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Optimal synthesis for a minimum time problem in the plane with a

triangle control set

Terence Bayen∗, Matthieu Sebbah†, Alain Rapaport‡

March 9, 2013

Abstract

This work is devoted to the study of a minimum time control problem where the state is governed by
a two-dimensional affine system with two inputs taking values within a triangle, and describing a series of
two interconnected chemostats. We show the existence of a subset of the invariant domain D associated to
the system such that if the target is in this set, then it can be reached by any initial condition in D. For
every target point in this subset, we provide an optimal synthesis of the problem by decomposing D into
two subsets. In the first one, we give an explicit expression of the value function, and we show that there
exist infinitely many optimal solutions whereas in the second one, we show that the optimal strategy is of
singular type.
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1 Introduction

Cascade of chemostats or bioreactors is quite popular in microbiology (called “gradostats” [17, 32, 8, 30]) or
in bioprocesses (called “serial tanks” [5]), because it is a way to create a gradient of resources (see also [7, 9]).
Such gradients are expected to be more realistic to mimic real environment for studying micro-organisms
growth [14, 6]. In the biotechnological industry, series of bioreactors are also known to be more efficient for
the resource conversion than single tanks [15, 5, 10, 22].

In order to better understand the alcoholic fermentation process, several models have been proposed, which
typically rely on the interconnection of chemostats (see e.g. [4]). The choice of the input flow rate in order
to drive the system to a desired target value (typically an equilibrium of the system) in a minimal amount
of time plays a key role in these studies, and finding an adequate feeding strategy can significally reduce the
cost of such an operation (see e.g. [1, 12, 24] for the design of optimal feedback controls laws in the setting of
fed-batch bioreactors).

The model that we consider in this work relies on the following system describing a series of two chemostats
which means that the input substrate concentration in the second reactor is exactly the substrate concentration
in the first one: 

ẋ1 = [µ(s1)− u1]x1,

ṡ1 = −µ(s1)x1 + u1(sin − s1),

ẋ2 = [µ(s2)− u2]x2,

ṡ2 = −µ(s2)x2 + u2(s1 − s2).

(1.1)
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Here, x1 (resp. x2) is the concentration of biomass in the first (resp. second) reactor, s1 (resp. s2) is the
substrate concentration in the first (resp. second) reactor, sin is the input substrate concentration in the first
reactor, u1 and u2 are the dilution rates in the two reactors, and µ is the growth function describing how the
species grows on the substrate (typically of Monod type, see [23, 31]). As both chemostats are in series, the
dilution rate of the second reactor is less than the first one, which means that both controls u1 and u2 take
values within the set:

U := {v = (v1, v2) ∈ R2 | 0 ≤ v2 ≤ v1 ≤ umax}, (1.2)

where umax is the maximal dilution rate. It is well known that the set V := {(x, s) ∈ R∗+ ×R∗+ | x+ s = sin}
is invariant and attractive for the sub-system (x1, s1) of (1.1), see [31]. Also, for practical operations, it is
interesting to drive (1.1) from an equilibrium point (defined by the choice of a constant control) to another
one in a minimal amount of time. So, in this work we assume that initial conditions for the substrate s1 and
s2 are in V, which implies x1 + s1 = x2 + s2 = sin. It follows that (1.1) can be put into a two-dimensional
affine system with two inputs: {

ṡ1 = −µ(s1)(sin − s1) + u1(sin − s1),

ṡ2 = −µ(s2)(sin − s2) + u2(s1 − s2).
(1.3)

Initial conditions for (1.3) are taken in the set D defined by:

D := {(s1, s2) ∈ R2
+ | 0 ≤ s1 ≤ s2 ≤ sin}, (1.4)

and from (1.2), we define the admissible control set U by:

U := {u = (u1, u2) : [0,∞)→ U | meas.}. (1.5)

The optimal control problem that we consider reads as follows. Our aim is to find an optimal feedback control
law u ∈ U steering (1.3) from a given initial condition s0 = (s0

1, s
0
2) ∈ D to a fixed target point s = (s1, s2) ∈ D

in a minimal amount of time:
inf
u∈U

tf (u) s.t. s(tf (u)) = s, (1.6)

where s(·) is the unique solution of (1.3) with control u ∈ U , and tf (u) ∈ [0,+∞) is the time to steer the
solution of s(·) to the target s.

From the constraint (1.2), we understand the difficulty of the controllability of (1.3). A consequence of
(1.2) is that the switching functions associated to u1 and u2 provided by Pontryagin maximum principle are
non independent. In particular, we can show that singular arcs occur only if the switching function associated
to u2 is vanishing implying u1 = u2. Also, one can see that (1.2) implies that there are some points s0 ∈ D
which are non-locally controllable for any time t > 0 in the sense given by [29].

Before investigating the minimum time problem, we prove the existence of a subset ∆−0 ⊂ D such that if
the target is in ∆−0 , then it can be reached by any initial condition in D. For the minimum time problem
where the state is governed by a two-dimensional system with a single input u:

ṡ = f(s) + ug(s), |u| ≤ 1, (1.7)

with f, g : R2 → R2, the following assumptions are often required in order to ensure the local controllability
of the target point (see e.g. [3, 20]) :

• (i) the target point satisfies f(s) = 0, and the matrix [g(s), Df(s)g(s)] is of full rank.

• (ii) the target point satisfies f(s) 6= 0 and there exist u such that f(s) + ug(s) = 0 and |u| ≤ 1.

In our setting, we define exactly ∆−0 as the set of points satisfying det(f(s), g(s)) < 0 (whenever (1.3) is put
into (1.7) with u1 = u2), and we prove that this condition implies an analogous condition as condition (ii)
mentioned above (see section 2).

Now, given a target point in ∆−0 , we first solve (1.6) for initial conditions which are above the two tra-
jectories satisfying (1.3) backward in time with u = (0, 0) and u = (1, 1), and starting from s. We provide
in this case an explicit expression of the value function of the optimal control problem. In this case, there
exist infinitely many optimal trajectories connecting a point to the target. For initial conditions below the
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two curves mentioned above, we first show that an optimal control necessarily satisfies u1 = u2. However
finding an issue to the minimal time problem in this case is more delicate. Indeed, we can show the existence
of attractive singular steady-state points (see [3]) which are exactly the points at the intersection of a singular
arc and the set of points where f and g are collinear. In the case of an attractive singular steady-state point,
a singular arc cannot reach this point in finite time.

We provide in this setting a complete description of optimal trajectories under the additional assumption
that this point is in the domain above the two curves mentioned above. We then prove that a singular arc
strategy (which roughly speaking consists in the most rapid approach to the singular arc) is optimal (see e.g.
[24, 12]).

The paper is organized as follows. In section 2, we review controllability properties of (1.3) that will be
useful in order to provide an optimal synthesis of the problem, and we define the set ∆−0 . In section 3, we
prove an optimality result in a sub-domain of D, and in section 4 we provide an optimal feedback control on
the complementary in D of this set.

2 Controllability properties

In this section, we introduce a set C(s) ⊂ D, depending on the target point s ∈ int D, such that s is reachable
from any initial condition in C(s). Moreover, we show the existence of a subset of D, ∆−0 , such that if the
target is in this set, then it is reachable form any initial condition in D.

2.1 Invariance of D
Without any loss of generality, we may assume that umax = 1. We will also suppose that the growth function
µ : [0,+∞[→ R satisfies the following hypotheses:

(H1) µ(·) is of class C2 on [0,+∞[,

(H2) µ(s) < 1, for all s ∈ [0, sin[ and µ(0) = 0,

(H3) µ(·) is increasing on [0, sin].

These assumptions are satisfied by the Monod growth function (see [23]).

Remark 2.1. The second assumption means that the maximum dilution rate is large enough in order to
compete the growth of the species on the substrate. It is essential for studying the controllability of (1.3).

By (H1), one has that (1.3) satisfies the standard hypotheses of the Cauchy-Lipschitz Theorem for the
existence and uniqueness of solutions of (1.3). Given an initial condition s0 = (s0

1, s
0
2) ∈ D and a control

u ∈ U , we define s(·, s0, u) as the unique solution of (1.3) defined on a maximal time interval [0, tf ), tf > 0,
associated to the control u and with initial condition s0 at time 0. For t ≥ 0, we also denote by s(−t, s0, u)
(with slight abuse of notation in view of the definition of t 7−→ s(t, s0, u) for t ≥ 0) the unique solution of the
system: {

ṡ1 = µ(s1)(sin − s1)− u1(sin − s1),

ṡ2 = µ(s2)(sin − s2)− u2(s1 − s2),
(2.1)

defined on a maximal time interval [0, tf ), tf > 0 associated to the control u and with initial condition s0

at time 0. When there is no ambiguity on the control, we also write t 7−→ s̃(t) in place of s(−t, s0, u).
Equivalently, t 7−→ s̃(t) is the solution of (1.3) backward in time with control u and starting at time 0 with
initial condition s0. The next lemma is a simple consequence of Gronwall’s Lemma.

Lemma 2.1. The set D is invariant by system (1.3).

Proof. Let s0 = (s0
1, s

0
2) ∈ D, u ∈ U and (s1(·), s2(·)) := s(·, s0, u). Let tf > 0 the maximal time where s is

defined. First notice that the point (sin, sin) is an equilibrium of (1.3). Therefore by uniqueness of the solution
and by the inequality s0

1 ≤ sin, one has that s1(t) ≤ sin, for all t ∈ [0, tf ). Let us show that s2(t) ≤ s1(t) for
all t ∈ [0, tf ). Set z := s1 − s2. Whenever z = 0, we have:

ż = u1(sin − s1) ≥ 0, (2.2)
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Thus, as s2(0) ≤ s1(0), one obtains that s2(t) ≤ s1(t) for all t ∈ [0, tf ). Also, when s1 = 0 one has:

ṡ1 = u1sin ≥ 0, (2.3)

so, as s1(0) ≥ 0, one has s1(t) ≥ 0 for all t. Finally, we have s2(t) ≥ 0 for all t ∈ [0, tf ). Indeed, when s2 = 0,
we get:

ṡ2 = u2s1 ≥ 0, (2.4)

as s1 ≥ 0. Therefore, as s2(0) ≥ 0, one has s2(t) ≥ 0 for all t ∈ [0, tf ). This shows that solutions of (1.3)
starting at time 0 in D are defined on [0,+∞), and that s(t, s0, u) ∈ D for all t ≥ 0. This concludes the
proof.

Remark 2.2. Given s0 ∈ D such that s is reachable from s0, we can prove the existence of an optimal control
for (1.6) as follows. In view of the regularity of the dynamics (see (H2)) and using that (1.3) is affine with
respect to u and that U is compact, we are in position to apply Fillipov’s Theorem (see e.g. [20]).

2.2 Definition of C(s)
Given a parametrized continuous curve p = (p1, p2) : [0, tf ) → D defined on some time interval [0, tf ), we
denote by p≥ its epigraph:

p≥ := {(s1, s2) ∈ D | ∃ t ∈ [0, tf ) s.t. s1 = p1(t) and s2 ≥ p2(t)}.

In what follows, we set up a parametrized curve with increasing first component. First, we study the solution
of (1.3) backward in time with u1 = u2 = 1 (see Fig. 1).

Lemma 2.2. Let s = (s1, s2) ∈ int D, fix the control u := (1, 1), and let tf > 0 the maximal time interval
where s̃ (with u1 = u2 = 1) is defined. Then, the set

{t ∈ (0, tf ) | (s̃1(t), s̃2(t)) /∈ D}, (2.5)

is non-empty and if t̃ is the exit time of D defined by

t̃ := inf{t ∈ (0, tf ) | (s̃1(t), s̃2(t)) /∈ D}, (2.6)

then, we have either s̃2(t̃) = 0 or s̃1(t̃) = s̃2(t̃). Moreover, s̃1(·) is decreasing on [0, t̃].

Proof. We first show that s̃1(·) is decreasing on [0, tf [. As sin is an equilibrium of ˙̃s1 = (µ(s̃1)− 1)(sin − s̃1),
together with s1 < sin, one obtains that s̃1(t) < sin for all t ∈ [0, tf [. Therefore by Hypothesis (H2), one has
˙̃s1(t) < 0 for almost every t ∈ [0, tf [ implying that s̃1(·) is decreasing on [0, tf [. If there exists t such that
s̃2(t) = s̃1(t), the result is proved. So, we assume that s̃2(t) < s̃1(t) for all t ∈ [0, tf [. Suppose that s̃2(t) ≥ 0
for all t ∈ [0, tf ). It follows that s̃1 is lower bounder and decreasing, so it converges to some s̃∞1 when t tends
to tf . We necessarily have s̃∞1 = sin (the only equilibrium with u = (1, 1)) which is a contradiction. Thus, if
t̃ is defined by (2.6), we obtain by continuity of (s̃1(·), s̃2(·)) that (s̃1(t̃), s̃2(t̃)) ∈ ∂D which implies the result
as s̃1(t̃) = sin is impossible by monotonicity of s̃1(·).

We now study the solution of (1.3) backward in time with u1 = u2 = 0 (see Fig. 1).

Proposition 2.1. Let s = (s1, s2) ∈ int D and fix the control u = (0, 0). Then, s̃ (with u1 = u2 = 0) satisfies:
(i) The function s̃ is defined over [0,+∞), moreover s̃i(·) is increasing on [0,+∞[, i ∈ {1, 2} and:

lim
t→+∞

s̃(t) = (sin, sin). (2.7)

(ii) When t goes to infinity, the ratio sin−s̃2
sin−s̃1 converges to a finite value.

(iii) If γ : s 7−→ µ(s)(sin − s) is concave over [0, sin], then there exists a convex function σ1 7−→ σ2 = h(σ1)
defined over [0, sin), of class C2, and such that σ2 = h(σ1) if and only if there exists t ≥ 0 such that
(σ1, σ2) = (s̃1(t), s̃2(t)).
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Proof. We remark that s̃1(·) and s̃2(·) are both solutions of:

σ̇ = µ(σ)(sin − σ). (2.8)

Moreover, as 0 and sin are the only equilibria of (2.8), and as (s1, s2) ∈ int D implies the inequality 0 < s2 <
s1 < sin, we obtain that for each i ∈ {1, 2}, s̃i(·) is defined over [0,+∞[ and that

0 < s̃2(t) < s̃1(t) < sin, ∀t ∈ [0,+∞[. (2.9)

On the other hand, (2.9) together with (2.8) implies that s̃i(·) is increasing on [0,+∞[ and upper-bounded.
Therefore s̃i(·) converges to some s̃∞i when t tends to +∞, and we have s̃∞i = sin by monotonicity of s̃i(·).

To prove (ii), notice from (2.8) that s̃1 and s̃2 satisfy the equality:∫ s̃1

s̃2

dσ

µ(σ)(sin − σ)
=

∫ s1

s2

dσ

µ(σ)(sin − σ)
.

Let C > 0 denotes the right member of the previous display. Now, we can write:

C =

∫ s̃1

s̃2

dσ

µ(σ)(sin − σ)
=

∫ sin−s̃2

sin−s̃1

dσ

µ(sin − σ)σ

=

∫ sin−s̃2

sin−s̃1

dσ

σµ(sin)
+

∫ sin−s̃2

sin−s̃1

[
1

µ(sin − σ)σ
− 1

σµ(sin)

]
dσ (2.10)

=
1

µ(sin)
ln

(
sin − s̃2

sin − s̃1

)
+ I(s̃1, s̃2),

where I(s̃1, s̃2) is the second integral of (2.10). Using that sin− s̃1 and sin− s̃2 are bounded, we deduce from
Taylor inequality that I(s̃1, s̃2) is bounded on the time interval [0,+∞). It follows that the ratio z := sin−s̃2

sin−s̃1
is bounded on this interval. Finally, notice that

ż = z[µ(s̃1)− µ(s̃2)],

so that z is bounded and strictly increasing. Hence, it converges to a finite value as was to be proved.
To prove (iii), notice from (i) and hypothesis (H1) that t 7−→ s̃1(t) defines a diffeomorphism of class C2

from [0,+∞) into [s1, sin). By composition, it follows that the mapping σ1 ∈ [s1, sin) 7−→ σ2 where σ2 = s̃2(t)
is the graph of a function h of class C2. Moreover, we have:

h′(σ1) =
dσ2

dσ1
=
γ(s̃2)

γ(s̃1)
,

which by derivating with respect to s̃1 gives:

h′′(σ1) =
d2σ2

dσ2
1

=
γ(s̃2)

γ(s̃1)2
[γ′(s̃2)− γ′(s̃1)] =

γ(s̃2)

γ(s̃1)2
γ′′(θs̃1,s̃2)(s̃2 − s̃1) ≥ 0,

where θs̃1,s̃2 ∈ [s̃2, s̃1], and the inequality above is a consequence of the concavity of γ, and the invariance of
D.

The next corollary follows directly from Lemma 2.2 and Proposition 2.1, and we will omit its proof.

Corollary 2.1. Let s ∈ int D and fix the control u = (1, 1). Let t̃ be given as in Lemma 2.2.
(i) If s̃1(t̃) = s̃2(t̃), we define a parametrized curve p as follows:

p : [−t̃,+∞[ → D

t 7→

{
s(t, s, (1, 1)), if t ∈ [−t̃, 0[,

s(−t, s, (0, 0)), if t ∈ [0,∞[.

(2.11)

(ii) If s̃2(t̃) = 0,we define a parametrized curve p as follows:

p : [−(t̃+ s1(t̃),+∞[ → D

t 7→


(t+ (t̃+ s1(t̃)), 0), if t ∈ [−(t̃+ s̃1(t̃),−t̃[,
s(t, s, (1, 1)), if t ∈ [−t̃, 0[,

s(−t, s, (0, 0)), if t ∈ [0,∞[.

(2.12)

Then, in both cases (i) and (ii), p(·) has its first component increasing.
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We are now in position to define the subset C(s) mentioned above (see Fig. 1).

Definition 2.1. If s ∈ int D and p(·) is given by Corollary 2.1, then we set C(s) := p≥.

C s(  )

1s

s2

1s

s2

D

1s

s2

C s(  )

s2

1s

D

Figure 1: Plot of the set C(s) according to Definition 2.1. The boundary of C(s) is described by Lemma 2.2
and Proposition 2.1. Picture left : the backward curve starting at s = (1, 0.3) with u1 = u2 = 1 intersects the
axis x2 = 0, see Lemma 2.2. Picture right: the backward curve starting at s = (0.9, 0.32) with u1 = u2 = 1
intersects the first bisectrix.

2.3 Controllability in C(s)
In this subsection we show that the target point s can be reached by any initial condition in C(s) by a control
either with the first component constant equal to 1 or with the second one constant equal to zero. To do so,
we will show that C(s) is equal to the set of backward time solutions starting from s and either with control
first component equal to one or second component equal to zero.

First, recall that the system (1.3) is said locally controllable in time T at s0 ∈ D if and only if for every
neighborhood V of s0, there exists a neighborhood W of s0 such that for any pair (y, z) ∈W , there exists an
admissible control u steering y to z inside V in time T (see e.g. [29]).

We introduce the following admissible control set:

V := {v : [0,+∞)→ [0, 1] | v meas.}.

Now, for v ∈ V, s ∈ D, we call tu1 (resp. t′u2
) the exit time of D of the trajectory t 7−→ s(−t, s, (u1, 0)) (resp.

t 7−→ s(−t, s, (1, u2))). We define the set S(s) by:

S(s) :=

 ⋃
u1(·)∈V,t∈[0,tu1 )

s(−t, s, (u1, 0))

 ⋃  ⋃
u2∈V,t∈[0,t′u2

)

s(−t, s, (1, u2))

 . (2.13)

The next result show that C(s) = S(s) and is fundamental in order to prove the optimality result in C(s).

Proposition 2.2. Let s = (s1, s2) ∈ int D. Then we have C(s) = S(s).

Proof. Let us first prove that C(s) ⊂ S(s). Take s0 ∈ C(s), and consider the trajectory (s1(·), s2(·)) :=
s(·, s0, (1, 0)). If there exists t0 ≥ 0 such that s(t0) = s, then we have s0 = s(−t0, s, (1, 0)) ∈ S(s) as was
to be proved. Now, we suppose that for any t ≥ 0, we have s(t) 6= s so that there exists t0 > 0 such that
s(t0) ∈ ∂D. Combining the inequality 0 < s2(0) < s1(0) and the fact that s2 is decreasing, we necessarily
have two cases: either the trajectory (s1(·), s2(·)) intersects at time t0 the curve t 7−→ s(−t, s, (1, 1)) (case a),
either it intersects at time t0 the curve t 7−→ s(−t, s, (0, 0)) (case b).
Case a. Let t1 > 0 be such that s = s(t1, s(t0), (1, 1)). Then, let us define a control u : [0, t0 + t1] → U by
u = (1, 1) on [0, t1] and u = (1, 0) on [t1 + t0]. By construction, we have s(−t1 − t0, s, u) = s0, and u is of the
form u = (1, u2) with u2 ∈ V, and the result follows.
Case b. Let t′1 > 0 be such that s = s(t′1, s(t0), (0, 0)). Then, let us define a control ũ : [0, t0 + t′1] → U by
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ũ = (0, 0) on [0, t′1] and ũ = (1, 0) on [t′1 + t0]. By construction, we have s(−t′1 − t0, s, ũ) = s0, and ũ is of the
form ũ = (u1, 0) with u1 ∈ V, and the result follows.

Let us now prove that S(s) ⊂ C(s).
Take s0 ∈ S(s), and assume first that s0 = s(−t0, s, (1, u2)) with u2 ∈ V and t0 ∈ [0, t′u2

). For t ∈ [0, t′u2
),

set s̃(t) := s(−t, s, (1, u2)), and ŝ(t) := s(−t, s, (1, 1)). Similarly as in the proof of Lemma 2.1, one can prove
that s̃1(t) = ŝ1(t) and s̃2(t) ≥ ŝ2(t) for all t ∈ [0, t′u2

).
Case a. If the boundary of C(s) is given by (2.11), then we necessarily have s̃1(t′u2

) = s̃2(t′u2
). Now, we have

s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ ŝ2(t0), ŝ(t0) ∈ ∂C(s), and as t0 ≤ t′u2
, we get that s̃(t0) ∈ C(s).

Case b. Assume that the boundary of C(s) is given by (2.12). If we have s̃1(t′u2
) = s̃2(t′u2

), we con-
clude by case a. Now, assume that s̃2(t′u2

) = 0. Then, we have s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ max(0, ŝ2(t0)),
(ŝ1(t0),max(0, ŝ2(t0))) ∈ ∂C(s) so that t0 ≤ t′u2

implies s̃(t0) ∈ C(s).
Suppose now that s0 = s(−t0, s, (u1, 0)) with u1 ∈ V and t0 ∈ [0, tu1

). For t ∈ [0, tu1
), set s̃(t) :=

s(−t, s, (u1, 0)), š(t) := s(−t, s, (0, 0)), and ŝ(t) := s(−t, s, (1, 0)) Similarly as in the previous case, we obtain:

s̃2(t) = š2(t) = ŝ2(t), and ŝ1(t) ≤ s̃1(t) ≤ š1(t), ∀t ∈ [0, tu1
). (2.14)

Notice that s2 > 0 so that at the exit time tu1
, we necessarily have s̃2(tu1

) = s̃1(tu1
). Moreover, combining the

fact that (š1(t0), š2(t0)) ∈ ∂C(s) and that (ŝ1(t), ŝ2(t)) ∈ C(s) for all t ∈ [0, tu1
), we obtain that s̃(t0) ∈ C(s)

as was to be proved.

2.4 Controllability outside of C(s)
For future reference, we define f, g : R2

+ → R2 by

f(s) :=

(
−µ(s1)(sin − s1)
−µ(s2)(sin − s2)

)
, g(s) :=

(
sin − s1

s1 − s2

)
, s = (s1, s2).

Also, let γ(s) := µ(s)(sin − s). Now, let ∆0 ⊂ IntD the set of points where f and g are collinear :

∆0 : = {(s1, s2) ∈ IntD | det(f(s), g(s)) = 0} (2.15)

= {(s1, s2) ∈ IntD | µ(s1)(s1 − s2)− µ(s2)(sin − s2) = 0}.

and we define ∆+
0 (resp. ∆−0 ) as the set points of D such that det(f(s), g(s)) > 0 (resp. det(f(s), g(s)) < 0).

We now discuss the controllability problem for initial condition outside of C(s). From what we saw in the
previous subsection, given a initial condition s0 ∈ D \ C(s), one way to reach s is to reach the set C(s).
Obviously, this relaxed problem highly depends on s. Hereafter, we introduce the vector ez = (0, 0, 1) ∈ R3

and orthogonal to the plane (s1, s2).

Lemma 2.3. The set ∆0 satisfies the following properties.
(i) For any s ∈ D, we have ((f + g)(s) ∧ f(s)) · ez ≥ 0 ⇐⇒ s ∈ ∆−0 .
(ii) There exist a continuous mapping s1 ∈ [0, sin] 7−→ ζ(s1) such that ∆0 coincides with the graph of ζ.
Moreover, we have ζ(0) = 0, ζ(sin) = sin, and ζ is increasing on (0, sin).

Proof. The proof of (i) follows from a direct computation. To prove (ii), let us consider the C1-mapping
ρ : (s1, s2) ∈ D 7−→ ρ(s1, s2) := −µ(s1)(s1 − s2) + µ(s2)(sin − s2) so that ρ(s1, s2) = 0 iff s ∈ ∆0. For
(s1, s2) ∈ D\{(0, 0), (sin, sin)}, we have ∂ρ

∂s2
(s1, s2) = µ(s1) − µ(s2) + µ′(s2)(sin − s2) > 0. Hence, we are in

position to apply the implicit function Theorem to ρ. For any s0
1 ∈ (0, sin), there exists a neighborhood W of

s0
1, a function ζ :W → R of class C1 such that s1 ∈ W, (s1, s2) ∈ D together with ρ(s1, s2) = 0 if and only if
s2 = ζ(s1). For s1 ∈ W, the derivative of ζ is given by:

ζ ′(s1) =
ds2

ds1
=

µ′(s1)(s1 − s2) + µ(s1)

µ(s1)− µ(s2) + µ′(s2)(sin − s2)
> 0. (2.16)

This proves that ζ is increasing over (0, sin). Moreover, as µ(s1) − µ(s2) + µ′(s2)(sin − s2) can be zero only
if s1 = 0 or s1 = sin, this proves that ζ is defined over (0, sin) and that s1 7−→ s2 = ζ(s1) satisfies (2.16) over
(0, sin). By letting ζ(0) = 0 and ζ(sin) = sin, we can extend ζ continuously on [0, sin].
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Condition (i) of Lemma 2.3 is important for the controllability of (1.3). From a geometrical point of view,
given a point s0 below ∆0 (resp. above ∆0), this condition means that locally it is possible to increase (resp.
decrease) s2 by taking a control u = 1 and u = 0.

Proposition 2.3. Let s(·) = (s1(·), s2(·)) := s(·, (0, 0), (1, 1)). Then, the following properties are satisfied:
(i) The trajectory s(·) is defined over [0,+∞[ and si(·) is increasing on [0,+∞[ for each i ∈ {1, 2}.
(ii) When t goes to infinity, we have:

lim
t→+∞

s(t) = (sin, sin), lim
t→+∞

sin − s2(t)

sin − s1(t)
= +∞. (2.17)

Proof. Let [0, tf ) be the maximal time interval where s is defined. As s1(0) < sin, one has s1(t) < sin for all
t ∈ [0, tf [, so ṡ1 > 0 on [0, tf [, hence s1(·) is increasing on [0, tf [. Notice that at time 0, we have ṡ1(0) > 0,
ṡ2(0) = 0 and that:

s̈2 = −[µ′(s2)(sin − s2)ṡ2 − µ(s2)ṡ2] + ṡ1 − ṡ2,

hence we obtain that s̈2 > 0 whenever ṡ2 = 0 (using that ṡ1 > 0 for all time t ≥ 0), which proves that ṡ2 ≥ 0.
Consequently, as for each i ∈ {1, 2}, si(·) is upper bounded by sin, one has that si(·) is defined on [0,+∞[ and
converges to some s∞i when t tends to +∞. We necessarily have s∞i = sin by monotonicity.

Let us now define z by z := sin−s2
sin−s1 . We can check that z satisfies:

ż = −1 + z[µ(s1)− µ(s2)].

If z is bounded on [0,+∞), then we have ż(t)→ −1 when t goes to infinity which contradicts the boundedness
of z. Hence, z is unbounded on [0,+∞). Now, one can check that the linearized of (1.3) with u1 = u2 = 1
around the equilibrium (sin, sin) has a double eigenvalue λ = µ(sin)− 1 < 0 and that it is a stable improper
node with eigenvector (0, 1). So, each trajectory of the linearized system that converges to (sin, sin) is tangent
to the separatrice (1, 0). By applying Hartmann-Grobmann’s Theorem (see e.g. [25]) on (1.3) with u1 = u2 = 1
around the equilibrium (sin, sin), we conclude that z converges to infinity when t goes to infinity.

The proposition above ensures the existence of a continuous mapping F : [0, sin] → [0, sin] such that
s2 = F (s1), (s1, s2) ∈ [0, sin] × [0, sin] if and only if there exists t ≥ 0 satisfying (s1, s2) = s(t, (0, 0), (1, 1)).
From the regularity property of s(·, (0, 0), (1, 1)), we can argue that F is of class C1 over [0, sin). We call R
the graph of F and R− (resp. R+) the set of points of D below the R (resp. above R). We can prove the
following Lemma.

Lemma 2.4. There exists a neighborhood in D of (0, 0) in which we have h > F .

Proof. Recall that both curves contain the origin. Also by derivating ρ with respect to s1, we can check that
h′(0) = 0. For any pair (s1, s2) such that s2 = F (s1), we have:

F ′(s1) =
µ(s)2(sin − s2)− (s1 − s2)

(µ(s1)− 1)(sin − s1)
,

which by derivating with respect to s1 gives for s1 = s2 = 0: F ′′(0) = 1
sin

. By derivating two times ρ, we find

for s1 = s2 = 0 that h′′(0) = 2
sin

> F ′′(0). We then conclude using F ′(0) = 0.

The proof of the next proposition is illustrated in Fig. 2.

Proposition 2.4. (i) Assume that s ∈ ∆−0 . Then, for any initial condition s0 ∈ D, there exists an admissible
control u ∈ U steering s0 to s.
(ii) Assume that s ∈ ∆+

0 ∩ R−. Then, for any initial condition in s0 ∈ D, there exists an admissible control
u ∈ U steering s0 to s.

Proof. Let us prove (i). We only study the case where s0 /∈ C(s). First assume that s0 := (s0
1, s

0
2) is such that

s0
1 = s1 and s0

2 < s2. There exists a control u1 such that µ(s1) = u1 implying ṡ1 = 0. As s ∈ ∆−0 and from
Lemma 2.3, we have that for each s2 ∈ [s0

2, s2] , then s2 ∈ ∆−0 . Hence, we have:

−µ(s1)(s1 − s2) + µ(s2)(sin − s2) < 0
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It follows that by taking u2 := u1, we have ṡ2 = −µ(s2)(sin−s2)+u1(s1−s2) > 0, and the target s is reached
in finite time as s2 is not an equilibrium of ṡ2 = 0 with u2 = u1. Now, if s0

1 > s1 (resp. s0
1 > s1), we apply the

control (0, 0) (resp. (1, 1)) in order to reach s = s1 with s2 < s2, and we can apply the procedure described
above in order to reach the target in finite time.

Let us prove (ii). As s ∈ R−, there exists t0 > 0 such that the mapping t 7−→ s̃(t) := s(−t, s, (1, 1))
satisfies s̃2(t0) = 0 and s̃1(t0) > 0. Hence C(s) contains the set

E := {σ = (σ1, σ2) ∈ D | 0 ≤ σ2 ≤ σ1, σ1 ≤ s̃1(t0)}.

Let us be given s0 ∈ D\C(s), and consider the mapping t 7−→ s(t) := s(t, s0, (0, 0)). We have that both si,
i = 1, 2 are positive, decreasing and converge to zero. Hence, there exists t > 0 such that s(t) ∈ E. We
conclude from Proposition 2.2.

1s

s2

1,1

0,0

∆  >00

1s

s2

0,0

1,1R<0

∆  >00

Figure 2: Picture left : in red the curve R and in black the trajectory described in the proof of Proposition
2.4 (i) in order to reach the target s = (1, 0.3). Picture right: in red the curve R and in black the set ∆0 with
s = (1.7, 1.127). The two others curves illustrate the proof of Proposition 2.4 (ii) in order to reach the target.

Lemma 2.4 implies that ∆+
0 ∩R− is empty near the origin, nevertheless we can check numerically that this

set is non-empty for some values of s, see Fig. 2.

Remark 2.3. (i) From a practical point of view, the target point is often chosen in ∆−0 in order to guarantee
the existence of simple control laws driving any initial condition in D to the target (see the proof of Proposition
2.4 and 2).
(ii) In the case where the target s is in ∆+

0 and above R, the target can be non-locally controllable for any
time T > 0 in the sense given above. Indeed, take s0 ∈ D sufficiently close to s̄, and suppose that s0

2 < s2 and
s0

1 = s1. Then, condition ((f(s) + g(s))∧ g(s)) · ez < 0 implies that the forward solution of (1.3) starting from
s0 with either u = 0 or u = 1 cannot intersect the backward solution of (1.3) starting from s with u = 1 and
u = 0.
(iii) For brevity and practical reasons, we will not investigate the case where the target is in ∆+

0 .

3 Optimality result in C(s)
In this section, we give explicitly the value function of the minimum time problem on the set C(s) for s ∈ int D.
Our aim is to reach a given target point s = (s1, s2) ∈ int D from an initial condition s0 ∈ C(s) in a minimal
amount time. Let us introduce some notations. We will denote by U(s0) the set of control that allows to reach
s from s0, i.e.,

U(s0) := {u ∈ U | ∃ tu(s0) ∈ [0,+∞[ s.t. s(tu(s0), s0, u) = s}.

From Proposition 2.2, one has U(s0) 6= ∅, for all s0 ∈ C(s). We want to minimize the following cost function
with respect to u ∈ U :

J(s0, u) :=

{ ∫ tu(s0)

0
dt, if u ∈ U(s0),

+∞, else.
(3.1)
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For s ∈ C(s), the value function is defined by v(s) = infu∈U J(s, u), and it represents the minimal time to
reach s from s.

Proposition 3.1. For any s ∈ C(s), the value function satisfies:

v(s) = max

{∫ s1

s1

dσ

(1− µ(σ))(sin − σ)
,

∫ s2

s2

dσ

−µ(σ)(sin − σ)

}
. (3.2)

Proof. Let s0 = (s0
1, s

0
2) ∈ C(s). We know from Proposition 2.2 that there exists a control u ∈ U of the form

(1, u2) or (u1, 0) and a time tu ∈ [0,+∞[ such that

s(tu, s0, u) = s. (3.3)

First, suppose that u is of the form (1, u2) and set (s1(·), s2(·)) := s(·, s0, u). Therefore one has

ṡ1 = (1− µ(s1))(sin − s1), (3.4)

hence s1 is increasing and:
s1(t) < s1, ∀t ∈ [0, tu). (3.5)

We show that tu = v(s0). It is obvious that v(s0) ≤ tu by definition of v, so let us suppose v(s0) < tu. Thus,
there exists u∗ = (u∗1, u

∗
2) ∈ U such that s(v(s0), s0, u

∗) = s. Set (s∗1(·), s∗2(·)) = s(·, s0, u
∗). As u∗1 ≤ 1 and

s∗1(0) = s1(0) = s0
1, we obtain by (1.3):

s∗1(t) ≤ s1(t), ∀t ∈ [0,+∞). (3.6)

Therefore, combining (3.5) and (3.6), we get:

s1 = s∗1(v(s0)) ≤ s1(v(s0)) < s1, (3.7)

which is a contradiction, hence tu = v(s0). Let us now calculate tu. One has:

tu =

∫ tu

0

dt =

∫ tu

0

ṡ1(t)

(1− µ(s1(t)))(sin − s1(t))
dt =

∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
. (3.8)

Finally let us show that ∫ s2

s02

dσ

−µ(σ)(sin − σ)
≤
∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
. (3.9)

Remark that 1
−µ(s)(sin−s) < 0, for all s ∈]0, sin[. Therefore if s0

2 ≤ s2, one has
∫ s2
s02

dσ
−µ(σ)(sin−σ) ≤ 0 and the

result is obvious. Let us now suppose that s0
2 > s2 and set ϕ as the solution of the Cauchy problem:{
ϕ̇ = −µ(ϕ)(sin − ϕ),

ϕ(0) = s0
2.

Then, ϕ is decreasing and converges to zero when t tends to +∞. Thus, there exists t0 ∈ [0,+∞) such that
ϕ(t0) = s2. Therefore, one has∫ s2

s02

dσ

−µ(σ)(sin − σ)
=

∫ ϕ(t0)

ϕ(0)

dσ

−µ(σ)(sin − σ)
=

∫ t0

0

dt = t0. (3.10)

Moreover, as u2 ≥ 0 and s2(0) = ϕ(0) one has by (1.3) that ϕ(t) ≤ s2(t) for all t ∈ [0,+∞[. Consequently, as
ϕ is decreasing with ϕ(t0) = s2(tu) ≥ ϕ(tu), one has t0 ≤ tu, which by (3.8) and (3.10) gives (3.9) as wanted
and proves (3.2).

Now, we investigate the case where u is of the form (u1, 0). We set (s1(·), s2(·)) = s(·, s0, u). We have that
s2 is decreasing and therefore s0

2 > s2. Similarly as in the previous case, we can show that v(s0) = tu (using

the fact that s0
2 > s2), and that tu =

∫ s2
s02

dσ
−µ(σ)(sin−σ) . Finally, we show that:∫ s1

s01

dσ

(1− µ(σ))(sin − σ)
≤
∫ s2

s02

dσ

−µ(σ)(sin − σ)
. (3.11)
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First, if s0
1 ≥ s1, then

∫ s1
s01

dσ
(1−µ(σ))(sin−σ) ≤ 0 and (3.11) is obvious. If now s0

1 < s1, we consider ϕ as the

solution of the following Cauchy problem:{
ϕ̇ = (1− µ(ϕ))(sin − ϕ),

ϕ(0) = s0
1.

As ϕ is increasing, there exists t0 > 0 such that
∫ s1
s01

dσ
(1−µ(σ))(sin−σ) = t0 with ϕ(t0) = s1. Moreover, as ϕ satisfies

the same ODE as s1 with the constant control equal to 1 in place of u1, we obtain ϕ(t0) = s1(tu) = s1 ≤ ϕ(tu),
so that t0 ≤ tu (as ϕ is increasing). This concludes the proof.

Let t̃ is the exit time of D of the parametrized curve t 7−→ s(−t, s, (1, 0)) We define Γ ⊂ C(s) by:

Γ = {σ ∈ D | ∃t ∈ [0, t̃] σ = s(−t, s, (1, 0))}.

The previous proposition implies characterization of optimal controls in C(s) (see Fig. 3):

• If s0 ∈ C(s) is above Γ, there exist infinitely many controls of the form (u1, 0), u1 ∈ V, steering s0 to s.

• If s0 ∈ C(s) is below Γ, there exist infinitely many controls of the form (1, u2), u2 ∈ V, steering s0 to s.

1
s

s2

1,0

1,0

1,0

1,0

1,0

0,0

0,0

0,0

1,0

0,0

0,0

0,0

0,0

1,1

Figure 3: In the case where an initial condition s0 is in C(s) with s = (1, 0.3), there exist infinitely many
trajectories steering s0 to s in time v(s0), where v is given by (3.2). When s0 is below the curve Γ, the control
u1 is always equal to 1 whereas if s0 is above Γ, then the control u2 is always equal to 0.

4 Optimality result outside of C(s)
In this section, we study the minimal time problem (1.6) whenever initial conditions are not in C(s). In view
of (1.2), the target may be non-locally controllable (see Remark 2.3) for instance, if s ∈ ∆+

0 ∩ R+. In order
to overcome this difficulty, we will mainly study the case where s ∈ ∆−0 (see Proposition 2.4).

For future reference, we define a set ∆SA by:

∆SA := {(s1, s2) ∈ D | det(g(s), [f, g](s)) = 0}, (4.1)

where [f, g] denotes the Lie bracket of f and g, see e.g. [16]. Similarly, let ∆+
SA (resp. ∆−SA) the set points

of D such that det(g(s), [f, g](s)) > 0 (resp. det(g(s), [f, g](s)) < 0). In the rest of this section, we always
consider initial conditions s0 ∈ D\C(s). Recall that γ(s) := µ(s)(sin − s).

4.1 Pontryagin maximum principle

In this part, we apply Pontryagin maximum principle (PMP) in order to derive necessary optimality conditions
on problem (1.6), see [26]. The Hamiltonian H = H(s1, s2, λ0, λ1, λ2, u1, u2) associated to (1.3) is defined by:

H := −λ1µ(s1)(sin − s1)− λ2µ(s2)(sin − s2) + λ0 + λ1(sin − s1)u1 + λ2(s1 − s2)u2. (4.2)
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Pontryagin maximum principle can be stated as follows. Let u := (u1, u2) an optimal control and s := (s1, s2)
the associated trajectory. There exists tf > 0, λ0 ≤ 0 and λ : [0, tf ] → R2 satisfying the adjoint equations

λ̇ = −∂H∂s , that is:{
λ̇1 = λ1[µ′(s1)(sin − s1)− µ(s1) + u1]− λ2u2 = λ1[γ′(s1) + u1]− λ2u2,

λ̇2 = λ2[µ′(s2)(sin − s2)− µ(s2) + u2] = λ2[γ′(s2) + u2],
(4.3)

moreover, we have the maximization condition:

u(t) ∈ argmax0≤ω2≤ω1≤1H(s1(t), s2(t), λ0, λ1(t), λ2(t), ω1, ω2). (4.4)

An extremal trajectory is a sextuplet (s1(·), s2(·), λ0, λ1(·), λ2(·), u(·)) satisfying (1.3)-(4.3)-(4.4). Next, we
consider only normal extremal trajectories, that is we consider only extremal trajectories for which λ0 < 0.
Without any loss of generality, we assume that λ0 = −1. The Hamiltonian is zero along an extremal trajectory
(as tf is free), thus we obtain:

− λ1µ(s1)(sin − s1)− λ2µ(s2)(sin − s2)− 1 + λ1(sin − s1)u1 + λ2(s1 − s2)u2 = 0. (4.5)

Given the control constraints, we introduce the the two switching functions that will allow to determine an
extremal control: {

φ1 := λ1(sin − s1),

φ2 := λ1(sin − s1) + λ2(s1 − s2) = φ1 + λ2(s1 − s2).
(4.6)

We say that t0 is a switching point if for any neighborhood W of t0, the control u is non-constant in W. At a
switching point, we necessarily have φ(t0) = 0. By differentiating with respect to the time, we find:{

φ̇1 = λ1µ
′(s1)(sin − s1)2 − λ2(sin − s1)u2,

φ̇2 = λ1µ
′(s1)(sin − s1)2 + λ2[γ′(s2)(s1 − s2) + γ(s2)− γ(s1) + (u1 − u2)(sin − s1)].

(4.7)

Remark 4.1. The control constraint set E implies the particular choice of the second switching function φ2

in (4.6). Notice that both controls are not independent in (4.4), which justifies this choice.

By using (4.4), we obtain the following characterization of an extremal control.

Proposition 4.1. Let u = (u1, u2) an extremal control defined on [0, tf ]. Then, we have for a.e. t ∈ [0, tf ]:

• (i) φ1(t) > 0, φ2(t) > φ1(t) =⇒ u1(t) = u2(t) = 1 and λ2(t) > 0

• (ii) φ1(t) > 0, φ2(t) < φ1(t) =⇒ u1(t) = 1, u2(t) = 0 and λ2(t) < 0.

• (iii) φ1(t) > 0, φ2(t) = φ1(t) =⇒ u1(t) = 1, u2(t) ∈ [0, 1], and λ2 ≡ 0.

• (iv) φ1(t) = 0, φ2(t) > 0 =⇒ u1(t) = u2(t) = 1.

• (v) φ1(t) = 0, φ2(t) < 0 =⇒ u1(t) ∈ [0, 1], u2(t) = 0.

• (vi) φ1(t) < 0, φ2(t) > 0 =⇒ u1(t) = u2(t) = 1.

• (vii) φ1(t) < 0, φ2(t) = 0 =⇒ u1(t) = u2(t) ∈ [0, 1].

• (viii) φ1(t) < 0, φ2(t) < 0 =⇒ u1(t) = u2(t) = 0.

Proof. One can see that the mapping (v1, v2) 7−→ (v1 + v2, v2) is a one-to-one correspondance between the
set F := {v := (v1, v2)| v1 ≥ 0, v2 ≥ 0, v1 + v2 ≤ 1} and E. Therefore, maximizing (4.4) with respect to
ω := (ω1, ω2) ∈ E is equivalent to maximize

f(v1, v2) := v1φ1(t) + v2φ2(t)

with respect to v ∈ F for a.e. t ∈ [0, tf ].
Let us now prove (i), (ii) and (iii). If φ1(t) > 0 and φ2(t) > φ1(t), the maximum of f is achieved by taking
v2(t) = 1, thus u2(t) = 1, v1(t) = 0, and u1(t) = 1. If φ1(t) > 0 and φ2(t) < φ1(t), then the maximum of
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f is achieved by taking v1(t) = 1, hence v2(t) = 0 and u1(t) = 1, u2(t) = 0. If φ1(t) = φ2(t) > 0, then the
maximum of f is achieved by taking v1(t) + v2(t) = 1, that is u1(t) = 1, thus u2(t) ∈ [0, 1]. To conclude on
the sign of λ2(t) for (i) and (ii), notice that we have λ2(s1 − s2) = φ2 − φ1. For (iii), λ2 is zero everywhere by
Cauchy-Lipschitz Theorem (indeed one has φ1(t) = φ2(t), which together with (4.3) implies that λ2 ≡ 0).
Let us now prove (iv), (v). One cannot have φ1(t) = φ2(t) = 0 (otherwise we would have λ1(t) = λ2(t) = 0 in
contradiction with (4.5)). If φ1(t) = 0 and φ2(t) > 0, the maximum of f is achieved by taking v2(t) = 1, hence
u2(t) = 1 and u1(t) = 1. If φ1(t) = 0 and φ2(t) < 0, then the maximum of f is achieved by taking v2(t) = 0,
hence u2(t) = 0 and u1(t) = v1(t) ∈ [0, 1].
Let us now prove (vi),(vii),(viii). When φ1(t) < 0 and φ2(t) > 0, the maximum of f is achieved by taking
v2(t) = 1, thus v1(t) = 0 and u2(t) = u1(t) = 1, whereas if φ1(t) < 0 and φ2(t) < 0, the maximum of f is
achieved by taking v1(t) = v2(t) = u1(t) = u2(t) = 0. When φ1(t) < 0 and φ2(t) = 0, we get v1(t) = 0. It
follows that u1(t) = v2(t) = u2(t) ∈ [0, 1].

From (4.3), we have that λ2 is always of constant sign, or constant equal to zero. Moreover, we have
λ2 ≡ 0 only in case (iii) of the previous proposition, which implies that u1 is constant equal to 1. As s0 /∈ C(s),
Cauchy-Lipschitz Theorem implies that an extremal trajectory cannot reach the target in this case. Similarly,
if we assume that λ2 < 0 (which happens only in cases (ii) and (v) of the previous proposition), this implies
that u2 is constant equal to zero, consequently an extremal trajectory starting at s0 cannot reach the target.
It follows that we have:

s0 ∈ D\C(s) =⇒ λ2 > 0,

If we assume that φ2 is zero on some time interval [t1, t2], t1 < t2, (case (vii)), then we say that the trajectory
has a singular arc. It follows that for initial conditions s0 ∈ D\C(s), the control law provided by Proposition
4.1 can be simplified into:

• (a) φ2(t) > 0 =⇒ u(t) = (1, 1) and λ2(t) > 0,

• (b) φ2(t) = 0 =⇒ u1(t) = u2(t) ∈ [0, 1] and λ2(t) > 0 (singular arc),

• (c) φ2(t) < 0 =⇒ u1(t) = u2(t) = 0.

It follows that when the initial condition is outside of C(s), then u1 = u2. In this case, problem (1.6) can
be reduced to a minimum time control problem in the plane with a single input u := u1 = u2 (such that
u ∈ {0, 1} or u is singular from the PMP). System (1.3) becomes:

ṡ = f(s) + ug(s). (4.8)

Now, it is standard that the set of points where the control is singular coincides exactly with the set ∆SA (see
e.g. [19]). In this setting, the singular arc can be expressed by the following expressions:

det(g(s), [f, g](s)) = [sin − s1][γ′(s2)(s1 − s2) + γ(s2)− γ(s1)− µ′(s1)(sin − s1)(s1 − s2)],

= [sin − s1][(γ′(s2)− γ′(s1))(s1 − s2) + [µ(s2)− µ(s1)](sin − s2)],

= [sin − s1][[µ(s2)− µ(s1)− µ′(s1)(s1 − s2)](sin − s1) + µ′(s2)(sin − s2)(s1 − s2)], (4.9)

and thus:

∆SA(s1, s2) := {(s1, s2) ∈ D | γ′(s2)(s1 − s2) + γ(s2)− γ(s1)− µ′(s1)(sin − s1)(s1 − s2) = 0}. (4.10)

Also, the derivative of the switching function φ2 satisfies (recall that u1 = u2):

φ̇2 = µ′(s1)(sin − s1)φ2 + λ2
det(g(s), [f, g](s))

sin − s1
. (4.11)

One can check that if ρ(s1, s2) := µ(s2)(sin − s2) − µ(s1)(s1 − s2), then det(f(s), g(s)) = (sin − s1)ρ(s1, s2),
so we get:

∆0 = {(s1, s2) ∈ D | ρ(s1, s2) = 0}, (4.12)

which allows to obtain the following expression of the adjoint vector at a switching point.
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Lemma 4.1. If t0 is a switching point such that s(t0) /∈ ∆0, we have

λ1(t0) =
s1 − s2

sin − s1

1

ρ(s1, s2)
, λ2(t0) = − 1

ρ(s1, s2)
. (4.13)

Proof. The proof follows easily from solving the system given by φ(t0) = 0 and H = 0 (recall ρ(s1, s2) 6= 0).

Let us recall the clocked form argument based on Green’s Theorem in the plane (see e.g. [2, 19, 21, 13]),
which allows to compare locally the cost of two different trajectories of (1.3) with u1 = u2, connecting the
same initial point to the same target point.

Theorem 4.1. Consider two points s1, s2 ∈ D, and two trajectories T1 (of time t1) and T2 (of time t2) joining
s1 to s2, such that the trajectory T1 from s1 to s2 followed by the trajectory T2 from s2 to s1 is a positively
oriented curve Γ. Moreover, assume that T1 and T2 coincide only at the points s1 and s2. Let Ω be the open
region enclosed by Γ. If Ω ∩∆0 = ∅, then:

t1 − t2 =

∫∫
Ω

det(g(s), [f, g](s))

det(f(s), g(s))2
ds1ds2. (4.14)

We insist on the fact that this Theorem answers only locally on the minimal time problem. First notice
that whenever admissible trajectories intersect the set of points where ∆0 is zero, then (4.14) is undefined,
and this theorem cannot be applied in order to compare the cost of trajectories. Also, the sign of ∆SA is
non-necessarily constant in the domain Ω so that (4.14) may not be helpful in order to prove the optimality
of an extremal control. Whenever both sets ∆0 and ∆SA intersect each other (see the next subsection), this
affects the optimal synthesis.

The next lemma allows to exclude extremal trajectories.

Lemma 4.2. (i) Consider an extremal trajectory such that u = 1 on [0, t0] and u = 0 on [t0, t1]. If s(t0) ∈
∆+
SA, then this trajectory is not optimal.

(ii) Consider an extremal trajectory such that u = 0 on [0, t0] and u = 1 on [t0, t1]. If s(t0) ∈ ∆−SA, then this
trajectory is not optimal.

Proof. The result follows from (4.11). In the first case, we necessarily have φ̇2(t0) ≤ 0 in contradiction with
(4.11) as s(t0) ∈ ∆+

SA. The proof of (ii) is similar.

4.2 Study of singular arcs

In this part, we study singular arcs in the particular case where µ is linear and of type Monod. We call
steady-state singular point (see [3]) any point s ∈ D\{(sin, sin)} such that:

s ∈ ∆0 ∩∆SA, (4.15)

if this intersection is non-empty. These points are of particular interest in our study. In view of the condition
H = 0 along any extremal trajectory, the time to reach such a point along a singular arc is infinite provided
that the singular control is always admissible. The existence of such points can have consequences on the
optimal synthesis.

Proposition 4.2. If µ is strictly concave, then the singular arc is contained in the sub-domain of D for which
s2 > 2s1 − sin

Proof. By strict concavity of µ, we have µ(s1) < µ(s2) + µ′(s2)(s1 − s2). Using (4.9), we obtain after some
simplifications:

µ(s1)− µ(s2) < µ′(s1)(sin − s1).

By strict concavity, we also have µ′(s1)(s1 − s2) < µ(s1)− µ(s2). Combining with the previous display yields
that:

[µ(s1)− µ(s2)](s1 − s2) < µ′(s1)(sin − s1)(s1 − s2) < [µ(s1)− µ(s2)](sin − s1),

which after simplification gives the result (recall that µ is increasing).
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For convenience, we write det(g(s), [f, g](s)) = (sin − s1)ψ(s1, s2) where:

ψ(s1, s2) := [µ(s2)− µ(s1)− µ′(s1)(s1 − s2)](sin − s1) + µ′(s2)(sin − s2)(s1 − s2), (4.16)

and the zeros of ψ coincide exactly with the singular arc. The expression of a singular control can be obtained
by derivating the switching function two times with respect to t:

φ̈ = 〈λ, [f, [f, g]]〉+ u 〈λ, [g, [f, g]]〉 , (4.17)

where 〈·, ·〉 denotes the scalar product in R2, g(s)⊥ := (−g2(s), g1(s)). If a singular arc is optimal, then we
must have 〈λ, [g, [f, g]]〉 ≤ 0 by Legendre-Clebsch condition (see e.g. [27]). Moreover, if 〈λ, [g, [f, g]]〉 6= 0, then
a singular control us can be expressed by:

us = −〈λ, [f, [f, g]]〉
〈λ, [g, [f, g]]〉

, (4.18)

where λ = − −g(s)⊥
get(f(s),g(s)) . Now, we say that the singular arc is controllable provided that us ∈ [0, 1]. We now

give an expression of 〈λ, [f, [f, g]]〉 and 〈λ, [g, [f, g]]〉 taking into account (4.9) and (4.13). First, we have:

[f, h] =

(
−γ(s1)γ′′(s1)(sin − s1) + γ′(s1)[γ(s1) + γ′(s1)(sin − s1)]

−γ(s2)γ′′(s2)(s1 − s2) + γ(s1)γ′(s1) + γ′(s2)[−2γ(s1) + γ(s2) + γ′(s2)(s1 − s2)],

)
, (4.19)

[g, h] =

(
γ(s1) + γ′(s1) + γ′′(s1)(sin − s1)2

−2γ(s1) + γ(s2)− 2γ′(s1)(sin − s1) + γ′(s2)(sin − s2) + γ′′(s2)(s1 − s2)2

)
. (4.20)

It follows that:

ρ(s1, s2)(sin − s1) 〈λ, [f, [f, g]]〉 = [γ(s2)γ′′(s2)− γ(s1)γ′′(s1)](s1 − s2)(sin − s1)

+ [γ′(s1)− γ′(s2)][−2γ(s1) + γ(s2) + γ′(s2)(s1 − s2](sin − s1), (4.21)

ρ(s1, s2)(sin − s1) 〈λ, [g, [f, g]]〉 = [(sin − s1)γ′′(s1)− (s1 − s2)γ′′(s2)](s1 − s2)(sin − s1)

+ (sin − s1)[γ(s1) + 2γ′(s1)(sin − s1)− γ′(s2)(sin − s1)]. (4.22)

These expressions allow to compute us and can be verified using a symbolic software. Finally, we provide the
sign of ṡ along a singular arc.

Proposition 4.3. Assume that the singular arc (4.9) defines an increasing function with respect to s1 and
that there exists exactly one steady-state singular point s∗ 6= (sin, sin) such that whenever s ∈ ∆SA, we have
s ∈ ∆−0 (resp. s ∈ ∆+

0 ) iff s1 < s∗1 (resp. s1 > s∗1). Then, if at some point s ∈ ∆SA the singular arc is
controllable, then we have ṡ1|u=us

> 0 if s ∈ ∆−0 and ṡ1|u=us
< 0 if s ∈ ∆+

0 .

Proof. Take a point s0 ∈ ∆−0 and assume that the singular arc is controllable at s0. This means that us ∈ [0, 1,
so the vector ṡ1|u=us

belongs to the positive cone generated by f(s0) and f(s0)+g(s0). Combining the fact that
get(f(s0), f(s0) + g(s0)) > 0 and that the singular arc is the graph of an increasing function, we necessarily
have ṡ1|u=us

> 0 along ∆SA. The proof is the same for a point s0 ∈ ∆+
0 .

Remark 4.2. The assumptions above can be verified in the case where µ is either linear or of type Monod
(see the examples below and Fig. 4).

Combining Proposition 4.3 and Theorem 4.1 yields to the following property. Let s0, s
′
0 two points in

∆−0 ∩∆SA (resp. in ∆+
0 ∩∆SA). Assume that the trajectory with u = 1 and u = 0 connecting s0 to s′0 stays in

the set ∆−0 (resp. ∆+
0 ). Let t1 the time of the singular arc steering s0 to s′0, and t2 the time of the trajectory

with u = 1 and u = 0. Then, we have:

s0, s
′
0 ∈ ∆−0 ∩∆SA =⇒ t1 − t2 ≤ 0, s0, s

′
0 ∈ ∆+

0 ∩∆SA =⇒ t1 − t2 ≥ 0.

Roughly speaking, an optimal trajectory will take advantage of the singular arc below ∆0 whereas above ∆0,
it is not optimal for a trajectory to stay on a singular arc.
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4.2.1 Singular arc when µ is linear

We now consider a particular case where the growth function is given by µ(s) = αs, hence γ(s) = αs(sin− s).

Proposition 4.4. (i) The singular arc is characterized as follows:

ψ(s1, s2) = (s1 − s2)(2s1 − s2 − sin) and ∆SA = {(s1, s2) ∈ D | s2 = 2s1 − sin}.

(ii) There exists exactly one steady-state singular point s∗ := ( 2sin
3 , sin3 ).

(iii) The singular control is given by us := α(sin − s1), and us ∈ [0, 1].
(iv) Along the singular arc, we have:{

ṡ1 > 0 iff s1 ∈ [ sin2 , 2
3sin) and ṡ1 < 0 iff s1 ∈ ( 2

3sin, sin]

ṡ2 > 0 iff s1 ∈ [0, sin3 ) and ṡ2 < 0 iff s2 ∈ ( 2sin
3 , sin]

(4.23)

(v) The singular arc is controllable provided that s 6= s∗.
(vi) The adjoint vector is given by

λ1 = −λ2 = − 1

α(sin − s1)(−3s1 + 2sin)
, s1 6=

2sin
3
.

Proof. The proof of (i) and (ii) is straightforward. Notice that we have sin − s1 = s1 − s2 along the singular
arc. The expression of us follows from (1.3) using ṡ2 = 2ṡ1 which proves (iii). Now replacing us into (1.3)
gives the closed-loop system: {

ṡ1 = α(sin − s1)(2sin − 3s1),

ṡ2 = α(sin − s1)(sin − 3s2).
(4.24)

This proves (iv) and (v) follows from the fact that at s∗ we have both vector fields f and g are parallel to
(sin − s1, s1 − s2) which is not collinear to the singular arc. The proof of (vi) follows from (4.13)

Notice that a singular trajectory cannot cross s∗ which is an equilibrium of (4.24). In other words, a
singular extremal trajectory cannot reach s∗ in finite time. The time of a singular extremal trajectory from a
substrate concentration s0

1 will converge to +∞ whenever s goes to s∗. This case is illustrated on Fig. 4.

4.2.2 Singular arc when µ is Monod

We now consider a particular case where the growth function is given by µ(s) = µs
k+s . The situation is quite

similar to the linear case, but the expression of ∆0, ∆SA and us are more delicate, and we have used a symbolic
software in order to verify the next proposition.

Proposition 4.5. (i) There exists š1 ∈ (0, sin) and a C1-mapping FAS : [š1, sin)→ [0, sin) which is increasing
and such that (s1, s2) ∈ D satisfies ψ(s1, s2) ≥ 0 if and only if s2 ≥ FAS(s1), where :

FAS(s1) :=
1

2(sin − s)

[
−sins1 − k2 + ks1 − 3ksin +

√
(k + s1)2(sin + k)(5sin + k − 4s1)

]
, (4.25)

and we have:

š1 :=
−2k − sin + k

√
4k2 + 8ksin + 5s2

in

2(sin + k)
.

(ii) There exists a continuous function F0 : [0, sin] → [0, sin] such that (s1, s2) ∈ ∆+
0 iff s2 ≥ F0(s1), and we

have:

F0(s1) = − 1

2k

[
s2

1 − ks1 − ksin − sins1 +
√

(sin − s1)(ksin + sins1 − s2
1 + 3ks1)

]
, s1 ∈ (0, sin). (4.26)

For particular values of the parameters, we can check that there exists exactly one singular point s∗ such
that g(s∗1) = h(s∗1). Moreover, if us is admissible, we have that ṡ1 > 0 (resp. ṡ2 < 0) iff s1 < s∗1 (resp. s1 > s∗1),
and ṡ2 > 0 (resp. ṡ2 < 0) iff s2 < s∗2 (resp. s2 > s∗2), see Proposition 4.3 and Fig. 4.
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Figure 4: Picture left: plot of the singular arc ∆SA (in red) and of ∆0 (in green) in the linear case: µ(s) = s,
sin = 10. Picture right: plot of the singular arc ∆SA (in red) and of ∆0 (in green) in the Monod case:
µ(s) = s

5+s , sin = 10.

4.3 Optimal synthesis for a target in ∆−0 ∪ (∆+
0 ∩R−)

Recall that we have the following partition of D:

D = ∆−SA ∪∆SA ∪∆+
SA.

Also, one has s ∈ ∆−SA (resp. s ∈ ∆+
SA) if and only if s2 > FAS(s1) (resp. s2 < FAS(s1)). Next we assume

that the singular arc meets the set of non-local-controllability at exactly one point:

{s∗} = ∆0 ∩∆SA. (4.27)

Definition 4.1. For s ∈ D\C(s), we define the singular arc strategy (SAS) as follows:

u =


1 ⇐⇒ s ∈ ∆−SA,

us ⇐⇒ s ∈ ∆SA,

0 ⇐⇒ s ∈ ∆+
SA.

(4.28)

In other words, the singular arc strategy consists in a most rapid approach (see e.g. [28]) toward the
singular arc (it is not necessarily reached if s0 ∈ ∆−SA).

Lemma 4.3. Let us take s0 ∈ D, consider the mapping t 7−→ σ(t) := s(t, s0, (1, 1)), and assume that the
singular arc is controllable. Then, if there exists t0 ≥ 0 such that σ(t0) ∈ ∆SA ∩ ∆−0 , and σ(t) ∈ ∆−SA for
t ∈ [t0, t0 + ε) for some ε > 0, then for t > t0 we have σ(t) ∈ ∆−SA provided that σ(t) ∈ D.

Proof. If the assertion is false, there exists t1 > t0 such that σ(t1) ∈ ∆SA ∩D. Without any loss of generality,
we may assume that t1 := inf{t > t0 | σ(t) ∈ ∆SA ∩ D}, which implies that σ(t) ∈ ∆−SA for any t ∈ (t0, t1).
At the point σ(t0), let us consider the extended set of velocities:

V (σ(t0)) := {f(σ(t0)) + ug(σ(t0)) | 0 ≤ u ≤ 1}.

As the singular arc is controllable, the vector f(σ(t0)) + us(σ(t0))g(σ(t0)) is in V (σ(t0)). Now, f(σ(t0)) is
vector pointing in the set ∆−SA and from the fact that σ(t) ∈ ∆−SA for any t ∈ (t0, t1), the vector g(σ(t0))
is also pointing in the set ∆−SA. Therefore, as V (σ(t0)) is convex, we obtain a contradiction with f(σ(t0)) +
us(σ(t0))g(σ(t0)) ∈ V (σ(t0)).

We have the following result.

Proposition 4.6. Assume that the growth function satisfies (H1)-(H2)-(H3). Let us be given a target point s
in the set ∆−0 or in ∆+

0 ∩R−, and assume that s∗ ∈ C(s). Then, provided that the singular arc is controllable
and that the boundary of C(s) intersects the singular arc at at most one point sc 6= (sin, sin) , the optimal
strategy to steer any initial condition in D\C(s) to the target point is the singular arc strategy until reaching
∂C(s).
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Proof. Lemma 4.2 allows to exclude extremal trajectories that have one switching before reaching the singular
arc (if it is reachable). This implies that an extremal trajectory cannot switch in the set ∆+

SA from u = 1 to
u = 0 or in the set ∆−SA from u = 0 to u = 1. Now, whenever an optimal trajectory reaches the singular arc,
the strategy remains singular until reaching the point sc by applying the clocked form property.

From the study of optimal trajectories in the set C(s), we have that after reaching the set C(s), an optimal
trajectory necessarily satisfies u = 0 until s or u = 1 until s.

Remark 4.3. (i) The controllability assumption in Proposition 4.6 is always satisfied in the linear case (see
Proposition 4.4 (iii)). We can check numerically that it is satisfied in the Monod case using (4.18).
(ii) If the boundary of C(s) intersects the singular arc for the control u = 0 (see Proposition above), then by
convexity ( see Proposition 2.7 (iii)), there exists at most one point sc 6= (sin, sin) such that sc ∈ ∂C(c)∩∆SA.
(iii) If the target is in ∆+

0 , but s∗ ∈ C(s), the target is possibly non-locally controllable, nevertheless condition
s∗ ∈ C(s) implies that the singular strategy is admissible so that Proposition 4.6 still holds in this case.

Proposition 4.6 is illustrated when µ is linear in Fig. 5,6,7. Under the condition s∗ ∈ C(s̄), there are three
kinds of optimal synthesis u?1 = u?2 = u? in the domain D \ C(s̄), that differ from the possible sequences of
switching, given in Table 1. When s̄ ∈ ∆+

SA, we consider sc the intersection point of ∆AS with ∂C(s̄), that we
assume to be unique, and define the parametrized curve c(·) as

c :

∣∣∣∣ [0, t̃′1(sc)) 7→ D
t → s(−t, sc, (1, 1))

We then define the sets ∆+
c := c≥ and ∆−c := D \ ∆+

c . It follows that if the initial point is such that
s0 ∈ ∆+

SA∩∆+
c (see Fig. 5), then an optimal trajectory reaches the boundary of C before reaching the singular

arc. The structure of the optimal control for different initial conditions is summarized in Table 1, and the
different values of s are given in Table 2.

C s(  )

1s

s2

∆  = 00

0,0

0,0

1,1

C s(  )

1s

s2

∆  = 00

0,0

0,0

1,11,1

1,1

1,1

C s(  )

1s∆  = 00

s2
0,0

0,0

1,1

1,1

1,1
1,1

Figure 5: Optimal trajectories for a target s ∈ ∆+
SA. Picture left: s ∈ R− ∩ ∆−0 . Picture in the middle:

s ∈ R+ ∩∆+
0 . Picture right: s ∈ R+ ∩∆−0 .

5 Conclusion

In this work, we have analyzed a minimal time control problem by decomposing the state space into a set C(s)
depending on the target s and its complementary in D. Whereas in the domain C(s), we could completely
solve the optimal control problem by a direct computation of the value function, the analysis of optimal
trajectories in the complementary of C(s) is more delicate to handle in view of the non-controllability curve
∆0. We have provided a complete optimal synthesis of the problem in the case where the target is below ∆0,
the singular arc is controllable and whenever the steady-state singular point is in C(s). The case where the
singular steady-state point could be outside D\C(s) is more difficult as the singular arc strategy is no longer
optimal, and it will deserve further investigations.
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s2

1s∆  = 00

C s(  )

1s

s2

C s(  )

∆  = 00

0,0

1,1

Figure 6: Optimal trajectories for a target s ∈ ∆−SA such that ∆SA 6⊂ C(s̄). Picture left: s ∈ R−∩∆+
0 . Picture

right: s ∈ R− ∩∆−0

1s

s2

C s(  )

∆  = 00

Figure 7: Optimal trajectories in the case ∆SA ⊂ C(s̄).
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