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Abstract. In edge-weighted graphs, we provide a unified presentation
of a family of popular morphological hierarchies such as component trees,
quasi flat zones, binary partition trees, and hierarchical watersheds. For
any hierarchy of this family, we show if (and how) it can be obtained from
any other element of the family. In this sense, the main contribution of
this paper is the study of all constructive links between these hierarchies.

Introduction

In recent years, (supervised) image segmentations in edge weighted graphs re-
ceived a lot of attention. In this framework, several methods [1–5] were designed
to segment images into partitions made of connected regions that are optimal
in the sense of some well-known problems of combinatorial optimization such as
min-cuts, random walks, or minimum spanning trees.

Some of these methods (see [6, 1]) also satisfy a “scale consistency property”
that assesses the robustness of the detected contours and regions over scales.
Given three image seed points x, y, and z that mark three objects of interest,
a segmentation S into three regions obtained from the three seeds x, y and z
(i.e., each region contains one seed) “is consistent” with a segmentation S′ into
two regions obtained from the two seeds x and y if when a pixel belongs to the
region of a seed in S, then it necessarily belongs to the region of S′ that con-
tains this seed. More generally, a segmentation is called hierarchical if it defines
segmentations at different detail levels such that the segmentations at coarser
levels can be obtained from those at finer levels by simple merge operations.

In fact, hierarchical segmentation methods are not limited to edge-weighted
graphs (see e.g., [7–10]). In particular, in mathematical morphology, component
trees [11], quasi-flat zones [12, 13], binary partition trees [14] and watersheds [15–
17] are hierarchies at the basis of efficient segmentation and filtering methods.

In this paper, we study these morphological hierarchies defined from edge-
weighted graphs, and we provide a unified presentation of this family. For any
hierarchy of this family, we show if (and how) it can be obtained from any
other element of the family. In this sense, the main contribution of this paper is
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PH(G) MH(G) PH(T ) MH(T ) Q B≺ HS

PH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
MH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
PH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
MH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
Q ⇐= ⇐= ⇐= ⇐= ⇐⇒ =⇒ ×
B≺ × × =⇒ =⇒ =⇒ ⇐⇒ =⇒
HS × × × × × ⇐= ⇐⇒

Table 1. Summary of the main results. In the table, T stands for any minimum
spanning tree of G, S stands for any sequence of minima of F , PH(G) is the partition-
hierarchy of G, MH(G) is the min-hierarchy of G, PH(T ) is the partition-hierarchy
of T , MH(T ) is the min-hierarchy of T , Q is the quasi-flat zones hierarchy, B≺ is the
binary partition hierarchy by the ordering ≺, and HS is an MSF hierarchy for S. In
a cell, the symbol ⇐= (resp. =⇒) indicates that the hierarchy corresponding to the
column (resp. line) of the cell can be obtained from the one corresponding to the line
(resp. column) of the cell, and the symbol⇐⇒ (resp. ×) indicates that two hierarchies
can be (resp. cannot be) obtained one from each other.

the study of all constructive links between these morphological hierarchies. For
establishing these links, the minimum spanning trees play a central role. Table 1
indicates all links that are shown in this paper. An important consequence of our
results is the design of efficient algorithms based on Kruskal minimum spanning
tree algorithm to compute these morphological hierarchies in quasi linear-time.
These algorithms are presented in [18].

1 Graphs

We define a graph as a pair X = (V (X), E(X)) where V (X) is a finite set
and E(X) is composed of unordered pairs of distinct elements in V (X), i.e., E(X)
is a subset of {{x, y} ⊆ V (X) | x 6= y}. Each element of V (X) is called a vertex
or a point (of G), and each element of E(X) is called an edge (of X).

Let X and Y be two graphs. If V (X) ⊆ V (Y ) and E(X) ⊆ E(Y ), then X
and Y are ordered and we write X v Y . If X v Y , we say that X is a subgraph
of Y , or that X is smaller than Y and that Y is greater than X. The intersection
of X and Y is the graph X u Y = {V (X)∩ V (Y ), E(X)∩E(Y )} and the union
of X and Y is the graph X t Y = {V (X)∪ V (Y ), E(X)∪E(Y )}. The set of all
subgraphs of a graph G is denoted by 2G. The set 2G equipped with the order
relation v is a lattice whose infimum and supremum are the binary operations u
and t respectively (see [19] for a morphological study of this lattice).

Let X be a graph. A path (in X) is a sequence (x1, . . . , xn) of points of V (X)
such that {xi, xi+1} ∈ E for any i in [1, n− 1]. A path with no repeated vertex
is said to be simple. The graph X is connected if there exists a path between
any two vertices of X. A (connected) component of X is a subgraph Y of X
that is connected and such that, for any connected graph Z, we have Y = Z
whenever the relation Y v Z v X holds true. We denote by CC(X) the set of



all components of X and, if x is a vertex in V (X), we denote by CCx(X) the
unique element of CC(X) whose vertex set contains x.

Important notations. In the sequel of this paper, the symbol G denotes
a connected graph. Furthermore, to shorten the notations, its vertex and edge
sets are denoted by V and E respectively instead of V (G) and E(G).

We finish this section with the presentation of an adjunction that is known
for playing the role of a building block for morphology on graphs [19]. It will be
useful for expressing several properties in the sequel of this article. We denote by ε
the operator that maps to any subset X of V the subset of E made of the edges
of G composed of two points in X, i.e., ε(X) = {{x, y} ∈ E | x ∈ X, y ∈ X}.
We denote by δ the operator that maps to any subset X of E the subset of V
that contains every vertex in V which belongs to an edge in X, i.e., δ(X) =
∪{{x, y} ∈ X}. The pair (ε, δ) is an adjunction [19]. Let V ′ ⊆ V and E′ ⊆ E.
Using usual graph terminology, the graphs (V ′, ε(V ′)) and (δ(E′), E) are called
the graph induced by V ′ and the graph induced by E′ respectively.

2 Partitions and hierarchies

For segmentation purposes, one is often interested in finding partitions of V . We
denote by 2V the set of all subsets of V . Recall that a subset V of 2V whose
elements are disjoint and nonempty is a partial partition (of V ). The union of
a partial partition is called its support. A partition (of V ) is a partial partition
whose support is V .

In the following, subgraphs of G will be used to obtain partitions of V . Let X
be a subgraph of G. We denote by VCC(X) the set that contains the vertex set
of every component of X, i.e., VCC(X) = {V (Y ) | Y ∈ CC(X)}. Remark that
the set VCC(X) is a partial partition of V whose support is V (X). This partial
partition is called the (partial) partition induced by X.

A set H ⊆ 2V (resp. H ⊆ 2G) is a hierarchy on V (resp. G) if any two
elements of H are either disjoint or nested, i.e., for any H1, H2 ∈ H, we have
H1 ∩H2 ∈ {∅, H1, H2} (resp. H1 uH2 ∈ {(∅, ∅), H1, H2}). A hierarchy H on V
(resp. G) is complete if V (resp. G) is in H and if for any v ∈ V , we have
{v} ∈ H, (resp. {({v}, ∅)} ∈ H). It is well-known that the Hasse diagram of
a hierarchy (resp. complete hierarchy) is a directed forest (resp. tree), often
called the dendrogram of the hierarchy. In practice, this dendrogram is used as
a representation of the hierarchy. Let X and Y be two distinct elements of a
hierarchy H (on V or G), following the terminology of the dendrogram, we say
that Y is a child of X if Y is the largest proper subset of X among the elements
of H, i.e., if Y ⊆ X, and, for any Z ∈ H such that Y ⊆ Z ⊆ X, we have Z = X
or Z = Y . If Y is a child of X, we say that X is the parent of Y .

Let H be a hierarchy on V (resp. G) and let X be an element of H. A
minimum of H is an element of H that has no child. Let C ⊆ H. We say that C is
a cut of H if i) the elements of C are pairwise disjoint, and ii) for any minimum M
of H, the set C contains an element that is greater than M . If H is a hierarchy
on V , we say thatH is a hierarchy of partitions (on V ) whenever any cut ofH is a



partition of V . The following property characterizes the hierarchies of partitions
from their minima.

Property 1 Let H be a hierarchy on V . The hierarchy H is a hierarchy of
partitions if and only if the set of its minima is a partition.

A direct corollary is that any complete hierarchy on V is a hierarchy of partitions.
The hierarchies on G may be used to obtain hierarchies (of partitions) on V .

Let H be a hierarchy on G. We denote by V(H) the hierarchy on V defined
by V(H) = {V (X) | X ∈ H} and we say that V(H) is the hierarchy (on V ) in-
duced by H. Observe that the hierarchy H on G induces a hierarchy of partitions
on V if and only if any vertex of G is a vertex of a minimum of H.

Let H be a hierarchy on V (resp. on G), and let x be in V . The greatest
element of H that contains x (resp. whose vertex set contains x) is denoted
by CCx(H). Observe that if H is complete, then CCx(H) is exactly V (resp. G).

3 Component trees

Intuitively, component trees [11] may be seen as hierarchies obtained from the
connected components of an image. In particular, the min-tree is a well known
hierarchical representation that is useful for anti-extensive connected operators.
In this expression, the term min is used in reference to the leaves of these trees
that are the regional minima of the images. In this section, we provide definitions
of regional minima and of min-trees for edge-weighted graphs. Furthermore, on
the same basis, we provide a definition of a hierarchy of partitions that allows
links to be drawn between min-trees and quasi-flat zones.

Important notation. In the sequel, we denote by F a function from E to
R+ that weights the edges of E. Therefore, the pair (G,F ) is called an edge-
weighted graph, and, for any u ∈ E, the value F (u) is called the weight of u.

Let k ∈ R. A subgraph X of G is a minimum of F (at weight k) if i) X
is connected; and ii) k is the weight of any edge of X; and iii) the weight of
any edge adjacent to X (i.e., any edge that contains exactly one vertex of X) is
strictly greater than k.

In order to define the components of a weight map, the simple thresholding
operation is used to produce level sets from which connected components can
be considered. For given λ ∈ R and X ⊆ E, the λ-level set of X (for F ) is the
set χλ(X) of all edges in X whose value is not greater than λ, i.e., χλ(X) =
{e ∈ X|F (e) ≤ λ}. From the level set χλ(E) of E, two interesting graphs can
be derived: the first one, called the λ-level graph of G, and denoted by χEλ (G),
is defined by χEλ (G) = (δ(χλ(E)), χλ(E)), and the second one, called the λ-level
spanning graph of G and denoted by χVλ (G), is defined by χVλ (G) = (V, χλ(E)).
More generally, if X v G, the λ-level graph of X and the λ-level spanning
graph of X are defined by χEλ (X) = (δ(χλ(E(X))), χλ(E(X))), and χVλ (X) =
(V, χλ(E(X))) respectively.

Note that χEλ (G) can be derived from χVλ (G) by removing all isolated points
of χVλ (G), and that, conversely, χVλ (G) can be derived from χEλ (G) by adding all
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Fig. 1. Illustration of the min-hierarchy of a graph (a) and of its unique minimum
spanning tree (b), which is represented by wide edges.

elements of V to the vertex set of χEλ (G). Hence, we always have χEλ (G) v χVλ (G).
Note also that the partial partition induced by χVλ (G) is always a partition of V
whereas the one induced by χEλ (G) is in general not a partition (i.e., its support
is in general a proper subset of V ).

Definition 2 Let X v G. The partition-hierarchy ofX (for F ), denoted by PH(X),
is the set PH(X) = ∪{CC(χVλ (X)) | λ ∈ R} and the min-hierarchy of X (for F ),
denoted by MH(X), is the set MH(X) = ∪{CC(χEλ (X)) | λ ∈ R}.

The Hasse diagram of the min-hierarchy of G is known as the min-tree of
(G,F ). Fig. 1a shows in red the min-tree of the edge-weighted graph represented
in gray. The elements C1, C2, C3 and C4 of this min-hierarchy (i.e., the nodes of
the min-tree) are represented by red horizontal lines. Observe that C1 and C2,
which are the two components of the 0-level graphs of G, are the graphs induced
by {{b, c}} and {{d, e}} respectively. The component C3 (resp. C4) is the unique
connected component of the 1-level graph (resp. 2-level graph) of G; C3 is the
graph induced by {{a, b}, {b, c}, {b, e}, {d, e}} and C4 is the graph G itself. The
partition-hierarchy of G is a superset of this min-hierarchy, which furthermore
contains any subgraph of G made of a single vertex. More generally, as assessed
by the following property, the min-hierarchy and the partition-hierarchy of G
can always be obtained one from each other. Therefore, the min-hierarchy and
the partition-hierarchy of G are equivalent as well as the min-tree of (G,F ) and
the Hasse diagram of the partition-hierarchy of G.

Property 3 The min-hierarchy of any subgraph X of G can be obtained by
removing from the partition-hierarchy of X the graphs made of a single vertex,
i.e., MH(X) = PH(X) \ {({x}, ∅) | x ∈ V }. Conversely, the partition-hierarchy
of any subgraph X of G can be obtained by adding to the min-hierarchy of X all
graphs made of a single vertex, i.e., PH(X) =MH(X) ∪ {({x}, ∅) | x ∈ V }.

Observe that the partition-hierarchy of G indeed induces a hierarchy of par-
titions on V , whereas, in general, the min-hierarchy of G does not. In the next
section, we will study the minimum spanning trees of G, and we will see that



these particular subgraphs of G are sufficient to recover the hierarchies of parti-
tions induced by the min-hierarchy and the partition-hierarchy of G.

4 Minimum spanning trees

The minimum spanning tree is a typical and well-known problem of combinato-
rial optimization. It has been applied for many years to image analysis problems.
The main result of this section states that the hierarchy of partitions induced by
the partition-hierarchy of any minimum spanning tree of G is exactly the same
as the hierarchy of partitions induced by the partition-hierarchy of the graph G
itself. Furthermore, the minimum spanning trees are minimal (with respect to
the relation v) for this property.

A graph X is spanning (for G) if V (X) = V . Let X v G. The weight of X
(for F ), denoted by F (X), is the sum of the weights of the edges in E(X): F (X) =∑
u∈E(X) F (u). A connected spanning graph T is a minimum spanning tree (of

(G,F ) if the weight of T is less than or equal to the weight of any other connected
graph that is spanning.

Property 4 Let T be any minimum spanning tree of G. Then, the partitions
induced by χVλ (T ) and by χVλ (G) are the same.

Let X v G. We denote by φ(X) the graph induced by the vertex set
of X: φ(X) = (V (X), ε(V (X))). Note that φ is both a dilation and a closing in
the lattice 2G of all subgraphs of G (for more details, see [19] where φ is denoted
by α2). For a given hierarchy H of graphs, we write ϕ(H) = {φ(X) | X ∈ H}.
It can be seen that V (φ(X)) = V (X). Thus the hierarchies on V induced by H
and ϕ(H) are the same, i.e., we always have V(ϕ(H)) = V(H).

Given two hierarchies H1 and H2 whose elements are ordered by the re-
lations ≤1 and ≤2 respectively, an (order) isomorphism from H1 to H2 is a
bijection f from H1 to H2 such that for any X,Y ∈ H1, X ≤1 Y if and only if
f(X) ≤2 f(Y ). If there exists an isomorphism from H1 to H2, then H1 and H2

are said isomorphic and we write H1
∼= H2. Note that two hierarchies that are

isomorphic can be represented by the same Hasse diagram.

Property 5 Let T be any minimum spanning tree of G. Then the two following
statements hold true:

1. PH(T ) ∼= ϕ(PH(G)); and
2. V(PH(T )) = V(ϕ(PH(G))) = V(PH(G)).

In other words, the hierarchies induced by the partition-hierarchy of a minimum
spanning tree and by the graph itself are the same. Furthermore, due to the
mapping ϕ, the partition-hierarchy of any minimum spanning tree of G can be
recovered from the partition hierarchy of G. On the contrary, the converse is in
general not true. Hence, in general, there is more information in the partition-
hierarchy of G than in partition-hierarchy of any of its minimum spanning trees.
When available, such information may be used for further processing.



Property 5 is illustrated on the edge-weighted graph (G,F ) of Fig. 1, where
the red trees in (a) and (b) represent respectively PH(G) and PH(T ) ∼= ϕ(PH(G)),
T being the minimum spanning tree depicted with “wide” edges.

5 Quasi-flat zones

The quasi-flat zones (see e.g. [12, 13, 8]) have been studied since the 70’s, and they
have been used recently as a basis for constrained connectivity segmentations. In
this section, we investigate the links between the quasi-flat zones, the min-trees,
the partition-hierarchies of a graph G and of its minimum spanning trees.

Let λ ∈ R. A path π = (x0, . . . , xn) is λ-connected if for any i in J0, n− 1K =
{0, . . . n − 1}, we have {xi, xi+1} ∈ E and F ({xi, xi+1}) ≤ λ. For any two
vertices x and y in V , we set λ−Π(x, y) as the set of all λ-connected paths from
x to y. The λ-flat zone (or quasi-flat zone at level λ) of a vertex x is the set
λ − CC(x) = ∪{y ∈ V | λ −Π(x, y) 6= ∅}. The set Qλ = {λ − CC(x) | x ∈ V }
of λ-flat zones over all vertices in E is a partition.

Definition 6 The set Q = ∪{Qλ | λ ∈ R} is the quasi-flat zones hierarchy of F .

The quasi-flat zones hierarchy is a complete hierarchy, and thus also a hier-
archy of partitions. In the literature, the term α-tree was coined by G. Ouzounis
and P. Soille for the Hasse diagram of the quasi-flat zones hierarchy [20].

For any λ ∈ R, it can be seen that Qλ is the partition induced by the λ-level
graph χVλ (G) of G. Hence, by Property 4, the partition Qλ is also the partition
induced by the λ-level graph of any minimum spanning tree of G. Therefore,
the following property linking the quasi-flat zones hierarchy to the partition-
hierarchies of any minimum spanning tree of G can be established.

Property 7 Let T be a minimum spanning tree of G. Then, the two following
statements hold true:

1. Q ∼= PH(T ); and
2. Q = V(PH(T )).

The first relation states that the quasi-flat zones hierarchy and the partition-
hierarchy of T are isomorphic. Due to Property 5.1, we deduce that these two hi-
erarchies are also isomorphic to ϕ(PH(G)) obtained by simplifying the partition-
hierarchy of G. Furthermore, by Property 3, we deduce that these two hierarchies
may also be obtained form the min-hierarchy of G. Hence, Property 7.1 states
that the α-tree and the partition-tree of any minimum spanning tree of G are the
same and that they both can be obtained from the partition- and min-trees of
the graph G itself. The second relation states that the quasi-flat zones hierarchy
is exactly the hierarchy of partitions induced by the partition-hierarchy of any
minimum spanning tree of G. It thus states how to obtain the quasi flat zones
hierarchy from any other hierarchy previously presented in this paper.



6 Binary partition trees

In this section, we present the binary partition hierarchies by (altitude) order-
ings. These hierarchies fall into the wide category of binary partition trees as
introduced by P. Salembier [21]. Then, we state that the quasi-flat zones hier-
archy can be recovered from this hierarchy, and we show a mapping from the
elements of these hierarchies to the edge-set of the minimum spanning trees
of (G,F ). Note that Meyer studied similar links between catchment basins and
minimum spanning trees in [17].

Let ≺ be a total ordering on E, i.e., ≺ is a binary relation that is transitive
and trichotomous (for any u and v in E only one of the relations u ≺ v, v ≺ u,
and u = v holds true). Let k be any element in J1, |E|K, we denote by u≺k the
k-th element of E with respect to ≺.

Definition 8 Let k be an element in J1, |E|K. We set B0 =
{
{x} | x ∈ V

}
.

The partial binary partition hierarchy Bk at rank k (by the ordering ≺) is the
hierarchy on V defined by Bk = Bk−1 ∪

{
CCx(Bk−1) ∪ CCy(Bk−1)

}
where u≺k =

{x, y}.
The partial binary partition hierarchy at rank |E| is called the binary partition

hierarchy by (the ordering) ≺ and it is denoted by B≺.

The Hasse diagram of the binary partition hierarchy is known in the literature
as the binary partition tree (see, e.g., Fig. 2a). Note that, for every possible value
of k, the partial binary partition hierarchy at rank k is a hierarchy of partitions
and furthermore the binary partition hierarchy is a complete hierarchy.

Let ≺ be an ordering on E, and let k ∈ J1, |E|K. Observe that the partial
binary partition hierarchy at rank k is equal to the partial binary partition
hierarchy at rank k− 1 if and only if the k-th edge for ≺ links two vertices that
are already in a same set of Bk−1 (see e.g. the hierarchies B6 and B7 in Fig. 2a).
Hence, we may associate to any element X in B?≺ = B≺ \ B0 the lowest rank at
which a partial binary partition tree contains X. This rank is called the rank
of X, it is denoted by r(X) and we have r(X) = min{k ∈ J1, nK | X ∈ Bk}.
This rank also allows us to directly map the elements of B?≺ to a subset of E.
Let X ∈ B?≺, the building edge of X is the r(X)-th edge of E for ≺. The set of
building edges of all elements in B?≺ is called the building set of B≺.

We say that an ordering ≺ on E is an altitude ordering (for F ) if F (u) ≤ F (v)
for any two u and v in E such that u ≺ v. If there is only one altitude ordering
for F , then we say that F is totally ordering.

Property 9 Let ≺ be an altitude ordering, and let B≺ be the binary partition
hierarchy by ≺. If F is totally ordering, then the two following statements hold
true:

1. the graph induced by the building set of B≺ is the unique minimum spanning
tree of F ; and

2. B≺ = Q.
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Fig. 2. a: A binary partition hierarchy/tree B≺ for the altitude ordering {c, d} ≺
{a, e} ≺ {g, h} ≺ {e, f} ≺ {d, h} ≺ {a, b} ≺ {b, f} ≺ {b, c} ≺ {f, g} ≺ {c, g}. b: Ψ(B≺).
c: The same binary partition hierarchy with a sequence S = 〈M1,M2,M3〉 of minima
of F and, for each non-leaf element, a pair of values (ext, pers) made of the extinction
of the component and the persistence of its building edge (note that the extinction of
a leaf/singleton is always 0). d: The edge-weighted graph whose partition-hierarchy is
the hierarchy induced by ≺ and S, which is thus also the MSF hierarchy for S.

Hence, under the conditions of the previous property, we deduce from Prop-
erties 7 and 5 that B≺ is also isomorphic to PH(T ) and to ϕ(PH(G)). Thus, it
can be obtained as a simplification of the partition-hierarchy PH(G) and also,
by Property 3, as a simplification of the min-hierarchy MH(G).

Let ≺ be an altitude ordering. Let X ∈ B?≺, we call altitude of X, the weight
of its building edge. We say that X is principal for B≺ if it has no parent or if
its altitude is less than the one of its parent. The set of all principal elements
of B≺ is denoted Ψ(B≺) (see Figs. 2a and b for illustrations).

Property 10 Let ≺ be an altitude ordering, and let B≺ be the binary partition
hierarchy by ≺. Then, the two following statements hold true:

1. the graph induced by the building set of B≺ is a minimum spanning tree of F ;
and



2. Q = Ψ(B≺).

The previous property states that the quasi-flat zones hierarchy Q can be
obtained by simplifying the binary partition hierarchy B≺. In fact, contrarily to
the case of maps which are totally ordering, the converse is, in general, not true:
the binary partition hierarchy cannot be obtained from the quasi-flat zones hier-
archy or from the partition-hierarchy of a minimum spanning tree. Furthermore,
it can be shown that, in general, one cannot recover a binary partition hierarchy
from a min-/partition-hierarchy of G either.

7 Hierarchies of minimum spanning forests

This section first presents the minimum spanning forests rooted in subgraphs
of G. This notion of a forest, which is useful for (seeded) image segmentation, is
known to be equivalent to the one of minimum spanning tree. Then, hierarchies
of minimum spanning forests are introduced. Each such hierarchy induces a
hierarchy of partitions on V . Finally, we state the main result of this section
that shows how hierarchies of minimum spanning forests can be obtained from
binary partition hierarchies.

Let X and Y be two nonempty subgraphs of G. We say that Y is rooted
in X if V (X) ⊆ V (Y ) and if the vertex set of any component of Y contains
the vertex set of exactly one component of X. We say that Y is a minimum
spanning forest (MSF) rooted in X (with respect to F ) if i) Y is spanning; ii) Y
is rooted in X; and iii) the weight of Y is less than or equal to the weight of
any graph Z satisfying (1) and (2) (i.e., Z is both spanning and rooted in X).
Furthermore, any minimum spanning tree of G is called an MSF rooted in the
empty graph.

For instance, the graphs induced by the null edges of Fig. 2d is an MSF
rooted in the graph made of the minima M1, M2 and M3 shown in Fig. 2c.

A possible definition for watershed, called watershed-cuts, follows the drop
of water principle. In [4], we have proved the equivalence between MSF rooted
in the set of minima and watershed cuts. In practice, watersheds from markers
are often computed, and subsets of minima of the original edge-weighted graph
constitute robust markers. The next definition presents a notion of hierarchy of
MSFs rooted in such subsets.

We denote by MF the set of all minima of F .

Definition 11 (MSF hierarchy, [6]) Let S = 〈M1, . . . ,M`〉 be a sequence of
pairwise distinct minima of F and let 〈X0, . . . , X`〉 be a sequence of subgraphs
of G such that:

1. for any i ∈ J0, `K, Xi is an MSF rooted in t[MF \ {Mj | j ∈ J1, iK}]; and

2. for any i ∈ J1, `K, we have Xi−1 v Xi.

The set T = ∪{CC(Xi) | i ∈ J0, `K} is called an MSF hierarchy for S.



Let ≺ be an altitude ordering on E, let S = 〈M1, . . . ,M`〉 be a sequence of
pairwise distinct minima of F , and let X ∈ B≺. The extinction value of X for S
is 0 if there is no element of S whose vertex set is included in X, or, otherwise,
it is set to the highest index k such that the vertex set of Mk is included in X.

Intuitively, if we see the sequence S as a sequence of “markers” ranked by
increasing “importance”, the extinction value of a set X in H can be seen as
the rank of the most important marker of X (i.e., that is contained in X). For
instance, in Fig. 2, the extinction value of every component of the binary parti-
tion tree is given for the sequence 〈M1,M2,M3〉, where M1 (resp. M2 and M3) is
the minimum induced by {{c, d}} (resp. {{g, h}} and {{e, f}}). Dually, one can
intuitively consider the persistence of an edge u as the highest rank k such that
the vertices linked by u belong to distinct regions of the partitions obtained by
considering only the k most important markers (see e.g. Figs. 2c, and d). Based
on this notion of persistence, Property 12 states that MSF hierarchies can be
obtained using only the binary partition trees by altitude orderings.

Let ≺ be an altitude ordering on E. Let S = 〈M1, . . . ,M`〉 be a sequence of
pairwise distinct minima of F . Let u be an edge in the building set of B≺, and
let X be the unique element in B≺ whose building edge is u. The persistence value
of u is the minimum of the extinction values of the children of X. Let i ∈ J1, `K.
We denote by Bi the set of building edges whose persistence value is lower than
or equal to i and the set of graphs ∪{CC((V,Bi)) | i ∈ J1, ` − 1K} is called the
hierarchy induced by ≺ and S.

Property 12 Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F and let T be a hierarchy on G. The hierarchy T is an MSF hierarchy for S
if and only if there exists an altitude ordering ≺ such that T is the hierarchy
induced by ≺ and S.

Conclusion

This paper investigates the links between some popular morphological hierar-
chies. Table 1 sums up the links shown in this paper. These links open the way
towards a family of efficient algorithms, based on Kruskal minimum spanning
tree algorithms, for computing morphological hierarchies. These algorithms are
presented in the companion paper [18]. Furthermore, the links established in this
paper invites us to bridge hierarchical processing coming from different family
of hierarchies. Evaluating the impact of mixing these techniques is left for future
work. It also allows for designing new hierarchical methods derived from image
predicate which are not necessarily hierarchical (see a first example in [22]). Fi-
nally, the links between the hierarchical methods presented in this paper and
those based on self-dual tree of level lines [23] still need to be investigated.
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