any stable law. The main result from [START_REF] Shneer | Heavy-traffic analysis of the maximum of an asymptotically stable random walk[END_REF] acts as the second instance of an application of Theorem 1.

Proposition 2. Let X be a centred Lévy process such that the random variable X 1 belongs to the domain of attraction of a stable law L (α) 1

with index α ∈ [START_REF] Asmussen | Applied Probability and Queues[END_REF][START_REF] Bertoin | Lévy Processes[END_REF]. That is, there exists a sequence {d(n) : n ≥ 0} such that

(5) X n d(n) d → L (α) 1 , as n → ∞.
Then,

Δ(a) sup t≥0 (X t -at) d → sup t≥0 (L (α) t -t), as a ↓ 0, where Δ(a) = 1 d(n(a))
and n(a) is such that [START_REF] Cohen | Random walk with a heavy-tailed jump distribution[END_REF] an(a) ∼ d(n(a)), as a ↓ 0.

Remark 4. It is well known that the sequence d(n) in Proposition 2 is regularly varying with index 1/α. Therefore, Proposition 2 implies that, with X (a) t = X tat, X(a) grows as a regularly varying function (at zero) with index -1/(α-1). If L (α) is spectrally negative, then the distribution of R = sup t≥0 (L (α) t t) is exponential, see, e.g., [START_REF] Bingham | Fluctuation theory in continuous time[END_REF]Proposition 5]. If L (α) is spectrally positive, then, as seen in Proposition 1, the limiting random variable has a Mittag-Leffler distribution, see, e.g., [START_REF] Kella | Queues with server vacations and Lévy processes with secondary jump input[END_REF]Theorem 4.2]. If L (α) is symmetric, then one can give the Laplace-Stieltjes transform of R, see [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF]Theorem 8]. In the other cases the explicit form of the distribution might be infeasible to compute, however, one can easily find its tail asymptotics P(R > x) ∼ Cx 1-α . For more details on the supremum distribution of a Lévy process see [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF].

Remark 5. Shneer and Wachtel [START_REF] Shneer | Heavy-traffic analysis of the maximum of an asymptotically stable random walk[END_REF] showed that both classical approaches, i.e., via Wiener-Hopf factorization and via a functional central limit theorem, can be applied to obtain their result. Moreover, the technical difficulties arising from these methods can be overcome using a generalization of Kolmogorov's inequality based on a result by Pruitt [START_REF] Pruitt | The growth of random walks and Lévy processes[END_REF]. A similar result is also available for Lévy processes and can also be found in [START_REF] Pruitt | The growth of random walks and Lévy processes[END_REF]. Let us introduce V (x) = |y|≤x y 2 ν(dy), the truncated second moment of the Lévy measure ν. Under the assumptions of Proposition 2, V ∈ RV 2-α . Moreover, [START_REF] Pruitt | The growth of random walks and Lévy processes[END_REF]Section 3] asserts that there exists a constant C such that [START_REF] Czysto | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails[END_REF] P sup s≤t

X s ≥ x ≤ C tV (x) x 2 .
Using the regular variation of V , ( 6) and ( 7), for any fixed T > 0 there exist constants

C 1 , C 2 > 0, such that P sup t≥n(a)T (X t -at) ≥ 0 ≤ ∞ k=0 P sup t≤2 k+1 n(a)T X t ≥ 2 k an(a)T ≤ C 1 V (an(a)T ) a 2 n(a)T ∞ k=0 (2 k ) 1-α ≤ C 2 V (d(n(a))) c 2 (n(a)) n(a)T 1-α . ( 8 
)
The sequence d(n) can be defined as d(n) := inf{t > 0 : V (t) ≤ t 2 /n}, therefore the last expression tends to zero, uniformly in a > 0, as T tends to infinity. This combined with the classical functional limit theorem corresponding to (5) and the fact that, for a fixed T > 0, supremum on [0, T ] is a continuous map, yields the thesis of Proposition 2. On the other hand, as a consequence of the Wiener-Hopf factorization (see [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]Chapter 6]), with X (a) t = X tat, the LST of X(a) is given by,

Ee -λ X(a) = exp - ∞ 0 1 t E 1 -e -λ(X n(a)t -an(a)t) , X n(a)t -an(a)t > 0 dt .
Plugging in λ = Δ(a)s for s > 0, from ( 5) and ( 6) it follows that, as a ↓ 0, this expression tends to

Ee -sR = exp - ∞ 0 1 t E 1 -e -s(L (α) t -t) , L (α) t -t > 0 dt , the LST of R = sup t≥0 (L (α) t -t)
, provided that we can interchange the limit with the integral. This follows by using the dominated convergence theorem. For big values of t, say t > T and some C 3 , C 4 > 0, we can estimate the integrand by (cf. ( 7) and ( 8)) For t ≤ T and some C 5 > 0, one can simply bound the integrand by (cf. ( 7))

C 5 st 1/α-1 E(L (α) 1 , L (α) 1 > 0).

Heavy-traffic invariance principle.

A general principle called heavy-traffic invariance principle has been established by Szczotka and Woyczyński [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF], see also [START_REF] Czysto | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails[END_REF][START_REF] Czysto | Queueing approximation of suprema of spectrally positive Lévy process[END_REF][START_REF] Szczotka | Heavy-tailed dependent queues in heavy traffic[END_REF]. This principle asserts under what condition one can infer the limiting distributions of maxima of random walks from functional limit theorems. According to Theorem 1 this principle can be also reformulated to the Lévy setting. Therefore we conclude the paper with the following theorem:

Proposition 3 (Heavy-traffic invariance principle). For a family of Lévy processes {X See [START_REF] Szczotka | Distributions of suprema of Lévy processes via heavy traffic invariance principle[END_REF]Theorem 2] for an extension to processes X (a) with stationary increments in the case X is stochastically continuous.

:

  t ≥ 0} be a Lévy processes such that X , under some mild assumptions, Δ(a) max n≥0 S

:

  n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random variables. Put S(a) = max n≥0 S

:Theorem 1 .

 1 t ≥ 0} is a Lévy processes and S (a) n = n k=1 Y (a) k is the nth partial sum of a sequence of random variables {Y (a) n : n ≥ 1} with S For each a > 0, let {Y (a) n : n ≥ 1} be a sequence of i.i.d. random variables and {X (a) t : t ≥ 0} be a Lévy processes. Assume that for each a, Y 1 , μ (a) = EY (a) 1

  )t → X in D[0, ∞), see Section 4.3. The distribution of the random variable R can be computed in several cases, we will get back to it in Remark 4. Proof of Theorem 1. With R(x) := 1 -R(x), where R is the distribution function of R, it is enough to show that, as a ↓ 0, P Δ(a) S(a) > x → R(x) ⇐⇒ P Δ(a) X(a) > x → R(x), for any continuity point x of R. Assume that Δ(a) S(a) d → R, the converse implication follows in the same manner. Observe that S(a) d = max n≥0 X (a) n . Thus, we trivially have (2) P Δ(a) X(a) > x ≥ P Δ(a) S(a) > x .
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  1 t P X n(a)t > an(a)t ≤ C V (an(a)t) a 2 n(a)t 2 ≤ C 3 t -α V (d(n(a))) c 2 (n(a)) n(a) ≤ C 4 t -α .

1 < 0

 10 0} denote μ (a) = EX (a) and assume that μ (a) ↑ 0. Moreover, assume that there exist functions d(•) and Δ(•), such that the following conditions hold: (I) d(a)Δ(a)|μ (a) | → β ∈ (0, ∞); (II) Δ(a){X

  )ttd(a)μ (a) : t ≥ 0} d → {X t : t ≥ 0} in D[0, ∞),where X is a Lévy process; (III) The family {Δ(a) X(a) : a > 0} is tight. βt) .

  For a Lévy process X ≡ {X t : t ≥ 0}, let F be the distribution function of X 1 and set F := 1 -F . With α > 0, [4, Theorem 8.2.1] asserts that F ∈ RV -α if and only if ν(x, ∞) ∈ RV -α , where ν is the Lévy measure of X, moreover F (x) ∼ ν(x, ∞), as x → ∞. This combined with [5, Theorem 5.1] and Theorem 1 yields: Proposition 1. Let X be a spectrally positive Lévy process such that ν(x, ∞) ∈ RV -α for α ∈ (1, 2). Set ρ(a) = μ/a, where μ = EX 1 , then
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	if P(Y > x) is regularly varying at infinity with a parameter α ∈ (1, 2) (and under some
	additional assumptions), then there exists a function Δ(•) such that Δ(a) S(a) converges in
	law to a proper random variable.
	[5, Theorem 5.1] acts as the first application of our main result. For a Lévy measure ν
	define		
	r(s) :=	∞	e -sx -1 + sx ν(dx).
	0		
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