
HAL Id: hal-00798584
https://hal.science/hal-00798584

Submitted on 8 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sign-Preserving Property for Some Fourth-Order Elliptic
Operators in One Dimension and Radial Symmetry

Philippe Laurencot, Christoph Walker

To cite this version:
Philippe Laurencot, Christoph Walker. Sign-Preserving Property for Some Fourth-Order Elliptic
Operators in One Dimension and Radial Symmetry. Journal d’analyse mathématique, 2015, 127,
pp.69–89. �hal-00798584�

https://hal.science/hal-00798584
https://hal.archives-ouvertes.fr


SIGN-PRESERVING PROPERTY FOR SOME FOURTH-ORDER ELLIPTIC OPERATORS IN

ONE DIMENSION AND RADIAL SYMMETRY

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

ABSTRACT. For a class of one-dimensional linear elliptic fourth-order equations with homogeneous Dirichlet

boundary conditions it is shown that a non-positive and non-vanishing right-hand side gives rise to a negative

solution. A similar result is obtained for the same class of equations for radially symmetric solutions in a ball

or in an annulus. Several applications are given, including applications to nonlinear equations and eigenvalue

problems.

1. INTRODUCTION

A central tool for the analysis of linear and nonlinear second-order elliptic and parabolic equations is

the celebrated maximum principle which, roughly speaking, guarantees non-negativity (or even positivity)

of solutions provided the boundary and/or initial data are non-negative and the equation satisfies suitable

properties. It has far reaching applications, not only to well-posedness issues (for instance, being at the basis

of the theory of viscosity solutions, see e.g. [3]), but also to the qualitative behavior of solutions, see [8,

16, 17, 18] for instance and the references therein. Owing to its powerfulness, a natural question is whether

a similar tool is available for higher order linear elliptic operators and, in particular, for the biharmonic

operator ∆2 in a bounded domain Ω. This question has a long and rich history, and we refer to [7, 10]

for a detailed account and references. Roughly speaking, the validity of the maximum principle for the

biharmonic operator ∆2 in a bounded domain Ω turns out to depend heavily on the boundary conditions on

∂Ω and on the domain Ω itself. For instance, given a non-positive smooth function f : Ω̄ → (−∞, 0] with

f 6≡ 0, a straightforward application of the maximum principle for the Laplace operator with homogeneous

Dirichlet boundary conditions in Ω reveals that the unique classical solution u to the biharmonic equation

with Navier or pinned boundary conditions

∆2u = f in Ω , u = ∆u = 0 on ∂Ω , (1.1)

is negative in Ω in the sense that u(x) < 0 for x ∈ Ω, a property which will be referred to as the strong

sign-preserving property throughout the paper. A similar result, however, fails to be true in general when

the Navier boundary conditions are replaced by Dirichlet or clamped boundary conditions, that is, when u
solves

∆2u = f in Ω , u = ∂nu = 0 on ∂Ω , (1.2)
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where ∂nu denotes the normal trace of the gradient of u on the boundary. Nevertheless, it was observed by

Boggio [2] that, when Ω is the unit ball B1 of Rd, d ≥ 1, the Green function associated with (1.2) can be

computed explicitly and is positive in B1. An obvious consequence of this positivity property is that solu-

tions to (1.2) with a non-positive right-hand side f 6≡ 0 are negative. Actually, Boggio’s celebrated result

provides the impetus for several further studies, in particular the extension of the strong sign-preserving

property to other domains Ω and the analysis of semilinear equations of the form

∆2u = F (u) in B1, u = ∂nu = 0 on ∂B1 ,

under suitable assumptions on the nonlinearity F , e.g. see [5, 7] and the references therein. The strong

sign-preserving property of the biharmonic operator with homogeneous Dirichlet boundary conditions in B1

being at the heart of further investigations, it is therefore tempting to figure out whether it holds true not only

for other domains as discussed, for instance, in [11, 19], but also for more general fourth-order operators.

Besides its theoretical interest, this question also has many applications, e.g. to small deformations of a

membrane clamped at its boundary governed by the equation

B∆2u− T∆u = f in Ω, u = ∂nu = 0 on ∂Ω , (1.3)

where B∆2u with B > 0 accounts for bending and −T∆u with T > 0 for stretching. We refer to [5]

for a concrete application to microelectromechanical systems (MEMS) and to Theorem 1.5 below. In

the particular case (1.3), the strong sign-preserving property has been established in [15] in one space

dimension, i.e. when Ω = (−1, 1), the proof relying on the explicit computation of the Green function and

its positivity as in [2]. This result is extended in [9], where the equation

u′′′′ + au′′′ + λu′′ = f in (−1, 1) , u(±1) = u′(±1) = 0 , (1.4)

is shown to enjoy the strong sign-preserving property for (a, λ) ∈ R × (−∞, 0] and (a, λ) ∈ {0} ×
(0, π2). Interestingly, in contrast to [2, 15], the proof in [9] does not rely on the explicit computation of the

Green function associated with (1.4) but on maximum principle arguments applied to second-order elliptic

equations after writing (1.4) as an equivalent system of two second-order elliptic equations

u′′ = γ , γ′′ + aγ′ + λγ = f in (−1, 1) , u(±1) = u′(±1) = 0 .

Since no boundary condition is given for γ, the maximum principle cannot be applied directly to the equa-

tion for γ and a preliminary analysis is required. The possibility of writing (1.4) as a system of two second-

order elliptic equations, one with overdetermined boundary conditions and the other with none as in the

proof of [9], is actually also the starting point of the study of the strong sign-preserving property for one-

dimensional linear fourth-order operators with general boundary conditions performed in [20, 21]. More

precisely, the first step in [20] is to transform the fourth-order linear equation

a4(x)u
′′′′ + a3(x)u

′′′ + a2(x)u
′′ + a1(x)u

′ + a0(x)u = f(x) (1.5)

to the system

L1u = γ , L2γ = w(x) (f(x) + q(x)u) (1.6)

for some functions w > 0 and q, which can be computed explicitly in terms of (ai), the elliptic operators

L1 and L2 being of second order. The resulting criteria for the strong sign-preserving property of (1.5) with

homogeneous Dirichlet boundary conditions are, however, not straightforward to apply.
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In this paper, we revisit Schröder’s approach and show that, if the equation (1.5) has an alternative

formulation (1.6) with q ≡ 0 and two second-order elliptic operators L1 and L2 satisfying the maximum

principle, then (1.5) with homogeneous Dirichlet boundary conditions enjoys the strong sign-preserving

property. More precisely, we shall prove the following result:

Theorem 1.1. Consider two second-order elliptic operators

Liw := ai(x) w
′′ + bi(x) w

′ + ci(x) w , x ∈ I := (−1, 1) , i = 1, 2 ,

where ai, bi, and ci, i = 1, 2, are bounded functions in [−1, 1] satisfying

min{a1(x), a2(x)} ≥ η > 0 and max{c1(x), c2(x)} ≤ 0 , x ∈ [−1, 1] , (1.7)

for some η > 0. Assume that there is a pair of functions (u, γ) satisfying

u ∈ C4(I) ∩ C2([−1, 1]) , γ ∈ C2(I) ∩ C([−1, 1]) ,

and

L1u = γ in I , (1.8)

L2γ ≤ 0 in I , (1.9)

u(±1) = u′(±1) = 0 . (1.10)

Then

either u ≡ 0 or u < 0 in I . (1.11)

An alternative way to formulate Theorem 1.1 is the following: Given twice continuously differentiable

functions ai, bi, ci, i = 1, 2 on [−1, 1] satisfying (1.7), the fourth-order differential operator

Lu = A4(x)u
′′′′ + A3(x)u

′′′ + A2(x)u
′′ + A1(x)u

′ + A0(x)u (1.12)

with

A4 := a1a2 , A3 := (2a′1 + b1)a2 + a1b2 ,

A2 := (a′′1 + 2b′1 + c1)a2 + (a′1 + b1)b2 + a1c2 , (1.13)

A1 := (b′′1 + 2c′1)a2 + (b′1 + c1)b2 + b1c2 , A0 := c′′1a2 + c′1b2 + c1c2

subject to homogeneous Dirichlet boundary conditions u(±1) = u′(±1) = 0 enjoys the strong sign-

preserving property.

Remark 1.2. On the one hand, it is unlikely that an arbitrary fourth-order elliptic operator L of the form

(1.12) has a decomposition (1.13) as above. On the other hand, if there is such a decomposition, the choice

of the functions ai, bi, ci, i = 1, 2 in (1.13) is clearly not unique and may play an important role. This

feature is illustrated in Proposition 4.3 below.

Remark 1.3. Theorem 1.1 is stated in such generality that it applies to nonlinear operators as well, that is,

the coefficients ai, bi, ci may depend on u itself. In particular, we shall see in Subsection 4.2 below that the

Euler-Lagrange equation of the one-dimensional Willmore functional [23] fits into the framework developed

herein.
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The proof of Theorem 1.1 is given in Section 2. It is based on repeated applications of the strong

maximum principle to L1 and L2 and requires a careful analysis of the possible behaviors of γ (recall that

the behavior of γ on the boundary is unknown). Though the proof is restricted to one space dimension, a

similar result can be obtained for radially symmetric functions in higher dimensions:

Theorem 1.4. Consider two second-order elliptic operators

Liw :=

d
∑

j,k=1

ajki (x) ∂j∂kw +

d
∑

j=1

bji (x) ∂jw + ci(x) w , x ∈ B1 , i = 1, 2 ,

where B1 denotes the unit ball of Rd, d ≥ 1, and ajki = akji , bji , and ci, i = 1, 2, 1 ≤ j, k ≤ d, are bounded

functions in B1 satisfying

d
∑

j,k=1

ajki (x) ξj ξk ≥ η|ξ|2 and ci(x) ≤ 0 , (x, ξ) ∈ B1 × R
d , (1.14)

for some η > 0 and i = 1, 2. Let (u, γ) be a pair of functions satisfying

u ∈ C4(B1) ∩ C2(B̄1) , γ ∈ C2(B1) ∩ C(B̄1) ,

and

L1u = γ in B1 , (1.15)

L2γ ≤ 0 in B1 , (1.16)

u = ∂nu = 0 on ∂B1 . (1.17)

If u and γ are both radially symmetric, then

either u ≡ 0 or u < 0 in B1 . (1.18)

The proof of Theorem 1.4 is closely related to that of Theorem 1.1, though it differs at some points. It is

performed in Section 3. The assumption that (1.15)-(1.17) has radially symmetric solutions clearly imposes

certain constraints on the coefficients of the operators L1 and L2.

Theorem 1.1 and Theorem 1.4 have several applications. For instance, Theorem 1.1 generalizes the strong

sign-preserving property established in [15] and [9, Proposition 1] for (1.3) when λ ≤ 0, see Subsection 4.3.

Further applications of these theorems, e.g. to quasi-linear equations, are discussed in Section 4. Let

us single out one particular application to a semi-linear equation, which includes as a particular case a

mathematical model for MEMS [5]:

Theorem 1.5. Let J be an open interval in R containing 0 and let g ∈ C2(J) be a non-negative and

non-increasing function with g(0) > 0. Let B > 0 and T > 0 be two real numbers. Then there exists

λ∗ ∈ (0,∞] such that, for any λ ∈ (0, λ∗), the boundary value problem

B∆2u− T∆u = −λg(u) in B1 , u = ∂nu = 0 on ∂B1 ,
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has a unique radially symmetric and non-positive classical maximal solution uλ ∈ C4(B1) ∩ C2(B̄1) such

that uλ(B̄1) ⊂ J . If λ∗ < ∞, then there is no radially symmetric classical solution for λ > λ∗. In addition,

for each x ∈ B1, the function λ 7→ uλ(x) is decreasing in (0, λ∗). Furthermore, if a := inf J > −∞ and

m := inf(a,0) g > 0, then λ∗ < ∞.

The specific application to MEMS is obtained by taking g(ξ) = 1/(1+ ξ)2 for ξ ∈ (−1, 1). We construct

the maximal solution in Subsection 4.6 by a monotonicity approach as in [5, Chapter 11], where a similar

result is proven for T = 0. An interesting intermediate step in the proof of Theorem 1.5 is that there is a

unique normalized radially symmetric positive eigenfunction corresponding to a positive eigenvalue of the

operator B∆2 − T∆ subject to homogeneous Dirichlet boundary conditions, see Subsection 4.5.

2. SIGN-PRESERVING PROPERTY IN ONE SPACE DIMENSION

We prove Theorem 1.1 and first state a simple consequence of the strong maximum principle for second-

order operators.

Lemma 2.1. Consider −1 ≤ x1 < x2 ≤ 1 and a function v ∈ C2((x1, x2))∩C([x1, x2]) such that L1v ≤ 0
in (x1, x2).

(a) If v(x1) = v′(x1) = 0, then either v ≡ 0 or v(x2) < 0.

(b) If v(x2) = v′(x2) = 0, then either v ≡ 0 or v(x1) < 0.

Proof. The proof of the two assertions being similar, we only give that of (a) and consider the case where

v(x1) = v′(x1) = 0. Assume for contradiction that there is x0 ∈ (x1, x2] such that v(x0) > 0. Recalling

that v(x1) = 0, the function v is obviously not constant in (x1, x0). Since L1v ≤ 0 in (x1, x0), the strong

maximum principle [8, Theorem 3.5] guarantees that v cannot achieve a non-positive minimum in (x1, x0)
and thus v(x) > 0 = v(x1) for x ∈ (x1, x0). We then infer from [8, Lemma 3.4] that v′(x1) > 0 and a

contradiction. Consequently,

v(x) ≤ 0 for all x ∈ (x1, x2] . (2.1)

In particular, v(x2) ≤ 0. Then either v(x2) < 0 and the second alternative in Lemma 2.1 (a) is true. Or

v(x2) = 0 = v(x1) and the minimum principle entails that v ≥ 0 in (x1, x2). Combining this fact with (2.1)

gives v ≡ 0 and completes the proof. �

Proof of Theorem 1.1. If u ≡ 0, then there is nothing to prove and we thus may assume u 6≡ 0. It first

follows from (1.9) and the minimum principle [8, Corollary 3.2] that

min
[−1,1]

γ ≥ min {γ(−1) ∧ 0, γ(1) ∧ 0} . (2.2)

Assume first for contradiction that min[−1,1] γ ≥ 0. Then γ ≥ 0 in I , which gives, together with (1.8),

(1.10), the property u 6≡ 0, and the strong maximum principle [8, Theorem 3.5] that u cannot achieve a

non-negative maximum in (−1, 1) and thus u(x) < 0 = u(1) for all x ∈ I . It then follows from [8,

Lemma 3.4] that u′(1) > 0 which contradicts (1.10). Therefore, min[−1,1] γ < 0 and it follows from (2.2)

that γ(−1) ∧ γ(1) < 0. We may assume without loss of generality that

γ(−1) = γ(−1) ∧ γ(1) = min
[−1,1]

γ < 0. (2.3)
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In addition, since u(−1) = u′(−1) = 0, u(1) = 0, and u 6≡ 0, Lemma 2.1 implies that

max
[−1,1]

γ > 0 . (2.4)

Owing to (2.3) and (2.4),

y0 := inf {x ∈ I : γ(x) > 0} ∈ I (2.5)

and

γ ≤ 0 in (−1, y0) and γ(y0) = 0 . (2.6)

On the one hand, for y ∈ (−1, y0], we obtain from (1.8) and (2.6) that L1u ≤ 0 in (−1, y), and (1.10) and

Lemma 2.1 imply that either u(y) < 0 or u ≡ 0 in (−1, y). But the latter cannot occur as it would imply

γ ≡ 0 in (−1, y) by (1.8) contradicting (2.3). We have thus shown that

u < 0 in (−1, y0] . (2.7)

On the other hand, consider y ∈ (y0, 1) such that γ(y) > 0 (the existence of such points is guaranteed by

the definition of y0). According to (1.9) and the strong maximum principle [8, Theorem 3.5], the function

γ cannot achieve a non-positive minimum in (y0, y) unless it is constant. Since γ(y) > γ(y0) = 0, we

conclude that γ > 0 in (y0, y). We have thus shown that

y1 := sup {y ∈ (y0, 1) : γ > 0 in (y0, y)} > y0 .

Assume now for contradiction that y1 = 1. Then γ > 0 in (y0, 1) and, since u is not constant by (1.10)

and (2.7), it follows from (1.8), (1.10), (2.7), and the strong maximum principle that u cannot achieve a

non-negative maximum in (y0, 1), whence u < 0 = u(1) in (y0, 1). We then infer from [8, Lemma 3.4] that

u′(1) > 0 and a contradiction. Consequently,

y1 ∈ (y0, 1) , γ > 0 in (y0, y1) , γ(y1) = 0 . (2.8)

In particular, this together with (1.9) and [8, Lemma 3.4] imply

γ′(y1) < 0 . (2.9)

Hence, there is a sequence (qn)n≥1 such that qn ∈ (y1, y1 + 1/n) ∩ I and γ(qn) < 0 for all n ≥ 1. Fix

n ≥ 1 and assume for contradiction that there is pn ∈ (qn, 1) such that γ(pn) > 0. Owing to the continuity

of γ, there is zn ∈ (qn, pn) such that γ(zn) = 0. It then follows from (1.9) that L2γ ≤ 0 in (y1, zn) with

γ(y1) = γ(zn) = 0 > γ(qn) which contradicts the strong maximum principle. Consequently, γ ≤ 0 in

(qn, 1) for all n ≥ 1 and we have established that

γ ≤ 0 in (y1, 1) . (2.10)

Now, fix y ∈ [y1, 1). Owing to (1.8), (1.10), and (2.10), we are in a position to apply Lemma 2.1 in (y, 1)
and conclude that either u(y) < 0 or u ≡ 0 in (y, 1). If the latter occurs, it follows from (1.8) that γ ≡ 0 in

(y, 1) as well. Therefore, L2γ ≤ 0 in (y1, y) with γ(y1) = γ(y) = 0 which entails γ ≥ 0 in (y1, y) by the

minimum principle and contradicts (2.9). Consequently,

u < 0 in [y1, 1) . (2.11)

Finally, recalling that γ > 0 in (y0, y1) by (2.8), we infer from (1.8) and the strong maximum principle that

either u is constant in (y0, y1) and then u ≡ u(y0) = u(y1) < 0 by (2.7) and (2.11) or u cannot achieve a
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non-negative maximum in (y0, y1). In both cases, we conclude u < 0 in (y0, y1), which, together with (2.7)

and (2.11) gives (1.11) and completes the proof. �

Corollary 2.2. Under the assumptions of Theorem 1.1 and if u 6≡ 0, there are −1 < y0 < y1 < 1 such that

γ satisfies

γ > 0 in (y0, y1) , γ ≤ 0 in (−1, y0] ∩ [y1, 1) ,

and γ(±1) < 0. Furthermore, u′′(±1) < 0.

Proof. It follows from (2.6), (2.8), and (2.10) that γ satisfies all the above properties except for the property

γ(1) < 0. However, we know from (2.10) that γ(1) ≤ 0 and assuming for contradiction that γ(1) = 0,

the strong maximum principle and (1.9) entail γ ≡ 0 in (y1, 1) which is not possible according to (2.9).

Finally, it follows from (1.8) and (1.10) that a1(±1)u′′(±1) = γ(±1), which gives u′′(±1) < 0 thanks to

γ(±1) < 0 and (1.7). �

3. SIGN-PRESERVING PROPERTY IN RADIAL SYMMETRY

This section is dedicated to the proof of Theorem 1.4. For further use, we set Br := {x ∈ Rd : |x| < r},

B̄r := {x ∈ R
d : |x| ≤ r}, and Sr := {x ∈ R

d : |x| = r} for r ∈ [0, 1). Let us stress that, throughout

this section, we only deal with radially symmetric functions and often use the property that such functions

are constant on Sr for any r without further notice.

We first establish a variant of Lemma 2.1.

Lemma 3.1. Consider ̺ ∈ [0, 1) and a radially symmetric function v ∈ C2(B1 \ B̺̄) ∩ C(B̄1 \ B̺) such

that

L1v ≤ 0 in B1 \ B̺̄ and v = ∂nv = 0 on ∂B1 . (3.1)

Then either v ≡ 0 in B1 \ B̺̄ or v(x) < 0 for x ∈ ∂B̺.

Proof. Assume for contradiction that there is r ∈ [̺, 1) such that v(x) > 0 for x ∈ Sr. Recalling that

v = 0 on S1, the function v is obviously not constant in B1 \ B̺̄. Since L1v ≤ 0 in (x1, x0), the strong

maximum principle [8, Theorem 3.5] guarantees that v cannot achieve a non-positive minimum in B1 \ B̺̄

and thus v(x) > 0 for x ∈ B1 \ B̺̄. Consequently, if x0 ∈ S1, the previous property and (3.1) imply that

v(x0) < v(x) for x ∈ B1\ B̺̄. We are then in a position to apply [8, Lemma 3.4] and conclude ∂nv(x0) < 0,

which contradicts (3.1). Therefore,

v(x) ≤ 0 for all x ∈ B1 \ B̺̄ . (3.2)

Now, either v < 0 on S̺ and the second alternative in Lemma 3.1 (a) is true. Or v = 0 on S̺ and the

minimum principle entails that v ≥ 0 in B1 \ B̺̄. Combining this fact with (3.2) gives v ≡ 0 and completes

the proof. �

Proof of Theorem 1.4. We may again assume that u 6≡ 0. It follows from (1.16) and the minimum principle

[8, Corollary 3.2] that

min
B̄1

γ ≥ min
S1

{γ ∧ 0} . (3.3)
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Assume first for contradiction that minB̄1
γ ≥ 0. Then γ ≥ 0 in B1 and, since u 6≡ 0 in B1, we deduce

from (1.15), (1.17), and the strong maximum principle [8, Theorem 3.5] that u cannot achieve a non-

negative maximum in B1 and thus u < 0 in B1. Therefore, given x0 ∈ S1, the previous property and (1.17)

guarantee that u(x) < u(x0) = 0 for x ∈ B1. Using [8, Lemma 3.4], we conclude that ∂nu(x0) > 0 and a

contradiction with (1.17). We have thus proved that

min
B̄1

γ < 0 . (3.4)

Then γ(x) < 0 for x ∈ S1 by (3.3) and the radial symmetry of γ, from which we deduce that

r0 := inf {r ∈ [0, 1) : γ(x) < 0 for x ∈ Sr} < 1 .

Assume for contradiction that r0 = 0. Then γ ≤ 0 in B1 and (1.15), (1.17), and the minimum principle

ensure that u ≥ 0 in B1 while Lemma 3.1 implies that u is non-positive in B1. Consequently, u ≡ 0 in B1

and a contradiction. We have thus shown that

r0 > 0 , γ = 0 on Sr0 , and γ < 0 in B1 \ B̄r0 . (3.5)

Now, on the one hand, let r ∈ [r0, 1). By (1.15), (1.17), (3.5), and Lemma 3.1, we have either u < 0 on

Sr or u ≡ 0 in B1 \ B̄r. However, the latter and (1.15) would imply γ ≡ 0 in B1 \ B̄r contradicting (3.5).

Consequently,

u < 0 in B1 \ Br0 . (3.6)

On the other hand, take r ∈ (0, r0) such that γ > 0 on Sr (such an r exists according to the definition

and positivity of r0). Since γ is obviously non-constant in Br0 \ B̄r, it follows from the strong maximum

principle that γ cannot achieve a non-positive minimum in Br0 \ B̄r and thus γ > 0 in Br0 \ B̄r. Introducing

r1 := inf
{

r ∈ (0, r0) : γ > 0 in Br0 \ B̄r

}

> 0 ,

we have just proved that r1 < r0. Assume now for contradiction that r1 > 0. Then γ = 0 on Sr1 , which,

together with (1.16) and the minimum principle, entails γ ≥ 0 in Br1 . However, since Lγ ≤ 0 in Br0 \ Br1 ,

γ > 0 in Br0 \ Br1 , and γ = 0 on Sr1 , it follows from [8, Lemma 3.4] that ∂nγ < 0 on Sr1 . Hence, we

deduce γ < 0 on Sr for r close to r1 with r < r1 and a contradiction. Therefore, r1 = 0 and γ > 0 in

Br0 \ {0}. It then follows from (1.15), (3.6), and the comparison principle that

max
B̄r0

u ≤ max
Sr0

{u ∨ 0} = 0 .

Now, either u is constant in Br0 and we deduce from (3.6) that u < 0 in Br0 . Or u is not constant in Br0 and

we infer from the strong maximum principle that u cannot achieve a non-negative maximum in Br0 , that is,

u < 0 in Br0 . Recalling (3.6), we have proved (1.18). �

As in Corollary 2.2 for the one-dimensional case, we deduce from the proof of Theorem 1.4 additional

information on u on the boundary. Actually, for the biharmonic operator with homogeneous boundary

conditions the following result is proved in [12] by means of the integral representation and the positivity

properties of the Green function.

Corollary 3.2. Under the assumptions of Theorem 1.4 and if u 6≡ 0, one has U ′′(1) < 0, where U(|x|) =
u(x) for x ∈ B̄1.
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Proof. Let x ∈ S1 be fixed. On the one hand, we deduce from (3.3) and (3.4) that γ(x) < 0. On the other

hand, since U and U ′ both vanish at r = 1, we infer from (1.15) that

0 > γ(x) =
d
∑

j,k=1

ajk1 (x) xj xk U
′′(1)

and the claim readily follows from (1.14). �

4. APPLICATIONS

In this section we collect a few rather immediate consequences of the previous results. We first give

in Subsection 4.1 a straightforward extension of Theorem 1.4 to an annulus. We then show in Subsec-

tion 4.2 that Theorem 1.1 can also be applied in a quasi-linear framework. Moreover, we use Theorem 1.1

and Theorem 1.4 to derive the sign-preserving property for (1.4) for a certain range of parameter values

(Subsection 4.3), to characterize the polar cone of positive functions related to Moreau’s decomposition

(Subsection 4.4), and to establish the existence of positive eigenfunctions (Subsection 4.5).

4.1. Equations in an Annulus with Radial Symmetry. We prove a result similar to Theorem 1.4 in an

annulus B1 \ B̄ρ with ρ ∈ (0, 1).

Corollary 4.1. Let ρ ∈ (0, 1) and consider two second-order elliptic operators

Liw :=

d
∑

j,k=1

ajki (x) ∂j∂kw +

d
∑

j=1

bji (x) ∂jw + ci(x) w , x ∈ B1 \ B̄ρ , i = 1, 2 ,

where the coefficients ajki = akji , bji , and ci, i = 1, 2, 1 ≤ j, k ≤ d are bounded functions. Further assume

that the functions Ai and Bi, defined for x ∈ B1 \ B̄ρ by

Ai(x) :=
d
∑

j,k=1

ajki (x)
xjxk

|x|2 ,

Bi(x) :=
1

|x|

(

d
∑

j=1

ajji (x)−
d
∑

j,k=1

ajki (x)
xjxk

|x|2

)

+

d
∑

j=1

bji (x)
xj

|x| ,

and ci are rotationally invariant in the annulus B1 \ B̄ρ and satisfy

Ai(x) ≥ η > 0 and ci(x) ≤ 0 , x ∈ B1 \ B̄ρ , i = 1, 2 .

Let (u, γ) be a pair of functions satisfying

u ∈ C4(B1 \ B̄ρ) ∩ C2(B̄1 \ Bρ) , γ ∈ C2(B1 \ B̄ρ) ∩ C(B̄1 \ Bρ) ,

and

L1u = γ in B1 \ B̄ρ , (4.1)

L2γ ≤ 0 in B1 \ B̄ρ , (4.2)

u = ∂nu = 0 on ∂(B1 \ B̄ρ) . (4.3)
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If u and γ are both radially symmetric, then

either u ≡ 0 or u < 0 in B1 \ B̄ρ . (4.4)

Proof. Owing to the radial symmetry of u and γ, we may write u(x) = U(|x|) and γ(x) = Γ(|x|) and

deduce from (4.1)-(4.3) that

A1(r)U
′′ +B1(r)U

′ + C1(r)U = Γ , r ∈ (ρ, 1) ,

A2(r)Γ
′′ +B2(r)Γ

′ + C2(r)Γ = f(r) , r ∈ (ρ, 1) ,

U(ρ) = U(1) = U ′(ρ) = U ′(1) = 0 ,

where f := L2γ and Ci(|x|) := ci(x) for x ∈ B1 \ B̄ρ. On B1 \ B̄ρ, the functions Ai, Bi, and Ci are bounded

for i = 1, 2, and, due to f ≤ 0 with f 6≡ 0, we are in a position to apply Theorem 1.1 to conclude that either

U ≡ 0 or U < 0 in (ρ, 1). �

Remark 4.2. We shall point out that radial symmetry is important to derive the strong sign-preserving

property stated in Corollary 4.1. Indeed, this property is no longer true for arbitrary functions in an

annulus B1 \ B̄ρ if ρ > 0 is sufficiently small [14].

4.2. An Application to a Nonlinear Equation. Let B > 0, T ≥ 0, α > 0, and consider the quasi-linear

equation

B

(

u′′

(1 + (u′)2)α

)′′

+ αB

(

u′(u′′)2

(1 + (u′)2)α+1

)′

− T

(

u′
√

1 + (u′)2

)′

= f in I , (4.5)

subject to homogeneous Dirichlet boundary conditions u(±1) = u′(±1) = 0. Taking B = 1, T = 0,

and α = 5/2 one obtains the Euler-Lagrange equation for the one-dimensional Willmore functional for a

graph u, this functional actually dating back to D. Bernoulli [22]. Also, for B > 0, T > 0, and α = 5/2,

equation (4.5) describes deformations of a membrane clamped at its boundary when the assumption of small

deformations is dropped (recall that this assumption allows one to replace (4.5) by its linearization (1.3)).

Now, if u is a classical solution to (4.5) with right-hand side f ≤ 0 and f 6≡ 0, then u < 0 in I . Indeed, this

follows from Theorem 1.1 by defining

γ :=
u′′

(1 + (u′)2)α/2
,

a transformation already used by Euler [6, p.248], and setting a1 = (1 + (u′)2)
−α/2

, b1 = c1 = 0 and

a2 = B
(

1 + (u′)2
)−α/2

, b2 = a′2 , c2 = −T
(

1 + (u′)2
)(α−3)/2

.

Equation (4.5) with f ≡ 0 and possibly inhomogeneous Dirichlet boundary conditions has been studied in

[4], where also a more detailed account of related research can be found.
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4.3. Equations with Anti-Diffusive Lower Order Terms. As mentioned in the introduction, it is straight-

forward to deduce from Theorem 1.1 that the boundary value problem (1.4) is strongly sign-preserving when

λ ≤ 0 and a ∈ R. This follows simply by choosing (a1, b1, c1) = (1, 0, 0) and (a2, b2, c2) = (1, a, λ). We

show in the next result that the range of λ, for which the strong sign-preserving property is true, can be

extended to some positive values of λ. To this end, an alternative choice of L1 and L2 is required.

Proposition 4.3. Consider λ ∈ (0, (a2 + π2)/4) with a ∈ R. Then the boundary value problem (1.4)

u′′′′ + au′′′ + λu′′ = f in I , u(±1) = u′(±1) = 0 ,

enjoys the strong sign-preserving property.

Proof. If p ∈ C2([−1, 1]) is any positive function, then the function γ := u′′/p is well-defined in I and it

readily follows from (1.4) that γ solves

pγ′′ + (2p′ + ap) γ + (p′′ + ap′ + λp) γ = f in I .

Define now

p(x) :=







e−(a+
√
a2−4λ)x/2 if 0 < λ < a2/4 ,

(2 + x)e−ax/2 if λ = a2/4 ,

cos (
√
4λ− a2 x/2)e−ax/2 if a2/4 < λ ,

for x ∈ I and observe that for a2/4 < λ < (a2 + π2)/4 we have p(x) ≥ cos (
√
4λ− a2/2)e−a/2 > 0 for

x ∈ [−1, 1], the positivity of p being obvious in the other two cases.

Consequently, p > 0 in [−1, 1] and, since p′′+ap′+λp = 0 in I , we are in a position to apply Theorem 1.1

with (a1, b1, c1) = (1/p, 0, 0) and (a2, b2, c2) = (p, 2p′ + ap, 0) and conclude that u < 0 in I if f ≤ 0 in I
with f 6≡ 0. �

Remark 4.4. When a = 0, we partly recover [9, Corollary 1], where the strong sign-preserving property

was shown for (1.4) for the wider range λ ∈ (0, π2). However, it may be that this result can be fully

recovered by an alternative choice of the operators L1 and L2 than the one used above. The result for

a 6= 0 seems to be new.

4.4. An Application to Moreau’s Decomposition. Let B > 0 and T ≥ 0 and define the scalar product

〈·, ·〉 on H2
D(I) := {u ∈ H2(I) ; u(±1) = u′(±1) = 0} by

〈u, v〉 :=
∫ 1

−1

[

Bu′′(x)v′′(x) + Tu′(x)v′(x)
]

dx , u, v ∈ H2
D(I) .

Let K := {u ∈ H2
D(I) ; u ≥ 0} be the positive cone of H2

D(I). According to Moreau’s decomposition [13],

we can write any u ∈ H2
D(I) in a unique way as a sum u = v + w with 〈v, w〉 = 0, where v belongs to K

and w belongs to its polar cone

K◦ := {w ∈ H2
D(I) ; 〈z, w〉 ≤ 0 for all z ∈ K} ,

which can be further characterized:

Proposition 4.5. We have K◦ ⊂ −K.
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As a consequence of Proposition 4.5, any function in H2
D(I) can be written as the sum of a non-negative

and a non-positive function, which are orthogonal with respect to 〈·, ·〉.
Proof. Let w ∈ K◦ and let f ∈ K ∩ C∞

0 (I). By Theorem 1.1, the classical solution u of the equation

Bu′′′′ − Tu′′ = f in I , u(±1) = u′(±1) = 0 ,

belongs to K, whence 〈u, w〉 ≤ 0. Integration by parts gives
∫ 1

−1

f(x)w(x) dx ≤ 0 ,

and since f ∈ K ∩ C∞
0 (I) was arbitrary, this yields the statement. �

Similar results can be found in [5, Lemma 11.1.4] and [7, Proposition 3.6] when T = 0.

4.5. Positive Eigenfunctions. As for second-order elliptic operators we can combine the strong sign-

preserving property with the celebrated Kreı̆n-Rutman theorem to obtain information on the principal eigen-

value of some fourth-order elliptic operators. We first consider the one-dimensional case.

Theorem 4.6. Let ai, bi, and ci, i = 1, 2 be four times continuously differentiable functions on [−1, 1]
satisfying (1.7). Let L be the fourth-order elliptic operator defined in (1.12) with coefficients given in

(1.13). Then the eigenvalue problem

Lφ = µφ in I , φ(±1) = φ′(±1) = 0 ,

has an eigenvalue µ1 > 0 with a corresponding eigenfunction φ1 > 0 in I , and µ1 is the only eigenvalue

with a positive eigenfunction. Moreover, any eigenfunction corresponding to the eigenvalue µ1 is a scalar

multiple of φ1.

Proof. It readily follows from Theorem 1.1 that the equation Lu = 0 in I subject to the boundary con-

dition u(±1) = u′(±1) = 0 has only the trivial solution. Therefore, since the coefficients of L are

C2-smooth functions, we may apply [7, Theorem 2.19] to obtain that, for any fixed α ∈ (0, 1) and any

f ∈ C1+α([−1, 1]), the equation

Lu = f in I , u(±1) = u′(±1) = 0 ,

has a unique solution u ∈ C4+α(I) ∩ C2+α([−1, 1]), which we denote by Kf . Moreover, K belongs to

L(C1+α([−1, 1]), C4+α([−1, 1])). Let C2+α
D ([−1, 1]) be the closed subspace consisting of all functions w ∈

C2+α([−1, 1]) such that w(±1) = w′(±1) = 0. The previous property and the Arzelà-Ascoli theorem entail

that K is a compact endomorphism of C2+α
D ([−1, 1]). In addition, given a non-negative f ∈ C2+α

D ([−1, 1])
with f 6≡ 0, Theorem 1.1 and Corollary 2.2 guarantee that Kf > 0 in I with (Kf)′′(±1) > 0. Thanks

to these two properties, a standard argument shows that Kf belongs to the interior of the positive cone of

C2+α
D ([−1, 1]). Consequently, K is strongly positive, and we may apply the Kreı̆n-Rutman theorem (see

e.g. [1, Theorem 3.2]) to conclude the statement. �

An analogous result holds in the a higher-dimensional radially symmetric case. For the sake of simplicity,

we only state and prove it for the particular operator B∆2 − T∆ with homogeneous Dirichlet boundary

conditions.
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Theorem 4.7. Let B > 0 and T ≥ 0. Then the eigenvalue problem

B∆2φ− T∆φ = µφ in B1 , φ = ∂nφ = 0 on ∂B1 , (4.6)

has an eigenvalue µ1 > 0 with a corresponding radially symmetric eigenfunction φ1 > 0 in B1, and µ1

is the only eigenvalue with a positive radially symmetric eigenfunction. Moreover, any radially symmetric

eigenfunction corresponding to the eigenvalue µ1 is a scalar multiple of φ1.

Proof. We first check that if u solves (4.6) with µ = 0, then u ≡ 0 in B1. Indeed, multiplying the equation

by u and integrating by parts give B∆u ≡ 0 in B1 with u = 0 on ∂B1, whence u ≡ 0 in B1. Consequently,

as in the proof of Theorem 4.6 we may apply [7, Theorem 2.19] to obtain that, for any fixed α ∈ (0, 1) and

any f ∈ C1+α(B̄1), the equation

B∆2u− T∆u = f in B1 , u = ∂nu = 0 on ∂B1 , (4.7)

has a unique solution Kf = u ∈ C4+α(B1) ∩ C2+α(B̄1) and K ∈ L(C1+α(B̄1), C
4+α(B̄1)). The results so

far are valid for arbitrary functions f defined in B1 with the required regularity. We now restrict to radially

symmetric functions. Let C2+α
D,rad(B̄1) be the closed subspace consisting of all radially symmetric functions

w ∈ C2+α(B̄1) such that w = ∂nw = 0 on ∂B1. The well-posedness of (4.7) and the rotational invariance

of the operator B∆2 − T∆ ensure that Kf is radially symmetric if f is. The previous properties and the

Arzelà-Ascoli theorem thus entail that K is a compact endomorphism of C2+α
D,rad(B̄1), and arguing as in

the proof of Theorem 4.6 we conclude from Theorem 1.4 and Corollary 3.2 that K is strongly positive.

Consequently, we may again apply the Kreı̆n-Rutman theorem [1, Theorem 3.2] to complete the proof. �

Remark 4.8. Note that we do not claim that µ1 is the principal eigenvalue of the operator B∆2 − T∆
subject to homogeneous Dirichlet boundary conditions since we restrict our attention to radially symmetric

functions. When T = 0, the simplicity of the principal eigenvalue and the positivity of the corresponding

normalized eigenfunction of (4.6) are already known and may be found in [5, 7]. It is worth to point out that

one does not need to restrict to the radially symmetric setting in that case since the strong sign-preserving

property is true for arbitrary functions for this particular operator due to Boggio’s principle [2].

4.6. Radially Symmetric Stationary Solutions for a MEMS Model. In this subsection we prove Theo-

rem 1.5 and thus consider the boundary value problem

B∆2u− T∆u = −λg(u) in B1 , u = ∂nu = 0 on ∂B1 , (4.8)

where B > 0, T > 0, and g ∈ C2(J) is a non-negative and non-increasing function with g(0) > 0. To

obtain the existence of a maximal solution we use a monotonicity argument as in [5, Chapter 11]. Define

λ∗ := sup{λ > 0 ; (4.8) has a radially symmetric classical

solution u ∈ C4(B1) ∩ C2(B̄1) with u(B̄1) ⊂ J}
and note that λ∗ > 0. Indeed, setting for q ∈ (1,∞)

Au := B∆2u− T∆u , u ∈ W 4
q,D(B1) := {u ∈ W 4

q (B1) ; u = ∂nu = 0 on ∂B1} ,

the operator A : W 4
q,D(B1) → Lq(B1) is boundedly invertible [7, Theorem 2.20], and the implicit function

theorem thus implies that all zeros of F (λ, u) := u + λA−1g(u) near (λ, u) = (0, 0) lie on a curve (λ, Uλ)
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with 0 ≤ λ ≤ δ for some δ > 0. Since (4.8) is rotationally invariant and since q was arbitrary, this

uniqueness property entails that Uλ is radially symmetric and belongs to C4(B1)∩C2(B̄1) with Uλ(B̄1) ⊂ J ,

whence λ∗ > 0. To continue, we need the following auxiliary result:

Lemma 4.9. Let λ > 0 and suppose that there is a non-positive radially symmetric classical subsolution

σ ∈ C4(B1) ∩ C2(B̄1) of (4.8), i.e.

B∆2σ − T∆σ ≤ −λg(σ) in B1 , σ = ∂nσ = 0 on ∂B1 ,

satisfying σ(B̄1) ⊂ J . Let w ∈ C4(B1) ∩ C2(B̄1) be a radially symmetric function such that σ ≤ w ≤ 0
in B1. Then the boundary value problem

B∆2v − T∆v = −λg(w) in B1 , (4.9)

v = ∂nv = 0 on ∂B1 , (4.10)

has a unique radially symmetric classical solution v ∈ C4(B1) ∩ C2(B̄1) satisfying σ ≤ v < 0 in B1.

Proof. Due to σ(B̄1) ⊂ J and σ ≤ w ≤ 0, the properties of g and w imply that g(w) ∈ C2(B̄1). Therefore,

(4.9), (4.10) has a unique classical solution v ∈ C4(B1) ∩ C2(B̄1) which is radially symmetric since w is.

Next, since g(0) ≤ g(w) ≤ g(σ) in B1, which stems from the monotonicity of g, we also have

B∆2(σ − v)− T∆(σ − v) ≤ −λg(σ) + λg(w) ≤ 0 in B1 ,

and Theorem 1.4 guarantees that σ ≤ v in B1. Moreover, since g(0) > 0, a further application of Theo-

rem 1.4 reveals that v < 0 in B1, which completes the proof. �

Now, fix λ ∈ (0, λ∗) and suppose there is a radially symmetric classical subsolution σ ∈ C4(B1)∩C2(B̄1)
of (4.8) satisfying σ(B̄1) ⊂ J . Since g is non-negative, Theorem 1.4 ensures that σ is non-positive in B1.

Define then a sequence (un)n∈N by u0 := 0 and

B∆2un − T∆un = −λg(un−1) in B1 , (4.11)

un = ∂nun = 0 on ∂B1 . (4.12)

Since σ ≤ u0 = 0, we may apply Lemma 4.9 repeatedly to obtain by induction that (un)n≥1 is a well-

defined sequence of radially symmetric classical solutions in C4(B1) ∩ C2(B̄1) to (4.11), (4.12) satisfying

σ ≤ un < 0 in B1 for each n ≥ 1. Let us now show by induction that un ≤ un−1 in B1 for each n ≥ 1. We

already know that u1 ≤ u0 = 0 in B1. Assume that un ≤ un−1 in B1 for some n ≥ 1. Then g(un−1) ≤ g(un)
in B1 so that

B∆2(un+1 − un)− T∆(un+1 − un) ≤ −λg(un) + λg(un−1) ≤ 0 in B1 ,

whence un+1 ≤ un by Theorem 1.4. We have thus shown that

σ ≤ un+1 ≤ un ≤ u1 < 0 in B1 , n ≥ 1 , (4.13)

and, in particular, 0 ≤ g(un) ≤ g(σ) ∈ L∞(B1). From (4.11), (4.12) we infer that the sequence (un)n∈N
is bounded in W 4

q (B1) for any q ∈ [1,∞). It is then straightforward to show that (un)n∈N converges to a

radially symmetric classical solution uλ ∈ C4(B1) ∩ C2(B̄1) of (4.8) satisfying

σ ≤ uλ < 0 in B1 (4.14)
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by (4.13). Note that uλ does not depend on σ. Therefore, it lies above any radially symmetric classical

subsolution and is in this sense a maximal solution. In particular, it is unique. To complete the existence of

uλ, it remains to construct a suitable subsolution. But, since λ ∈ (0, λ∗), there is λ0 ∈ (λ, λ∗) and a radially

symmetric classical solution u0 of (4.8) with λ replaced by λ0 satisfying u0(B̄1) ⊂ J . Also, u0 ≤ 0 by

Theorem 1.4. Furthermore,

B∆2u0 − T∆u0 + λg(u0) ≤ (λ− λ0)g(u
0) ≤ 0 in B1 ,

so that u0 is a radially symmetric classical subsolution of (4.8). The previous analysis now ensures the

existence of the maximal solution uλ.

Moreover, given 0 < λ1 < λ2 < λ∗, we deduce from (4.8) and (4.14) that

B∆2uλ2
− T∆uλ2

+ λ1g(uλ2
) = (λ1 − λ2)g(uλ2

) < 0 in B1 ,

and the maximality of uλ1
warrants that uλ2

≤ uλ1
in B1. We next notice that (4.8), (4.14), and the

monotonicity of g ensure

B∆2(uλ2
− uλ1

)− T∆(uλ2
− uλ1

) = (λ1 − λ2)g(uλ1
) + λ2(g(uλ1

)− g(uλ2
)) < 0 in B1 .

Theorem 1.4 then gives uλ2
< uλ1

in B1.

Finally, assume that a := inf J > −∞ and m := inf(a,0) g > 0. Let φ1 > 0 be a radially symmetric

positive eigenfunction associated with the eigenvalue µ1 > 0 of the operator B∆2 − T∆ subject to homo-

geneous Dirichlet boundary conditions, its existence being guaranteed by Theorem 4.7. Now, if u is any

radially symmetric classical solution to (4.8) for some λ > 0, then a < u ≤ 0 by Theorem 1.4 and thus

aµ1

∫

B1

φ1 dx ≤ µ1

∫

B1

φ1u dx =

∫

B1

φ1(B∆2u− T∆u) dx = −λ

∫

B1

φ1g(u) dx ≤ −λm

∫

B1

φ1 dx .

Therefore, λ∗ ≤ −aµ1/m < ∞. This completes the proof of Theorem 1.4.
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