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Minimal time control of the two tanks gradostat model

under a cascade inputs constraint

Terence Bayen∗, Matthieu Sebbah†, Alain Rapaport‡

September 26, 2013

Abstract

We study the minimum time control problem of a series of two interconnected chemostats under the
input constraint u2 ≤ u1, where ui are the respective dilution rates in the tanks. This constraint brings
controllability issues in the study of the optimal strategies. We encounter this difficulty by splitting the
state domain into two sub-domains, one with no lack of controllability of the target, and its complementary
is such that any optimal control fulfills u1 = u2. We explicit the complete optimal synthesis that depends
on the position of the target with respect to semi-permeable curve that passes through a steady-state
singular point.

Keywords. optimal control, minimal time problem, Pontryagin Maximum Principle, optimal synthesis,
chemostat model, gradostat model, non-linear controllability, semi-permeability.
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Introduction

The chemostat apparatus has been invented simultaneously by Novick & Szilard and Monod in the fifties, for
the so-called “continuous culture” of micro-organisms. Its mathematical model is classically written as the
system of two differential equations (see [28]):{

ẋ = [µ(s)− u]x1,

ṡ = −µ(s)x+ u1(sin − s),

where x and s stand respectively for the biomass and nutrient concentrations. The function µ(·) is the specific
growth rate of the micro-organisms (which is most often kept as a monotonic increasing function). The
operating parameters are the input concentration of nutrient sin and the dilution rate u. Notice that in the
former equations the yield coefficient of the bio-conversion does not appear, because we have simply chosen it
to be equal to one (that can be always done without any loss of generality).

The chemostat device is designed to be operated at steady state, that is for steady state (xeq, seq) that
fulfill µ(seq) = u and xeq = sin − seq. Such a model is often used as a good representation of the functioning
of bioreactors in the biotechnology or waste-water industries, or for ecological investigations of the growth of
micro-organisms in natural environments, such as mountain lakes.

Cascades of chemostats or bioreactors are also quite popular in microbiology (named “gradostats” [13, 20,
27, 29]) or in bio-processes (named “serial tanks” [1]), because it is a way to create a gradient of resources
(see also [11, 15]). Such gradients are expected to be more realistic to mimic real environment for studying
micro-organisms growth [8, 17]. In the biotechnological industry, series of bioreactors are also known to be
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more efficient for the resource conversion at steady state than single tanks [1, 16, 18, 25]. The extension of
the chemostat model to a cascade of two chemostats is straightforwardly given by the following system of
differential equations 

ẋ1 = [µ(s1)− u1]x1,

ṡ1 = −µ(s1)x1 + u1(sin − s1),

ẋ2 = [µ(s2)− u2]x2,

ṡ2 = −µ(s2)x2 + u2(s1 − s2),

(0.1)

accordingly to the picture given in Figure 1. Notice that the input variables u1, u2 are not independent,
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Figure 1: Representation of a cascade of two continuous stirred tank reactors. The input substrate concentra-
tion in the first reactor is equal to sin > 0.

because the input flow of the second tank cannot be larger than the output flow of the first tank. When
volumes of the tanks are identical (what we shall assume without loss of generality), this amounts to consider
controls u that satisfies the inputs cascade constraint:

u ∈ U := {(u1, u2) ∈ R2 | 0 ≤ u2 ≤ u1 ≤ umax} .

As for the chemostat, the gradostat device is designed to be operated at steady state. Typical practical
questions that occur in laboratory or in industrial frameworks are related to changes of the operation point
from the current steady state to another one. For instance, this problem has been raised in recent investi-
gations of wine fermentation processes [9], where each tank corresponds to a precise metabolic state of the
micro-organisms related to the level of substrate concentration, that one would like to adjust in each tank.

One can notice on equations (0.1) that any steady state belongs to the hyper-plane si+xi = sin (i = 1, 2),
that is invariant for any control law u(·). For our study, the dynamics (0.1) can then be reduced to the
following planar one: {

ṡ1 = −ν(s1) + u1(sin − s1),

ṡ2 = −ν(s2) + u2(s1 − s2),
(0.2)

where we have set ν(s) := µ(s)(sin − s). The problem of change of operation point amounts then to choose
a control u(·) that drives the system (0.2) towards a new target s̄ = (s̄1, s̄2). It is important to mention that
both controls are necessary in order to drive the system to a given equilibrium for s1 and s2. For this objective,
one can simply adjust the control u to the value that corresponds to the new desired steady state, and wait for
the asymptotic convergence of the state... Instead, a feedback strategy for the minimal time criterion appears
to be a natural choice for the practitioners, that allows them to gain time while manipulating the variable u
(as this is often considered for other problems in the same application fields [14, 10, 24]). Our objective in
this paper is to find an optimal feedback control steering (0.2) from any initial state to a given target s̄ in
minimal time.

For minimal time control problems in the plane with dynamics linear with respect to the control variables,
the theory has been mostly developed for control sets in `1 or `2-balls (see e.g. [4, 3, 19]). Notice that the
inputs constraint (0.2) has a different geometry, as it is is not diffeomorphic to any `1 or `2-balls and has
“corners”. This unusual feature leads to new local controllability issues for the synthesis of optimal feedbacks,
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that we precisely investigate in the present work.

One can easily check that there exists an invariant domain D for (0.2) (forwardly), and we shall restrict
our study for initial conditions in this domain. Given a target point s̄ in D, our main key is to characterize a
subset C(s̄) ⊂ D that fulfills the following properties:

• s̄ ∈ C(s̄) is reachable from any initial condition in C(s̄), and any optimal trajectory stays in C(s̄),

• any optimal control from an initial condition outside C(s̄) is such that u1(t) = u2(t) almost everywhere.

This feature allows us to decompose the original optimal feedback synthesis problem in D into two simpler
sub-problems:

1. the minimal time control problem in C(s̄) with two constrained controls, without any controllability
issue,

2. the minimal time control problem in D with C(s̄) as a target, with a scalar control, but with some
controllability issues.

The paper is organized as follows. The first section gives hypotheses and introduces the set C(s̄). We also
provide some qualitative properties of its boundary. In the second section, we give the optimal synthesis
for initial conditions in the set C(s̄) (Proposition 2.2). We show that there exist infinitely many optimal
trajectories steering a point in this set to the target. In the third section, we apply the Pontryagin Maximum
Principle, and we show that for initial conditions outside the set C(s̄), we have u1 = u2. This reduction allows
to use properties of affine systems in the plane with one input in order to conclude on the optimal synthesis
(see e.g. [4]). We show that either the target is never reached from the set D\C(s̄) (case I), or it can be
reached from any initial condition outside C(s̄), and the optimal strategy is singular (case II). In this section,
we exhibit a partition of the domain D into two sub-domains A and B. We show that if the target is in A
(resp. in B) then, the optimal synthesis is as in case I (resp. case II). This decomposition of D is based
on properties of semi-permeable curves ([5, 6, 26]). Theorem 3.3 is our main result and provides a complete
optimal synthesis of the problem. The last section is devoted to numerical simulations for particular choices
of the growth function µ.

1 Preliminaries

In this section, we introduce the set C(s̄) for a given target s̄, and we give some properties of this set.

1.1 Hypotheses and notations

We assume the usual hypotheses on the function µ(·):

(H1) µ(·) is a bounded C2 non-negative increasing function defined [0,+∞[ with µ(0) = 0.

A typical example is when µ is of Monod type, see [28]: µm(s) := µ̄s
k+s , where k > 0, µ̄ > 0 or when

µ(s) = µm(sθ), for some θ > 0. In section 4, we also consider the case where µ is linear: µ(s) = ms, m > 0.
We consider the set U of admissible controls as measurable functions u(·) that take values in U . Classically,

Hypothesis (H1) ensures the existence and uniqueness of solutions of (0.2) for any admissible control and
positive time. Straightforwardly, one can check that the domain E := {(s1, s2) ∈ R2

+ | 0 ≤ s1 ≤ s2 ≤ sin} is
forwardly invariant for any u(·) ∈ U . Notice that the line segment

L := {sin} × [0, sin]

that lies on the boundary of D is also invariant. Moreover, the minimal time problem restricted to L is a
one-dimensional problem and is easy to solve. From now on, we consider targets in the interior of the domain
E, and we shall consider in the following initial conditions in the set D defined by:

D := E\L.

Notice that D is neither open nor closed.
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Next, we assume that the maximum dilution rate is large enough to compete the growth of the species
on the substrate, that is umax larger than µ(sin). This assumption is required for the controllability of the
variable s1 (otherwise s1 is non-increasing for any control u1). Without any loss of generality we can also take
umax = 1 (one can always re-normalize time and µ(·) of a factor 1/umax):

(H2) umax = 1 and µ(s) < 1 for any s ∈ [0, sin].

For any admissible control u(·), we shall denote, for convenience, s(·, s0, u(·)) the forward solution of (0.2)
with s(0) = s0, and s−(·, s0, u(·)) the backward solution, that is s−(t, s0, u(·)) = s(−t, s0, u(−·)) for any t ≥ 0.
We shall also denote γ+(s0, u(·)) and γ−(s0, u(·)) the positive and negative semi-orbits of the dynamics with
control u(·).

The Hamiltonian H = H(s1, s2, λ0, λ1, λ2, u1, u2) associated to (0.2) is defined by:

H := −λ1µ(s1)(sin − s1)− λ2µ(s2)(sin − s2) + λ0 + λ1(sin − s1)u1 + λ2(s1 − s2)u2. (1.1)

Pontryagin Maximum principle can be stated as follows. Let u := (u1, u2) an optimal control and s := (s1, s2)
the associated trajectory. There exists tf > 0, λ0 ≤ 0 and λ : [0, tf ] → R2 satisfying the adjoint equations

λ̇ = −∂H∂s , that is:{
λ̇1 = λ1[µ′(s1)(sin − s1)− µ(s1) + u1]− λ2u2 = λ1[ν′(s1) + u1]− λ2u2,

λ̇2 = λ2[µ′(s2)(sin − s2)− µ(s2) + u2] = λ2[ν′(s2) + u2],
(1.2)

Moreover, we have the maximization condition:

u(t) ∈ arg max
0≤ω2≤ω1≤1

H(s1(t), s2(t), λ0, λ1(t), λ2(t), ω1, ω2). (1.3)

An extremal trajectory is a sextuplet (s1(·), s2(·), λ0, λ1(·), λ2(·), u(·)) satisfying (0.2)-(1.2)-(1.3). We say that
an extremal is normal whenever λ0 6= 0 (in that case, we can take λ0 = −1). In the case where λ0 = 0, we
say that the extremal trajectory is abnormal. The Hamiltonian is zero along an extremal trajectory (as tf is
free), thus we obtain:

− λ1µ(s1)(sin − s1)− λ2µ(s2)(sin − s2) + λ0 + λ1(sin − s1)u1 + λ2(s1 − s2)u2 = 0. (1.4)

Given the control constraints, we introduce the the two switching functions that will allow to determine an
extremal control: {

φ1 := λ1(sin − s1),

φ2 := λ1(sin − s1) + λ2(s1 − s2) = φ1 + λ2(s1 − s2).
(1.5)

We say that t0 is a switching point if for any neighborhood W of t0, the control u is non-constant in W. At a
switching point, we necessarily have φi(t0) = 0 for i = 1 or i = 2 or both.

Remark 1.1. The control constraint set E implies the particular choice of the second switching function φ2

in (1.5). Notice that both controls are not independent in (1.3), which justifies this choice.

Let us now recall the definition of reachable set from a point s0, see [7]. Given s̄ ∈ D, s0 ∈ D, and u ∈ U ,
we define ts0(u) ∈ [0,+∞] as the first entry time into the target, that is:

ts0(u) := inf{t ≥ 0 | s(t) = s̄},

where s(t) is the unique solution of (0.2) starting from s0 at time 0. Now, let T : D → [0,+∞] denotes the
minimal time function:

T (s0) := inf
u∈U

ts0(u).

The reachable set is defined as the set of starting points from which the system can reach the target in a
certain time t > 0:

R := {s0 ∈ D | T (s0) < +∞}.
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1.2 Definition of the set C(s̄)
We first give properties of forward and backward solutions for the extreme controls (0, 0) and (1, 1) that will
be useful in the following. Recall that ν(s) := µ(s)(sin − s).

Lemma 1.1. Take an initial state s0 ∈ (D \ L) \ {(0, 0}.

• For u = (0, 0), one has

lim
t→+∞

s1(t) = lim
t→+∞

s2(t) = 0 with lim
t→+∞

s2(t)

s1(t)
= exp

(∫ s01

s02

ν′(0)

ν(σ)
dσ

)
,

and

lim
t→−∞

s1(t) = lim
t→−∞

s2(t) = sin with lim
t→−∞

sin − s2(t)

sin − s1(t)
= exp

(∫ s01

s02

ν′(sin)

ν(σ)
dσ

)
.

• For u = (1, 1) one has

lim
t→+∞

s1(t) = lim
t→+∞

s2(t) = sin with lim
t→+∞

s2(t)

s1(t)
= +∞ .

In backward time, s(·) leaves D at a finite time te with s1(−te) = s2(−te) or s2(−te) = 0.

Proof. For u = (0, 0) the s1 and s2 sub-systems are decoupled with

ṡi = −ν(si) , (1.6)

ν(0) = ν(sin) = 0 and ν(s) > 0 for s ∈ (0, sin). Thus, s0
i /∈ {0, sin} implies that one has necessarily

lim
t→+∞

si(t) = 0 and lim
t→−∞

si(t) = sin,

for i = 1, 2. From (1.6), one obtains that the following equality is fulfilled for any t∫ s1(t)

s01

dσ

ν(σ)
=

∫ s2(t)

s02

dσ

ν(σ)
=⇒

∫ s01

s02

dσ

ν(σ)
=

∫ s1(t)

s2(t)

dσ

ν(σ)
,

with

lim
t→+∞

∫ s1(t)

s2(t)

dσ

ν(σ)
= lim
t→+∞

∫ s1(t)

s2(t)

dσ

ν′(0)σ
=

1

ν′(0)
lim

t→+∞
log

(
s2(t)

s1(t)

)
,

and

lim
t→−∞

∫ s1(t)

s2(t)

dσ

ν(σ)
= lim
t→−∞

∫ s1(t)

s2(t)

dσ

ν′(sin)(σ − sin)
=

1

ν′(sin)
lim

t→−∞
log

(
sin − s2(t)

sin − s1(t)

)
,

that give the announced limits of the ratios.

For u = (1, 1) the dynamics of the s1 sub-system is

ṡ1 = Ḡ(s1), (1.7)

where Ḡ(s1) := (sin − s1)(1 − µ(s1)). As µ(s1) < 1 (Hypothesis H2), one has then clearly s1(t) → sin when
t → +∞. The s2 sub-system can be seen as an asymptotic autonomous dynamics with the same limiting
dynamics in forward time:

ṡ2 = G(t, s2),

where G(t, s1, s2) := −µ(s2)(sin − s2) + (s1(t)− s2) satisfies |G(t, s2)− Ḡ(s2)| → 0 when t goes to +∞. The
trajectory being bounded, we deduce that s2(t) tends also to sin when t → +∞, see e.g. [22]. Consider the
ratio r(t) = (sin − s2(t))/(sin − s1(t)) whose time derivative satisfies

ṙ = (µ(s2(t))− µ(s1(t)))r + 1
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If r(·) is bounded, say by M > 0, there exists T > 0 such that (µ(s1(t))− µ(s2(t)))M < α < 1 for any t > T
as s1− s2 is non-negative and tends towards zero. Then one should have ṙ(t) > (1−α) > 0 for t > T , leading
to a contradiction. So we conclude that r tends to +∞.

In backward time, the solution s1(·) of (1.7) clearly goes to negative values. So the trajectory has to leave
the domain D in finite time with decreasing s1. This is only possible through the parts of the boundary s1 = s2

or s2 = 0.

Consider now the target point s̄ as an initial condition. Accordingly to Lemma 1.1, there exists an exit
time te of the domain D backward in time with constant controls (1, 1). We then define the function p(·) on
the interval [−te,+∞) as

p(τ) =

∣∣∣∣ s−(−τ, s̄, (1, 1)), τ ∈ [−te, 0)
s−(τ, s̄, (0, 0)), τ ∈ [0,+∞)

If the exit time is such that s−1 (te, s̄, (1, 1)) = s−2 (te, s̄, (1, 1)), we posit I = [−te,+∞). Otherwise, we
extend p(·) on [−te − s−1 (s̄, te, (1, 1)),−te) as p(τ) = (τ + te + s−1 (s̄, te, (1, 1)), 0), and posit I = [−te −
s−1 (s̄, te, (1, 1)),+∞).

Finally, we define the set C(s̄) as the epigraph of the function p restricted to the domain D:

C(s̄) := {s ∈ D | s1 = p1(τ), s2 ≥ p2(τ), τ ∈ I} .

Accordingly to Lemma 1.1, the set C(s) has two possible shapes, depending on which part of the boundary
of D the semi-orbit γ−(s̄, (1, 1)) leaves the domain D (see Figure 2).

C s(  )

1s

s2

1s

s2

D

1s

s2

C s(  )

s2

1s

D

Figure 2: Picture of the set C(s). On the left : the negative semi-orbit of s = (1, 0.3) with u1 = u2 = 1
intersects the axis s2 = 0. On the right: the negative semi-orbit of s = (0.9, 0.32) with u1 = u2 = 1 intersects
the first diagonal.

Remark 1.2. The line segment L does not belong to C(s̄).

2 Optimality result in C(s)
Let us consider the set of semi-orbits that reach s̄ with u1 ≡ 1 or u2 ≡ 0:

S(s) := S−(s) ∪ S+(s)

with
S−(s) :=

⋃
v(·)∈V

γ−(s, (1, v(·))) ∩ D , S−(s) :=
⋃

v(·)∈V

γ−(s, (v(·), 0)) ∩ D , (2.1)

where V is the set of measurable functions that take values on [0, 1]. This set possesses the following nice
property:

Proposition 2.1. For any s ∈ D, one has C(s) = S(s).
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Proof. Let us first prove that C(s) ⊂ S(s).
Take s0 ∈ C(s), and consider the trajectory s(·) := s(·, s0, (1, 0)). If there exists t0 ≥ 0 such that s(t0) = s,

then we have s0 = s−(t0, s, (1, 0)) ∈ S(s) as was to be proved. Now, we suppose that for any t ≥ 0, we have
s(t) 6= s. Having 0 < s2(0) < s1(0) and s2(·) decreasing, s(·) has to leave D at a finite time t0: either it
intersects at time t0 the semi-orbit γ−(s̄, (1, 1)) (case a), or it intersects at time t0 the semi-orbit γ−(s̄, (0, 0))
(case b).
Case a. Let t1 > 0 be such that s = s(t1, s(t0), (1, 1)). Then, let us define a control u : [0, t0 + t1] → U by
u = (1, 1) on [0, t1] and u = (1, 0) on [t1 + t0]. By construction, we have s−(t1 + t0, s, u) = s0, and u is of the
form u = (1, u2) with u2 ∈ V, and the result follows.
Case b. Let t′1 > 0 be such that s = s(t′1, s(t0), (0, 0)). Then, let us define a control ũ : [0, t0 + t′1] → U by
ũ = (0, 0) on [0, t′1] and ũ = (1, 0) on [t′1 + t0]. By construction, we have s−(t′1 + t0, s, ũ) = s0, and ũ is of the
form ũ = (u1, 0) with u1 ∈ V, and the result follows.

Let us now prove that S(s) ⊂ C(s).
Take s0 ∈ S(s), and assume first that s0 = s−(t0, s, (1, u2)) with u2 ∈ V and t0 ∈ [0, te) where te is the exit

time of D. For t ∈ [0, te), set s̃(t) := s−(t, s, (1, u2)), and ŝ(t) := s−(t, s, (1, 1)). One can straightforwardly
prove that s̃1(t) = ŝ1(t) and s̃2(t) ≥ ŝ2(t) for all t ∈ [0, te).
Case a. If s−1 (te, s̄, (1, u2)) = s−2 (te, s̄, (1, u2)), one has s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ ŝ2(t0), ŝ(t0) ∈ ∂C(s), and as
t0 ≤ te, we get that s̃(t0) ∈ C(s).
Case b. If s−2 (te, s̄, (1, 1)) = 0, one has s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ max(0, ŝ2(t0)), (ŝ1(t0),max(0, ŝ2(t0))) ∈ ∂C(s)
so that t0 ≤ te implies s̃(t0) ∈ C(s).

Suppose now that s0 = s−(t0, s, (u1, 0)) with u1 ∈ V and t0 ∈ [0, te) where t1 is the exit time of D. For
t ∈ [0, te), set s̃(t) := s−(t, s, (u1, 0)), š(t) := s−(t, s, (0, 0)), and ŝ(t) := s−(t, s, (1, 0)) Similarly as in the
previous case, we obtain:

s̃2(t) = š2(t) = ŝ2(t), and ŝ1(t) ≤ s̃1(t) ≤ š1(t), ∀t ∈ [0, te). (2.2)

Notice that s2 > 0 so that at the exit time te, we necessarily have s̃2(t1) = s̃1(te). Moreover, combining the
fact that (š1(t0), š2(t0)) ∈ ∂C(s) and that (ŝ1(t), ŝ2(t)) ∈ C(s) for all t ∈ [0, te), we obtain that s̃(t0) ∈ C(s) as
was to be proved.

Consider the particular semi-orbit in S(s̄):

Γ := γ−(s̄, (1, 0)) ∩ D,

and notice that it can be parametrized as a curve s1 7→ s2(s1) because we have ṡ1 > 0 on this semi-orbit. One
has the following property.

Lemma 2.1. Take s̄ ∈ D. The subset S−(s̄), resp. S+(s̄) is the set of s ∈ S(s̄) that is below, resp. above Γ.
Furthermore S−(s̄) ∩ S−(s̄) = Γ

Proof. Let s̃(·) := s−(·, s̄, (1, 0)), and consider a backward trajectory s(·) := s−(·, s̄, (1, u2)) with u2 ∈ V. On
has clearly s1(t) = s̃1(t) and s2(t) < s̃2(t) for any time t. Consequently, any trajectory in C(s̄) with u1 ≡ 1
is below Γ. Similarly, any trajectory in C(s̄) with u2 ≡ 0 is above Γ. Clearly, Γ is the only semi-orbit of S(s̄)
that belongs to S−(s̄) and S+(s̄).

Proposition 2.1 shows that for any s0 ∈ C(s), there exists an admissible control steering s0 to s in finite
time, provided that s̄ ∈ D. We shall now give a characterization of the optimal trajectories.

Proposition 2.2. Let s̄ ∈ D. For any initial state s0 ∈ C(s), the optimal trajectories belong to C(s̄), and the
optimal feedbacks u[·] : s 7−→ u[s] ∈ U are given by: u?(·):

• for s ∈ S−(s̄) \ Γ, u1[s] = 1 and u2[s] takes any value in [0, 1],

• for s ∈ S+(s̄) \ Γ, u2[s] = 0 and u1[s] takes any value in [0, 1],

• for s ∈ Γ, u[s] = (1, 0)
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Furthermore, the value function is:

T (s0) = max

{∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
,

∫ s2

s02

dσ

−µ(σ)(sin − σ)

}
. (2.3)

Proof. Let s0 ∈ C(s). We know from Proposition 2.1 that there exists a control u ∈ U of the form (1, u2(·)) or
(u1(·), 0) and a time tu ∈ [0,+∞[ such that

s(tu, s
0, u) = s. (2.4)

First, suppose that u is of the form (1, u2) and set s(·) := s(·, s0, u). Therefore one has

ṡ1 = (1− µ(s1))(sin − s1), (2.5)

hence s1(·) is increasing and:
s1(t) < s1, ∀t ∈ [0, tu). (2.6)

We show that tu is optimal. If not, there exists û ∈ U such that s(T (s0), s0, û) = s with T (s0) < tu. Set
ŝ(·) := s(·, s0, û). As û1 ≤ 1 and ŝ1(0) = s1(0) = s0

1, we obtain by (0.2):

ŝ1(t) ≤ s1(t), ∀t ∈ [0,+∞). (2.7)

Therefore, combining (2.6) and (2.7), we get:

s1 = ŝ1(T (s0)) ≤ s1(T (s0)) < s1, (2.8)

which is a contradiction, hence tu = T (s0). Let us now explicit tu = T (s0). One has:

tu =

∫ tu

0

dt =

∫ tu

0

ṡ1(t)

(1− µ(s1(t)))(sin − s1(t))
dt =

∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
. (2.9)

Finally let us show that ∫ s2

s02

dσ

−µ(σ)(sin − σ)
≤
∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
. (2.10)

Remark that 1/(−µ(s)(sin − s)) < 0, for any s ∈ (0, sin). Therefore if s0
2 ≤ s2, one has

∫ s2
s02

dσ
−µ(σ)(sin−σ) ≤ 0

and the result is obvious. Let us now suppose that s0
2 > s2 and set ϕ as the solution of the Cauchy problem:{

ϕ̇ = −µ(ϕ)(sin − ϕ),

ϕ(0) = s0
2.

Then, ϕ is decreasing and converges to zero when t tends to +∞. Thus, there exists t0 ∈ [0,+∞) such that
ϕ(t0) = s2. Therefore, one has∫ s2

s02

dσ

−µ(σ)(sin − σ)
=

∫ ϕ(t0)

ϕ(0)

dσ

−µ(σ)(sin − σ)
=

∫ t0

0

dt = t0. (2.11)

Moreover, as u2 ≥ 0 and s2(0) = ϕ(0) one has by (0.2) that ϕ(t) ≤ s2(t) for all t ∈ [0,+∞[. Consequently, as
ϕ is decreasing with ϕ(t0) = s2(tu) ≥ ϕ(tu), one has t0 ≤ tu, which by (2.9) and (2.11) gives (2.10). Thus we
have proved the expression (2.3) of the value function for such initial condition.

From Proposition 2.1 and Lemma 2, any trajectory with initial condition s0 and control (1, u2) that is below
Γ is also above γ−(s̄, (1, 1)). Consequently, any such trajectory reaches s̄ in finite time, and stays in C(s̄) until
this time. As all these trajectories have exactly the same map t 7→ s1(t), we deduce that s̄ is reached exactly
at the same time tu. This shows the optimality of all the trajectories with control u1 = 1 as long as s is below Γ.
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Now, we investigate the case where u is of the form (u1, 0). We set s(·) =: s(·, s0, u). We have that s2(·)
is decreasing and therefore s0

2 > s2. Similarly as in the previous case, we can show that v(s0) = tu (using the

fact that s0
2 > s2), and that tu =

∫ s2
s02

dσ
−µ(σ)(sin−σ) . Finally, we show that:∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
≤
∫ s2

s02

dσ

−µ(σ)(sin − σ)
. (2.12)

First, if s0
1 ≥ s1, then

∫ s1
s01

dσ
(1−µ(σ))(sin−σ) ≤ 0 and (2.12) is obvious. If now s0

1 < s1, we consider ϕ as the

solution of the following Cauchy problem:{
ϕ̇ = (1− µ(ϕ))(sin − ϕ),

ϕ(0) = s0
1.

As ϕ is increasing, there exists t0 > 0 such that
∫ s1
s01

dσ
(1−µ(σ))(sin−σ) = t0 with ϕ(t0) = s1. Moreover, as ϕ satisfies

the same o.d.e. as s1 with the constant control equal to 1 in place of u1, we obtain ϕ(t0) = s1(tu) = s1 ≤ ϕ(tu),
so that t0 ≤ tu (as ϕ is increasing). We conclude in a similar way than for the first case.

Finally, if s ∈ Γ, the optimal trajectory has to fulfill the properties of both former cases, that is u1[s] = 0
and u2[s] = 0.

Figure 3 depicts the infinity of optimal trajectories from an initial condition s0 ∈ C(s̄) \ Γ, see Proposition
2.2.

1
s

s2

1,0

1,0

1,0

1,0

1,0

0,0

0,0

0,0

1,0

0,0

0,0

0,0

0,0

1,1

Figure 3: Picture for s = (1, 0.3). When the initial condition s0 is below Γ, there exist infinitely many
trajectories in S−(c̄) steering s0 to s in the same time T (s0) with u1 ≡ 1. When s0 is above Γ, there exist
infinitely many trajectories in S+(c̄) steering s0 to s in the same time T (s0) with u2 ≡ 0.

3 Optimality result outside C(s̄)
In this part, we provide optimal trajectories for initial conditions in D\C(s̄) which allows to conclude on the
optimal synthesis of the problem. Firstly, we show that for initial conditions outside the set C(s̄), an optimal
control satisfies u1 = u2.

Proposition 3.1. Let us consider an initial condition s0 ∈ D\C(s̄), and assume that s0 ∈ R. Then, an
optimal control u ∈ U steering s0 to s̄ satisfies u1 = u2 a.e. and λ2 > 0.

Proof. First, consider the case where λ2 ≡ 0. From (1.2), λ1 is of constant sign (either positive or negative).
If λ1 > 0, then u1 = 1 a.e. and u2 is any control taking values in [0, 1]. Proposition 2.1 implies that s0 ∈ C(s̄)
which is a contradiction. If λ1 < 0, then we have u1 = 0 a.e., thus u2 = 0 a.e. implying that s0 ∈ ∂C(s0)
which again gives a contradiction.
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Now, let us investigate the case where λ2 < 0. If there exists a time interval [t1, t2] where u2 > 0, then,
we obtain a contradiction in the maximization condition (1.3) by comparing this control to the constant one
equal to zero. This implies that u2 = 0 a.e., and from (1.2), λ1 is of constant sign. First, if λ1 > 0, then
u1 = 1 a.e. by (1.3), and we see that s0 ∈ Γ ⊂ C(s̄) implying a contradiction. Now, if λ1 < 0, then u1 = 0
a.e., and both controls are constantly equal to zero, thus s0 ∈ ∂C(s0) implying a contradiction. If λ1 ≡ 0,
then u1 is any measurable control taking values within [0, 1]. Using Proposition 2.1 which characterizes C(s̄),
we obtain that necessarily s0 ∈ C(s̄) which is a contradiction.

It follows that we have λ2 > 0. As u2 ≤ u1, we obtain that

λ1(sin − s1)u1 + λ2(s1 − s2)u2 ≤ φ2u1.

If we combine this inequality together with (1.3), we obtain the following: if φ2 > 0, then the maximum in
the Hamiltonian is achieved for u2 = u1 = 1. If φ2 < 0, then it is achieved for u1 = u2 = 0. If φ2 = 0, then
we have

λ1(sin − s1)u1 + λ2(s1 − s2)u2 = λ2(s1 − s2)(u2 − u1),

and we see using u2 ≤ u1 that the maximum is obtained when u1 = u2. In the three previous cases λ2 > 0,
λ2 < 0 and λ2 = 0, we have proved that u1 = u2. To conclude, we have proved that we always have u1 = u2

which is possible only if λ2 > 0. This concludes the proof.

We are now in position to study the minimal time problem outside C(s̄) using the theory of affine control
systems in the plane with one input. Let us write (0.2) as:

ṡ = f(s) + ug(s), (3.1)

where f , g are the two vector fields defined by:

f(s) := −
(
ν(s1)
ν(s2)

)
, g(s) :=

(
sin − s1

s1 − s2

)
.

It is standard to introduce the non-controllability curve ∆0 [3, 4, 19] by:

∆0 := {(s1, s2) ∈ D | det(f(s), g(s)) = 0}, (3.2)

and the singular arc ∆SA by:

∆SA := {(s1, s2) ∈ D | det(g(s), [f, g](s)) = 0}, (3.3)

where [f, g] denotes the Lie bracket of f and g, see e.g. [19]. Next, we define ∆+
0 (resp. ∆−0 ) as the set of

points of D such that det(f(s), g(s)) > 0 (resp. det(f(s), g(s)) < 0). Similarly, we define ∆±SA. A simple
computation shows that we have:

det(g(s), [f, g](s)) = [sin − s1][[µ(s2)− µ(s1)− µ′(s1)(s1 − s2)](sin − s1) + µ′(s2)(sin − s2)(s1 − s2)].

As the point (sin, sin) is an equilibrium of (0.2), the singular arc is given by the implicit equation

[µ(s2)− µ(s1)− µ′(s1)(s1 − s2)](sin − s1) + µ′(s2)(sin − s2)(s1 − s2) = 0. (3.4)

The next proposition gives properties of ∆0.

Proposition 3.2. There exist a continuous mapping s1 ∈ [0, sin] 7−→ ζ(s1) of class C1 on [0, sin) such that
ζ(0) = 0, ζ(sin) = sin, ζ is increasing over [0, sin], and ∆0 is the graph of the restriction of ζ on (0, sin).

Proof. Let us consider the C1-mapping ρ : (s1, s2) ∈ D 7−→ ρ(s1, s2) := −µ(s1)(s1 − s2) + µ(s2)(sin − s2) so
that ρ(s1, s2) = 0 iff s ∈ ∆0. For s ∈ D\{(sin, sin)}, we have:

∂ρ

∂s2
(s1, s2) = µ(s1)− µ(s2) + µ′(s2)(sin − s2) > 0.
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Hence, we can apply the implicit function Theorem which provides the existence of a function ζ : [0, sin)→ D
such that s ∈ ∆0\{(0, 0), (sin, sin)} if and only if s2 = ζ(s1). Moreover, ρ(0, 0) = 0 implies ζ(0) = 0, and we
have:

ζ ′(s1) =
µ′(s1)(s1 − s2) + µ(s1)

µ(s1)− µ(s2) + µ′(s2)(sin − s2)
> 0, (3.5)

where s2 = ζ(s1). Hence ζ is increasing over (0, sin). As we have ρ(sin, sin) = 0, we have ζ(s1)→ sin whenever
s1 → sin. Hence, we can extend ζ continuously on [0, sin] by letting ζ(sin) = sin.

Finding an optimal synthesis highly depends on the position of ∆0 and ∆SA in the invariant set. In view
of numerical simulations (see section 4), we infer that the intersection in D of ∆0 and ∆SA is non-empty which
has several consequences in term of controllability of the system and on the optimal synthesis.

In the following, we call steady-state singular point (see [4]) a point s? ∈ D \ {(sin, sin)} such that:

s? ∈ ∆0 ∩∆SA,

and we assume throughout this section that there exist such points.

Remark 3.1. (i) Such points are equilibrium of the dynamics restricted to the singular arc. In fact, along a
singular extremal trajectory, the adjoint vector satisfies λ(t) · f(x(t)) = 1 and λ(t) · g(x(t)) = 0 which shows
that it cannot reach s? in finite time. This implies that if the singular arc is controllable, then s? is never
reached by a singular trajectory in finite time.
(ii) Even if s? cannot be reached in finite time, an extremal singular trajectory can be locally time minimizing.
In other words, the singular arc can be hyperbolic [3].
(ii) If we consider two different trajectories steering a point s0 to s̄ (which intersect only at points s0 and s̄),
then we cannot apply the clock form argument globally if the domain enclosed to the union of these curves
intersects ∆0. This tool is based on Green’s Theorem [3, 21, 19] and gives a direct method to compare the cost
of two trajectories which do not intersect ∆0.

Let us recall the following result, see Lemma 13B [4] which will be useful in order to find the optimal
synthesis.

Lemma 3.1. Let us define Tan as the set of points of D \ {(0, 0)} \ {(sin, sin)} where the dynamics (3.1) is
tangent to ∆0 for any u ∈ [0, 1]. Then Tan is non-empty, and we have:

Tan = ∆0 ∩∆SA. (3.6)

Proof. At any s ∈ ∆0 \ {(0, 0)} \ {(sin, sin)}, the vector fields f and g are non null and colinear, so that one
can write f(s) = αg(s) where α is non null scalar. The dynamics is then tangent to ∆0 for any control u if
f(s) or g(s) belongs to the tangent cone of ∆0 at s, that is defined as

T∆0
(s) =

{
δ ∈ R2 |det(f(s+ hδ), g(s+ hδ)) = O(h2)

}
.

Having f(s) ∈ T∆0
(s) amounts to write

det(f(s) + h∂sf(s).f(s) + 0(h2), g(s) + h∂sg(s).f(s) +O(h2)) = O(h2)
⇔ det(f(s), g(s)) + hdet(f, ∂sg(s).f(s)) + hdet(∂sf(s).f(s), g(s)) = 0
⇔ det(αg(s), ∂sg(s).f(s))− det(g(s), α∂sf(s).g(s)) = 0
⇔ det(g(s), [f, g](s)) = 0

that is s ∈ ∆SA.

Throughout the rest of the paper, we make the following assumption on s?.

(H3) There exists a unique steady-state singular point s? ∈ D.

This assumption is essential in our study. Hypothesis (H3) is satisfied whenever µ is of Monod type or linear
(see section 4). For s ∈ [0, sin], we denote by τ(s) the unitary tangent vector of ∆0 at point s.
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Lemma 3.2. Let s ∈ ∆0. Then, we have:

s ∈ ∆+
SA ⇒ det(f(s), τ(s)) > 0, s ∈ ∆−SA ⇒ det(f(s), τ(s)) < 0. (3.7)

Proof. As s ∈ ∆0, we have µ(s1)(s1 − s2) = µ(s2)(sin − s2). From (3.5), we can write the vector τ(s)

as: τ(s) = κ

(
1

ζ ′(s1)

)
, where κ > 0 is a coefficient to normalize τ(s). Using that s1 > s2, the sign of

det(f(s), τ(s)) is given by the quantity defined by:

α(s) := −µ(s1)(sin − s1)[µ(s1) + µ′(s1)(s1 − s2)] + µ(s2)(sin − s2)(µ(s1)− µ(s2) + µ′(s2)(sin − s2)).

Using the fact that s ∈ ∆0, we find that:

α(s)

µ1(s)
= (sin−s1)(µ(s2)−µ(s1)−µ′(s1)(s1−s2))− (sin−s1)µ(s2)+(s1−s2)(µ(s1)−µ(s2)+µ′(s2)(sin−s2)).

Now, let us take a point s ∈ ∆−SA. Then, (3.4) implies that:

α(s)

µ1(s)
< −(sin − s1)µ(s2) + (s1 − s2)(µ(s1)− µ(s2))

= −(sin − s1)µ(s2) + (sin − s2)µ(s2)− (s1 − s2)µ(s2)) = 0.

where the equality follows from using the fact that s ∈ ∆0. It follows that for s ∈ ∆−SA, we have α(s) < 0, thus
det(f(s), τ(s)) < 0 which proves the result. When s ∈ ∆+

SA, we use the same computation and the reverse
inequality. This proves the lemma.

Using Lemma 3.1, we can state the following result that is the basis of the optimality results of this section.

Proposition 3.3. Let us take s̄ ∈ D. Then, either s? ∈ C(s̄) or C(s̄) ⊂ ∆+
0 .

Proof. Recall that the boundary of C(s̄) is the union of γ−(s̄, (0, 0)) and γ−(s̄, (1, 1)). Let us suppose that
s? /∈ C(s̄), and assume by contradiction that there exists a point ŝ ∈ ∂C(s̄) ∩∆0. We have several cases.
First case. ŝ ∈ ∆−SA ∩ γ−(s̄, (0, 0)). Then, from Lemma 3.2, the boundary of C(s̄) with u = 0 necessarily
intersects ∆0 in ∆+

SA. This would give s? ∈ C(s̄) which is a contradiction.
Second case. ŝ ∈ ∆−SA ∩ γ−(s̄, (1, 1)). Then, from Lemma 3.2, the boundary of C(s̄) with u = 1 or u = 0
cannot intersect ∆0 in the set ∆−SA. This would give s? ∈ C(s̄) which is a contradiction.
It remains to study the case where the intersection point ŝ is in ∆+

SA. The same argument as above allow to
conclude.

Given a target point s̄ ∈ D, one should determine whenever we have s? ∈ C(s̄). To do so, we introduce a
curve Λ passing through s? and that provides a partition of the set D:

Λ := γ+(s̄, (0, 0)) ∪ γ+(s̄, (1, 1)).

This curve is depicted on Figure 6 (green curve) and satisfies the following properties.

Lemma 3.3. (i) The curve Λ is such that Λ ∩∆0 = {s?}
(ii) There exists a mapping q : R→ D which satisfies q̇1 > 0 such that Λ coincides with the graph of q.

Proof. The proof of (i) follows by using Lemma 3.2 and a similar reasoning as in the proof of Proposition 3.3.
As Λ is defined via the controls (0, 0) and (1, 1), the parametrization follows from Proposition 1.1.

We now show a semi-permeability property on the curve Λ [5, 6, 26]. To do so, let us write the dynamics
(0.2) as ṡ = F (s, u), where F : R2 × R2 → R2 is given by (0.2).
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Definition 3.1. A closed set C ⊆ R2 has a semipermeable boundary for the inclusion ṡ = F (s, u) in a
neighborhood of s ∈ ∂C, if there exists a neighborhood V of s such that

∀s ∈ ∂C ∩ V, ∀p ∈ NC(s), inf
u∈U
〈F (s, u), p〉 = 0,

where NC(s) is the normal cone to C at point s.

Proposition 3.4. The curve Λ is semi-permeable for the system (0.2).

Proof. Recall that Λ = γ+(s̄, (0, 0)) ∪ γ+(s̄, (1, 1)) and that Λ ⊂ ∆+
0 ∪ {s?}. First, we consider a point

s = (s1, s2) ∈ γ+(s̄, (0, 0)). The outward normals of Λ at point s are of the form λ · n(s) with λ > 0 and

n(s) =

(
µ(s2)(sin − s2)
−µ(s1)(sin − s1)

)
.

We show that inf(u1,u2)∈U 〈F (s, (u1, u2)), n(s)〉 = 0. It is clear that 〈F (s, (0, 0)), n(s)〉 = 0, so we have to show
that 〈F (s, (u1, u2)), n(s)〉 ≥ 0, for all (u1, u2) ∈ U . Let (u1, u2) ∈ U . One has:

〈F (s, (u1, u2)), n(s)〉 = (sin − s1)[u1µ(s2)(sin − s2)− u2µ(s1)(s1 − s2)].

As (s1, s2) ∈ ∆+
0 ∪∆0, we have µ(s2)(sin−s2) ≥ µ(s1)(s1−s2), implying that u1µ(s2)(sin−s2) ≥ u2µ(s1)(s1−

s2), that is, 〈F (s, (u1, u2)), n(s)〉 ≥ 0 as wanted.
Suppose now that s ∈ γ+(s̄, (0, 0)). Then, the outward normals of Λ at point s are of the form λ · n(s)

with λ > 0 and

n(s) =

(
−µ(s2)(sin − s2) + (s1 − s2)

(µ(s1)− 1)(sin − s1)

)
.

Notice that we have 〈F (s, (1, 1)), n(c(t))〉 = 0. Let us now take (u1, u2) ∈ U . One has:

〈F (s, (u1, u2)), n(s)〉 = (sin − s1)[(1− u1)(µ(s2)(sin − s2)− µ(s1)(s1 − s2)) + (u1 − u2)(s1 − s2)(1− µ(s1))].

Now, as (s1, s2) ∈ ∆+
0 ∪ ∆0, we have µ(s1)(s1 − s2) ≤ µ(s2)(sin − s2). Using that u2 ≤ u1 together with

µ(s1) < 1, we obtain
〈F (s, (u1, u2)), n(s)〉 ≥ 0,

which concludes the proof.

This property will lead to consider two cases for s̄, either s̄ is above or below Λ. Let u define a subset
A ⊂ D as the epigraph of q in D:

A := {s = (s1, s2) ∈ D\{(0, 0), (sin, sin)} | s2 ≥ q(s1) and s2 < s1}.

Proposition 3.3 implies the following result.

Corollary 3.1. If s̄ ∈ IntA then C(s̄) ⊂ ∆+
0 ; if s̄ ∈ Λ then s? ∈ ∂C(s̄); and if s̄ /∈ A, then s? ∈ C(s̄).

We now provide an optimal control in the two cases of the previous corollary.

3.1 Study of s̄ ∈ D\A
In this part, we show that the optimal strategy outside C(s̄) is singular (see [2, 24, 14]). Roughly speaking, the
optimal strategy consists in choosing the control that steers the system to the singular arc in minimal time. If
the singular arc is reached, then optimal trajectories are singular until reaching ∂C(s̄). Let s ∈ D\C(s). The
singular arc strategy (SAS) is defined by:

u1[s] = u2[s] =

∣∣∣∣∣∣
1 s ∈ ∆−SA,

us[s] s ∈ ∆SA,
0 s ∈ ∆+

SA.
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where us[·] is a singular control such that the solution of (0.2) with u = us belongs to ∆SA. The control us[·]
can be computed in feedback form:

us = −〈λ, [f, [f, g]]〉
〈λ, [g, [f, g]]〉

,

where the adjoint vector is given by λ(·) = − −g(s)⊥
get(f(s),g(s)) , see e.g. [4, 12]. Let us recall the definition of

turnpike and anti-turnpike (see [4] p.45) adapted to our setting.

Definition 3.2. A turnpike (resp. anti-turnpike) is a singular arc S that satisfies:
(i) For every s ∈ S, the vectors f(s) + g(s) and f(s) are not tangent to ∆SA and point to opposite sides of
∆SA.
(ii) For every s ∈ S, we have det(g(s), [f, g](s)) = 0 and det(f(s), g(s)) 6= 0.

(iii) The mapping s 7−→ θ(s) := −det(g(s),[f,g](s))
det(f(s),g(s)) satisfies θ > 0 (resp. θ < 0) on ∆+

SA and θ < 0 (resp. θ > 0)

on ∆−SA.

From hypothesis (H3), we know that ∆SA can be written:

∆SA = ∆1
SA ∪∆2

SA ∪ {s?},

where ∆i
SA, i = 1, 2 is either a turnpike or an anti-turnpike and ∆1

SA ⊂ ∆−0 and ∆2
SA ⊂ ∆+

0 . Next, we assume
that the singular arc is controllable.

(H4) The singular arc is controllable i.e. us ∈ [0, 1].

We can now prove the following property on the singular arc.

Lemma 3.4. The set ∆1
SA (resp. ∆2

SA) is a turnpike (resp. anti-turnpike).

Proof. First, notice by letting s1, s2 → sin that the point (sin, sin) belongs to the closure of ∆SA in E. Now,
for s ∈ ∆SA with s1 6= s2, one can write:

sin − s2

sin − s1
=

1

µ′(s2)

[
−
∫ 1

0

µ′(s2 + r(s1 − s2))dr + µ′(s1)

]
.

This shows that the limit of sin−s2
sin−s1 is finite whenever s goes to (sin, sin). Moreover, Proposition 3.2 implies

that ζ ′(s1)→ +∞ when s1 goes to sin. We deduce that in a neighborhood of (sin, sin), ∆SA is above ∆0.
As the singular arc is controllable, the two vectors f(s) and f(s) + g(s) for s ∈ ∆SA are pointing into

opposite directions w.r.t. ∆SA. Moreover, one can check that the point (sin, 0) belongs to ∆+
SA and that f(s)

is pointing in the direction of the point (0, 0) (both components of f are negative). As the singular arc is the
graph of an increasing function, f(s) + g(s) is pointing into ∆+

SA and f(s) into ∆−SA as was to be proved. The
result follows by verifying the sign of the function θ in ∆±SA. is pointing into ∆+

SA and f is pointing in the
direction of ∆−SA.

Equivalently, ∆SA ∩ ∆−0 is hyperbolic or time-minimizing and ∆SA ∩ ∆+
0 is elliptic or time-maximizing

(see [12]).

Theorem 3.1. The optimal strategy steering any point s0 ∈ D\C(s̄) to s̄ is the strategy SAS.

Proof. Let us take a point s0 ∈ ∆SA+. Assume that an optimal trajectory contains an arc u = 1 on some
time interval [t1, t2]. Then, the trajectory necessarily contains a switching point (otherwise it would not reach
the target). So, we can assume that φ2(t2) = 0, and as s0 ∈ ∆+

SA we have s(t2) ∈ ∆+
SA, and the trajectory

switches to u = 0. A simple computation shows that we have:

φ̇2 = µ′(s1)(sin − s1)φ2 + λ2
det(g(s), [f, g](s))

sin − s1
. (3.8)

Therefore, λ2 > 0 implies that φ̇2(t2) > 0. On the other hand, as we have u = 1 over [t1, t2], we have φ2 > 0
over [t1, t2), hence φ̇2(t2) ≤ 0 which gives a contradiction. Hence, the optimal trajectory necessarily satisfies
u = 0 until reaching either the singular arc or ∂C(s̄). In the same way, we can show that an optimal trajectory
starting at a point s0 ∈ ∆−SA necessarily satisfies u = 1 until reaching either the singular arc or ∂C(s̄). The
same argument as above show that it is not optimal for a trajectory to leave the singular before reaching s̄.
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As mentioned in the proof of the previous theorem, optimal trajectories may not necessarily reach the
singular arc. This can happen if ∆SA ⊂ C(s̄) (see Fig. 5, picture right). Nevertheless, the singular strategy
remains optimal. Notice that the optimal trajectory steering s0 to s̄ is unique in this case.

We conclude this part by a characterization of abnormal trajectories that are optimal.

Proposition 3.5. Consider an abnormal optimal trajectory steering a point s0 to the target s̄ ∈ D\A. Then,
s0 ∈ γ+(s, (1, 0)) ∪ γ+(s, (0, 0)) ∪ γ+(s, (1, 1)).

Proof. Consider an abnormal extremal trajectory. From (1.2), λ2 is of constant sign. From H = 0, we cannot
have λ2 ≡ 0. Assume now that λ2 < 0. From (1.3), we obtain that u2 = 0 a.e. and so λ1 is of constant sign.
From H = 0, the only possible case is λ1 > 0 which gives u1 = 1 a.e. This case leads to s0 ∈ γ+(s, (1, 0)).

Assume now that λ2 > 0. From Proposition 3.1, we obtain that u1 = u2. Clearly, the constant controls
(0, 0) and (1, 1) are possible and conduct to s0 ∈ γ+(s, (0, 0))∪γ+(s, (1, 1)). Moreover, if an abnormal optimal
trajectory has a switching point at some time t0, then we must have s(t0) ∈ ∆0. From Theorem 3.1, we see
that such a trajectory is not optimal.

3.2 Study of s̄ ∈ A
Theorem 3.2. Consider a target point s̄ ∈ A. Then, C(s̄) is not reachable from D\C(s̄).

Proof. First, let us assume that s̄ ∈ IntA and suppose that there exists a trajectory steering (0.2) from
s0 ∈ D\C(s̄) to the target. If follows that C(s̄) is reachable from s0, hence optimal trajectories starting from
the point s0 satisfy u = u1 = u2. From Proposition 3.3, we obtain that C(s̄) ⊂ ∆+

0 . An optimal trajectory
necessarily necessarily satisfies u = 0, u = 1 or u = us. As C(s̄) ⊂ ∆+

0 , the trajectory cannot reach C(s̄) with
the singular arc. Now, the trajectory necessarily has a switching point in ∆+

0 at some time t0, otherwise it
would reach s̄ with u = 0 or u = 1 which means that s0 ∈ ∂C(s0) in contradiction with the choice of s0. Using
the expression of the Hamiltonian and φ2(t0) = 0, we find that:

λ1(t0) =
s1 − s2

sin − s1

1

ρ(s1, s2)
, λ2(t0) = − 1

ρ(s1, s2)
, (3.9)

where ρ(s1, s2) = µ(s2)(sin − s2)− µ(s1)(s1 − s2). But, we have ρ > 0 in ∆+
0 , hence we obtain that λ(t2) < 0

which contradicts the fact that λ2 > 0 for initial conditions outside of C(s̄). This means that s̄ is not reachable
from s0 which ends the proof.

Now, we have to investigate the case where s̄ ∈ Λ. Let s0 ∈ D\C(s̄). If s̄ = s?, then from Lemma 3.1, we
know that C(s̄)\s? ⊂ ∆+

0 . As we cannot reach s? with the singular arc, we can proceed as in the previous
case. Assume now that s̄ ∈ γ+(s̄, (0, 0))\s?. Notice that the part of the boundary of C(s̄) defined with the
controls u1 = u2 = 0 coincides with Λ in the set ∆−SA. Lemma 3.1 implies that the part of the boundary
of C(s̄) defined with the controls u1 = u2 = 1 does not intersect ∆0. Therefore, C(s̄)\s? ⊂ ∆+

0 and we can
use the same argument as in the case s̄ = s? to show that C(s̄) cannot be reached from s0. In the case
where s̄ ∈ γ+(s̄, (1, 1))\s?, we can use a similar reasoning to show that C(s̄) cannot be reached from s0. This
concludes the proof.

The next theorem is our main result and is a rephrasing of Proposition 2.2, Theorem 3.1, Theorem 3.2.

Theorem 3.3. Let us take a target point s̄ ∈ D. Then, the we have the two following cases.
(i) If s̄ ∈ A, then s̄ is reachable from initial conditions in C(s̄) only.
(ii) If s̄ /∈ A, then s̄ is reachable from any initial conditions in D.
(iii) Moreover, the optimal synthesis is as follows:

• For s0 ∈ C(s̄), there exist infinitely many controls of the form (u1, 0) or (1, u2) steering s0 to s̄.

• For s0 ∈ D\C(s̄) (case ii only), the optimal control is given by the singular arc strategy.

In the first case of Theorem 3.3, we can write the value function as:

T (s0) :=

{
max

{∫ s1
s01

dσ
(1−µ(σ))(sin−σ) ,

∫ s2
s02

dσ
−µ(σ)(sin−σ)

}
, s ∈ C(s̄),

+∞, s ∈ D\C(s̄).
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In the second case of Theorem 3.3, we denote by T1(s0) the time to drive (0.2) from s0 to s̄ by the singular
arc strategy. We can write the value function as:

T (s0) :=

{
max

{∫ s1
s01

dσ
(1−µ(σ))(sin−σ) ,

∫ s2
s02

dσ
−µ(σ)(sin−σ)

}
, s ∈ C(s̄),

T1(s0) s ∈ D\C(s̄).

4 Numerical Simulations

4.1 Singular arc when µ is linear

In this part, we suppose that µ(s) = αs with 0 < α < 1
sin

(see (H2)). We can prove the following properties
of the singular arc.

Proposition 4.1. (i) The set ∆SA is given by

∆SA = {(s1, s2) ∈ D | s2 = 2s1 − sin}.

(ii) There exists exactly one steady-state singular point s? := ( 2sin
3 , sin3 ).

(iii) The singular control is given by us := 2α(sin − s1), and us ∈ [0, 1].
(iv) The steady-state singular point is attractive and:

ṡ1 > 0 iff s1 ∈ [
sin
2
,

2sin
3

) and ṡ1 < 0 iff s1 ∈ (
2sin

3
, sin].

(v) The adjoint vector is given by

λ1 = −λ2 = − 1

α(sin − s1)(−3s1 + 2sin)
, s1 6=

2sin
3
.

Proof. The proof of (i) and (ii) is straightforward. Notice that we have sin − s1 = s1 − s2 along the singular
arc. The expression of us follows from (0.2) using ṡ2 = 2ṡ1 which proves (iii). Now replacing us into (0.2)
gives the closed-loop system: {

ṡ1 = α(sin − s1)(2sin − 3s1),

ṡ2 = α(sin − s1)(sin − 3s2),
(4.1)

hence we obtain (iv). The proof of (v) follows by solving φ2 = 0 together with H = 0 along a singular arc.

This case is illustrated on Fig. 4. The arrows indicate that s? is attractive. The singular arc in ∆−0 (part
below the green curve ∆0) is turnpike (time minimizing) whereas the singular arc in ∆+

0 (part above ∆0) is
anti-turnpike (time maximizing). The figures 5 and 6 are an illustration of Theorem 3.3. Several examples of
optimal trajectories for initial conditions outside the set C(s̄) are depicted.

4.2 Singular arc when µ is Monod

In this part, we suppose that the growth function is of Monod type (see [27]): µm(s) = µs
k+s , where k > 0,

µ̄ > 0 and µ̄sin < 1 see (H2). The situation is quite similar to the linear case, but the expression of ∆0, ∆SA

and us are more delicate to obtain. We have used a symbolic software in order to verify the next proposition.

Proposition 4.2. (i) There exists š1 ∈ (0, sin) and a C1-mapping ξ : [š1, sin) → [0, sin) which is increasing
and such that (s1, s2) ∈ ∆SA if and only if s2 = ξ(s1), where :

ξ(s1) :=
1

2(sin − s)

[
−sins1 − k2 + ks1 − 3ksin +

√
(k + s1)2(sin + k)(5sin + k − 4s1)

]
,

and we have š1 :=
−2k−sin+k

√
4k2+8ksin+5s2in

2(sin+k) .

(ii) The function ζ : [0, sin]→ [0, sin] is given by:

ζ(s1) = − 1

2k

[
s2

1 − ks1 − ksin − sins1 +
√

(sin − s1)(ksin + sins1 − s2
1 + 3ks1)

]
, s1 ∈ (0, sin).

By using the expression of ξ and ζ, we can check numerically that there exists exactly one singular point
s?, see Fig. 4.
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Figure 4: Picture left: plot of the singular arc ∆SA (in red) and of ∆0 (in green) in the linear case: µ(s) = s.
Picture right: plot of the singular arc ∆SA (in red) and of ∆0 (in green) in the Monod case: µm(s) = s

5+s .

5 Conclusion

For this minimal time problem with a control set of a triangular shape, that is due to the constraint u2 ≤ u1,
we have shown the benefit of considering a particular subset C(s̄) of the state space, that is target dependent
and presents the following features:

• Outside this set, either the target is non reachable, or the optimal synthesis fulfills u1 = u2 with a
possible singular arc,

• in C(s̄), the extra controllability over controls u1 = u2 leads to an infinity of optimal trajectories, all of
them with u2 6= u1 (excepted on part of the boundary of the set).

Furthermore, when the the target is reachable from the exterior of C(s̄), the particular cascade structure of
the problem leads to a non intuitive feature of some of the optimal trajectories: it consists in rolling far away
from the target until reaching the set C(s̄) or a singular arc to be followed until eventually reaching C(s̄), and
then come back along the set C(s̄).

The geometric analysis has revealed the role of two particular curves p(·) and q(·), that can be easily
computed numerically and that indicate to the practioners if the target is reachable and the nature of the
optimal feedback depending on the position of the initial condition with respect to these curves.
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[11] A. Dramé, J. Harmand, C. Lobry and A. Rapaport, Multiple steady state profiles in interconnected
biological systems, Mathematical and Computer Modelling of Dynamical Systems, 12 (2006), 379–393.
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