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ANALYTICAL PARAMETERIZATION OF ROTORS AND PROOF OF
A GOLDBERG CONJECTURE BY OPTIMAL CONTROL THEORY∗

TÉRENCE BAYEN†

Abstract. Curves which can be rotated freely in an n-gon (that is, an regular polygon with n
sides) so that they always remain in contact with every side of the n-gon are called rotors. Using
optimal control theory, we prove that the rotor with minimal area consists of a finite union of arcs
of circles. Moreover, the radii of these arcs are exactly the distances of the diagonals of the n-gon
from the parallel sides. Finally, using the extension of Noether’s theorem to optimal control (as
performed in [D. F. M. Torres, WSEAS Trans. Math., 3 (2004), pp. 620–624]), we show that a
minimizer is necessarily a regular rotor, which proves a conjecture formulated in 1957 by Goldberg
(see [M. Golberg, Amer. Math. Monthly, 64 (1957), pp. 71–78]).
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1. Introduction. In this paper, we investigate properties of rotors, that is, con-
vex curves that can be freely rotated inside a regular polygon Pn with n sides, n ≥ 3,
while remaining in contact with every side of Pn. When n = 4, P4 is a square of side
α, and a rotor of P4 is called a curve of constant width α or an orbiform. When n = 3,
P3 is an equilateral triangle, and a rotor of P3 is called a Δ-curve. There are infinitely
many such curves besides the circle (see section 2).

Orbiforms have been studied geometrically since the 19th century (see [5], [24],
[26], [29], [36]). In particular, Reuleaux’s name is attached to those orbiforms obtained
by intersecting a finite number of discs of equal radii α. The Reuleaux triangle is
the most famous of these orbiforms: it consists of the intersection of three circles of
radius one and whose centers are on the vertices of an equilateral triangle of side
one. Orbiforms have many interesting properties and applications in mechanics (see
[5], [6], [7], [25], [26], [27], [36]). For example, Reuleaux triangles are used in boring
square holes, and they are also part of the Wankel engine used by Japan’s Mazda cars.
Nowadays, the study of rotors is potentially interesting in mechanics for the design of
engines or propellers, for example, in the Navy.

An interesting shape optimization problem consists in determining the convex
body maximizing or minimizing the area in the class of rotors. It is easy to show
that the disc always has maximal area in this class. This is a consequence of the
isoperimetric inequality, as all rotors have the same perimeter (see Barbier’s theorem
in section 2.3). The question of finding a rotor of least area is more difficult. First,
notice that the problem of minimizing the area is well posed, as rotors are convex
bodies (see section 2.2). This question has been solved for n = 4 (that is, in the case
of orbiforms) by Blaschke using the mixed-volume (see [5]) and Lebesgue (see [24])
measures. They show that the Reuleaux triangle has the least area in the class of Q1
constant width bodies of R

2. Fujiwara has given the first analytic proof of this result
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2 TÉRENCE BAYEN

(see [12], [13]). More recently, Harrell gave a modern proof using minimization under
constraints (see [20]). The study of these problems in R

2 is useful for extensions in R
3

and in the domain of spectral analysis. For example, the problem of finding a constant
width body of minimal volume in R

3 has recently been investigated (see [4], [22]). The
optimization of eigenvalues with respect to the domain Ω is also an intense field of
research (see [21] for an overview of many spectral problems involving convexity).
These questions require a careful study of dimension 2.

The Δ-curves have many similar geometrical properties to the orbiforms (see [7],
[36]). Fujiwara gave an analytic proof in [12] that, among all Δ-curves inscribed in
an equilateral triangle of side one, the one of minimal area is the Δ-biangle or lens.
It consists of two circular arcs of radius

√
3

2 and of length π
3 . This result was also

established by Blaschke and later by Weissbach (see [35]).
Whereas the cases n = 3 and n = 4 have been investigated, the question of

finding the rotor of least area for n ≥ 5 is open. Standard geometrical proofs cannot
be applied in this case (see [14]). In [17] and [18], Goldberg constructs a family of
“trammel” rotors in a regular polygon, (Oln±1

n )l∈N∗ , that have 2(ln± 1) symmetries,
and he conjectured in [17] that the minimizer is a rotor called On−1

n obtained for
l = 1. The boundary of a rotor Oln±1

n consists of a finite union of arcs of circles of
different radii ri and of equal sectors (see section 2.6). The values ri are exactly the
distances of the diagonals of the n-gon from the parallel sides. In this class, On−1

n has
the minimum number of arcs. An analytic description of these regular rotors is given
in [11] by Focke. In 1975, Klötzler made an analytic study of the minimization problem
using optimal control theory (see [2], [3], [23]). He showed in [23] that a minimizer
consists of a union of arcs of circles of radii ri, but he failed to prove that a minimizer
is in the class (Oln±1

n )l∈N∗ . His idea consists in reformulating the initial minimization
problem into an optimal control problem by choosing the radius of curvature as the
control variable. Unfortunately, he seems to prove that the regular rotors Oln±1

n are
local minimizers of the area in the subclass Rln±1

n of rotors having the same number
of arcs and the same radii of curvature. This result contradicts the one of Firey (see
[10]) in the case n = 4: the author shows that regular Reuleaux polygons with N
sides, N ≥ 5, maximize the area in the class of Reuleaux polygons with the same
number of sides. Moreover, in [2], the author performs only convex perturbations of
a regular rotor Oln±1

n . This kind of perturbation increases the area by the concavity
of the functional (the Brunn–Minkowski theorem; see [8]). The main difficulty is to
consider nonconvex perturbations of those rotors which are not obtained by a strictly
convex combination of two rotors.

The aim of the paper is to prove the following theorem conjectured by Goldberg
in 1957 (see [17]).

Theorem 1.1. Among all rotors of a regular polygon Pn (n ≥ 3), the one of
minimal area is the regular rotor On−1

n .
In section 2, we give an analytic parameterization of a rotor using the support

function of a convex body (see [6] or [30] for an overview of the properties of the sup-
port function). In section 3, we formulate the minimization problem into an optimal
control problem which is similar to the one obtained by Klötzler (see [23]). Indeed, the
convexity constraints enable us to choose the radius of curvature of the boundary of
a rotor as the control variable. Thanks to this new parameterization, the initial shape
optimization is well posed. By the Pontryagin maximum principle (PMP), we show
that the extremal trajectories are “bang-bang,” and we determine the corresponding
number of switching points. We thus restrict the class of extremal trajectories step by
step. Whereas the computation of the extremal trajectories performed by Klötzler is
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PROOF OF A GOLDBERG CONJECTURE BY CONTROL THEORY 3

incomplete (he does not show that the switching points of an extremal trajectory are
equidistant), we prove, in section 4, Theorem 1.1 by using an extension of Noether’s
theorem to optimal control theory provided in [31]. We compute conserved quantities
along an extremal trajectory, and thus we can characterize the switching points of an
extremal (see section 4). This shows that the rotors corresponding to the extremal
trajectories belong to the class (Oln±1

n )l∈N∗ . We then conclude the proof of Gold-
berg’s conjecture by Proposition 2.11. Note that by this proposition, there is no need
to examine the optimality of extremal trajectories.

2. Construction of a rotor.

2.1. Support function of a convex body. A body or a domain in R
N , N ≥ 2,

is a nonempty compact connected subset of R
N . Let K be a convex body. The support

function of K is defined as the map hK : R
N\{0} → R with

hK(ν) := max
x∈K

x · ν, ν ∈ R
N\{0}.

The support function is clearly homogeneous of degree 1. A convex body is uniquely
determined by its support function (see [6, p. 29] or [22]). Let K be a convex body of
nonempty interior and assume that the origin is inside K. Recall that, for a convex
body, a hyperplane H is a hyperplane of support for K if there exists x ∈ K ∩H such
that K is included in one of the half-spaces defined by H. If ν belongs to SN−1, hK(ν)
can be interpreted as the distance from the origin to the support hyperplane of K
with normal vector ν (see Figure 1). The support function is nonnegative if and only
if the origin is inside K. The next proposition characterizes the degree of regularity
of the support function (see [6, p. 28] or [30]).

Proposition 2.1. Let K be a convex body of R
N and hK its support function.

Then hK is of class C1 if and only if K is strictly convex.
From now on, we consider convex bodies in dimension 2. The support function

of a convex body K of R
2 will be denoted by pK(θ) := hK(eiθ), θ ∈ R, or p(θ) to Q2

simplify. The function pK is 2π-periodic. If K is a convex body, we denote by ∂K its
boundary. Given (z1, z2) ∈ C

2, their scalar product in R
2 will be written indifferently

�(z1z2) or z1 · z2.

Fig. 1. The support function of a convex body K is the distance p(θ) between the tangent to K
orthogonal to (cos(θ), sin(θ)) and the origin.

Proposition 2.2. Let K be a strictly convex body and p its support function.
We assume that the boundary of K, ∂K, is Lipschitz. Then ∂K can be described
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4 TÉRENCE BAYEN

by the equations

(2.1)

{
x(θ) = p(θ) cos(θ) − ṗ(θ) sin(θ),

y(θ) = p(θ) sin(θ) + ṗ(θ) cos(θ),

where θ ∈ R.
Proof. Let θ be in [0, 2π] and uθ be the vector of coordinates (cos(θ), sin(θ)). TheQ3

support function p(θ) is defined by

p(θ) := max
x∈K

x · uθ,

and p is of class C1 by strict convexity. As K is compact, the maximum is reached at
some point of coordinates (x(θ), y(θ)), and we have

(2.2) x(θ) cos(θ) + y(θ) sin(θ) = p(θ).

As the boundary of K is Lipschitz, the functions (x, y) are differentiable a.e.
(Rademacher’s theorem). Moreover, the vector uθ is orthogonal to the support line
given by X cos(θ) + Y sin(θ) = 0; hence, we must have

(ẋ(θ), ẏ(θ)) · �uθ = 0.

By derivation of (2.2), we getQ4

−x(θ) sin(θ) + y(θ) cos(θ) = ṗ(θ),

which gives (2.1).
Equation (2.1) can be rewritten as z(θ) := x(θ) + iy(θ) = (p(θ) + iṗ(θ))eiθ.
In the following, the space C1,1 denotes the set of maps p : R → R, of class C1,

and such that ṗ is locally Lipschitz.
Proposition 2.3. Let K be a convex body and p its support function. We assume

that p is of class C1,1. Then the radius of curvature p+ p̈ of the boundary ∂K exists
a.e., and, for a.e. θ ∈ R,

(2.3) p(θ) + p̈(θ) ≥ 0.

Proof. As p is of class C1,1, the functions (x(θ), y(θ)) are differentiable a.e., and by
standard formulas, the radius of curvature f of ∂K is given by f = p+ p̈. As the body
K is convex, f must be nonnegative, and consequently we have f(θ) = p(θ)+ p̈(θ) ≥ 0
for a.e. θ ∈ R.

If K is a convex body of support function p and if p is of class C1,1, the tangent
vector to ∂K is given by

ż(θ) = i(p(θ) + p̈(θ))eiθ.

When p + p̈ = 0 on a set A of positive measure, then we have ż = 0. Geometrically
speaking, this means that the boundary ∂K has a corner: for θ ∈ A, the point z(θ) is
stationary. For a given function f ∈ L∞(R,R) and 2π-periodic, we denote by

c1(f) =
1
2π

∫ 2π

0
f(θ)eiθdθ

the first Fourier coefficient of f .
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PROOF OF A GOLDBERG CONJECTURE BY CONTROL THEORY 5

Proposition 2.4. Let f ∈ L∞(R,R) be a 2π-periodic function. Then any func-
tion p that satisfies f = p + p̈ is of class C1,1, and p is 2π-periodic if and only if
c1(f) = 0.

Proof. Let f ∈ L∞(R,R) be a 2π-periodic function. A function p satisfies f = p+p̈
if and only if there exists (a, b) ∈ R

2 such that, for all θ ∈ R,

(2.4) p(θ) =
∫ θ

0
f(t) sin(θ − t)dt+ a cos(θ) + b sin(θ).

By (2.4), any function p that satisfies p + p̈ = f is of class C1,1. Moreover, any such
function p is of class C1,1 and is 2π-periodic if and only if its restriction on [0, 2π]
satisfies p(0) = p(2π), ṗ(0) = ṗ(2π). But we have∫ 2π

0
(p(θ) + p̈(θ))eiθdθ = ṗ(2π) − ṗ(0) − i(p(2π) − p(0)).

Hence, any function p satisfying (2.4) is 2π-periodic if and only if p(2π) = p(0) and
ṗ(2π) = ṗ(0), that is, if and only if c1(f) = 0.

If we deal with f = p + p̈ instead of p, we get an additional condition c1(f) = 0
which says that the boundary ∂K given by (2.1) is closed. The next theorem is a
consequence of the two previous propositions.

Theorem 2.1. (i) Let K be a strictly convex body of R
2 and p its support function.

If p is of class C1,1, then p+ p̈ ≥ 0.
(ii) Conversely, let f ∈ L∞(R,R) be a 2π-periodic function such that f ≥ 0 and

c1(f) = 0. If p is a function satisfying f = p+ p̈, then p is of class C1,1, is 2π-periodic
(in the sense of C1,1 maps), and is the support function of a strictly convex body.

Let K be a strictly convex body. We denote by p its support function of class C1

and by A(p) its area. By Stokes’s formula and by (2.1), we have

(2.5) A(p) =
1
2

∫ 2π

0
(p2(θ) − ṗ2(θ))dθ.

By integrating by parts, the area becomes

(2.6) A(p) =
1
2

∫ 2π

0
p(θ)

(
p(θ) + p̈(θ)

)
dθ,

which has a sense because p+ p̈ is a positive Radon measure, and (2.6) can be inter-
preted as the product of a positive Radon measure and a continuous function. In the
next section, we show that the support function of a rotor is of class C1,1, and (2.6)
is clearly defined in that case.

2.2. Construction of a rotor by its support function. In this section, we
recall classical definitions and properties of rotors (see [6], [19], [36]). Let K be a
convex domain and P be a convex polygon. P will be called a tangential polygon of
K and K an osculating domain in P if K ⊂ P and every side of P has a nonempty
intersection with K (see [19]). We say that a polygon P is equiangular if all of its
interior angles at the vertices are equal. We say that a convex polygon P is an n-gon
if it is a regular polygon with n sides, n ≥ 3.

Definition 2.1. A convex domain K will be called a rotor in a polygon Q if, for
every rotation ρ, there exists a translation vector pρ such that ρK+pρ is an osculating
domain in K.

07-01-08 - BEA/Beacon



6 TÉRENCE BAYEN

In the following, we assume that Q is a regular polygon with n ≥ 3 sides; that is,
we consider only rotors of a regular polygon. Hence, K is a rotor in a regular n-gon Q
if and only if all tangential equiangular n-gons are regular and have equal perimeters.
A rotor of an n-gon Pn has the property to rotate inside Pn while remaining in contact
with all sides of Pn. The disc is the most simple example of a rotor. A rotor is a strictly
convex domain (see [19], [36]). Consequently, the support function of a rotor is of class
C1.

Let r be the radius of the inscribed circle of the n-gon Pn and let δ := 2π
n . WeQ5

give in the following theorem an analytic description of a rotor which will be used in
the rest of the paper.

Theorem 2.2. (i) Let K be a rotor and p its support function. Then p satisfies

(2.7) p(θ) − 2 cos(δ)p(θ + δ) + p(θ + 2δ) = 4r sin2
(
δ

2

)
∀θ ∈ [0, 2π].

Moreover, p is of class C1,1 and satisfies (2.3).
(ii) Conversely, let p be a 2π-periodic function of class C1,1. Assume that p sat-

isfies (2.3) and (2.7). Then p is the support function of a rotor K.
The characterization of a rotor by (2.7) is well known (see [7], [11], [23]), but we

show in particular that the support function of a rotor is actually of class C1,1. Before
doing the proof of the theorem, we set some notation:

(2.8) Sn(p) := p(θ) − 2 cos(δ)p(θ + δ) + p(θ + 2δ)

and

(2.9) Cn := 4r sin2
(
δ

2

)
.

Proof of (i). We refer the reader to Chapter 8 of [36] for the following geometric
property. By definition of a rotor, the tangents to ∂K at each contact point are the
sides of the n-gon. Hence, the perpendiculars to these paths at their contact points
meet in a point which is the instantaneous center of rotation of the body. A simple
computation yields (2.7). We now prove that p is of class C1,1. First, we have

(2.10)
∑

0≤k≤n−1

p(θ + kδ) = nr ∀θ ∈ R.

Indeed, by writing (2.7) at points θ, θ + δ, . . . ,θ + (n − 1)δ and adding all of these
equalities, we get (2.10). As K is strictly convex, its support function p is of class C1.
We now show that p satisfies the inequality

(2.11) (ṗ(θ′) − ṗ(θ)) sin(θ − θ′) ≤ (p(θ) + p(θ′)) (1 − cos(θ − θ′)) ∀(θ, θ′) ∈ [0, 2π].

By definition of the support function, we have, for all (θ, θ′) ∈ [0, 2π],

(x(θ′), y(θ′)) · (cos(θ), sin(θ)) ≤ p(θ).

Taking into account (2.1), we get

ṗ(θ′) sin(θ − θ′) ≤ p(θ) − p(θ′) cos(θ′ − θ).

If we permute θ and θ′, we obtain

ṗ(θ) sin(θ′ − θ) ≤ p(θ′) − p(θ) cos(θ′ − θ).

07-01-08 - BEA/Beacon



PROOF OF A GOLDBERG CONJECTURE BY CONTROL THEORY 7

Adding the last two inequalities yields (2.11). We now write (2.11) at the points θ+kδ
and θ′ + kδ, 0 ≤ k ≤ n− 1. We get, for all (θ, θ′) ∈ [0, 2π] and 0 ≤ k ≤ n− 1,

(2.12)

(ṗ(θ′ + kδ) − ṗ(θ + kδ)) sin(θ − θ′) ≤ (p(θ + kδ) + p(θ′ + kδ)) (1 − cos(θ − θ′)) .

By (2.10), we obtain, for all (θ, θ′) ∈ [0, 2π],

(2.13)
∑

1≤k≤n−1

p(θ + kδ) = nr − p(θ)

and

(2.14)
∑

1≤k≤n−1

ṗ(θ + kδ) = −ṗ(θ).

Combining (2.12), (2.13), and (2.14), we obtain

(−ṗ(θ′) + ṗ(θ)) sin(θ − θ′) ≤ (2nr − p(θ) − p(θ′))(1 − cos(θ − θ′)).

Therefore, by (2.11) and the previous inequality, we get, for all (θ, θ′) ∈ [0, 2π],

|(ṗ(θ′) − ṗ(θ)) sin(θ − θ′)| ≤ 2nr sin2
(
θ − θ′

2

)
.

Consequently, ṗ satisfies the inequality

|ṗ(θ′) − ṗ(θ)| ≤ 2nr
∣∣∣∣tan

(
θ − θ′

2

)∣∣∣∣
for all (θ, θ′) ∈ [0, 2π] such that |θ − θ′| 
∈ {0, π, 2π}. This inequality proves that ṗ is
Lipschitz, and thus p is of class C1,1. As K is convex and p is of class C1,1, it satisfies
(2.3). This concludes the proof of (i).

Proof of (ii). Let us assume that conditions (2.3) and (2.7) are satisfied. As p is
of class C1,1, is 2π-periodic, and satisfies (2.3), it is the support function of a strictly
convex body K. A straightforward computation using (2.7) shows that an osculating
polygon to K is equiangular; consequently, K is a rotor.

An example of a function p satisfying (2.7) is given by

(2.15) p(θ) = 1 +
1

1 − (ln− 1)2
cos((ln− 1)θ),

where l ∈ N
∗ (see Figure 2). A simple computation shows that we have Sn(p) = Cn

with r = 1. Moreover, we easily have p(θ)+ p̈(θ) = 1+cos((ln−1)θ) ≥ 0 for all θ ∈ R.
Hence, p is the support function of a rotor K in an n-gon. The boundary of K is of
class C∞ because p is of class C∞.

In the following, we denote by E the set of the functions p ∈ C1,1(R) that are
2π-periodic and that satisfy (2.3) and (2.7). The problem of finding a rotor of minimal
area is now equivalent to the optimization problem

(2.16) min
p∈E

A(p).

The existence of a minimizer for problem (2.16) easily follows from standard compacity
arguments (see [34], [36]).
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8 TÉRENCE BAYEN

Fig. 2. Example of rotors whose support function is given by (2.15) for n = 3, l = 2 and n = 5,
l = 1, 2.

2.3. Basic properties of rotors. This section is devoted to well-known results
about rotors which can be found in the case n = 3 or n = 4 in [5], [7], and [36]. Let
us first recall Barbier’s theorem, which is a simple consequence of (2.7).

Theorem 2.3. Let r be the radius of the inscribed circle in Pn. Then the perimeter
of every rotor R of Pn is equal to 2πr.

Proof. Let R be a rotor and p be its support function. The perimeter L of R is
given by the integral of the radius of curvature:

L =
∫ 2π

0
(p(θ) + p̈(θ))dθ,

which is well defined, as p is of class C1,1. As ṗ is 2π-periodic, the perimeter be-
comes L =

∫ 2π

0 p(θ)dθ. Now integrating (2.7) on the interval [0, 2π] and using the
2π-periodicity of p, we get L = 2πr.

Proposition 2.5. Among all rotors of a regular polygon Pn, the one of maximal
area is the disc of radius r.

Proof. By the isoperimetric inequality, the body of maximal area among all closed
curves having the same perimeter is the disc, and the disc is a rotor of Pn.

When n = 4, a rotor is called a constant width body.
Definition 2.2. The width of a convex curve in a given direction is the distance

between a pair of supporting lines of the curve perpendicular to this direction. If the
width is constant in every direction, the curve is a curve of constant width.

Equivalently, a constant width body has the property to rotate inside a square
while remaining tangent to the four sides of the square. The relation (2.7) can be
simplified in the case n = 4, which corresponds to the constant width bodies. The
support function of K in this case satisfies

(2.17) p(θ) + p(θ + π) = 2r ∀θ ∈ R,

which is exactly saying that any pair of parallel support lines to K is separated by
the distance 2r (see [15]).

2.4. Formulation of the constraints on the interval [0, 2δ]. In this section,
we derive consequences of (2.7) which will be useful in formulating the optimal control
problem associated with the minimization problem. Let us define the reals sk and tk
for k = 0, . . . , n− 1 by

(2.18) sk :=
sin(kδ)
sin(δ)

, tk := 2
sin(kδ

2 ) sin( (k−1)δ
2 )

cos( δ
2 )

r.
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PROOF OF A GOLDBERG CONJECTURE BY CONTROL THEORY 9

Lemma 2.1. Let p be a 2π-periodic map in C1,1(R) satisfying (2.7). Then we have Q6

(2.19) p(θ + kδ) = skp(θ + δ) − sk−1p(θ) + tk ∀θ ∈ [0, 2π].

Proof. Let θ ∈ [0, 2π] and vk := p(θ + kδ). We have by (2.7)

(2.20) vk − 2 cos(δ)vk+1 + vk+2 = 4r sin2
(
δ

2

)
.

We solve this linear recurrent sequence and get

vk = aωk + aωk + r,

where ω := eiδ and v0 = p(θ), v1 = p(θ + δ). This gives (2.19).
Corollary 2.1. If n is even, a rotor K in an n-gon is a constant width body.
Proof. Let K be a rotor and p be its support function which satisfies (2.7). We

assume that n = 2m, m ∈ N
∗. Using (2.19) with k = m, we get sm = 0, sm−1 = 1,

and tm = 2r. Consequently, p satisfies

p(θ +mδ) = −p(θ) + 2r,

which is exactly saying that K is of constant width as mδ = π.
We now reformulate the area of a rotor on the interval [0, 2δ]. Let r be the radius

of the inscribed circle to the n-gon and P ∈ C1,1(R,R), F ∈ L∞(R,R) be the maps
defined by

(2.21)

{
P (θ) := p(θ) − r,

F (θ) := p(θ) + p̈(θ) − r = P (θ) + P̈ (θ).

Lemma 2.2. Let p be the support function of a rotor and f its radius of curvature.
The area of a rotor is given by

A(p) =
n

4 sin2( δ
2 )

Ã(P ) + πr2,

where

Ã(P ) =
∫ δ

0

(
P (θ)F (θ) + P (θ + δ)F (θ + δ)(2.22)

− cos(δ)
(
F (θ)P (θ + δ) + F (θ + δ)P (θ)

))
dθ.

Proof. We have by (2.6)

A(f) =
1
2

∫ 2π

0
p(θ)f(θ)dθ =

1
2

∑
0≤k≤n−1

∫ (k+1)δ

kδ

p(θ)f(θ)dθ

=
1
2

∑
0≤k≤n−1

∫ δ

0
p(θ + kδ)f(θ + kδ)dθ.
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Replacing p(θ + kδ) and f(θ + kδ) using (2.19), we get the result by the equalities

∑
0≤k≤n−1

s2k =
∑

0≤k≤n−1

s2k−1 =
2

2 sin2(δ)

and ∑
0≤k≤n−1

sktk = − n

4 cos2( δ
2 )
,

∑
0≤k≤n−1

sksk−1 =
n cos(δ)
2 sin2(δ)

.

Note that in the special case of sets of constant width (n = 4), one finds the usual
functional (see [15]):

(2.23) A(p) = πr2 −
∫ π

0
p(θ)(1 − f(θ))dθ,

which can be easily obtained by (2.6) and (2.17).

2.5. Simplification of the functional. Before going into details for solving
the minimization problem (2.16), we diagonalize the functional (2.22) (see [23] for
the same parameterization). In particular, we establish the equivalence between the
parameterization of a rotor by its support function and the new parameterization.
The following parameterization will be useful in defining an optimal control problem
equivalent to (2.16). We set

γ := cos(δ), σ := sin(δ), ω
1
2 := e

iδ
2 , ω− 1

2 := e− iδ
2 ;

that is, we denote by ω
1
2 and ω− 1

2 a square root of ω and ω.
Recall that given a rotor K of support function p, the functions P and F are

defined by (2.21), and by (2.8) and (2.9) we have Sn(f) = Cn if and only if Sn(F ) = 0.
We now define the functions W ∈ C1,1(R,C) and Z ∈ L∞(R,C) by

(2.24)

{
W (θ) := P (θ) − ωP (θ + δ),

Z(θ) := F (θ) − ωF (θ + δ),

where θ ∈ R, so that

(2.25) W + Ẅ = Z.

The functions W and Z can be interpreted as the complex support function and the
complex radius of curvature associated with a rotor. We denote by X1, X3, U , V the
real and imaginary parts of W and Z:{

W = X1 + iX3,

Z = U + iV,

so that we have

(2.26)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1(θ) = P (θ) − γP (θ + δ),

X3(θ) = σP (θ + δ),

U(θ) = F (θ) − γF (θ + δ),

V (θ) = σF (θ + δ).
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We have, equivalently,

(2.27)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P (θ) = X1(θ) + γ
σX3(θ),

P (θ + δ) = 1
σX3(θ),

F (θ) = U(θ) + γ
σV (θ),

F (θ + δ) = 1
σV (θ + δ).

Proposition 2.6. The functions W and Z satisfy the relations

(2.28)

{
W (θ + δ) = ωW (θ) ∀θ ∈ R,

Z(θ + δ) = ωZ(θ) a.e. θ ∈ R.

Proof. Let p be the support function of a rotor. We have by (2.7) Sn(p) = Cn,
where Cn is given by (2.9). Thus, Sn(P ) = 0, that is,

(2.29) ∀θ ∈ R, P (θ) − 2γP (θ + δ) + P (θ + 2δ) = 0.

Eliminating P (θ + 2δ) in the equation above, we get

∀θ ∈ R, W (θ + δ) = P (θ + δ) − ω(2γP (θ + δ) − P (θ)),

which gives W (θ + δ) = ωW (θ) for all θ ∈ R. By derivation of the previous equation, Q7
we get Z(θ + δ) = ωZ(θ) for all θ ∈ R.

In the following, Pn denotes the regular polygon whose center is the origin and
whose vertices are the points of coordinates (r∗ωkeiα)0≤k≤n−1, where r∗ := 2r sin( δ

2 )
and α := −π

2 − δ
2 .

Proposition 2.7. Let K be a rotor, p its support function, and f = p + p̈ its
radius of curvature. We denote by Z its complex radius of curvature. Then we have
f ≥ 0 if and only if Z(θ) ∈ Pn for a.e. θ ∈ [0, δ].

Proof. Let us consider for 0 ≤ k ≤ n− 1 the map defined by

uk(x, y) = sky − sk−1x+ tk.

By Lemma 2.1, we have, for θ ∈ [0, δ] and for 0 ≤ k ≤ n− 1,

f(θ + kδ) = uk (f(θ), f(θ + δ)) .

Therefore, we have, for θ ∈ [0, δ],

f ≥ 0 ⇐⇒ uk(f(θ), f(θ + δ)) ≥ 0, k = 0, . . . , n− 1

⇐⇒ sk

(
f(θ + δ) − r

) − sk−1
(
f(θ) − r

)
+ tk + r(sk − sk−1) ≥ 0

⇐⇒ sin(kδ)F (θ + δ) − sin((k − 1)δ)F (θ) ≥ −σr

⇐⇒ 
(
sin(kδ)Z(θ) − sin((k − 1)δ)Z(θ − δ)

) ≥ −σ2r

⇐⇒ 
(
sin(kδ)Z(θ) − sin((k − 1)δ)ωZ(θ)

) ≥ −σ2r

⇐⇒ 
(ωk−1Z(θ)) ≥ −σr.
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Let z = x+iy be a complex number, Dk the hyperplane of equation 
(ωk−1z) = −σr,
and Hk the half-plane defined for z ∈ C by 
(ωk−1z) ≥ −σr. We easily have that z ∈
Dk+1 if and only if ωz ∈ Dk. Hence, for θ ∈ [0, δ], Z(θ) satisfies 
(ωk−1Z(θ)) ≥ −σr,
0 ≤ k ≤ n − 1, if and only if Z(θ) belongs to the intersection of the half-spaces Hk.
This intersection is nonempty, as 0 belongs to Hk for all 0 ≤ k ≤ n− 1 and is convex Q8
as all Hk are convex; hence it is a nonempty convex polygon. Moreover, a simple
computation yields that the vertices of Pn are given by the intersection Dk ∩ Dk+1
and are of coordinates −2ir sin( δ

2 )ei(k− 1
2 )δ for 0 ≤ k ≤ n− 1.

It is convenient to work with Pn because we will see in the next section that the
optimal control takes its values at the vertices of Pn (the extremal points of Pn).

Proposition 2.8. Let p be the support function of a rotor K. Then the area of
K is given by

(2.30) A(p) = πr2 +
n

4σ2

∫ δ

0
UX1 + V X3 = πr2 +

n

4σ2

∫ δ

0
�(ZW ).

Proof. The area of the rotor K described by p ∈ E is given by (2.22). Replacing
P (θ), P (θ + δ), F (θ), and F (θ + δ) by W (θ), W (θ + δ), Z(θ), and Z(θ + δ), we get
(2.30) by using (2.28).

Notice the similarity between (2.6) and (2.30).
Definition 2.3. Let Γ be the set of the complex functions W in C1,1([0, δ]) that

satisfy

(2.31)

{
W (δ) = ωW (0),

Ẇ (δ) = ωẆ (0)

and such that the function Z = W + Ẅ takes its values in the polygon Pn.
Definition 2.4. We denote by Z the set of the complex valued functions Z ∈

L∞(R,C) satisfying

Z(θ + δ) = ωZ(θ) ∀θ ∈ R

and

Z(θ) ∈ Pn ∀θ ∈ R.

We can now prove the equivalence between the parameterization of a rotor K by
its support function p and its complex support function W .

Theorem 2.4. (i) Let W = X1+iX3 be a function in Γ. Let us define the function
p̃ on [0, 2δ] by p̃ = P + r, where P is given by (2.27). Then, if we extend p̃ on the
interval [0, 2π] by (2.19) and if we denote by p this extension, then p is the support
function of a rotor.

(ii) Conversely, if p is the support function of a rotor K and P := p− r, then the
function W|[0,δ] defined by (2.24) belongs to Γ.

Proof of (i). First, let us take W = X1 + iX3 ∈ Γ. We have by (2.31)

(2.32)

{
1
σX3(0) = X1(δ) + γ

σX3(δ),

σX1(0) − γX3(0) = −X3(δ)

and

(2.33)

{
1
σ Ẋ3(0) = Ẋ1(δ) + γ

σ Ẋ3(δ),

σẊ1(0) − γẊ3(0) = −Ẋ3(δ).
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We now define a function P on the interval [0, 2δ] by

P (θ) = X1(θ) +
γ

σ
X3(θ), P (θ + δ) =

1
σ
X3(θ)

for θ ∈ [0, δ]. By (2.32), we have

P
(
δ−)

= P
(
δ+

)
,

and by (2.33) we have

Ṗ
(
δ−)

= Ṗ
(
δ+

)
.

Consequently, the function P is of class C1 on [0, 2δ]. By (2.32) we also get

Sn(P )(0) = 0,

and by (2.33) we get

Sn(Ṗ )(0) = 0.

Hence, the functions P and Ṗ satisfy Sn(P ) = 0 and Sn(Ṗ ) = 0 for θ = 0. If we extend
p = P + r to the interval [0, 2π] by (2.19) and to R by 2π-periodicity, it satisfies, by
construction, Sn(p) = Cn. We also have p(0) = p(2π) and ṗ(0) = ṗ(2π) by (2.19) so
that the function p is of class C1. Finally, we have p + p̈ ≥ 0 because Z ∈ Pn. We
conclude that p is the support function of a rotor.

Proof of (ii). Let us now consider the support function p of a rotor. We define a
function W by (2.24). First, the condition (2.3) satisfied by p implies that Z = W+Ẅ
takes its value in Pn. Let us show that W satisfies (2.31). By (2.26), we have

1
σ
X3(0) = X1(δ) +

γ

σ
X3(δ),

and by using Sn(P )(0) = 0, we get

σX1(0) − γX3(0) = −X3(δ).

These two real conditions imply W (δ) = ωW (0). By using (2.27) and the equality
Sn(Ṗ )(0) = 0, we get Ẇ (δ) = ωẆ (0). Hence, W belongs to Γ.

Remark 2.1. Let us make two remarks. First, any function W ∈ Γ such that
Z = W + Ẅ satisfies, by (2.31), the condition

(2.34)
∫ δ

0
Z(θ)eiθdθ = 0.

Second, (2.30) remains unchanged if we replace W by Weiα and Z by Zeiα, where
α ∈ R.

From now on, we will mainly deal with the set Γ instead of the set E, as there is a
one-to-one correspondence between these two sets. ForW ∈ Γ such thatW = X1+iX3
and Z = W + Ẅ = U + iV , we denote by J(W ) the functional

(2.35) J(W ) =
∫ δ

0
UX1 + V X3 =

∫ δ

0
�(ZW )
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and by A(W ) the area of a rotor. An integration by parts shows that we have

J(W ) =
∫ δ

0
ZW =

∫ δ

0
|W |2 − |Ẇ |2,

and as J(W ) ∈ R, we have

∫ δ

0

(ZW ) = 0.

The area of a rotor becomes

A(W ) = πr2 +
n

4σ2 J(W ).

The initial problem, finding the rotor of least area (problem (2.16)), is now equivalent
to

(2.36) min
W∈Γ

J(W ).

In sections 3 and 4, we will solve problem (2.36) using the optimal control theory.

2.6. Fourier series of regular rotors. Before going further into the analysis of
(2.36), we describe by Fourier series the two families of regular rotors Oln±1

n introduced
in section 1. An analogous description is given by Focke (see [11]), but here we use
the new parameterization (W,Z), which simplifies the computations.

We consider the subset J ⊂ Z defined for n ≥ 3 by

J = (nZ + 1) ∪ (nZ − 1)\{±1}

and let p be the support function of a rotor. Then p is given by

(2.37) p(θ) = r + c1e
iθ + c−1e

−iθ +
∑
j∈J

cje
ijθ,

where cj are the Fourier coefficients of p. In the case of constant width bodies, the
support function becomes

p(θ) = r + c1e
iθ + c−1e

−iθ +
∑
l∈Z∗

(
c4l−1e

i(4l−1)θ + c4l+1e
i(4l+1)θ

)
.

By the Parseval equality, the area of a rotor K becomes

(2.38) A(p) = π
(
r2 −

∑
j∈J

|cj |2
j2 − 1

)
.

Let m ∈ N
∗, ε = ±1, L = mn − ε, τ = δ

L , and s = L − 1. We can easily check that
the complex function defined by

(2.39) Z(θ) =
∑

0≤j≤s

ωεj1l[jτ,(j+1)τ [

is an element of Z. We will define the regular rotors by (2.39).
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Definition 2.5. We call regular rotor any element W of Γ such that W + Ẅ is
of the form (2.39). The first series consists of the rotors obtained for ε = 1, and the
second series is obtained for ε = −1.

The integer L = s + 1 denotes the number of intervals of the subdivision [0, δ].
We now consider the set

Jε =
{
k ∈ Z, k ≡ ε[n]

}
.

Proposition 2.9. The Fourier series of a regular rotor is given by

(2.40) Z(θ) =
n

π
e− iεδ

2 sin
(
εδ

2

) ∑
k∈Jε

eikLθ

k
.

Proof. The function θ �−→ eiθZ(θ) is δ-periodic, as we have Z(θ + δ) = ωZ(θ).
Thus, one has, for a.e. θ ∈ R,

Z(θ)eiθ =
∑
k∈Z

cke
iknθ,

where the Fourier coefficients are given by

ck =
n

2π

∫ δ

0
e−i(kn−1)θZ(θ)dθ.

Using (2.39), we get, for k ∈ Z,

ck =
i

kn− 1
(
e−i(kn−1)τ − 1

) ∑
0≤j≤s

ωεje−i(kn−1)jτ .

The previous sum can be easily computed, and we get c0 = 0 and

ck 
= 0 ⇐⇒ ωεe−i(kn−1)τ = 1,

because τ = δ
L . For ε = 1, one has

ωεe−i(kn−1)τ = 1 ⇐⇒ ∃j ∈ Z, kn− 1 = (jn+ 1)L.

For ε = +1, we finally obtain

ck =
n

π(jn+ 1)
e−i δ

2 sin
(
δ

2

)
.

For ε = −1, a similar computation yields

ck = − n

π(jn− 1)
ei δ

2 sin
(
δ

2

)
.

This gives (2.40).
The Fourier series of Z can also be written as

Z(θ) =
n

π
e−iε δ

2 sin
(
ε
δ

2

) ∑
j∈Z

ei((mnj−εj+εm)n−1)θ

jn+ ε
.
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The first series of rotors obtained for ε = +1 will be called Omn−1
n , and the second

series obtained for ε = −1 will be called Omn+1
n (see [11], [23]). For n = 4, the two

families O4m−1
4 and O4m+1

4 describe the odd Reuleaux polygons (see [10]). A Reuleaux
polygon consists of the intersection of N circles of radii 1 (N is odd) and whose centers
are the vertices of an N -gon of side 1. An analogous geometrical description of Oln±1

n Q9
can be found in [18].

Proposition 2.10. Let K be a rotor and Z its complex radius of curvature. If Z
is given by (2.39), then the area of K becomes

(2.41) A(K) = πr2 − r2n2

2π
tan2

(
δ

2

) ∑
j∈Z

1
(jn+ 1)2

(
(mn− ε)2(jn+ 1)2 − 1

) .
Proof. By (2.30), we have

A(K) = πr2 +
n

4σ2

∫ δ

0
Z(θ)W (θ)dθ,

where W is in Γ and satisfies W + Ẅ = Z. By (2.40), the function W is given by

W (θ) = −n

π
e−iε δ

2

∑
k∈Jε

eikLθ

k(k2L2 − 1)
.

Applying the Parseval equality yields (2.41).
The following proposition has been proved in [11]. It will be useful for proving

Goldberg’s conjecture (see section 4). We give a short proof using the expression of
the area of a rotor given by (2.41).

Proposition 2.11. In the class of the regular rotors Omn±1
n , the one of minimal

area is On−1
n obtained for m = 1 and ε = +1. Its Fourier series is given by

(2.42) Z(θ) =
n

π
e−i δ

2 sin
(
δ

2

) ∑
j∈Z

ei(((n−1)j+1)n−1)θ

jn+ 1
.

Proof. The area of a rotor K described by Z ∈ Z is an increasing function of
m ∈ N

∗ by (2.41). Thus the minimum in the class of regular rotors is obtained for
m = 1. The minimum between On−1

n and On+1
n is clearly On−1

n .
It is easy to see that On−1

n is invariant with respect to the action of the dihedral
group of order 2(n − 1), Dn−1. For example, the Reuleaux triangle is invariant with
respect to the group D3 and is invariant with the Δ-biangle with respect to the group
D2. Anyway, it seems difficult to prove that a minimizer of problem (2.36) has these
symmetries.

3. The minimization problem as an optimal control problem.

3.1. First consequences of the PMP. In the case of the sets of constant width
(n = 4), one can deal with one control on the interval [0, π] because the functional
to minimize is given by (2.23) (see [15]). The optimal control problem in the general
case (n ≥ 3) requires a sharper analysis here because we have to deal with a control
(U, V ) ∈ R

2 on [0, δ] as γ 
= 0.
Let us consider the polygon P ′

n which corresponds to the initial polygon Pn by
a homotheticity of ratio λ = 1

2 sin( δ
2 )

and a rotation of angle α = π
2 + δ

2 . Hence, the

vertices of the polygon P ′
n are the points of coordinates (ωj)0≤j≤n−1. We consider
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the differential system (harmonic oscillator) on the interval [0, δ] described by the
equations

(3.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋ1 = X2,

Ẋ2 = −X1 + U,

Ẋ3 = X4,

Ẋ4 = −X3 + V,

where the control (U, V ) takes its values within the polygon P ′
n. As the vector (X1, X3)

satisfies the boundary conditions given by (2.31), the PMP will lead to transversality
conditions. Notice that the initial and final states are not fixed, but they are linked
by (2.31).

By the linearity of (3.1), the problem (2.36) is clearly equivalent to minimizing
(2.30), where (X1, X2, X3, X4) satisfies (2.31) and (3.1) and the control (U, V ) takes
its values within the polygon P ′

n. We have thus reformulated the initial shape opti-
mization problem into an optimal control problem:

(3.2)

min

{∫ δ

0
UX1 + V X3, (U, V ) ∈ P ′

n, (X1, X2, X3, X4) satisfies (2.31) and (3.1)

}
.

Definition 3.1. We denote by X = (X1, X2, X3, X4) ∈ R
4 the state variable

and q = (q1, q2, q3, q4) ∈ R
4 the dual variable. The Hamiltonian of the system H :=

H(X, q, U, V, p0) is given by

(3.3) H = q1X2 + q2(−X1 + U) + q3X4 + q4(−X3 + V ) + p0(UX1 + V X3),

where p0 ∈ R.
We first prove the existence of an optimal control of (3.2).
Theorem 3.1. There exists an optimal control for problem (3.2).
Proof. There exists an admissible trajectory of (3.2) corresponding to Z = 0;

hence, the set of admissible trajectories is nonempty. The existence of an optimal
control will follow from an application of Filipov’s theorem (see [1] or [33, p. 98]). First,
we check that the trajectories are uniformly bounded. Indeed, the set of admissible
controls is compact, and by linearity of (3.1), we obtain a uniform bound by Gronwall’s
lemma. Second, given (X1, X2, X3, X4) ∈ R

4, the set defined by{
(X1U +X3V,X2,−X1 + U,X4,−X3 + V ), (U, V ) ∈ P ′

n

}
is clearly convex. By Filipov’s theorem (see [33]), we get the result.

By the PMP, there exists a map X : [0, δ] → R
4 absolutely continuous, a map

q : [0, δ] → R
4 absolutely continuous, a constant p0 ≤ 0, and an optimal control

Z(θ) =
(
U(θ), V (θ)

)
satisfying the equations

Ẋ =
∂H

∂q
,(3.4a)

q̇ = −∂H

∂X
,(3.4b)
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and

(3.5) max
(Ũ,Ṽ )∈P′

n

H(X(θ), q(θ), Ũ , Ṽ , p0) = H(X(θ), q(θ), U(θ), V (θ), p0).

Moreover, the pair (p0, q) is nontrivial, and q satisfies transversality conditions that
we will make explicit in the paragraph below.

Definition 3.2. We will call an extremal trajectory a quadruplet (X, q, p0, Z)
satisfying (3.4a), (3.4b), (3.5) and such that the pair (X, q) is absolutely continuous
on [0, δ], p0 ≤ 0, and (p0, q) is nonzero. The control Z = (U, V ) corresponding to an
extremal trajectory will be called an extremal control.

As the system is autonomous, the Hamiltonian of the system is conserved along
the extremal trajectories of the system. By (3.4b), the variable q satisfies the dual
system:

(3.6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇1 = q2 − p0U,

q̇2 = −q1,
q̇3 = q4 − p0V,

q̇4 = −q3.
The system (3.1) can also be written as

(3.7) Ẅ +W = Z,

where

W = X1 + iX3, Z = U + iV,

and from now on, for convenience, we will mainly deal with complex variables. We
write the dual variable q = (q1, q2, q3, q4) in the following way:

(3.8) Π = q2 + iq4,

so that we have

(3.9) Π̇ = −q1 − iq3.

We get from (3.6)

(3.10) Π̈ + Π = p0Z.

It follows that W and Π are of class C1,1 on the interval [0, δ], as the control Z is
bounded. Let us now compute the transversality conditions by using the variables
(W,Π). The vector of C

4,

(W (0), Ẇ (0),W (δ), Ẇ (δ)),

takes its values in the subspace M of C
4 defined by

M :=
{
(A,B, ωA, ωB), (A,B) ∈ C

2}.
The orthogonal of M in C

4 (with respect to the canonical scalar product in C
4) is

simply

M⊥ =
{
(A′, B′,−ωA′,−ωB′), (A′, B′) ∈ C

2}.
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By the PMP, the vector (−q(0), q(δ)) = (−Π(0),−Π̇(0),Π(δ), Π̇(δ)) is in M⊥ (see
[28], [33] for transversality conditions in the periodic case). Hence, we have Π(δ) =
ωΠ(0) and Π̇(δ) = ωΠ̇(0); consequently, Π satisfies (2.31), that is, the same boundary
conditions as W . Note that the Hamiltonian can be expressed as follows:

(3.11) H = −�(WΠ) − �(Ẇ Π̇) + �((p0W + Π)Z).

By (3.8) and (3.9), the scalar product in C
2 between W and Π is given by

(3.12) 〈W,Π〉 :=
∑

1≤i≤4

qiXi = −�(W Π̇) + �(ẆΠ).

We now simplify the system (3.4a)–(3.4b) by expressing the dual variable Π as a
function of the state variable W . This corresponds to a reduction of the number of
degrees of freedom of the system (3.4a)–(3.4b).

Lemma 3.1. Let W be an extremal trajectory of the system and Π = q2 + iq4 its
dual variable. Then there exists A ∈ C such that the function Π − p0W is of the form

Π(θ) − p0W (θ) = Ae−iθ, θ ∈ [0, δ].

Proof. We have by (3.7) and (3.10)

Π̈ + Π = p0(U + iV ) = p0Z = p0(Ẅ +W ),

and, consequently, the function y = Π − p0W satisfies ÿ + y = 0. There exist two
constants (A,B) ∈ C

2 such that, for all θ ∈ [0, δ], we have

(3.13) Π(θ) − p0W (θ) = Ae−iθ +Beiθ.

Let us prove that B = 0. For θ = 0 and θ = δ, we get

Π(0) − p0W (0) = A+B, Π(δ) − p0W (δ) = Aω +Bω.

But, as (W,Π) belong to Γ, we have by the transversality conditions

Π(δ) − p0W (δ) = ωΠ(0) − p0ωW (0) = Aω +Bω.

Thus, we conclude that B = 0.
We now show that an extremal trajectory is not abnormal.
Lemma 3.2. Let (X, q, p0, Z) be an extremal trajectory. Then the constant p0 is

strictly negative.
Proof. Let us assume that p0 = 0. As the point (0, 0) belongs to P ′

n, we get by
the PMP the following: for almost θ ∈ [0, δ],

q2(θ)U(θ) + q4(θ)V (θ) ≥ 0.

Consequently, ∫ δ

0

(
q2(θ)U(θ) + q4(θ)V (θ)

)
dθ ≥ 0.

But, we have ∫ δ

0

(
q2(θ)U(θ) + q4(θ)V (θ)

)
dt =

∫ δ

0
Re(Π(θ)Z(θ))dθ,
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and by the previous lemma and (2.34), we have∫ δ

0
ΠZ =

∫ δ

0
AeiθZ(θ)dθ = 0.

Hence, the function �(ΠZ) must be zero on the interval [0, δ]. If Π is not zero, then
the extremal control associated with this trajectory is orthogonal to Π. This con-
tradicts (3.5) by choosing a control Z̃ ∈ P ′

n such that �(ΠZ̃) > 0. Hence, Π must
be 0 everywhere. This is not possible because by the PMP, the pair (Π, p0) is not
zero.

In the following, we take p0 = −1 for any extremal trajectory of the system.
Let (W,Π, Z) be an extremal trajectory defined by ∂H

∂U = ∂H
∂V = 0; that is, we have

Π = W . As p0 = −1, we get by Lemma 3.1

W (θ) =
A

2
e−iθ, θ ∈ [0, δ].

Such an extremal trajectory represents the disc which maximizes the area, and this
case can be excluded.

Lemma 3.3. Let W be an extremal trajectory of the system and Π its dual variable.
Then there exists an extremal trajectory of the system, W1, with dual variable Π1, such
that

Π1 = −W1

and such that the functional of both extremals is identical.
Proof. For λ ∈ C, we consider the functions (W1,Π1) defined on [0, δ] by{

W1(θ) = W (θ) + λe−iθ,

Π1(θ) = Π(θ) + λe−iθ.

We have

Ẅ1 +W1 = Z, Π̈1 + Π1 = −Z.
We can easily check that W1 and Π1 satisfy (2.31). By (2.34), the functional remains
unchanged: ∫ δ

0
�(ZW 1) =

∫ δ

0
�(ZW ).

Hence, (W1,Π1) is also an optimal trajectory. Recall that the Hamiltonian along this
trajectory is defined by

H1 = −�(W1Π1) − �(W ′
1Π′

1) + �((Π1 −W1)Z).

Using Lemma 3.1, we have Π = −W +Ae−iθ, and by a computation, we get

H1 = H + 2�(Aλ) + 2|λ|2,
where H is given by (3.11). This shows that the PMP (3.5) gives the same extremal
control for (W,Π) and for (W1,Π1), as both Hamiltonian are equal up to a constant.
Finally, we have

Π1 +W1 = (A+ 2λ)e−iθ,

and by taking λ such that A = −2λ, we get the lemma.
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From now on, we consider extremal solutions (W,Z) of the system such that the
dual variable Π satisfies Π = −W (by Lemma 3.3). To simplify, we will say that W
is an extremal trajectory of the system if Π = −W and if it satisfies the PMP. The
Hamiltonian of the system is constant along such an extremal and can be written
using (3.11):

(3.14) H = |W |2 + |Ẇ |2 − 2�(W · Z) = |W − Z|2 + |Ẇ |2 − |Z|2.

Remark 3.1. By (3.14), and by using (3.5), we get H ≥ 0 along an extremal
trajectory.

3.2. Computation of the extremal control. We now examine in more detail
the consequences of the PMP to describe the extremal trajectories. Let us recall the
definition of a switching point.

Definition 3.3. Let Z = (U, V ) be an extremal control of problem (3.2). A point
τ ∈]0, δ[ is called a switching point if, for every ε > 0 such that [τ − ε, τ + ε] ⊂]0, δ[,
the control Z is nonconstant on [τ − ε, τ + ε].

To restrict the class of extremal trajectories, we prove step by step the following:
• An extremal is bang-bang, and the associated control takes its values on the

vertices of P ′
n (Lemma 3.4).

• An extremal control takes its values regularly on the vertices of P ′
n (Theo-

rem 3.2).
• The number of switching points of an extremal control is finite (Theorem 3.3).
• The number of switching points of an extremal control is prescribed (Theo-

rem 3.4).
• The distance between two consecutive switching points is constant (Proposi-

tion 4.1).
We first prove two lemmas which will be useful in proving Theorems 3.2 and 3.3.

Lemma 3.4. Let W be an extremal trajectory of the system. Then the extremal
control takes its values on the vertices of P ′

n.
Proof. First, we show that the extremal control takes its values on the vertices

of P ′
n. By (3.5) and (3.14), the extremal control is a solution of the maximization

problem

(3.15) max
z∈P′

n

φ(z),

where φ is defined on P ′
n by φ(z) := −2�(zW (θ)) and θ ∈ [0, δ] is fixed. Let z0 be a

point where the maximum in (3.15) is obtained.
If W (θ) = 0, then the maximum in (3.15) can be taken arbitrarily in P ′

n and, in
particular, on a vertex of P ′

n. Let us now assume that W (θ) 
= 0. The maximum of
φ is necessarily on the boundary of P ′

n because ∇φ(z0) 
= 0. Hence, z0 is of the form
z0 = t0ω

j + (1 − t0)ωj+1, where t0 ∈ [0, 1] and 0 ≤ j ≤ n − 1. If W (θ) is orthogonal
to ωj+1 − ωj , then we can take z0 = ωj or z0 = ωj+1. If this is not the case, let us
define the function ψ on [0, 1] by

ψ(t) = −2�(
(tωj + (1 − t)ωj+1)W (θ)

)
.

As we have ψ̇(t0) 
= 0, the maximum in (3.15) cannot be reached at t0. Hence, the
maximum in (3.15) is reached on a vertex of P ′

n, and this proves the lemma.
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Lemma 3.5. Let W be an extremal trajectory of the system and τj, j ∈ N, a
switching point of the extremal control Z such that Z(τ−

j ) = ωkj and Z(τ+
j ) = ωkj+1

with (kj , kj+1) ∈ N
2. Then there exists tj ∈ R such that

(3.16) W (τj) = tjω
kj+kj+1

2 .

Proof. The Hamiltonian is constant along an extremal trajectory, and the func-
tions θ �−→ |W (θ)|2 and θ �−→ |W ′(θ)|2 are continuous. Hence, the function θ �−→
�(W (θ)Z(θ)) is continuous, and at a switching point τj , we get

� (
W (τj)ωkj

)
= � (

W (τj)ωkj+1
)
.

Geometrically speaking, the vector W (τj) is orthogonal to the segment [ωkj , ωkj+1 ];
hence it takes the form given by (3.16).

By Lemma 3.4, an extremal trajectory is bang-bang: the extremal control as-
sociated with this trajectory takes the extremal values of the convex polygon P ′

n.
We now show that the extremal control goes all over the vertices ωj clockwise or
counterclockwise.

Theorem 3.2. Let W be an extremal trajectory of the system. There exists ε ∈
{±1} such that if τj is a switching point with Z(τ−

j ) = ωkj and Z(τ+
j ) = ωkj+1 , then

kj+1 − kj = ε.

Proof. By Lemma 3.5, we have at a switching point τj

W (τj) = tjω
kj+kj+1

2 ,

where tj ∈ R. Geometrically speaking, the vector W (τj) is parallel to the median of
the segment [ωkj , ωkj+1 ], which is a side or a diagonal of the polygon P ′

n. The line Δ
directed by W (τj) contains 0, 1, or 2 vertices of P ′

n.
First, assume that Δ does not contain any vertex of P ′

n. If |kj − kj+1| 
= 1, there
exists another vertex ωs := (Us, Vs) of P ′

n, which is different from ωj and ωj+1, and
such that

−2�(W (τj)ωs) > −2�(W (τj)ωj)

or

−2�(W (τj)ωs) > −2�(W (τj)ωj+1).

This means that the scalar product between W (τj) and ωs is less than the scalar prod-
uct between W (τj) and ωkj or ωkj+1 . Assume, for example, that the first inequality
is satisfied by ωs. We obtain by (3.14)

H(W (τj),Π(τj), Us, Vs, p0) > H(W (τj),Π(τj), U(τ−
j ), V (τ−

j ), p0).

This contradicts (3.5), that is, the maximality of the Hamiltonian along an extremal.
Now assume that Δ contains only one vertex of P ′

n (in this case n is necessarily
even) and |kj − kj+1| 
= 1. The segment [ωkj , ωkj+1 ] is parallel to a side [ωr, ωr+1] of
P ′

n. Let us call ωl the vertex of P ′
n opposite to [ωr, ωr+1]. As in the previous case, we

get a contradiction in (3.5). Indeed, one has

H(W (τj),Π(τj), Us, Vs, p0) > H(W (τj),Π(τj), U(τ−
j ), V (τ−

j ), p0),

with s equal to r, r + 1, or l and with ωs := (Us, Vs).
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If Δ contains two vertices ωs and ωl of Pn and if |kj − kj+1| 
= 1, we get a similar
contradiction in (3.5) by considering the vertex ωs or ωl.

We have thus proved that |kj+1 − kj | = 1 for any switching point τj . To conclude
the proof of the theorem, we have to show that the extremal control does not contain
a subsequence of the form {ωp, ωp+1, ωp, . . . }, where p ∈ N. Let us assume that an
extremal control Z takes the form

Z(θ) = 1l[τ1,τ2[ + ω1l[τ2,τ3[ + 1l[τ3,τ4[ + Z̃(θ), θ ∈ [0, δ],

where τ1 < τ2 < τ3 < τ4 and (τ2, τ3) are two consecutive switching points, and Z̃ is
the restriction of Z on [0, δ]\[τ1, τ4]:

Z̃ = Z∣∣[0,δ]\[τ1,τ4]
.

It is always possible to consider this case by multiplying Z by ωp, since it does not
change the extremality of (W,Z). As Z is switching from 1 to ω for θ = τ2, we have by
Lemma 3.5 W (τ2) = t2ω

1
2 , t2 ∈ R. Notice that by (3.14), we necessarily have t1 < 0.

Indeed, by the maximality condition, the value of the Hamiltonian on the extremal
is greater than the value of the Hamiltonian obtained with (Ũ , Ṽ ) = (0, 0). At the
switching point τ3, we similarly have W (τ3) = t3ω

1
2 , where t3 < 0. Hence, the vectors

W (τ2) and W (τ3) are parallel. For θ ∈ [τ2, τ3], the function θ �−→ W (θ) describes an
arc of an ellipse whose center is the point ω. Indeed, by (3.7), we have

W (θ) = ω +A2e
iθ +B2e

−iθ, (A2, B2) ∈ C
2.

Hence, the vectors W (τ2) and W (τ3) are equal or opposite because the line directed
by W (τ2) crosses the ellipse in at most two points. But, as we have W (τ2) ·W (τ3) =
t2t3 > 0, we must have

W (τ2) = W (τ3).

This condition will bring a contradiction. Let E be the ellipse of center ω on which
the function W takes its values for θ ∈ [τ1, τ2].

First case. E is not degenerated. The function W satisfies W (τ2) = W (τ3). As W
is of class C1, it must go all over the ellipse, and this is possible only if τ2 = τ1 +2kπ,
k ∈ N

∗. As (τ2, τ3) belong to the interval [0, δ], we get a contradiction.
Second case. E is a segment which contains W (τ2) and ω. For θ ∈ [τ2, τ3], W (θ)

takes its values within this segment. For θ ∈ [τ1, τ2], the function θ �−→ W (θ) takes its
values within an ellipse E ′ whose center is the point (1, 0). By Lemma 3.5, W satisfies, Q10
for θ = τ2, W (τ2) = t2ω

1
2 . Hence, the function W cannot be of class C1 at the point

θ = τ2, since W (θ) is parallel to W (τ2) for θ ∈ [τ2, τ3]. We thus get a contradiction.
We have thus proved that for any switching point τj , kj+1 −kj = ε, where ε = ±1

is fixed by the rotation of Z clockwise or counterclockwise. This concludes the proof
of the theorem.

We now show that an extremal control switches a finite number of times on the
interval [0, δ].

Theorem 3.3. Let W be an extremal trajectory of the system. Then there exists
a subdivision (τj)0≤j≤r of [0, δ] with r ∈ N

∗ such that τ0 = 0 and τr+1 = δ and such
that on each [τj , τj+1[ the extremal control (U, V ) satisfies Z = ωεj+h, where h ∈ N,
ε = ±1.
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Proof. Let us prove that the number of switching points is finite on the inter-
val [0, δ]. Assume that there exists a sequence (τj) of switching points in [0, δ] that
converges to a point τ ∈ [0, δ]. We will show that

(3.17) W (τ) = 0, Ẇ (τ) = 0.

Assume that Z rotates clockwise, that is, ε = ±1. We have by Lemma 3.5

W (τj) = tjω
j+ 1

2 .

As W is of class C1,1 on [0, π], the sequence (tj) is bounded. Consequently (up to a
subsequence), we can assume that the sequence (tj) converges to a real t ∈ R. Assume
that t 
= 0; then there exists j0 ∈ N such that, for j ≥ j0, we have tj 
= 0. Hence,

W (τj)
W (τj+1)

converges to 1 and

W (τj)
W (τj+1)

=
tj
tj+1

ω,

which converges to ω. Thus t = 0 and W (τ) = 0. Again, we get a contradiction
if we assume that Ẇ (τ) 
= 0. This shows (3.17). The Hamiltonian H along this
extremal is 0. By (3.5) and by (3.14), the value of H is greater than the value of H
for (Ũ , Ṽ ) = (0, 0). It follows that W ≡ 0 and Z ≡ 0. This extremal represents the
disc, which is not a minimizer. An extremal trajectory then has a finite number of
switching points. Finally, if we consider ωh, h ∈ N, the initial value of the control,
and ε = ±1, the rotation clockwise or counterclockwise of the control, then we get
the theorem.

We now compute the exact number of switching points of an extremal. We prove
the following result.

Theorem 3.4. Let W be an extremal trajectory and Z the extremal control. Then
we have

(3.18) Z =
∑

0≤j≤s

ωεj+h1l[τj ,τj+1[,

where ε ∈ {±1}, h ∈ N, and τ0 = 0 < τ1 < · · · < τs < τs+1 = δ. Moreover, the
number L of switching points of Z in the interval [0, δ] is given by

(3.19) L = s+ 1 = ln− ε, l ∈ N
∗.

Proof. By Theorem 3.3, an extremal control Z takes the values (ωεj+h)0≤j≤n−1
with h ∈ N and ε = ±1 on a finite subdivision of [0, δ] denoted by (τj)0≤j≤s+1 with
τ0 = 0 and τs+1 = δ. Without loss of generality, we can assume that ε = +1. If
Z = ωh for θ = 0+, by performing a rotation of the control, that is, by changing Z
into Zωh, we can always assume that Z(0+) = 1. By extending the function W to R

by the relation W (θ+ δ) = ωW (θ) (recall that W is in Γ), we can assume that 0 is a
switching point. The function Z is now given by

Z =
∑

0≤j≤s

ωj1l[τj ,τj+1[,

with τ0 = 0 < τ1 < · · · < τs < τs+1 = δ. As Z is in Z, we must have Z(δ+) =
ωZ(0+) = ω. On the interval [τs, δ[, we have Z = ωs. Consequently, the point δ is
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a switching point, and we must have ωs+1 = ω. Thus, s+1 is of the form s+1 = −1+ln,
l ∈ N

∗. The number of switching points in the interval [0, δ] is s + 1, as δ is not
considered as a switching point of this interval. We have proved the theorem in the
case where ε = +1. When the control Z satisfies Z = ωj , the proof is the same,
and we must have ωs+1 = ω. Consequently, s is given by s = ln, l ∈ N

∗. In this
case the number of switching points is s + 1 = ln + 1. This ends the proof of the
theorem.

In the case of regular rotors Oln±1
n , the switching points are of the form jτ ,

j = 1, . . . , s = ln± 1 − 1 with τ = δ
s+1 , and the associated control is given by (2.39).

In the next section, we show that the distance between two consecutive switching
points τj and τj+1 of an extremal is constant. This will prove that a minimizer is
necessarily a regular rotor.

An extremal (W,Z) given by (3.18) satisfies on each interval [τj , τj+1]

(3.20) W (θ) = Aje
iθ +Bje

−iθ + ωεj+h.

A simple computation using (3.14) shows that the Hamiltonian along this trajectory
is

(3.21) H = 2|Aj |2 + 2|Bj |2 − 1 ∀0 ≤ j ≤ s,

and, as H is constant, we have

|Aj |2 + |Bj |2 ≡ cst ∀0 ≤ j ≤ s.

4. Conserved quantities along the extremal trajectories. In this section
we prove by an extension of Noether’s theorem in optimal control theory that the
angular momentum is conserved along an extremal trajectory. Combining the two
conserved quantities (Hamiltonian and angular momentum) we will show that ex-
tremal trajectories describe regular rotors. We use the results of Torres (see [31], [32])
in order to prove the conservation of the angular momentum.

4.1. Conservation of the angular momentum. Let M be the function de-
fined on the interval [0, δ] by

M(θ) = 
(
(W (θ) − Z(θ))Ẇ (θ)

)
, θ ∈ [0, δ],

where (W (θ), Z(θ)) is an admissible trajectory of problem (3.2). This quantity is usu-
ally called the angular momentum in mechanics (cross product between the position
and the velocity). If (W (θ), Z(θ)) is an extremal trajectory of (3.2) given by (3.18),
we have, for 0 ≤ j ≤ s, and θ ∈ [τj , τj+1[,

M(θ) = 
(
(W (θ) − ωεj+h)Ẇ (θ)

)
.

By differentiating, we get

Ṁ(θ) = 0 ∀θ ∈ [τj , τj+1[.

This proves that the function M(θ) is piecewise constant on each [τj , τj+1]. We now
show a stronger result.

Theorem 4.1. Along an extremal trajectory of (3.2), the quantity M(θ) is con-
stant:

∀θ ∈ [0, δ], Ṁ(θ) = 0.
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Proof. Let us consider the C1 transformation hα : C × C → C, α ∈ R+, defined
by

(4.1) hα(W,Z) = eiα(W − Z) + Z.

Geometrically speaking, hα(W,Z) is the image of W − Z by the rotation of angle αQ11
and whose center is Z. For any (W,Z) ∈ C

2, we have h0(W,Z) = W . Now, given an
extremal trajectory (W (θ), Z(θ)) of (3.2), we denote by Wα the image of (W (θ), Z(θ))
by hα. We then have on [0, δ]

Ẅα +Wα = Z.

Consequently, Wα satisfies the same equation as W , and the extremal control associ-
ated with Wα is Z. Let L : C × C be the C1 map defined by

L(W,Z) = �(WZ).

If (W (θ), Z(θ)) is an extremal trajectory, we have

L(Wα, Z) = cos(α)L(W,Z) − sin(α)
(WZ) + 1 − cos(α).

Considering the C1 map F : C × C × R+ → R defined by

F (W, Ẇ , α) = − sin(α)
(WẆ ),

we then have along an extremal trajectory (W (θ), Z(θ))

L(Wα(θ), Z(θ))= cos(α)L(W (θ), Z(θ))+
d

dθ
F (W (θ), Ẇ (θ), α)+1−cos(α) ∀θ ∈ [0, δ].

By (3.12), the scalar product between the state variable W and the dual variable Π
is

〈W,Π〉 = −�(W Π̇) + �(ẆΠ).

Now we are in position to derive consequences of the invariance theorem (see [31]).
Let (W (θ), Z(θ)) be an extremal trajectory of (3.2), H the Hamiltonian along this
trajectory, and Π(θ) the dual variable. We then have

(4.2) p0
∂F (W (θ), Z(θ), α)

∂α

∣∣∣
α=0

+
〈
∂Wα(θ)
∂α

∣∣∣
α=0

,Π(θ)
〉

−H ≡ cst

for all θ ∈ [0, δ]. But, we have

p0
∂F (W (θ), Z(θ), α)

∂α

∣∣∣
α=0

= −
(W (θ)Ẇ (θ)) ∀θ ∈ [0, δ],

and by Lemma 3.3, we can take Π = −W so that〈
∂Wα(θ)
∂α

∣∣∣
α=0

,Π(θ)
〉

= 
(Ẇ (θ)Z(θ)) + 2
(Ẇ (θ)W (θ)) ∀θ ∈ [0, δ].

As the Hamiltonian is constant along an extremal trajectory, we get by (4.2)


((W − Z)Ẇ ) ≡ cst.

This ends the proof of the theorem.
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4.2. Conserved quantities and equidistance of the switching points.
Thanks to the two conserved quantities along a Pontryagin extremal, we are now in
position to prove the equidistance of the switching points. We first show the following
proposition.

Proposition 4.1. For an extremal trajectory given by (3.18), we have for 0 ≤
j ≤ s, τj+1 − τj = τ1 − τ0.

Proof. A simple computation shows that for an extremal given by (3.18) we have
on each [τj , τj+1[, 0 ≤ j ≤ s,

(4.3) M(θ) = |Aj |2 − |Bj |2, θ ∈ [τj , τj+1[.

Thus, by (3.21) and Theorem 4.1, we get, for 0 ≤ j ≤ s,

(4.4)

{
|Aj | = |A0|,
|Bj | = |B0|.

SinceW is of class C1 at each switching point τj , the coefficients Aj and Bj , 1 ≤ j ≤ s,
are given by

(4.5)

{
Aj = Aj−1 + 1

2 (ωj−1 − ωj)e−iτj ,

Bj = Bj−1 + 1
2 (ωj−1 − ωj)eiτj .

Combining (4.4) and (4.5), we get

(4.6) �(AjAj−1) ≡ cst, 1 ≤ j ≤ s.

Geometrically speaking, the complex (Aj)0≤j≤s lie on a circle whose center is the Q12
origin and whose radius is |A0|, and Aj+1 is the image of Aj by a rotation of a fixed
angle by (4.6). In terms of the switching point (τj)1≤j≤s, the phase between Aj+1−Aj

and Aj −Aj−1 is δ− (τj+1 −τj) by (4.5). But using (4.4) and (4.6), the phase between
these two complex numbers is the same as the phase between Aj and Aj−1. By (4.6),
the phase between Aj+1 −Aj and Aj −Aj−1 is constant, which ends the proof of the
proposition.

Corollary 4.1. Let W be an extremal trajectory of the system and Z the ex-
tremal control. Then the corresponding rotor is in the class (Oln±1

n )l∈N∗ , and the
extremal control Z is given by (2.39).

Proof. This is a a consequence of the previous proposition, as two consecutive
switching points of an extremal are equidistant. The corresponding rotor given by
(3.18) satisfies τj+1 − τj ≡ cst, and it is necessarily an element of (Oln±1

n )l∈N∗ .
By Proposition 2.11, the rotor of minimal area in the class Oln±1

n is On−1
n (with

the least number of arcs). As the rotor of minimal area necessarily belongs to this
class (by the PMP), it is On−1

n . By (2.39) the optimal control Zmin corresponding to
On−1

n is obtained for s+ 1 = n− 1 and is given by

(4.7) Zmin =
∑

0≤j≤n−2

ωj1l[j δ
n−1 ,(j+1) δ

n−1 [.

This proves Goldberg’s conjecture (Theorem 1.1). Note that there is no necessity of
verifying the optimality of the extremal trajectories corresponding to (Oln±1

n )l∈N∗\
{On−1

n }, as On−1
n is of minimal area in this class.
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Table 1

Values of the rj for n = 3, 4, 5, 6.

n r0 r1 r2 r3 r4 r5
3 0 3r 0
4 0 2r 2r 0
5 0 r1 r2 r1 0
6 0 r 2r 2r r 0

0

1

0,6

0,8

0,4

0

0,2

t

51 642 3

1

0,8

0,6

0,4

0,2

0

t

6543210 43210

2

1,5

1

0,5

0

t

65

Fig. 3. The minimizers in the cases n = 3 (Δ-biangle), n = 4 (Reuleaux triangle), and n = 5
(O4

5) and their respective radii of curvature on the interval [0, 2π].

Geometrically speaking, if we come back to the initial parameterization of a rotor
by its support function p, the rotor On−1

n is the union of arcs of circles of radii rj :

rj =
r

cos
(

δ
2

) (
cos

(δ
2

)
− cos

((
j +

1
2

)
δ
))

=
r

cos
(

δ
2

)�(
ω1/2 − ωj+1/2), j = 0, . . . , n− 1.

These values of the radii of curvature are precisely equal to the distances of the
diagonals of the n-gon from the parallel sides (see [17], [18]), and the sectors are
all equal to 2π

n(n−1) , as the switching points are equidistant. In Table 1, we give the
different values of the radii rj for n = 3, 4, 5, 6. For n = 5, there are two different radii
r1 < r2, and r denotes the radius of the inscribed circle. If n is even, there are exactly
n−2

2 values of the rj , and if n is odd, there are exactly n−1
2 values of the rj . By (2.39),

the radius of curvature of the boundary of On−1
n is 2π

n−1 -periodic (see [11]). We have
represented in Figure 3 the minimizers of the area for n = 3, n = 4, and n = 5 and
their respective radii of curvature.
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[26] E. Meissner, Über Punktmengen konstanter Breite, Vierteljahresschr. Naturfor. Ges. Zürich,
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