
HAL Id: hal-00798621
https://hal.science/hal-00798621

Submitted on 9 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing with Kruskal: algorithms for morphological
trees in edge-weighted graphs

Laurent Najman, Jean Cousty, Benjamin Perret

To cite this version:
Laurent Najman, Jean Cousty, Benjamin Perret. Playing with Kruskal: algorithms for morphological
trees in edge-weighted graphs. International Symposium on Mathematical Morphology, May 2013,
Uppsala, Sweden. pp.135-146. �hal-00798621�

https://hal.science/hal-00798621
https://hal.archives-ouvertes.fr

Playing with Kruskal: algorithms for
morphological trees in edge-weighted graphs

Laurent Najman, Jean Cousty, and Benjamin Perret

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE

Abstract. The goal of this paper is to provide linear or quasi-linear
algorithms for producing some of the various trees used in mathemetical
morphology, in particular the trees corresponding to hierarchies of water-
shed cuts and hierarchies of constrained connectivity. A specific binary
tree, corresponding to an ordered version of the edges of the minimum
spanning tree, is the key structure in this study, and is computed thanks
to variations around Kruskal algorithm for minimum spanning tree.

1 Introduction

In the theoretical companion paper [1] of the present paper, we show how some
morphological hierarchies [2–7] defined on an edge-weighted graph G = (V,E, F)
are related, and when it is possible, how they can be computed one from each
other. In this paper, we provide efficient quasi-linear or linear algorithms to
compute those hierarchies. In particular, this paper contains:

– provided that the edges are either already sorted or can be sorted in lin-
ear time, a quasi-linear O(|E| × α(|V |)) (where α() is the extremely slowly
growing inverse of the single-valued Ackermann function) algorithm that
computes a binary partition tree by altitude ordering, a fundamental struc-
ture that we post-process in the sequel;

– a linear O(|V |) post-processing algorithm that computes the hierarchy of
quasi-flat zones [3, 1] (also know as the α-tree [8]);

– a linear O(|V |) post-processing algorithm that computes (hierarchies of)
watershed cuts [9];

– a linear O(|V |) post-processing algorithm that computes hierarchies by in-
creasing attributes; as detailed here and in [1], such an algorithm can be used
to obtain either constrained connectivity hierarchies [10] or watershed-based
hierarchies [11].

To the best of our knowledge, the only published constrained connectivity
algorithm, available in [10], has an unknown complexity and only computes one
level of the hierarchy. An algorithm computing the whole hierarchy, relying on
the component tree of the edge-weighted graph G, is roughly sketched in [12], but
has a complexity higher than the one proposed in this paper and is less memory
efficient. Concerning attribute-based hierarchies, the most efficient algorithm [13]
has a complexity higher than the one proposed in this paper, and is less efficient.

2

At the heart of our approach is the minimum spanning tree (MST): this tree
T is a connected spanning graph of the graph G such that the weight of T :
F (T) :=

∑
e∈E(T) F (e) is the least possible weight for a spanning graph of G.

As detailed in section 2.1, we rely on Kruskal algorithm [14] for computing this
MST. However, while producing the MST, we make use of another tree (detailed
in section 2.2) that we call the binary partition tree by altitude ordering. Using
Tarjan union-find (section 2.3), we propose in section 2.4 an efficient algorithm
to compute this binary tree. Post-processing will be studied in section 3.

2 Binary Partition Tree and Minimum Spanning Tree

2.1 Kruskal algorithm

Kruskal’s algorithm [14] is a greedy algorithm that finds a minimum spanning
tree for a connected weighted graph. It can be described as follows:

– create a forest F (a set of trees), where each vertex in the graph is a separate
tree

– create a set S containing all the edges in the graph
– while S is nonempty and F is not yet a single tree
• remove an edge with minimum weight from S
• if that edge connects two different trees, then add it to the forest, com-

bining two trees into a single tree
• otherwise discard that edge.

At the termination of the algorithm, the forest has only one component and
forms a minimum spanning tree of the graph.

The efficiency of Kruskal’s algorithm relies on a disjoint-set data structure
that keeps track of a set of elements partitioned into a number of disjoint (non-
overlapping) subsets. The disjoint set problem consists in maintaining a collec-
tion Q of disjoint sets under the operation of union. Each set Q in Q is repre-
sented by a unique element of Q, called the canonical element. In the following,
q1 and q2 denote two distinct elements. Three operations allow to manage the
collection:

– MakeSet(q1): add a new element q1 to the collection Q, provided that the
element q1 does not already belongs to a set in Q.

– FindCanonical(q1): return the canonical element of the set in Q which con-
tains q1.

– Union(q1, q2): let Q1 and Q2 be the two sets in Q whose canonical elements
are q1 and q2 respectively (q1 and q2 must be different). Both sets are removed
from Q, their union Q3 = Q1 ∪ Q2 is added to Q and a canonical element
for Q3 is selected and returned.

An implementation of Kruskal algorithm is presented in Algorithm 1. In this
implementation, we identify any element of V with an integer corresponding to
its index in the finite set |V |. We save the edge of the MST in an array MST, hence
obtaining a strict order on the edges; this order is necessary for post-processing.

3

Algorithm 1: Kruskal

Data: An edge-weighted graph (V,E, F).
Result: A minimum spanning tree MST
Result: A collection Q
// Collection Q is initialized to ∅

1 e := 0;
2 for all xi ∈ V do MakeSet(i);
3 for all edges {x, y} by (strict) increasing weight F ({x, y}) do
4 cx := Q.FindCanonical(x); cy := Q.FindCanonical(y);
5 if cx 6= cy then
6 Q.Union(cx, cy);
7 MST[e] := {x, y};
8 e := e + 1;

9 else DoSomething({x, y});

When computing an MST, the DoSomething procedure does nothing, i.e.,
it discards the considered edge. In section 3.3, we show an example when the
procedure DoSomething is useful.

Procedure DoSomethingMST({x, y})
// Ignore {x, y}
The main question in implementing Kruskal’s algorithm is thus how to rep-

resent and implement the collection Q. A good representation is to maintain the
collection as a set of trees, i.e each element of Q is a tree. In the sequel of this
paper, each set of the collection Q is represented by a rooted tree, where the
canonical element of the set is the root of the tree. We are going to play with
various tree representations of connected components. Kruskal’s algorithm will
not change, but different implementations for Union and FindCanonical will
lead to two different trees, one of them being useful for connected filtering.

2.2 A simple algorithm that yields a binary partition tree by
altitude ordering

The first tree we present is the useful one, although the proposed algorithm in
this section is not an efficient one (we make a better proposal in section 2.4). As
shown in [1] and in the sequel of this paper, post-processing this tree provides
the min-tree of MST, the tree of quasi-flat zones and trees of watersheds. The
main idea is the following: each time an edge {x, y} is put into the MST, i.e.
each time a union is made, we create a new node whose children are the two
disjoint sets containing x and y. Intuitively, it is as if we break the edge in two,
and add a node between the two points of the edge. The added node becomes
the canonical element of the union of these two points (see Fig. 1.a, b, c and d).
Each node will thus either correspond to an edge of the MST or to a vertex of
V . In the implementation, nodes of the tree are represented by integer: nodes

4

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

(a) Edge-weighted graph

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{g,h}

{a,e}
{c,d}

(b) First nodes of QBT

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{e,f} {g,h}

{a,e}
{c,d}

(c) Adding a node to QBT

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

(d) Final QBT

Fig. 1. A simple process for obtaining QBT , a binary tree providing a strict total order
relation on the edges of the MST (see text).

corresponding to vertices are from 0 to |V |−1 and nodes corresponding to edges
of the MST are from |V | to 2|V | − 2. Such a numbering allows the tree itself
to be provided thanks to an array parent that stores the parent of a given
node. If node i does not have a parent, then parent[i] := −1. This algorithm is
implemented in QBT .MakeSet, QBT .FindCanonical and QBT .Union.

Procedure QBT .MakeSet(q)

1 QBT .parent[q] := −1; QBT .size += 1;

Function QBT .FindCanonical(q)

1 while QBT .parent[q]≥ 0 do q :=QBT .parent[q];
2 return q;

5

Function QBT .Union(cx, cy)

1 QBT .parent[cx]:=QBT .size; QBT .parent[cy]:=QBT .size;
2 QBT .MakeSet(QBT .size);
3 return QBT .size-1 ;

At the end, we obtain a collection QBT which is a binary tree. The QBT tree
provides the order in which the edges have been put into the MST, the latest edge
added to the tree being the root of the tree, i.e., the highest one. In other words,
the edges of the MST are strictly ordered by QBT , according to their altitude in
the tree. We say that QBT is a binary partition tree by altitude ordering [1]. The
complexity of Kruskal implemented with this specific union-find is in O(|V |2),
and thus, this process is not very efficient.

2.3 Efficient MST implementation with Tarjan Union-Find

Tarjan [15] proposed a very simple and very efficient algorithm called union-find
to achieve any intermixed sequence of union and find. The implementation of
this algorithm is given in procedure QT .MakeSet and functions QT .Union and
QT .FindCanonical. To each element of the collection is associated a parent (as
precedently) and a rank ’Rnk’. Both the mapping ’parent’ and the mapping ’Rnk’
are represented as arrays in memory. One of the two key heuristics to reduce the
complexity is a technique called path compression, that was used by Tarjan to
reduce the cost of FindCanonical. It consists, while searching for the root r of
the tree which contains q, in considering each element p of the path from q to r
(including q), and setting the parent of p to be r. The other key technique, called
union by rank, consists in always choosing the root with the greatest rank to be
the representative of the union while performing the Union operation. The rank
Rnk(cx) of a canonical element cx is a measure of the depth of the tree rooted in
cx, and is exactly the depth of this tree if the path compression technique is not
used jointly with the union by rank technique. If the two canonical elements cx
and cy have the same rank, then one of the elements, say cy, is chosen arbitrarily
to be the canonical element of the union: cy becomes the parent of cx; and the
rank of cy is incremented by one. Union by rank avoids creating degenerate trees,
and helps keeping the depth of the trees as small as possible. For a more detailed
explanation and complexity analysis, see Tarjan’s paper [15].

Procedure QT .MakeSet(q)

1 QT .parent[QT .size] := −1; QT .Rnk[QT .size] := 0; QT .size += 1;

Function QT .FindCanonical(q)

1 r := q;
2 while QT .parent[r] ≥ 0 do r :=QT .parent[r];

3 while QT .parent[q] ≥ 0 do tmp := q; q :=QT .parent[q]; QT .parent[tmp] := r;

4 return r;

6

Function QT .Union(cx, cy)

1 if (QT .Rnk[cx] >QT .Rnk[cy]) then swap(cx, cy);
2 if (QT .Rnk[cx] == QT .Rnk[cy]) then QT .Rnk[cy] += 1;
3 QT .parent[cx] := cy;
4 return cy;

As stated at the beginning of this section, implementing Kruskal’s algorithm
with Tarjan Union-Find leads to a quasi-linear complexity: provided that the
edges are either already sorted or can be sorted in linear time (for example with
counting sort or radix sort), the complexity is O(|E| × α(|V |)), where α() is
the extremely slowly growing inverse of the single-valued Ackermann function.
Unfortunately, the tree built by Tarjan Union-Find is of no use for connected
filtering: the path compression technique flattens the tree, and does not preserve
the order by which the edges or the vertices are processed in the algorithm. In
the next section, we are going to combine the two proposals into an efficient one.

2.4 An efficient algorithm that yields a binary partition tree by
altitude ordering

The function QBT.FindCanonical is slow because it takes some time to find
the canonical element for a connected component: we have to climb the tree
until the root is found. We can use Tarjan Union-Find on QBT itself, i.e. we
can use QT as a second collection that maintains a compressed representation
of QBT , so that finding the canonical element is now in quasi-constant time. We
also have to store the root of any tree in QBT in an array Root so that such a
root can be found in constant time from any tree in QT . The implementation
uses QEBT.MakeSet, QT .FindCanonical and QEBT.Union.

Procedure QEBT .MakeSet(q)

1 QEBT .Root[q]:=q; QBT .MakeSet(q); QT .MakeSet(q);

Function QEBT .Union(cx, cy)

1 tu:=QEBT .Root[cx]; tv := QEBT .Root[cy];
// Union in QBT(without compression)

2 QBT .parent[tu] := QBT .parent[tv] := QBT .size;
// If children are needed, add them to the root

3 QBT .children[QBT .size].add({tu}); QBT .children[QBT .size].add({tv});
4 c:=QT .Union(cx,cy); // Union in QT (with compression)

5 QEBT .Root[c] := QBT .size; // Update the root of QEBT

6 QBT .MakeSet(QBT .size);
7 return QBT .size-1 ;

Function QEBT .FindCanonical(q)

1 return QT .FindCanonical(q);

When Kruskal is finished, the tree QBT is exactly the same as the one in
section 2.2. The only difference is thus the speed of the algorithm: thanks to the

7

use of Tarjan Union-Find, the complexity of this Kruskal algorithm using QEBT

is quasi-linear O(|E| × α(|V |)).

3 Post-Processing the binary tree

In this section, we are going to detail some linear O(|V |) algorithms that produce,
from QBT , (1) a watershed cut, (2) a hierarchy of quasi-flat zones, and (3) any
attribute-based hierarchy (if the attribute is increasing).

As we have seen, each node of QBT corresponds either to a vertex of the
graph or to an edge of the MST. Recall that edges of MST are sorted by a
strict order relationship that follows increasing weight-edges: the |V | first nodes
of QBT are the vertices of |V |, and the root of QBT corresponds to the edge
of the MST with the greatest weight. To ease the reading of the algorithms of
this section, we provide below two helper functions that clarify how we can pass
from the nodes of QBT to the edges of the MST and how to obtain the weight
of the edge of the MST corresponding to a given node of QBT .

Function getEdge(n)

Data: a (non-leaf) node n of QBT

Result: the edge e of the MST corresponding to the nth node
1 return n− |V |;

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the nth node of QBT

1 return F(MST[getEdge(n)]);

3.1 Watershed cuts

A watershed cut [9] can be easily obtained in our framework. Indeed, those
cuts are the “highest separations” of minima of the minimum spanning tree.
We propose below a linear algorithm watershed that labels the edges of the
MST with a flag stating whether or not an edge is a watershed edge. The main
idea is to obtain the latest edge of the MST included in a given minimum in
QBT . This can be done by counting the number of minima of the edge-weighted
graph (G,F) thanks to a simple process than run through the nodes of QBT

by increasing order, and checks whether or not a given node has an altitude
lower than its parent and does not contain a minimum. We increment a counter
for the ancestors of several minima. An edge is a watershed edge if it merges
several catchment basins corresponding to different minima. The complexity of
the function watershed is linear in the number of vertices, and thus the whole
process that computes a watershed cut is quasi-linear.

8

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

(3,2)
{b,c}(1,1)

{a,b}

(2,2)
{d,h}

(1,1)
{e,f}

(0,1)
{g,h}

(0,1)
{a,e}

(0,1)
{c,d}

M3

M1

M2

(a) Watershed

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

2

1

1 0

0

0

(b) QCT

Fig. 2. Two trees derived from QBT by post-processing. (a) A hierarchical tree QBT

on which watershed edges have a blue point. Edges M1 (green), M2 (red) and M3

(blue) are the minima of the edge-weighted graph. (b) The tree of the quasi-flat zones
hierarchy, a canonized version of QBT (i.e., the min-tree of the MST.)

Function watershed
Data: QBT

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of QBT do minima[n]:=0;
2 for each non-leaf node n of QBT by increasing order do
3 flag := TRUE; nb := 0;
4 for all c ∈ QBT .children[n] do
5 m := minima[c]; nb := nb+m;
6 if (m == 0) then flag := FALSE;

7 ws[getEdge(n)] := flag;
8 if (nb 6= 0) then minima[n] := nb;
9 else

10 if (n is the root of QBT) then minima[n] := 1;
11 else
12 p := QBT .parent[n];
13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0;

The set of watershed edges provides a MST of the neighborhood graph of the
catchment basins [16]. In Fig. 2.a, the nodes of QBT corresponding to watershed
edges have a blue point.

By removing from QBT all nodes that are not watershed ones, we obtain a
filtered tree that corresponds to a hierarchy of watershed cuts, more precisely the
one corresponding to an ultrametric watershed [12]. In the sequel of this paper,

9

one can use indifferently either the original QBT or this modified one. In the
first case, one is working within the framework of the constrained connectivity,
and in the second case, one is working within the framework of watershed cuts.

One of the interests of working with watershed cuts rather than with flat
zones is that the hierarchy is smaller, as the super-pixels (catchment basins)
provided by watershed cuts are larger than the super-pixels provided by the
flat-zones. From a practical point of view, greater speed can thus be achieved
thanks to watershed cuts.

3.2 Quasi-flat zones hierarchy

In this section, we post-process QBT to obtain the tree of the quasi-flat zones
hierarchy [3], which is proved [1] to be QCT , the min-tree of the minimum span-
ning tree. The differences between QBT and QCT are illustrated in Fig. 1.d and
2.b. QCT can be computed directly thanks to a dedicated Union-Find procedure
that we will describe in an extended version of this paper. Here, due to space con-
straints, we only propose a short post-processing that transforms QBT into the
desired min-tree QCT . The implementation uses CanonizeQBT to post-process
QBT , and needs the children of a node.

Procedure CanonizeQBT

Data: QBT

Result: QCT , a canonized version of QBT

1 for all nodes n of QBT do QCT .parent[n]:=QBT .parent[n]; QCT .size+=1;
2 for each non-leaf and non-root node n of QBT by decreasing order do
3 p := QCT .parent[n];
4 if (weightNode(p) == weightNode(n)) then
5 for all c ∈ QBT .children[n] do QCT .parent[c]:=p;
6 QCT .parent[n]:=n; // Delete node n of QCT

// If needed, build the list of children

7 for all nodes n of QCT do
8 p:=QCT .parent[n]; if p ≥ 0 and p6= n then QCT .children[p].add(n);

The procedure CanonizeQBT is in O(|V |), and thus the whole process that
computes a quasi-flat zones hierarchy is quasi-linear. To the best of our knowl-
edge, this is the most efficient algorithm published for computing this hierarchy.
However, for most image-processing tasks, the binary partition tree QBT can be
used instead, and this is what we are going to do in the sequel of this paper.

3.3 Attribute-based hierarchies

Attributes It is easy to compute some attributes on each node of QBT : surface
(number of vertices in a node), depth, volume or ordered markers are the most
classical attributes [11]. Another attribute from the constrained connectivity
framework [10] is the range. Any of those previous attributes are increasing:
recall that an attribute A is increasing if when there is a parenthood relationship

10

between two nodes n1 and n2, i.e. when the vertices of n1 are contained in the
vertices of n2, then A(n1) ≤ A(n2). In the sequel of this section, we denote by
attributeComp[n] the attribute of the node n of QBT .

It is when computing an attribute that the procedure DoSomethingMST can
be useful: for example, one can, using DoSomethingMST, register each edge of the
graph at the correct place in QBT , by adding new nodes corresponding to these
edges. Then, for example, we can imagine using an attribute such as the surface
computed not from the vertices but from the edges.

Hierarchies Attribute-based hierarchies are obtained by filtering the min-tree
QCT of the MST, and computing the full hierarchy amounts to reweighting
the MST. Intuitively, it is as if colored water fills up the branches of QCT , a
merging of two components taking place when two different colors meet. The
speed of the filling is controled by the attribute, i.e., the branch is completely
filled (i.e., the branch is cut) when the amount of water is exactly equal to the
attribute of the corresponding node of QCT . Some nodes exist in QBT but not
in QCT . Those nodes correspond to an information not present in QCT : the
order of processing, useful when a choice has to be made. A complete illustrative
example explaining the process is detailed in Fig. 3. Computing the correct
attribute is done thanks to the function getAttribute, that computes from
attributeComp the attribute at the time of the merging. It consists in taking
the highest attribute of all the children with the same original weight. The final
weight of the MST can then be obtained by taking the lowest attribute of the two
children of the node corresponding to the edge of the MST in QBT ; this is done
by ComputeMergeAttributeMST, the complexity of the whole post-processing
being in O(|V |). Once the re-weighted MST is computed, the hierarchical tree
can be obtained by re-applying the algorithms of this paper. As seen in [1], the
resulting hierarchy can be either a hierarchy of watershed cuts or a constrained-
connectivity hierarchy.

Function getAttribute(n)

Data: A node n of QBT

Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) 6= weightNode(n)) then
2 for all c children of n do getAttribute(c);
3 attribute[n] := attributeComp[n];

4 else
5 max:=0;
6 for all children c of n do
7 v:=getAttribute(c);
8 if v > max then max := v;

9 attribute[n] := max;

10 return attribute[n];

11

0

1

0

1

0

2

0

2

0

n1:2 n2:3 n3:6

n4:5 n5:3

n6:(5,3)

n7:(11,11)

n8:(16,11)

n9:(19,19)

(a) QBT

0

1

0

1

0

2

0

2

0

n1:2 n2:3 n3:6

n4:5 n5:3

n7:11

n9:19

(b) QCT

Fig. 3. Hierarchical trees QBT and QCT . At the bottom of (a) and (b) is the (edge-
weighted) graph of a map with the respective weight of each edge. Attributes (in
this example, the surface of a node) can easily be computed on either QBT or QCT .
In (a), the numbers (k, l) in parenthesis represents respectively k=attributeComp[n]
and l=getAttribute(n). In (a) and (b), the numbers k in ni : k represents
k=attributeComp[n]. When a flooding-by-attribute is performed on QCT , node n1

disappears first at value 2, followed by node n2 at value 3. When these the two cor-
responding branches are filled by water (cut from the tree), n1 and n2 are no longer
minima. This is not the case for n3, whose attribute is 6. When the corresponding
branch is filled, n3 stills marks a minimum, and stays so until the value 11, corre-
sponding to node n7. Thanks to the processing order embodied in QBT , getAttribute
can compute the value at which a node disappears.

Procedure ComputeMergeAttributeMST

Data: QBT

Result: a reweighted MST G corresponding to the attribute-based hierarchy
1 for any non-leaf node n of QBT do
2 a1 := attribute[children[n].left];
3 a2 := attribute[children[n].right];
4 G[getEdge(n)] := min(a1, a2);

4 Conclusion

This paper has presented several elegant yet efficient algorithms for comput-
ing several morphological trees. At the heart of the processing is the minimum
spanning tree, and in this paper we have proposed some variations on Kruskal
algorithm. However, other approaches can be taken, and any other MST algo-
rithm can be used first to produce a tree on which the algorithms of this paper
can be applied. This would be needed in some situations, for example if the
edges of the original graph do not fit in memory or if some parallel algorithm for
minimum spanning tree is first needed. The unification theory provided in [1],

12

together with the algorithms of this paper shed a new light on what has been
done in mathematical morphology for a number of years, linking together some
previously unrelated parts of the field.

Source code corresponding to this paper is available at http://www.esiee.
fr/~info/sm/.

Acknowledgements. This work received funding from the Agence Nationale
de la Recherche, contract ANR-2010-BLAN-0205-03 and through “Programme
d’Investissements d’Avenir” (LabEx BEZOUT n◦ANR-10-LABX-58).

References

1. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological
hierarchies on edge-weighted graphs. In: ISMM 2013. this volume.

2. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for
image and sequence processing. IEEE TIP 7(4) (April 1998) 555–570

3. Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in
aerial photographs. CGIP 10(3) (July 1979) 195–223

4. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings.
In Nielsen, M., Johansen, P., Olsen, O., Weickert, J., eds.: Scale-Space Theories in
Computer Vision. Volume 1682 of LNCS. Springer (1999) 187–198

5. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE TIP 9(4) (April
2000) 561–576

6. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical
segmentation. IEEE PAMI 18(12) (December 1996) 1163–1173

7. Morris, O.J., Lee, M.d.J., Constantinides, A.G.: Graph theory for image analysis:
an approach based on the shortest spanning tree. IEE proc. on communications,
radar and signal 133(2) (1986) 146–152

8. Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies.
In: ISMM2011. Volume 6671 of LNCS. (2011) 108–119

9. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum
Spanning Forests and the Drop of Water Principle. IEEE PAMI 31(8) (August
2009) 1362–1374

10. Soille, P.: Constrained connectivity for hierarchical image partitioning and simpli-
fication. IEEE PAMI 30(7) (2008) 1132–1145

11. Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In
Najman, L., Talbot, H., eds.: Mathematical Morphology: from theory to applica-
tion. ISTE-Wiley, London (2010) 229–261

12. Najman, L.: On the equivalence between hierarchical segmentations and ultramet-
ric watersheds. JMIV 40(3) (July 2011) 231–247 arXiv:1002.1887v2.

13. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning
forests and saliency of watershed cuts. In: ISMM 2011. Number 6671 in LNCS
(2011) 272–283

14. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the AMS 7 (February 1956) 48–50

15. Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the
ACM 22 (1975) 215–225

16. Meyer, F.: Minimum spanning forests for morphological segmentation. In: ISMM.
(September 1994) 77–84

