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MINIMAL TIME CONTROL OF THE TWO TANKS GRADOSTAT

MODEL UNDER A CASCADE INPUT CONSTRAINT

T. BAYEN†¶, A. RAPAPORT‡¶, AND M. SEBBAH§‖

Abstract. We study the minimum time control problem of a series of two interconnected
chemostats under the input constraint u2 ≤ u1, where ui are the respective dilution rates in the tanks.
This constraint brings controllability issues in the study of the optimal strategies. We overcome this
difficulty by splitting the state domain into two sub-domains, one with no lack of controllability
of the target, and its complement where any optimal trajectory satisfies u1 = u2. We explicitly
compute the complete optimal synthesis that depends on the position of the target with respect to
a semi-permeable curve that passes through a steady-state singular point.

Key words. optimal control, minimal time problem, Pontryagin’s Maximum Principle, optimal
synthesis, chemostat model, gradostat model, non-linear controllability, semi-permeability.

AMS subject classifications. 49J15, 49K15, 49N25.

1. Introduction. The concept of the chemostat has been simultaneously intro-
duced by Novick & Szilard and Monod in the fifties, to describe continuous culture of
micro-organisms. The associated mathematical model is expressed by the following
system of two differential equations (see for instance [34]):

{

ḃ = (µ(s)− u)b,

ṡ = −µ(s)b+ u(sin − s),

where b and s for the biomass and nutrient concentrations, respectively. The func-
tion µ(·) is the specific growth rate of the micro-organisms (most often a monotonic
increasing function). The inlet concentration of nutrient sin and the dilution rate u
are the system inputs. Note that in the above equations the yield coefficient of the
bio-conversion is not explicitly given, because it has been chosen to be equal to one
(that can be always done without any loss of generality).

The chemostat is typically designed to be operated at steady state, that is for
state (beq, seq) such that µ(seq) = u and beq = sin − seq. Such a model is often
considered as a good representation of the operation of bioreactors in biotechnology
or wastewater industries [16], or for ecological investigations [36] of the growth of
micro-organisms in natural environments, such as mountain lakes.

Cascades of chemostats or bioreactors are largely considered in microbiology
(“gradostats” [17, 26, 33, 35]) or in bio-processes (“serial tanks” [2]), because of their
ability to create a gradient of resources (see also [13, 19]). Such gradients are expected
to be more realistic to mimic real environment for studying micro-organisms growth
[10, 22]. In biotechnology, series of bioreactors are also known to be more efficient for
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2 T. BAYEN AND A. RAPAPORT AND M. SEBBAH

the resource conversion at steady state than single tanks [2, 21, 23, 30]. The extension
of the chemostat model to a cascade of two chemostats is straightforwardly given by
the following set of differential equations

(1.1)



















ḃ1 = (µ(s1)− u1)b1,

ṡ1 = −µ(s1)b1 + u1(sin − s1),

ḃ2 = (µ(s2)− u2)b2 + u2b1,

ṡ2 = −µ(s2)b2 + u2(s1 − s2).

Note that the input variables u1, u2 are not independent, because the inlet flow of
the second tank cannot be larger than the output flow of the first tank. When the
volumes of the tanks are equal (what we shall assume without loss of generality), this
amounts to consider control inputs u that satisfy the input cascade constraint:

(1.2) u ∈ U := {(u1, u2) ∈ R
2 | 0 ≤ u2 ≤ u1 ≤ umax} .

As for the chemostat, the gradostat device is typically designed to be operated
at steady state. Typical practical issues raised in laboratory or in industrial context
environment are related to the changes of the operation point from one current steady
state to another. This problem has been for instance raised in recent investigations
on wine fermentation processes [11] during the transient operations, where each tank
corresponds to a precise metabolic state of the micro-organisms related to the level
of substrate concentration, that one would like to adjust in each tank. Typically,
a steady state corresponds to a particular physiological state of the bacteria, and
practitioners would like to switch from state to another one.

It is worth noting from equations (1.1) that any steady state belongs to the hyper-
plane si + bi = sin (i = 1, 2), which is invariant for any control input u(·). Note also
that these hyperplanes are attractive for any constant non-null control inputs [34].
For our study the dynamics (1.1) can then be reduced to the following planar one:

(1.3)

{

ṡ1 = −ν(s1) + u1(sin − s1),

ṡ2 = −ν(s2) + u2(s1 − s2),

where we have set ν(s) := µ(s)(sin − s) and bi = sin − si. In another context, the
same dynamics can equivalently be rewritten in xi variables (formerly xi := sin − si):

{

ẋ1 = g(x1)− u1x1

ẋ2 = g(x2) + u2(x1 − x2),

where we have set g(x) := µ(sin − x)x. Such a model could also represent stocks of
natural resources such as fisheries, where a typical instance of the growth function
g(·) is the logistic law [9]. Here xi and ui (i = 1, 2) hold for the population densities in
two areas and the corresponding harvesting efforts, respectively. The total harvesting
is then h = (u1 − u2)x1 + u2x2, where a part of the harvest u2x1 in the first area is
reintroduced in the second one, similarly to mathematical models of the management
of marine protected areas [1, 14, 20, 32].

The problem of the change of the operation point then amounts to choose a two-
dimensional control input u(·) = (u1(·), u2(·)) that drives the system (1.3) towards
a new target s̄ = (s̄1, s̄2). It is important to mention that both control inputs are
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necessary in order to drive the system to a given equilibrium for s1 and s2. For this
objective, one can simply adjust the control input u to the value that corresponds
to the new desired steady state, and wait for the asymptotic convergence of the
state. Instead, a feedback strategy for the minimal time criterion appears to be a
natural choice for the practitioners, since it allows to gain time while manipulating
the variable u (as this is often considered for other problems in the same application
fields [12, 18, 29]). Our objective in this paper is therefore to find a feedback control
s 7→ u[s] steering (1.3) from any initial state to a given target s̄ in minimal time.

For minimal time control problems in the plane with control affine dynamics, the
theory has been mostly developed for control sets in ℓ1 or ℓ2-balls (see e.g. [5, 6,
25]). Note that the input constraint (1.2) has a different geometry, as it is is not
diffeomorphic to any ℓ1 or ℓ2-balls and has “corners”. This unusual feature leads to
new local controllability issues for the synthesis of optimal feedbacks, that we indeed
investigate in the present work.

One can easily check that there exists a (forwardly) invariant domain D for (1.3),
and we shall restrict our study for initial conditions in this domain. Given a target
point s̄ in D, our main key is to characterize a subset C(s̄) ⊂ D that fulfills the
following properties:

• s̄ ∈ C(s̄) is reachable from any initial condition in C(s̄), and any optimal
trajectory stays in C(s̄),

• any optimal control input from an initial condition outside C(s̄) is such that
u1(t) = u2(t) almost everywhere.

This feature allows to decompose the original optimal feedback synthesis problem in
D into two simpler sub-problems:

1. the minimal time control problem in C(s̄) with two constrained control inputs,
without any controllability issue,

2. the minimal time control problem in D with C(s̄) as a target, with a scalar
control input, but with some controllability issues.

The paper is organized as follows. In the first section, we introduce hypotheses and
apply Pontryagin’s Maximum Principle (PMP). We also introduce the set C(s̄), and
provide some qualitative properties of its boundary. In the second section, we give
the optimal synthesis for initial conditions in the set C(s̄) (Proposition 3.3). We show
that there exist infinitely many optimal trajectories steering a point in this set to the
target. In the third section, we show using the PMP that for initial conditions outside
the set C(s̄), the optimal control necessarily fulfills u1 = u2. This reduction allows
to use properties of affine systems in the plane with one input in order to obtain the
optimal synthesis (see e.g. [6]). Our analysis is thus devoted to the case of a cascade
of two tanks only. We show that either the target is never reached from the set D\C(s̄)
(case I), or it can be reached from any initial condition outside C(s̄), and the optimal
strategy is singular (case II). In this section, we exhibit a partition of the domain D
into two sub-domains A and B. We show that if the target is in A (resp. in B) then,
the optimal synthesis is as in case I (resp. case II). This decomposition of D is based
on properties of semi-permeable curves ([7, 8, 31]) and steady-state singular points
that are the intersection points between the non-controllability set and the singular
locus [6]. Finally Theorem 4.17 is our main result and provides a complete optimal
synthesis of the problem. The last section is devoted to numerical simulations for
particular choices of the growth function µ.
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2. Preliminaries. In this section, we introduce the set C(s̄) for a given target
s̄, and we give some properties of this set. We also apply the Pontryagin’s Maximum
Principle on the minimum time problem.

2.1. Hypotheses and notations. We assume the usual hypotheses on the func-
tion µ(·):

Hypothesis H1. µ(·) is a bounded C2 non-negative increasing function defined
[0,+∞) with µ(0) = 0.

A typical example is when µ is of Monod type, see [34]. This means that µ is
given by the formula: µm(s) := µ̄s

k+s
, with k > 0 and µ̄ > 0. A generalization of

this expression is given by the Hill function µ(s) = µm(sβ), for some β > 0, that
satisfies also Hypothesis H1. In section 5, we also consider the case where µ is linear:
µ(s) = ms, m > 0.

Without any loss of generality, we take sin = 1 (by doing a change of variable).
We consider the set U of admissible controls as measurable functions u(·) that take
values in U :

U := {u : R → U | u meas.}.

Classically, Hypothesis H1 ensures the existence and uniqueness of solutions of (1.3)
for any admissible control and positive time. Since µ(·) is defined only for s ≥ 0, only
trajectories contained in the positive orthant are meaningful. Straightforwardly, one
can check that the domain

E := {(s1, s2) ∈ R
2
+ | 0 ≤ s2 ≤ s1 ≤ 1},

is forwardly invariant for any u(·) ∈ U . Notice that the line segment

L := {1} × [0, 1],

that lies on the boundary of E is also invariant. Moreover, the minimal time problem
with initial conditions in L (and s̄ ∈ L) is a one-dimensional problem and is straight-
forward to solve. From now on, we consider targets in the interior of the domain E,
and we shall consider in the following initial conditions in the set D defined by:

D := E\L.

Notice that D is neither open nor closed. Next, we assume that the maximum dilution
rate is large enough to compete the growth of the species on the substrate, that is umax

larger than µ(1). This assumption is required for the controllability of the variable
s1 (otherwise there exist values of s1 for which we have ṡ1 ≥ 0 for any control u1).
Without any loss of generality we can also take umax = 1 (one can always re-normalize
time and µ(·) of a factor 1/umax):

Hypothesis H2. umax = 1 and µ(s) < 1 for any s ∈ [0, 1].

For any admissible control u(·), we shall denote, for convenience, s(·, s0, u(·)) the
forward solution of (1.3) with s(0) = s0, and s−(·, s0, u(·)) the backward solution, that
is s−(t, s0, u(·)) = s(−t, s0, u(−·)) for any t ≥ 0. We shall also denote γ+(s0, u(·))
and γ−(s0, u(·)) the positive and negative semi-orbits of the dynamics with control
u(·). Similarly, we denote by γ(s0, u(·)) the orbit of the dynamics with control u(·).
We also denote by ∂A the boundary of a set A ⊂ D and IntA its interior.
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In order to apply Pontryagin’s Principle, we recall the definition the reachable set
from a point s0, see [3]. Given s̄ ∈ D, s0 ∈ D, and u ∈ U , we define ts0(u) ∈ [0,+∞]
as the first entry time into the target point s̄, that is:

ts0(u) := inf{t ≥ 0 | s(t) = s̄},

where s(t) := s(t, s0, u(t)). Now, the optimal control problem that we consider can
be stated as follows. Let T : D → [0,+∞] be the minimal time function:

(2.1) T (s0) := inf
u∈U

ts0(u).

Our aim is to find an optimal control u for any s0 ∈ D attaining the infimum in (2.1).
The controllability set is defined as the set of starting points from which the system
can reach the target in a finite time t > 0:

(2.2) R := {s0 ∈ D | T (s0) < +∞}.

Given s0 ∈ R, the existence of an optimal control for (2.1) is straightforward using
Filippov’s Theorem. Therefore, we can apply the Pontryagin’s Maximum Principle
for (2.1) to characterize optimal trajectories. The Hamiltonian

H = H(s1, s2, λ0, λ1, λ2, u1, u2)

associated to (1.3) is defined by:

H := −λ1µ(s1)(1− s1)− λ2µ(s2)(1 − s2) + λ0 + λ1(1− s1)u1 + λ2(s1 − s2)u2.

Pontryagin’s Maximum principle can be stated as follows. Let u := (u1, u2) an optimal
control and s := (s1, s2) the associated trajectory. There exists tf > 0, λ0 ≤ 0 and

λ : [0, tf ] → R
2 satisfying (λ0, λ(·)) 6= 0 and the adjoint equations λ̇ = −∂H

∂s
, that is:

(2.3)

{

λ̇1 = λ1[µ
′(s1)(1 − s1)− µ(s1) + u1]− λ2u2 = λ1[ν

′(s1) + u1]− λ2u2,

λ̇2 = λ2[µ
′(s2)(1 − s2)− µ(s2) + u2] = λ2[ν

′(s2) + u2].

Moreover, we have the maximization condition:

(2.4) u(t) ∈ arg max
0≤ω2≤ω1≤1

H(s1(t), s2(t), λ0, λ1(t), λ2(t), ω1, ω2),

for a.e. t ∈ [0, tf ]. An extremal trajectory is a sextuplet

(s1(·), s2(·), λ0, λ1(·), λ2(·), u(·))

satisfying (1.3)-(2.3)-(2.4). We say that an extremal is normal whenever λ0 6= 0 (in
that case, we can take λ0 = −1). In the case where λ0 = 0, we say that the extremal
trajectory is abnormal. The Hamiltonian is zero along an extremal trajectory (as tf
is free), thus we obtain:

(2.5) − λ1µ(s1)(1− s1)− λ2µ(s2)(1− s2) + λ0 + λ1(1− s1)u1 + λ2(s1 − s2)u2 = 0.

It is convenient to consider the switching function φ defined by:

(2.6) φ := λ1(1− s1) + λ2(s1 − s2).

Remark 2.1. As we will see, it is not necessary to introduce switching functions
associated to both controls u1 and u2 in order to find a control law from (2.4). We
will only use the switching function given by (2.6). This choice is motivated from the
dependency between u1 and u2, see (1.2). The function φ will be also used in Section
4.
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2.2. Definition of the set C(s̄). We first give asymptotic properties of forward
and backward solutions for the extreme controls (0, 0) and (1, 1) that will be useful
in the definition of the set C(s̄). Recall that we have set ν(s) := µ(s)(1 − s).

Lemma 2.1. Take an initial state s0 ∈ D \ {(0, 0)}.
• For the control u = (0, 0), set s(t) = (s1(t), s2(t)) := s(t, s0, u(t)). Then, one
has:

lim
t→+∞

s1(t) = lim
t→+∞

s2(t) = 0 with lim
t→+∞

s2(t)

s1(t)
< +∞,

and

lim
t→−∞

s1(t) = lim
t→−∞

s2(t) = 1 with lim
t→−∞

1− s2(t)

1− s1(t)
< +∞,

where the limits of the ratios only depend on s0.
• For the control u = (1, 1) set s(t) = (s1(t), s2(t)) := s(t, s0, u(t)). Then, one
has:

lim
t→+∞

s1(t) = lim
t→+∞

s2(t) = 1 with lim
t→+∞

1− s2(t)

1− s1(t)
= +∞ .

In backward time, s(·) leaves D at a finite time te with s1(−te) = s2(−te) or
s2(−te) = 0.

Proof. For u = (0, 0) the s1 and s2 sub-systems are decoupled with

(2.7) ṡi = −ν(si),

ν(0) = ν(1) = 0 and ν(s) > 0 for s ∈ (0, 1). Thus, s0i /∈ {0, 1} implies that one has
necessarily

lim
t→+∞

si(t) = 0 and lim
t→−∞

si(t) = 1,

for i = 1, 2. From (2.7), one obtains that the following property is fulfilled for any t

∫ s1(t)

s0
1

dσ

ν(σ)
=

∫ s2(t)

s0
2

dσ

ν(σ)
=⇒

∫ s0
1

s0
2

dσ

ν(σ)
=

∫ s1(t)

s2(t)

dσ

ν(σ)
,

with

lim
t→+∞

∫ s1(t)

s2(t)

dσ

ν(σ)
= lim

t→+∞

∫ s1(t)

s2(t)

dσ

ν′(0)σ
=

1

ν′(0)
lim

t→+∞
log

(

s2(t)

s1(t)

)

,

and

lim
t→−∞

∫ s1(t)

s2(t)

dσ

ν(σ)
= lim

t→−∞

∫ s1(t)

s2(t)

dσ

ν′(1)(σ − 1)
=

1

ν′(1)
lim

t→−∞
log

(

1− s2(t)

1− s1(t)

)

.

Finally, we obtain that:

lim
t→+∞

s2(t)

s1(t)
= exp

(

∫ s0
1

s0
2

ν′(0)

ν(σ)
dσ

)

, lim
t→−∞

1− s2(t)

1− s1(t)
= exp

(

∫ s0
1

s0
2

ν′(1)

ν(σ)
dσ

)

,
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which shows that the limit of the two ratios are finite and depend only on s0 as was
to be proved.

For u = (1, 1) the dynamics of the s1 sub-system is

(2.8) ṡ1 = Ḡ(s1),

where Ḡ(s1) := (1 − s1)(1 − µ(s1)). As µ(s1) < 1 (see Hypothesis H2), one has then
clearly s1(t) → 1 when t → +∞. The s2 sub-system can be seen as an asymptotic
autonomous dynamics with the same limiting dynamics in forward time:

ṡ2 = G(t, s2),

where G(t, s2) := −µ(s2)(1− s2) + (s1(t)− s2) satisfies |G(t, s2)− Ḡ(s2)| → 0 for any
s2 ∈ (0, 1] when t goes to +∞. The trajectory being bounded, we deduce that s2(t)
tends also to 1 when t → +∞, see e.g. [28]. Consider the ratio r(t) = (1− s2(t))/(1−
s1(t)) whose time derivative satisfies

ṙ = (µ(s2(t)) − µ(s1(t)))r + 1.

If r(·) is bounded, say by M > 0, there exists T > 0 such that [µ(s1(t))−µ(s2(t))]M <
α < 1 for any t > T as s1 − s2 is non-negative and tends to zero. Then one should
have ṙ(t) > (1 − α) > 0 for t > T , leading to a contradiction. So we conclude that r
tends to +∞. In backward time, the solution s1(·) of (2.8) clearly goes to negative
values. So the trajectory has to leave the domain D in finite time with decreasing s1.
This is only possible through the parts of the boundary s1 = s2 or s2 = 0.

Remark 2.2. The previous Lemma implies that the semi-orbit γ+(s0, (1, 1))
is below γ−(s0, (0, 0)) in a neighborhood of the point (1, 1). Indeed, both associated
trajectories converge to (1, 1), and the comparison follows from the limit of the two
ratios 1−s1

1−s2
when the point s = (s1, s2) goes to (1, 1). This important property is used

in particular in section 4.1.

Consider now the target point s̄ as an initial condition. According to Lemma 2.1,
there exists an exit time te of the domain D backward in time with constant control
(1, 1). We then define the function p(·) on the interval [−te,+∞) as

p(τ) :=

∣

∣

∣

∣

s−(−τ, s̄, (1, 1)), τ ∈ [−te, 0)
s−(τ, s̄, (0, 0)), τ ∈ [0,+∞)

If the exit time is such that s−1 (te, s̄, (1, 1)) = s−2 (te, s̄, (1, 1)), we set I = [−te,+∞).
Otherwise, we extend p(·) on [−te − s−1 (te, s̄, (1, 1)),−te) as

p(τ) = (τ + te + s−1 (te, s̄, (1, 1)), 0)

and set I = [−te − s−1 (te, s̄, (1, 1)),+∞). Recall that we have ṗ1 > 0 over I, so the
support of the curve p(·) can be parameterized as a function s1 7−→ s2(s1). Hence,
we can define the set C(s̄) as the epigraph of the function p restricted to the domain
D:

C(s̄) := {s ∈ D | s1 = p1(τ), s2 ≥ p2(τ), τ ∈ I} .

Remark 2.3. The line segment L does not belong to C(s̄).
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According to Lemma 2.1, the set C(s) has two possible shapes, depending on
which part of the boundary of D the semi-orbit γ−(s̄, (1, 1)) leaves the domain D.
To distinguish these two shapes, it is convenient to introduce the curve F defined by
F := γ+((0, 0), (1, 1)). From Lemma 2.1, F provides a partition of the domain D
into two sub-domains. Cauchy-Lipschitz Theorem implies that if s̄ is above F (resp.
below F), then ∂C(s̄) intersects the first diagonal (resp. the axis s2 = 0). On pictures
of Fig. 1, one can see an illustration of the two cases.

1s

s2

1s

s2
F

D

C (  )s

1s

s2

s2

1s
F

D

C (  )s

Figure 1. Picture of the set C(s) for µ(s) = s. In brown the curve F . On the left : the negative
semi-orbit of s = (1, 0.3) with u1 = u2 = 1 intersects the axis s2 = 0. On the right: the negative
semi-orbit of s = (0.9, 0.32) with u1 = u2 = 1 intersects the first diagonal.

3. Optimality result in C(s). In this section, we provide an optimality result
for initial conditions in C(s̄). Let us consider the set of semi-orbits that reach s̄ with
u1 ≡ 1 or u2 ≡ 0:

S(s) := S−(s) ∪ S+(s),

with

S−(s) :=
⋃

v(·)∈V

γ−(s, (1, v(·))) ∩D , S+(s) :=
⋃

v(·)∈V

γ−(s, (v(·), 0)) ∩ D ,

where V is the set of measurable functions v that take values on [0, 1]:

(3.1) V := {u : [0,+∞) → [0, 1] | u meas.}.

This set possesses the following nice property.

Proposition 3.1. For any s ∈ D, one has C(s) = S(s).

Proof. Let us first prove that C(s) ⊂ S(s). Take s0 ∈ C(s), and consider the
trajectory s(·) := s(·, s0, (1, 0)). If there exists t0 ≥ 0 such that s(t0) = s, then we
have s0 = s−(t0, s, (1, 0)) ∈ S(s) as was to be proved. Now, we suppose that for any
t ≥ 0, we have s(t) 6= s. Having 0 < s2(0) < s1(0) and s2(·) decreasing, s(·) has to
leave D at a finite time t0: either it intersects at time t0 the semi-orbit γ−(s̄, (1, 1))
(case a), or it intersects at time t0 the semi-orbit γ−(s̄, (0, 0)) (case b).

Case a. Let t1 > 0 be such that s = s(t1, s(t0), (1, 1)). Then, let us define a
control u : [0, t0 + t1] → U by u = (1, 1) on [0, t1] and u = (1, 0) on [t1 + t0]. By
construction, we have s−(t1 + t0, s, u) = s0, and u is of the form u = (1, u2) with
u2 ∈ V , and the result follows.

Case b. Let t′1 > 0 be such that s = s(t′1, s(t0), (0, 0)). Then, let us define a
control ũ : [0, t0 + t′1] → U by ũ = (0, 0) on [0, t′1] and ũ = (1, 0) on [t′1 + t0]. By
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construction, we have s−(t′1 + t0, s, ũ) = s0, and ũ is of the form ũ = (u1, 0) with
u1 ∈ V , and the result follows.

Let us now prove that S(s) ⊂ C(s). Take s0 ∈ S(s), and assume first that
s0 = s−(t0, s, (1, u2)) with u2 ∈ V and t0 ∈ [0, te) where te is the exit time of D. For
t ∈ [0, te), set s̃(t) := s−(t, s, (1, u2)), and ŝ(t) := s−(t, s, (1, 1)). One can straightfor-
wardly prove that s̃1(t) = ŝ1(t) and s̃2(t) ≥ ŝ2(t) for all t ∈ [0, te).
Case a. If s−1 (te, s̄, (1, u2)) = s−2 (te, s̄, (1, u2)), one has s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ ŝ2(t0),
ŝ(t0) ∈ ∂C(s), and as t0 ≤ te, we get that s̃(t0) ∈ C(s).
Case b. If s−2 (te, s̄, (1, 1)) = 0, one has s̃1(t0) = ŝ1(t0), s̃2(t0) ≥ max(0, ŝ2(t0)),
(ŝ1(t0),max(0, ŝ2(t0))) ∈ ∂C(s) so that t0 ≤ te implies s̃(t0) ∈ C(s).

Suppose now that s0 = s−(t0, s, (u1, 0)) with u1 ∈ V and t0 ∈ [0, te) where t1 is
the exit time of D. For t ∈ [0, te), set s̃(t) := s−(t, s, (u1, 0)), š(t) := s−(t, s, (0, 0)),
and ŝ(t) := s−(t, s, (1, 0)) Similarly as in the previous case, we obtain:

s̃2(t) = š2(t) = ŝ2(t), and ŝ1(t) ≤ s̃1(t) ≤ š1(t), ∀t ∈ [0, te).

Notice that s2 > 0 so that at the exit time te, we necessarily have s̃2(t1) = s̃1(te).
Moreover, combining the fact that (š1(t0), š2(t0)) ∈ ∂C(s) and that (ŝ1(t), ŝ2(t)) ∈
C(s) for all t ∈ [0, te), we obtain that s̃(t0) ∈ C(s) as was to be proved.

Consider the particular semi-orbit in S(s̄):

Γ := γ−(s̄, (1, 0)) ∩ D,

and notice that it can be parameterized as a curve s1 7→ s2 = α(s1) because we have
ṡ1 < 0 on this semi-orbit. One has the following property.

Lemma 3.2. Take s̄ ∈ D. The subset S−(s̄), resp. S+(s̄), is the set of points
s = (s1, s2) ∈ S(s̄) that satisfy s2 ≤ α(s1), resp. s2 ≥ α(s1). Furthermore S−(s̄) ∩
S+(s̄) = Γ.

Proof. Let s̃(·) := s−(·, s̄, (1, 0)), and consider a backward trajectory s(·) :=
s−(·, s̄, (1, u2)) with u2 ∈ V . One has clearly s1(t) = s̃1(t) and s2(t) < s̃2(t) for any
time t. Consequently, any trajectory in C(s̄) with u1 ≡ 1 is below Γ. Similarly, any
trajectory in C(s̄) with u2 ≡ 0 is above Γ. Clearly, Γ is the only semi-orbit of S(s̄)
that belongs to S−(s̄) and S+(s̄).

Proposition 3.1 shows that for any s0 ∈ C(s), there exists an admissible control
steering s0 to s in finite time, provided that s̄ ∈ D. We shall now give a characteri-
zation of the optimal trajectories.

Proposition 3.3. Let s̄ ∈ D. For any initial state s0 ∈ C(s), the optimal
trajectories belong to C(s̄), and the optimal feedbacks u[·] : s 7−→ u[s] ∈ U are given
by:

• for s ∈ S−(s̄) \ Γ, u1[s] = 1 and u2[s] takes any value in [0, 1],
• for s ∈ S+(s̄) \ Γ, u2[s] = 0 and u1[s] takes any value in [0, 1],
• for s ∈ Γ, u[s] = (1, 0).

Furthermore, the value function in C(s̄) is:

(3.2) T (s0) = max

{

∫ s1

s0
1

dσ

(1 − µ(σ))(1 − σ)
,

∫ s2

s0
2

dσ

−µ(σ)(1− σ)

}

.
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Proof. Let s0 ∈ C(s). We know from Proposition 3.1 that there exists a control
u ∈ U of the form (1, u2(·)) or (u1(·), 0) and a time tu ∈ [0,+∞[ such that

s(tu, s
0, u) = s.

First, suppose that u is of the form (1, u2) and set s(·) := s(·, s0, u). Therefore one
has

ṡ1 = (1 − µ(s1))(1 − s1),

hence s1(·) is increasing and:

(3.3) s1(t) < s1, ∀t ∈ [0, tu).

We show that tu is optimal. If not, there exists û ∈ U such that s(T (s0), s0, û) = s
with T (s0) < tu. Set ŝ(·) := s(·, s0, û). As û1 ≤ 1 and ŝ1(0) = s1(0) = s01, we obtain
by (1.3):

(3.4) ŝ1(t) ≤ s1(t), ∀t ∈ [0,+∞).

Therefore, combining (3.3) and (3.4), we get:

(3.5) s1 = ŝ1(T (s
0)) ≤ s1(T (s

0)) < s1,

which is a contradiction, hence tu = T (s0). Let us now explicit tu = T (s0). One has:

(3.6) tu =

∫ tu

0

dt =

∫ tu

0

ṡ1(t)

(1− µ(s1(t)))(1 − s1(t))
dt =

∫ s1

s0
1

dσ

(1− µ(σ))(1 − σ)
.

Finally let us show that

(3.7)

∫ s2

s0
2

dσ

−µ(σ)(1− σ)
≤

∫ s1

s0
1

dσ

(1− µ(σ))(1 − σ)
.

Remark that 1/(−µ(s)(1 − s)) < 0, for any s ∈ (0, 1). Therefore if s02 ≤ s2, one has
∫ s2
s0
2

dσ
−µ(σ)(1−σ) ≤ 0 and the result is obvious. Let us now suppose that s02 > s2 and

set ϕ as the solution of the Cauchy problem:

{

ϕ̇ = −µ(ϕ)(1− ϕ),

ϕ(0) = s02.

Then, ϕ is decreasing and converges to zero when t tends to +∞. Thus, there exists
t0 ∈ [0,+∞) such that ϕ(t0) = s2. Therefore, one has

(3.8)

∫ s2

s0
2

dσ

−µ(σ)(1 − σ)
=

∫ ϕ(t0)

ϕ(0)

dσ

−µ(σ)(1− σ)
=

∫ t0

0

dt = t0.

Moreover, as u2 ≥ 0 and s2(0) = ϕ(0) one has by (1.3) that ϕ(t) ≤ s2(t) for all
t ∈ [0,+∞[. Consequently, as ϕ is decreasing with ϕ(t0) = s2(tu) ≥ ϕ(tu), one has
t0 ≤ tu, which by (3.6) and (3.8) gives (3.7). Thus we have proved the expression
(3.2) of the value function for such initial condition.
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From Proposition 3.1 and Lemma 3.2, any trajectory with initial condition s0

and control (1, u2) that is below Γ is also above γ−(s̄, (1, 1)). Consequently, any such
trajectory reaches s̄ in finite time, and stays in C(s̄) until this time. As all these
trajectories have exactly the same map t 7→ s1(t), we deduce that s̄ is reached exactly
at the same time tu. This shows the optimality of all the trajectories with control
u1 = 1 as long as s is below Γ.

Now, we investigate the case where u is of the form (u1, 0). We set s(·) =:
s(·, s0, u). We have that s2(·) is decreasing and therefore s02 > s2. Similarly as in the
previous case, we can show that v(s0) = tu (using the fact that s02 > s2), and that

tu =
∫ s2

s0
2

dσ
−µ(σ)(1−σ) . Finally, we show that:

(3.9)

∫ s1

s0
1

dσ

(1− µ(σ))(1 − σ)
≤

∫ s2

s0
2

dσ

−µ(σ)(1− σ)
.

First, if s01 ≥ s1, then
∫ s1

s0
1

dσ
(1−µ(σ))(1−σ) ≤ 0 and (3.9) is obvious. If now s01 < s1, we

consider ϕ as the solution of the following Cauchy problem:
{

ϕ̇ = (1 − µ(ϕ))(1 − ϕ),

ϕ(0) = s01.

As ϕ is increasing, there exists t0 > 0 such that
∫ s1

s0
1

dσ
(1−µ(σ))(1−σ) = t0 with ϕ(t0) = s1.

Moreover, as ϕ satisfies the same equation as s1 with the constant control equal to
1 in place of u1, we obtain ϕ(t0) = s1(tu) = s1 ≤ ϕ(tu), so that t0 ≤ tu (as ϕ is
increasing). We conclude similarly as in the first case.

Finally, if s ∈ Γ, the optimal trajectory has to fulfill the properties of both former
cases, that is u1[s] = 1 and u2[s] = 0.

1s

s2

1,0

1,0

1,0

1,0

0,0

0,0

0,0

1,1
0,0

0,0

0,0

0,0

1,0

1,0

1,1

Figure 2. Picture for s = (1, 0.3). When the initial condition s0 is below Γ, there exist infinitely
many trajectories in S−(s̄) steering s0 to s in the same time T (s0) with u1 ≡ 1. When s0 is above
Γ, there exist infinitely many trajectories in S+(s̄) steering s0 to s in the same time T (s0) with
u2 ≡ 0.

Fig. 2 depicts the infinity of optimal trajectories from an initial state s0 ∈ C(s̄)\Γ
(see Proposition 3.3). Notice that when s0 ∈ S−(s̄), resp. s0 ∈ S+(s̄), optimal
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trajectories are such that λ1 ≡ 0, resp. λ2 ≡ 0 (where λ is the corresponding adjoint
vector). This can be easily proved via the Pontryagin’s Maximum Principle, and
corresponds to s0 such that ∂1T (s

0) = 0 or ∂2T (s
0) = 0 showing that different initial

conditions could have the same optimal cost, thus explaining the infinity of optimal
trajectories. From a practical viewpoint, practitioners may use the most convenient
choice of controls away from the curve Γ, for instance taking u1 = u2 = u with u = 1
when s ∈ S−(s̄) \ Γ, and u = 0 when s ∈ S+(s̄) \ Γ. When the trajectory touches the
curve Γ, the control (1, 0) has to be used.

Remark 3.1. Proposition 3.3 can be also proved using Hamilton-Jacobi Equa-
tion in the viscosity sense (taking into account that the value function T (·) is non-
differentiable on the curve Γ).

4. Optimality result outside C(s̄). In this part, we provide optimal trajecto-
ries for initial conditions in D\C(s̄) which allows to conclude on the optimal synthesis
of the problem. Theorem 4.17 is our main result. First, we show that for initial
conditions outside the set C(s̄), an optimal control satisfies u1 = u2.

Proposition 4.1. Let us consider an initial condition s0 ∈ D\C(s̄), and assume
that s0 ∈ R (recall (2.2)). Then, an optimal control u ∈ U steering s0 to s̄ satisfies
u1 = u2 a.e. and λ2 > 0.

Proof. First, assume that we have λ2 ≡ 0. From (2.3), λ1 is of constant sign
(either positive or negative). If λ1 > 0, then u1 = 1 a.e. and u2 is any control taking
values in [0, 1]. Proposition 3.1 implies that s0 ∈ C(s̄) which is a contradiction. If
λ1 < 0, then we have u1 = 0 a.e., thus u2 = 0 a.e. implying that s0 ∈ ∂C(s0) which
again gives a contradiction.

Now, let us investigate the case where λ2 < 0. If there exists a time interval [t1, t2]
where u2 > 0, then, we obtain a contradiction in the maximization condition (2.4) by
comparing this control to the constant one equal to zero. This implies that u2 = 0
a.e., and from (2.3), λ1 is of constant sign. First, if λ1 > 0, then u1 = 1 a.e. by (2.4),
and we see that s0 ∈ Γ ⊂ C(s̄) implying a contradiction. Now, if λ1 < 0, then u1 = 0
a.e., and both controls are constantly equal to zero, thus s0 ∈ ∂C(s0) implying a
contradiction. If λ1 ≡ 0, then u1 is any measurable control taking values within [0, 1].
Using Proposition 3.1 which characterizes C(s̄), we obtain that necessarily s0 ∈ C(s̄)
which is a contradiction.

It follows that we have λ2 > 0 as was to be proved. We now show that this implies
u1 = u2 for an optimal trajectory. From the inequality u2 ≤ u1, we obtain that

λ1(1− s1)u1 + λ2(s1 − s2)u2 ≤ φu1.

If we combine this inequality together with (2.4), we obtain the following: if φ > 0,
then the maximum in the Hamiltonian is achieved for u2 = u1 = 1. If φ < 0, then it
is achieved for u1 = u2 = 0. If φ = 0, then we have

λ1(1 − s1)u1 + λ2(s1 − s2)u2 = λ2(s1 − s2)(u2 − u1),

and we see using u2 ≤ u1 that the maximum is obtained when u1 = u2. Therefore,
we have obtained that in the three previous cases φ > 0, φ < 0 and φ = 0, we have
u1 = u2. Hence, for s0 ∈ D\C(s̄), an optimal control satisfies u1 = u2 and λ2(·) > 0
as was to be proved.
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We are now in position to study the minimal time problem outside C(s̄) using the
theory of affine control systems in the plane with one input. We can write (1.3) as:

(4.1) ṡ = f(s) + vg(s), v ∈ V ,

where f , g are the two vector fields defined by:

(4.2) f(s) := −

[

ν(s1)
ν(s2)

]

, g(s) :=

[

1− s1
s1 − s2

]

,

and u1 = u2 = v ∈ V with V given by (3.1). It is standard to introduce the non-
controllability set ∆0 (also called collinearity set sometimes) see [5, 6, 25] by:

∆0 := {(s1, s2) ∈ D | det(f(s), g(s)) = 0},

and the singular arc ∆SA by:

∆SA := {(s1, s2) ∈ D | det(g(s), [f, g](s)) = 0},

where [f, g] denotes the Lie bracket of f and g, see e.g. [25]. Next, we define ∆+
0 (resp.

∆−
0 ) as the set of points of D such that det(f(s), g(s)) > 0 (resp. det(f(s), g(s)) < 0).

Similarly, we define ∆±
SA. A simple computation shows that we have:

det(g(s), [f, g](s)) = [1− s1][(µ(s2)− µ(s1)− µ′(s1)(s1 − s2))(1 − s1)

+µ′(s2)(1− s2)(s1 − s2)].

As the point (1, 1) is an equilibrium of (1.3), the singular arc is given by the implicit
equation

(4.3) [µ(s2)− µ(s1)− µ′(s1)(s1 − s2)](1− s1) + µ′(s2)(1 − s2)(s1 − s2) = 0.

The function φ is the switching function for the minimal time control problem gov-
erned by (4.1), and a computation shows that:

(4.4) φ̇ = µ′(s1)(1 − s1)φ+ λ2
det(g(s), [f, g](s))

1− s1
.

The next proposition gives properties of the set ∆0.

Proposition 4.2. There exists a continuous mapping s1 ∈ [0, 1] 7−→ ζ(s1)
of class C1 over [0, 1) such that ∆0 is the graph of the restriction of ζ over [0, 1).
Moreover, the following properties hold:

(i) ζ(0) = 0, ζ(1) = 1 and ζ is increasing over [0, 1].

(ii) lims1→1
1−ζ(s1)
1−s1

= +∞.

Proof. Let us consider the C1-mapping

ρ : (s1, s2) ∈ D 7−→ ρ(s1, s2) := −µ(s1)(s1 − s2) + µ(s2)(1 − s2)

so that ρ(s1, s2) = 0 iff s ∈ ∆0. For s ∈ D, we have:

∂ρ

∂s2
(s1, s2) = µ(s1)− µ(s2) + µ′(s2)(1− s2) > 0.
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Hence, we can apply the implicit function Theorem for every s ∈ [0, 1) which provides
the existence of a function ζ : [0, 1) → D such that s ∈ ∆0\{(1, 1)} if and only if
s2 = ζ(s1). Moreover, we have ρ(0, 0) = 0 implying ζ(0) = 0. Now, the derivative of
ζ w.r.t. s1 is given by:

(4.5) ζ′(s1) =
µ′(s1)(s1 − s2) + µ(s1)

µ(s1)− µ(s2) + µ′(s2)(1− s2)
,

where s2 = ζ(s1). One has clearly ζ′(s1) > 0 on (0, 1). Hence ζ is increasing over
(0, 1). As we have ρ(1, 1) = 0, we have ζ(s1) → 1 whenever s1 → 1. Hence, we can
extend ζ continuously on [0, 1] by letting ζ(1) = 1 which shows (i). Moreover, if we
let s1 → 1 in (4.5), we obtain that ζ′(s1) → +∞, which shows (ii).

Finding an optimal synthesis highly depends on the position of the target with
respect to ∆0 and ∆SA. In the following, we call steady-state singular point (see [6])
any point s⋆ ∈ D such that:

s⋆ ∈ ∆0 ∩∆SA,

and we assume throughout this section that there exist such points. The existence of
such points plays a major role in our study.

Remark 4.1.

(i) Such points are equilibriums of the dynamics restricted to the singular arc. In
fact, along a singular (normal) extremal trajectory defined over a time interval [t1, t2],
the adjoint vector satisfies λ(t) · f(s(t)) = 1 and λ(t) · g(s(t)) = 0, t ∈ [t1, t2], where
g(s) 6= 0 for every s ∈ D, which shows that it cannot reach s⋆ in finite time. This
implies that if the singular arc is admissible, then s⋆ is never reached by a singular
(normal) trajectory in finite time.

(ii) Even if s⋆ cannot be reached in finite time, an extremal singular trajectory
can be locally time minimizing. In other words, the singular arc can be hyperbolic
according to the classification given in [5].

(iii) If we consider two different trajectories steering a point s0 to s̄ (which inter-
sect only at points s0 and s̄), then we cannot apply the clock form argument globally
if the domain enclosed to the union of these curves intersects ∆0. We remind that
this tool is based on Green’s Theorem (see [27, 5, 25]) and gives a direct method to
compare the cost of two trajectories that do not intersect ∆0.

Let us recall the following (general) result, see Lemma 13 in [6] that will be useful
in order to find the optimal synthesis.

Lemma 4.3. Consider two vector fields f, g : R2 → R
2 of class C1, and suppose

that f and g are non-zero over ∆0. Let us define Tan as the set of points of D\{(0, 0)}
where the dynamics (4.1) is tangent to ∆0 for any u ∈ [0, 1]. Then Tan is non-empty,
and we have:

Tan = ∆0 ∩∆SA.

Proof. For sake of completeness, we provide a different proof of this result. At
any s ∈ ∆0 \ ({(0, 0)}∪ {(1, 1)}), the vector fields f and g are non-zero and collinear,
so that one can write f(s) = αg(s) where α 6= 0 is a scalar (that depends on s). The
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dynamics is then tangent to ∆0 for any control v if f(s) or g(s) belongs to the tangent
cone of ∆0 at s, that is defined as

T∆0
(s) :=

{

δ ∈ R
2 | det(f(s+ hδ), g(s+ hδ)) = O(h2)

}

.

Having f(s) ∈ T∆0
(s) amounts to write

det(f(s) + h∂sf(s).f(s) +O(h2), g(s) + h∂sg(s).f(s) +O(h2)) = O(h2),
⇔ det(f(s), g(s)) + hdet(f, ∂sg(s).f(s)) + hdet(∂sf(s).f(s), g(s)) = 0,
⇔ det(αg(s), ∂sg(s).f(s))− det(g(s), α∂sf(s).g(s)) = 0,
⇔ det(g(s), [f, g](s)) = 0,

that is s ∈ ∆SA.

This result applies in particular on the vector fields (4.2). Throughout the rest of
the paper, we make the following assumption that is essential in our study.

Hypothesis H3. There exists a unique steady-state singular point s⋆ ∈ D.

Remark 4.2.

(i) Hypothesis H3 is satisfied whenever µ is of Monod type or linear (see section
5). Thanks to numerical simulations, we conjecture that H3 holds in the case where
µ : [0, 1] → R+ is a concave increasing function of class C2 such that µ(0) = 0. Simple
counter-examples show that this result no longer holds whenever µ is not concave.

(ii) The concavity of growth functions appears to be a natural hypothesis for mod-
eling a saturation effect under large values of substrate concentrations.

For s ∈ [0, 1], we denote by τ(s) the unitary tangent vector of ∆0 at point s. The
next Lemma provides the direction of the drift in (4.1) along the curve ∆0, that is
parameterized as in Proposition 4.2, and is quite useful in the following.

Lemma 4.4. Let s ∈ ∆0. Then, we have:

s ∈ ∆+
SA ⇒ det(f(s), τ(s)) > 0, s ∈ ∆−

SA ⇒ det(f(s), τ(s)) < 0.

Proof. As s ∈ ∆0, we have µ(s1)(s1 − s2) = µ(s2)(1 − s2). From (4.5), we can

write the vector τ(s) as τ(s) = κ

(

1
ζ′(s1)

)

, where κ > 0 is a coefficient to normalize

τ(s) (that depends on s). Using that s1 > s2, the sign of det(f(s), τ(s)) is given by
the quantity defined by:

α(s) := −µ(s1)(1 − s1)[µ(s1) + µ′(s1)(s1 − s2)] + µ(s2)(1 − s2)(µ(s1)− µ(s2)

+µ′(s2)(1 − s2)).

Using the fact that s ∈ ∆0, we find:

α(s)

µ1(s)
= (1− s1)(µ(s2)− µ(s1)− µ′(s1)(s1 − s2))− (1 − s1)µ(s2)

+(s1 − s2)(µ(s1)− µ(s2 + µ′(s2)(1 − s2)).

Now, let us take a point s ∈ ∆−
SA. Then, (4.3) implies that:

α(s)

µ1(s)
< −(1− s1)µ(s2) + (s1 − s2)(µ(s1)− µ(s2))

= −(1− s1)µ(s2) + (1− s2)µ(s2)− (s1 − s2)µ(s2)) = 0.
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where the equality is obtained using the fact that s ∈ ∆0. It follows that for s ∈ ∆−
SA,

we have α(s) < 0, thus det(f(s), τ(s)) < 0 which proves the result. When s ∈ ∆+
SA,

we use the same computation and the reverse inequality. This proves the lemma.

The colinear directions of the dynamics with controls (0, 0) and (1, 1) are depicted
on Fig. 3 as an illustration of the statement of Lemma 4.4.

∆ 0
∆ 0

∆ 0

∆ SA

∆ SA

∆ SA(0,0)

(1,1)

(0,0)

s*

(0,0)

(1,1)

(1,1)

+
−+

−

Figure 3. Directions of the dynamics with controls (0, 0) and (1, 1) for states on the curve ∆0.

The next proposition is the basis of the optimality results of this section and is
based on Lemma 4.3.

Proposition 4.5. Let us take s̄ ∈ D. Then, either s⋆ ∈ C(s̄) or C(s̄) ⊂ ∆+
0 .

Proof. Recall that the boundary of C(s̄) is the union of semi-orbits γ−(s̄, (0, 0))
and γ−(s̄, (1, 1)). Let us suppose that s⋆ /∈ C(s̄), and assume by contradiction that
there exists a point ŝ ∈ ∂C(s̄) ∩∆0. We have several cases.
First case. ŝ ∈ ∆−

SA ∩ γ−(s̄, (0, 0)). Then, from Lemma 4.4, the boundary of C(s̄)
with v = 0 necessarily intersects ∆0 in ∆+

SA. This would give s⋆ ∈ C(s̄) which is a
contradiction.
Second case. ŝ ∈ ∆−

SA ∩ γ−(s̄, (1, 1)). Then, from Lemma 4.4, the boundary of C(s̄)
with v = 1 or v = 0 cannot intersect ∆0 in the set ∆−

SA. This would give s⋆ ∈ C(s̄)
which is a contradiction.
The study of the case where the intersection point ŝ is in ∆+

SA is similar to the previous
case. Hence, we have obtained the result.

Given a target point s̄ ∈ D, one should determine whenever s̄ is such that s⋆ ∈
C(s̄) or not. To do so, we introduce a curve Λ passing through s⋆ and that provides
a partition of the set D:

Λ := γ+(s⋆, (0, 0)) ∪ γ+(s⋆, (1, 1)).

This curve is depicted on Fig. 5 and 8 in the case of a linear growth function. It
satisfies the following properties.

Lemma 4.6.

(i) There exists a mapping q : (0, 1) → (0, 1) of class C1 with q′ > 0 and such
that the curve Λ coincides with the graph of q.

(ii) The curve Λ is such that Λ ∩∆0 = {s⋆} and we have

Λ\{s⋆} ⊂ ∆+
0 .
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Proof. For proving (i), notice that Λ is defined via the controls (0, 0) and (1, 1).
The parameterization follows from Lemma 2.1 and the fact that f and f + g are
collinear at point s⋆.

Let us prove (ii). First, we show that γ+(s⋆, (0, 0))\{s⋆} is contained in ∆+
0 .

Suppose now that the semi-orbit γ+(s⋆, (0, 0)) intersects ∆0 at some point s 6= s⋆

from ∆+
0 into ∆−

0 . Then we have a contradiction from Lemma 4.4. Suppose now that
γ+(s⋆, (0, 0)) intersects ∆0 at some point s 6= s⋆ from ∆−

0 into ∆+
0 . Then, there exists

a point š which is above γ+(s⋆, (0, 0)) and below ∆0. Consider now the semi-orbit
γ−(š, (0, 0)). By Cauchy-Lipschitz Theorem, this curve cannot intersect γ+(s⋆, (0, 0)).
It follows that there exists an intersection point š′ ∈ γ−(š, (0, 0)) ∩ ∆0. This is in
contradiction with Lemma 4.4. Hence, γ+(s⋆, (0, 0))\{s⋆} ⊂ ∆+

0 .
Similarly, we can use exactly the same arguments to prove that γ+(s⋆, (1, 1))\{s⋆}

is contained in ∆+
0 . This concludes the proof.

Now, we can define a closed subset of D as follows:

A := {s = (s1, s2) ∈ D ∪ {(1, 1)} | s2 ≥ q(s1) and s2 ≤ s1},

and its complementary B := D \ A. Notice that the point (1, 1) is introduced in the
definition of A for the closeness property (see Definition 4.8) and that Λ∪ (1, 1) is the
boundary of A. Proposition 4.5 implies the following result.

Corollary 4.7. If s̄ ∈ IntA then C(s̄) ⊂ ∆+
0 ; if s̄ ∈ Λ then s⋆ ∈ ∂C(s̄); if

s̄ ∈ B, then s⋆ ∈ C(s̄).

To finish this part, we show a semi-permeability property on the curve Λ [7, 8, 31].
To do so, let us write the dynamics (1.3) as ṡ = F (s, u), where F : R2 × R

2 → R
2

is given by (1.3). A curve such that each trajectory of the control system may cross
this curve in only one direction is called a semipermeable curve. More precisely, we
have the following definition.

Definition 4.8. A closed set C ⊆ R
2 has a semipermeable boundary for the

dynamics ṡ = F (s, u) in a neighborhood of s ∈ ∂C, if there exists a neighborhood V
of s such that

∀s ∈ ∂C ∩ V, ∀p ∈ NC(s), inf
u∈U

〈F (s, u), p〉 = 0,

where NC(s) is the normal cone to C at point s.

Proposition 4.9. The set A has a semi-permeable boundary on the neighborhood
of each point s ∈ Λ for the system (1.3), with outward direction.

Proof. Recall that Λ = γ+(s̄, (0, 0))∪γ+(s̄, (1, 1)) and that Λ ⊂ ∆+
0 ∪{s⋆}. First,

we consider a point s = (s1, s2) ∈ γ+(s̄, (0, 0)). The outward normals of A at point
s ∈ Λ are of the form λn(s) with λ > 0 and

n(s) =

(

µ(s2)(1 − s2)
−µ(s1)(1− s1)

)

.

We show that inf(u1,u2)∈U 〈F (s, (u1, u2)), n(s)〉 = 0. It is clear that 〈F (s, (0, 0)), n(s)〉
is equal to zero, so we have to show that 〈F (s, (u1, u2)), n(s)〉 ≥ 0, for all (u1, u2) ∈ U .
Let (u1, u2) ∈ U . One has:

〈F (s, (u1, u2)), n(s)〉 = (1− s1)[u1µ(s2)(1− s2)− u2µ(s1)(s1 − s2)].
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As (s1, s2) ∈ ∆+
0 ∪ ∆0, we have µ(s2)(1 − s2) ≥ µ(s1)(s1 − s2), implying that

u1µ(s2)(1 − s2) ≥ u2µ(s1)(s1 − s2), that is, 〈F (s, (u1, u2)), n(s)〉 ≥ 0 as wanted.
Suppose now that s ∈ γ+(s̄, (1, 1)). Then, the outward normals of A at point

s ∈ Λ are of the form λ · n(s) with λ > 0 and

n(s) =

(

−µ(s2)(1− s2) + (s1 − s2)
(µ(s1)− 1)(1− s1)

)

.

Notice that we have 〈F (s, (1, 1)), n(c(t))〉 = 0. Let us now take (u1, u2) ∈ U . One
has:

〈F (s, (u1, u2)), n(s)〉 = (1− s1)[(1 − u1)(µ(s2)(1− s2)− µ(s1)(s1 − s2))

+(u1 − u2)(s1 − s2)(1 − µ(s1))].

Now, as (s1, s2) ∈ ∆+
0 ∪ ∆0, we have µ(s1)(s1 − s2) ≤ µ(s2)(1 − s2). Using that

u2 ≤ u1 together with µ(s1) < 1, we obtain

〈F (s, (u1, u2)), n(s)〉 ≥ 0,

which concludes the proof.

Remark 4.3. Similarly, for the system (1.3), one can also prove that for any
s̄ ∈ A, the set C(s̄) has a semi-permeable boundary on the neighborhood of each point
s such that s = p(τ) with τ ∈ I.

Before investigating the optimal synthesis in the case of a target in A or in B (see
Corollary 4.7), we study optimality of abnormal trajectories.

4.1. Study of abnormal trajectories. In this section, we prove that the only
abnormal optimal trajectories steering a point s0 to the target are the semi-orbits
γ−(s̄, (1, 1)) and γ−(s̄, (0, 0)) that are on the boundary of the set C(s̄), see Proposition
4.12.

Lemma 4.10. Any abnormal extremal trajectory for (1.3) is such that λ2 > 0.

Proof. Suppose that λ2 ≡ 0. Then (2.5) implies λ1(1− s1)(u1 −µ(s1)) = 0 which
is not possible in view of (2.4). Suppose now that λ2 < 0. Then, λ1 is non-zero and
of constant sign from (2.3). If λ1 > 0, then we obtain by (2.4)

λ1(1− s1)(1 − µ(s1))− λ2µ(s2)(1− s2) = 0,

which is a contradiction. Similarly, if λ1 < 0, one has by (2.4):

−λ1(1− s1)µ(s1)− λ2µ(s2)(1 − s2) = 0,

which is again a contradiction. This ends the proof.

From Proposition 4.1, we obtain that any abnormal extremal trajectory satisfies
u1 = u2. If s0 ∈ C(s̄), then the only abnormal trajectories are s−(·, s̄, (1, 1)) and
s−(·, s̄, (0, 0)) (as u1 = u2). So, we can now assume that s0 /∈ C(s̄). Hence, we deal
with only one control u1 = u2 = v. Recall that for an affine system in the plane with
one input v, then switching points for abnormal trajectories only occur on the set ∆0

(see Proposition 2 in [6], p. 49). The next property will be used repeatedly hereafter.
As in Section 3, we use parameterization of orbits w.r.t. s1.
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Property 4.1. For any s0, s1 ∈ ∆+
0 , let us denote s2 = α(s1), resp. s2 = β(s1)

a parameterization of the orbit γ(s0, (0, 0)), resp. the semi-orbit γ+(s1, (1, 1)). If
α(s11) > β(s11), then the semi-orbit γ+(s1, (1, 1)) cannot intersect γ(s0, (0, 0)) in ∆+

0 .

Proof. From Lemma 4.4, the semi-orbit γ+(s1, (1, 1)) is contained in the set ∆+
0 .

For any s ∈ ∆+
0 , one has det(f(s), f(s) + g(s)) > 0. If the conclusion of the property

is false, then we would have det(f(s), f(s)+g(s)) ≤ 0 at the intersection point s ∈ ∆+
0

between γ+(s0, (0, 0)) and γ+(s1, (1, 1)).

Roughly speaking, a trajectory with the control (1, 1) cannot intersect in ∆+
0 a

trajectory with control (0, 0) from below (see Fig. 4).

(0,0)

(1,1)

(u,u)

(0,0)

(1,1)(u,u)

∆0

+

0

0∆

∆−

Figure 4. Sets of admissible directions for controls (u, u) on both sides of the curve ∆0.

We now show that an abnormal extremal trajectory that has a switching point
on ∆0 is not optimal.

Lemma 4.11. Any abnormal extremal trajectory starting at a point s0 ∈ D\C(s̄)
and that has at least one switching point is not optimal.

Proof. Consider an abnormal extremal trajectory starting at some point s0 ∈
D\C(s̄). If t0 is a switching point of such a trajectory, then s(t0) ∈ ∆0, φ(t0) = 0 and
we have from (4.4):

φ̇(t0) =
λ2(t0)

1− s1(t0)
det(g(s(t0)), [f, g](s(t0))).

We now suppose that an abnormal extremal trajectory has a switching point at time
t0.

First case. s(t0) ∈ ∆+
SA. From the expression of φ̇ above, we obtain φ̇(t0) > 0.

If the trajectory switches from u = 1 to u = 0 at time t0, then we necessarily have
φ̇(t0) ≤ 0 (in fact, one has φ(t) > 0 for t < t0). Thus, we have a contradiction. Hence,
the only possibility for the trajectory is to switch in ∆0 ∩∆+

SA from u = 0 to u = 1.
Then, for any t > t0, we have u = 1 and s(t) ∈ ∆+

0 from Lemma 4.4. Property
4.1 implies that the trajectory cannot intersect γ−(s̄, (0, 0)). Thus, if the trajectory
reaches s̄, then γ−(s̄, (1, 1)) ∩ ∆+

0 must coincide with the trajectory for t ≥ t0. By
using Lemma 2.1 (see Remark 2.2) and Property 4.1, we deduce that s(t0) ∈ C(s̄),
and so is the trajectory for any t ≤ t0. Now, Proposition 3.3 shows that this abnormal
trajectory (which is a concatenation of u1 = u2 = 0 and u1 = u2 = 1) is not optimal.

Second case. s(t0) ∈ ∆−
SA. This case implies that φ̇(t0) < 0. Similarly, we can

exclude a switching point from u = 0 to u = 1. We deduce that the trajectory must
switch from u = 1 to u = 0 at time t0. Hence, for t > t0, we have s(t) ∈ ∆+

0 . By
using Property 4.1 and Lemma 4.4, we deduce that the semi-orbit γ+(s(0), (1, 1))∩D
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is above γ+(s(t0), (0, 0)). Hence, s(t0) ∈ C(s̄), and so is the trajectory for any t ≤ t0,
and we conclude as in the previous case.

Third case. s(t0) ∈ ∆SA i.e. s(t0) = s⋆. First, suppose that the abnormal
trajectory satisfies u = 0 until s⋆, then u = 1. Then we can conclude that it is not
optimal by using the arguments in the first case above. Next, if the trajectory satisfies
u = 1 until s⋆ then u = 0, we can also conclude that it is not optimal by using the
arguments in the second case above.

The previous lemma implies the following result that allows to conclude on the
optimality of abnormal trajectories.

Proposition 4.12. The only abnormal optimal trajectories steering a point
s0 ∈ D to s̄ are γ−(s̄, (1, 1)) and γ−(s̄, (0, 0)).

Proof. The semi-orbits γ−(s̄, (1, 1)) and γ−(s̄, (0, 0)) are the only abnormal tra-
jectories that reach the target without any switching point, and they are optimal
thanks to Proposition 3.3.

Remark 4.4.

(i) This result is in line with the fact that the trajectory associated to an abnormal
extremal is on the boundary of the reachable set R (see [24]).

(ii) When ∂C(s̄) intersects the set ∆0 at some point sa (see for instance Fig.
7, second picture), then there exists initial conditions in D for which there exists an
abnormal trajectory steering s0 to the target s̄ and that passes though sa. Proposition
4.12 allows to exclude such trajectories from the optimal synthesis.

In the rest of the paper, we can assume that optimal trajectories are normal
extremals.

4.2. Study of s̄ ∈ B. In this part, we suppose s̄ ∈ B, and we show that the
optimal strategy outside C(s̄) is of singular type (similarly to the optimal synthesis
of minimal time problems for fed-batch bioprocesses with non-monotonic growth, see
e.g. [4, 18, 29]). Roughly speaking, the optimal strategy consists in choosing the
control that steers the system to the singular arc in minimal time. If the singular arc
is reached, then optimal trajectories are singular until reaching ∂C(s̄). Let s ∈ D\C(s).
The singular arc strategy (SAS) is defined by:

u1[s] = u2[s] = v[s] =

∣

∣

∣

∣

∣

∣

1 s ∈ ∆−
SA

us[s] s ∈ ∆SA

0 s ∈ ∆+
SA

where us[·] is a singular control such that the solution of (1.3) with u = us belongs
to the set ∆SA. The control us[·] can be expressed in feedback form:

us[s(t)] = −
〈λ(t), [f, [f, g]](s(t))〉

〈λ(t), [g, [f, g]](s(t))〉
,

where the adjoint vector only depends on the state λ(t) = − −g(s(t))⊥

det(f(s(t)),g(s(t))) , see e.g.

[6].
A possible way to describe optimality properties of singular arcs is to use the

notion of turnpike and anti-turnpike proposed in [6] (p.45). We recall briefly this
definition adapted to our setting following [6].
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Definition 4.13. A turnpike (resp. anti-turnpike) is a singular arc S that
satisfies:

(i) For every s ∈ S, the vectors f(s) + g(s) and f(s) are not tangent to ∆SA and
point to opposite sides of ∆SA.

(ii) For every s ∈ S, we have det(g(s), [f, g](s)) = 0 and det(f(s), g(s)) 6= 0.

(iii) The mapping s 7−→ θ(s) := −det(g(s),[f,g](s))
det(f(s),g(s)) satisfies θ > 0 (resp. θ < 0) on

∆+
SA and θ < 0 (resp. θ > 0) on ∆−

SA.

From Hypothesis H3, the set ∆SA can be written:

∆SA = ∆1
SA ∪∆2

SA ∪ {s⋆},

where ∆i
SA, i = 1, 2 is either a turnpike or an anti-turnpike. Next, we assume that

the singular arc is admissible.

Hypothesis H4. The singular arc is admissible i.e. us[s] ∈ [0, 1] for any s ∈
∆SA.

This assumption amounts to choose a value of umax large enough, so that up to
a renormalization of the function µ with a factor 1/umax, the singular arc is always
admissible with a control us ∈ [0, 1]. (see Hypothesis H2).

The next Lemma is a direct consequence of the fact that ∆0 ∩∆SA is a singleton
(which implies properties (ii) and (iii) of Definition 4.13) and of Hypothesis H4, which
implies property (i)).

Lemma 4.14. We have ∆1
SA = ∆SA ∩∆−

0 (resp. ∆2
SA = ∆SA ∩∆+

0 ) and ∆1
SA

(resp. ∆2
SA) is a turnpike (resp. anti-turnpike).

Equivalently, ∆SA∩∆−
0 is hyperbolic or time-minimizing and ∆SA∩∆+

0 is elliptic
or time-maximizing (see [15]). This property can be also obtained using the clock form
but locally [5]. This means that s⋆ is an attractive equilibrium for the dynamics (4.1)
restricted to u = us[s] and the set ∆SA. We can now provide an optimal strategy in
the set D\C(s̄).

Proposition 4.15. The optimal strategy steering any point s0 ∈ D\C(s̄) to
C(s̄) is the SAS strategy.

Proof. Let us take a point s0 ∈ ∆+
SA. Assume that an optimal trajectory starting

at s = s0 contains an arc v = 1 on some time interval [t1, t2]. Then, the trajectory
necessarily contains a switching point (otherwise it would not reach the target). So,
we can assume that φ(t2) = 0. Let us show that s(t2) ∈ ∆+

SA. Otherwise, we would
have s(t) ∈ ∆SA for some t ≤ t2. As the singular arc is admissible, this is not
possible in ∆SA ∩∆−

0 . Similarly, we cannot have s(t) ∈ ∆SA ∩∆+
0 as we would have

det(f(s(t)), f(s(t)) + g(s(t))) < 0 in contradiction with s(t) ∈ ∆+
0 and Property 4.1.

Hence the trajectory switches to v = 0 in ∆+
SA. By using (4.4), λ2 > 0, we obtain

φ̇(t2) > 0. On the other hand, as we have v = 1 over [t1, t2], we have φ > 0 over
[t1, t2), hence φ̇(t2) ≤ 0 which gives a contradiction. Hence, the optimal trajectory
necessarily satisfies v = 0 until reaching either the singular arc or ∂C(s̄). In the same
way, we can show that an optimal trajectory starting at a point s0 ∈ ∆−

SA necessarily
satisfies v = 1 until reaching either the singular arc or ∂C(s̄). The same argument
as above shows that it is not optimal for a trajectory to leave the singular before
reaching the set C(s̄).
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As mentioned in the proof of the previous result, optimal trajectories may not
necessarily reach the singular arc. This can happen if ∆SA ⊂ C(s̄) (see Fig. 7, third
picture). Nevertheless, the singular strategy remains optimal. Notice that the optimal
trajectory steering s0 to s̄ is unique in this case.

4.3. Study of s̄ ∈ A. In the case where the target point is above Λ, we have
the following result.

Proposition 4.16. Consider a target point s̄ ∈ A. Then, C(s̄) is not reachable
from D\C(s̄).

Proof. First, let us assume that s̄ ∈ IntA and suppose that there exists a trajectory
steering (1.3) from s0 ∈ D\C(s̄) to the target. If follows that C(s̄) is reachable from
s0, hence any optimal trajectory starting from the point s0 satisfies u1 = u2 = v.
From Proposition 4.5, we obtain that C(s̄) ⊂ ∆+

0 . From (2.4), any optimal trajectory
necessarily satisfies v = 0, v = 1 or v = us. As C(s̄) ⊂ ∆+

0 , the trajectory cannot
reach C(s̄) with the singular arc. Now, the trajectory necessarily has a switching point
in ∆+

0 at some time t0, otherwise it would reach s̄ with v = 0 or v = 1 which means
that s0 ∈ ∂C(s0) in contradiction with the choice of s0. Using the expression of the
Hamiltonian and φ(t0) = 0, we find that:

λ1(t0) =
s1 − s2
1− s1

1

ρ(s1, s2)
, λ2(t0) = −

1

ρ(s1, s2)
,

where ρ(s1, s2) = µ(s2)(1 − s2) − µ(s1)(s1 − s2). But, we have ρ > 0 in ∆+
0 , hence

we obtain that λ(t2) < 0 which contradicts the fact that λ2 > 0 for initial conditions
outside of C(s̄). This means that s̄ is not reachable from s0 which ends the proof.

Now, we have to investigate the case where s̄ ∈ Λ. Let s0 ∈ D\C(s̄). If s̄ = s⋆,
then from Lemma 4.3, we know that C(s̄)\s⋆ ⊂ ∆+

0 . As a singular trajectory cannot
reach s⋆, we can proceed as in the previous case. Assume now that s̄ ∈ γ+(s̄, (0, 0))\s⋆.
Notice that the part of the boundary of C(s̄) defined with the controls u1 = u2 = 0
coincides with Λ in the set ∆−

SA. Lemma 4.3 implies that the part of the boundary
of C(s̄) defined with the controls u1 = u2 = 1 does not intersect ∆0. Therefore,
C(s̄)\s⋆ ⊂ ∆+

0 and we can use the same argument as in the case s̄ = s⋆ to show that
C(s̄) cannot be reached from s0. In the case where s̄ ∈ γ+(s̄, (1, 1))\s⋆, we can use a
similar reasoning to show that C(s̄) cannot be reached from s0. This concludes the
proof.

4.4. Synthesis of the results. The next Theorem is our main result and is a
rephrasing of Propositions 3.3, 4.15 and 4.16.

Theorem 4.17. Assume Hypotheses H1, H2, H3 and H4. Let us take a target
point s̄ ∈ D. Then, we have the two following cases.

(i) If s̄ ∈ A, then s̄ is reachable from initial conditions in C(s̄) only.
(ii) If s̄ /∈ A, then s̄ is reachable from any initial condition in D.
Moreover, the optimal synthesis is as follows:
• For s0 on the boundary of C(s̄), the optimal control is (1, 1) if the trajectory
is on γ−(s, (1, 1)), and (0, 0) if it is on γ−(s, (0, 0)).

• For s0 in the interior of C(s̄), any control of the form (u1, 0) or (1, u2) is
optimal, as long as the trajectory does not cross the curve Γ or the boundary
of C(s̄). On Γ, the optimal control is (1, 0).

• For s0 ∈ D\C(s̄) (case (ii) only), the optimal control is given by the singular
arc strategy SAS until reaching the boundary of C(s̄).
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In case (i) of Theorem 4.17, we can write the value function as:

T (s0) :=

{

max
{

∫ s1

s0
1

dσ
(1−µ(σ))(1−σ) ,

∫ s2

s0
2

dσ
−µ(σ)(1−σ)

}

, s0 ∈ C(s̄),

+∞, s0 ∈ D\C(s̄).

In the second case of Theorem 4.17, we denote by T1(s
0) the time to drive (1.3) from

s0 to the target s̄ by the singular arc strategy until reaching C(s̄) and then the control
(0, 0) or (1, 1) until reaching s̄. We can write the value function as:

T (s0) :=

{

max
{

∫ s1

s0
1

dσ
(1−µ(σ))(1−σ) ,

∫ s2

s0
2

dσ
−µ(σ)(1−σ)

}

, s0 ∈ C(s̄),

T1(s
0), s0 ∈ D\C(s̄).

In view of the optimal feedback control defining T1(·), its expression is quite hard to
obtain. Nevertheless it can be computed numerically.

Fig. 5 depicts the two main cases depending on the target belonging to the set A
or not.

s2

s2

1s
1s

Λ

D

C (  )s

1s

s2

1s

s2

D

C (  )s

Λ

Figure 5. Picture of the set C(s) and the curve Λ (in thick line). On the left : s̄ = (0.8, 0.4)
belongs to the set A. On the right : s̄ = (1, 0.3) belongs to the set B.

4.5. Optimal strategy in C(s̄) with u1 = u2. We end this section by a com-
ment on the optimal strategy in C(s̄). We have proved that in the set D\C(s̄), optimal
controls (u1, u2) necessarily satisfy u1 = u2 which is not the case in the set C(s̄) (see
Proposition Proposition 3.3). Therefore, one may wonder what optimal strategy steers
the system in minimal time to the target in C(s̄) if we impose u1 = u2. In view of
Proposition 4.15 and using that ∆SA is time-maximizing in ∆+

0 , the following result
can be obtained similarly.

Proposition 4.18. The optimal feedback steering a point s0 ∈ C(s̄) to the target
for the problem with one control u = u1 = u2 is given by:

u[s] :=

{

1, s ∈ C(s̄)\γ−(s̄, (0, 0)),

0, s ∈ γ−(s̄, (0, 0)).

In other words, when both controls are taken equal, the optimal strategy in
C(s̄) consists of a bang-bang control u1 = u2 = 1 until reaching ∂C(s̄), and then
u1 = u2 = 0 until reaching s̄ if necessary. It is worth noting that this strategy is
significantly different than the optimal one with two different controls (in particular
for initial conditions on Γ where the optimal strategy is (u1, u2) = (1, 0)).
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5. Numerical Simulations.

5.1. Singular arc when µ is linear. In this part, we suppose that µ(s) = αs
with 0 < α < 1 (see Hypothesis H2). We can prove the following properties on the
set ∆0 and the singular arc.

Proposition 5.1.

(i) The set ∆0 is given by the algebraic equation of degree 2:

∆0 = {(s1, s2) ∈ D | − s1(s1 − s2) + s2(1 − s2) = 0},

and we have s2 = ζ(s1) =
1
2 (s1 + 1−

√

−3s21 + 2s1 + 1), s1 ∈ [0, 1].
(ii) The set ∆SA is a line-segment given by

∆SA = {(s1, s2) ∈ D | s2 = 2s1 − 1}.

(iii) The singular control is given by us[s] = 2α(1− s1), and us[s] ∈ [0, 1] for any
s ∈ ∆SA.

(iv) There exists exactly one steady-state singular point s⋆ = (23 ,
1
3 ).

(v) The steady-state singular point is attractive and we have for s = (s1, s2) ∈
∆SA:

ṡ1 > 0 iff s1 ∈

[

1

2
,
2

3

)

and ṡ1 < 0 iff s1 ∈

(

2

3
, 1

]

.

(vi) The adjoint vector along ∆SA is given by

λ1 = −λ2 = −
1

α(1− s1)(−3s1 + 2)
,

Proof. The proof of (i) and (ii) is straightforward using a symbolic software.
Notice that we have 1 − s1 = s1 − s2 along the singular arc. The expression of us

follows from (1.3) using ṡ2 = 2ṡ1 which proves (iii). Now replacing us into (1.3) gives
the closed-loop system:

{

ṡ1 = α(1 − s1)(2 − 3s1),

ṡ2 = α(1 − s1)(1 − 3s2),

and we obtain (iv)-(v). The proof of (vi) follows by solving φ = 0 together with H = 0
along ∆SA.

This proposition shows in particular that Hypotheses H3 and H4 are satisfied.
This case is illustrated on Fig. 6. The arrows indicate that s⋆ is attractive. The
singular arc in ∆−

0 (part below the curve ∆0) is turnpike (time minimizing) whereas
the singular arc in ∆+

0 (part above ∆0) is anti-turnpike (time maximizing). The
figures 7 and 8 are an illustration of Theorem 4.17. Several examples of optimal
trajectories for initial conditions outside the set C(s̄) are depicted.

5.2. Singular arc when µ is Monod. In this part, we suppose that the growth
function is of Monod type (see [34]): µm(s) = µs

k+s
, where k > 0, µ̄ > 0 and µ̄ < 1 (see

Hypothesis H2). The situation is quite similar to the linear case, but the expression
of ∆0, ∆SA and us are more delicate to obtain. We have used a symbolic software
in order to verify the next proposition that provides an explicit expression of ∆0 and
∆SA.
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Figure 6. Picture left: plot of the singular arc ∆SA (dashed line) and of ∆0 (plain line) in the
linear case: µ(s) = s. Picture right: plot of the singular arc ∆SA (dashed line) and of ∆0 (plain
line) in the Monod case: µm(s) = s

5+s
.

Proposition 5.2.

(i) The function ζ : [0, 1] → [0, 1] defining the curve ∆0 is given by:

ζ(s1) = −
1

2k

[

s21 − ks1 − k − s1 +
√

(1− s1)(k + s1 − s21 + 3ks1)

]

with s1 ∈ (0, 1).
(ii) There exists š1 ∈ (0, 1) and a C1-mapping ξ : [š1, 1) → [0, 1) which is increas-

ing and such that (s1, s2) ∈ ∆SA if and only if s2 = ξ(s1), where :

ξ(s1) :=
1

2(1− s)

[

−s1 − k2 + ks1 − 3k +
√

(k + s1)2(1 + k)(5 + k − 4s1)
]

,

and we have š1 := −2k−1+k
√
4k2+8k+5

2(1+k) .

By using the expression of ξ and ζ, we can check numerically that there exists
exactly one singular point s⋆ (see Fig. 6) and that the singular arc is admissible,
hence Hypotheses H3 and H4 are satisfied.

6. Conclusion. For this minimal time problem with a set of control inputs with
a triangular shape, that is due to the constraint u2 ≤ u1, we have shown the benefit
of considering a particular subset C(s̄) of the state space, that is target dependent
and presents the following features:

• Outside this set, either the target is non reachable, or the optimal synthesis
fulfills u1 = u2 with a possible singular arc.

• In C(s̄), the extra controllability assumption over control inputs u1 = u2 (that
yields to the inequality u2 ≤ u1) leads to an infinity of optimal trajectories,
all of them with u2 6= u1 (excepted on part of the boundary of the set).

Furthermore, when the the target is reachable from the exterior of C(s̄), the particular
cascade structure of the problem leads to a non intuitive feature of some of the optimal
trajectories: it consists in rolling far away from the target until reaching the set C(s̄)
or a singular arc to be followed until eventually reaching C(s̄), and then come back
along the set C(s̄).

The geometric analysis has revealed the role of a semi-permeable curve, that can
be easily computed numerically and that indicates to the practitioners whether the



26 T. BAYEN AND A. RAPAPORT AND M. SEBBAH

C s(  )

1s

s2

0∆

0,0

0,0

1,1

1s

s2

C s(  )

0∆ 

0,0

1,1

1s

s2

C s(  )

0∆ 

0,0

Figure 7. Examples of optimal trajectories (in black) for different targets s̄ in the case s⋆ ∈ C(s̄)
with µ(s) = s. First picture: target in ∆−

SA
. Second picture: target in ∆+

SA
. Third picture: the

singular arc satisfies ∆SA ⊂ C(s̄) and the singular strategy reduces to u = 0 until reaching ∂C(s̄)

target is reachable or not, and the nature of the optimal feedback depending on the
position of the initial condition with respect to these curves.
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C s(  )

s2

1s0∆  

0,0

0,0

1,1 1,1

1,1

0,0

Λ

Figure 8. In purple: the semi-permeable curve Λ with µ(s) = s. In green: the curve ∆0. In
blue: the boundary of C(s̄). In red: the singular arc ∆SA. In black: optimal trajectories for different
initial state outside of C(s̄).
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