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Abstract. The main question of this paper is to retrieve some conti-
nuity properties on (discrete) T0-Alexandroff spaces. One possible ap-
plication, which will guide us, is the construction of the so-called “tree
of shapes” (intuitively, the tree of level lines). This tree, which should
allow to process maxima and minima in the same way, faces quite a num-
ber of theoretical difficulties that we propose to solve using set-valued
analysis in a purely discrete setting. We also propose a way to interpret
any function defined on a grid as a “continuous” function thanks to an
interpolation scheme. The continuity properties are essential to obtain a
quasi-linear algorithm for computing the tree of shapes in any dimension,
which is exposed in a companion paper [10].

1 Introduction

This paper is the first in a series dedicated to the notion of the tree of shapes,
which has been introduced [16, 7] as a way to filter an image u : X ⊂ Rn → R
(n ≥ 2) in a self-dual way, meaning intuitively that processing either u or −u
would give the same result. In its continuous definition, this tree is made by the
connected components of upper level sets {x;u(x) ≥ λ}λ∈R and lower level sets
{x;u(x) < λ}λ∈R. This definition, by itself, is not really self-dual, as the tree of
shapes of u is not the same as the tree of shapes of −u.

The goal of this paper is to propose a purely discrete framework in which a
true self-dual definition of the tree of shapes can be given, together with a proof
of the existence and uniqueness of such a tree for a given class of functions.
We then provide several ways to interpret any image as belonging to this class
of functions, one of them being self-dual. In the next paper of this series [10],
we provide a quasi-linear algorithm relying on this theoretical framework, that
allows the computation of the tree of shapes of an image, whatever its dimension.

In order to achieve our goal, we extend the notion of set-valued upper-
semicontinuity [4] to the discrete case (T0-Alexandroff topology), and from which
we build the notions of simple map and plain map that share the main properties
of a classical continuous function. To obtain the tree of shapes, we also need to
adapt the notion of well-composed map to our framework.

First approaches to discrete continuity date back to Rosenfeld [19], followed
by Boxer [6]. Many authors have recognized that the set-valued setting is im-
portant to the discrete case [12, 22, 8]. None has proposed what we develop in
this paper, although it may appear very natural for a researcher familiar with
set-valued analysis.



2 Set-valued continuity on discrete spaces

2.1 Topology reminder

A topological space is a set X composed of elements, or points, of arbitrary nature
in which certain subsets A ⊆ X, called closed sets of the topological space X,
have been defined so as to satisfy the following conditions, called the axioms of
a topological space:

1. The intersection of any number and the union of any finite number of closed
sets is a closed set.

2. The whole set X and the empty set ∅ are closed.

The sets complementary to the closed sets of X are called the open sets of the
topological space X.

The intersection of all closed sets containing a set M ⊂ X is called the
closure of M in the topological space X and is denoted by clX(M). Every open
set containing a set M is called a neighborhood of the set M . A set M ⊂ X is
said to be degenerate if it contains just one point.

Definition 1 A topological space X is said to be a T0-space if every two dis-
tinct degenerate subsets of X have distinct closures in X. A T0-space is called a
discrete space if the union of an arbitrary number of closed sets of the space is
closed.

Finite T0-spaces are the most important cases of the so called discrete spaces [1–
3]. Another important example is the Khalimsky grid of dimension n, which is
define as follows:

H1
0 = {{x};x ∈ Z} (1)

H1
1 = {{x, x+ 1};x ∈ Z} (2)

H1 = H1
0 ∪H1

1 (3)

Hn = {h1 × . . .× hn,∀i ∈ [1, n], hi ∈ H1} (4)

In the Khalimsky grid, the elements of H1
0 are closed sets, and the elements of

H1
1 are open sets. Although our definitions and results are valid in any discrete

space, we will illustrate them on (a subset of) the Khalimsky grid.
If X is a discrete space, the intersection of all open sets containing a set

M ⊂ X is an open set, called the star of M in the topological space X. The
star of M in X is denoted by stX(M). If M = {x} is degenerate, by abuse of
notation, we write stX(x) = stX({x}).

Definition 2 A set is said to be connected if it is not the union of two disjoint
nonempty closed sets.

For discrete spaces, this definition is equivalent to the one provided by the con-
nectivity by paths. Two points x and y of X of a discrete space X are neighbors
if either y ∈ stX(x) or x ∈ stX(y). A path in X from x to y is a sequence



x0 = x, x1, . . . , xn = y such that xi+1 is a neighbor of xi. One can prove that
a set is connected if for any two points of this set, there exists a path between
them. A connected component of X is a connected subset of X that is maximal
for the connectivy property. We can also mention that any discrete space is lo-
cally connected, in the sense that any point x ∈ X has a smallest open connected
neighborhood in X, namely stX(x). The following lemma is useful in the sequel.

Definition 3 Let M and N be two subspaces of X. M and N are separated if
each is disjoint from the closure of the other, that is, if (M ∩ clX(N)) ∪ (N ∩
clX(M)) = ∅.

Lemma 4 If two open sets of a discrete space are disjoint, then they are sepa-
rated.

2.2 Set-valued maps

In the sequel, X and Y denotes two discrete spaces. The main references for set
valued analysis is [4]. An application F is called a set-valued map from X to Y
if for any x ∈ X, F associates to x the set F (x) ⊂ Y , called the image of F at
x. In this case, the domain of F is the set Dom(F ) = {x : F (x) 6= ∅}.

A set-valued map F : X  Y is called upper semicontinuous at x ∈ Dom(F )
(usc at x) if and only if for all y ∈ stX(x), F (y) ⊆ stY (F (x)). F is said to be
upper semicontinuous if and only if it is upper semicontinuous at every point
x ∈ Dom(F ).

X

Y

x
(a)

X

Y

x
(b)

Fig. 1. (a) A discrete set-valued map F that is usc at x, drawn on a subset of the
Khalimsky grid H2 Note that F is also an interval-valued map, and x is both a minimum
and a maximum of F . (b) A discrete set-valued map that is lsc at x.

One can remark that upper semicontinuity is the natural adaptation to set-
valued map of the definition of a continuous function. An example of a usc
set-value map is given in Fig. 1(a).

A useful property of a continuous function is that the inverse image of a
closed (open) set is a closed (open) set. To adapt this property to set valued
maps, we need to define the inverse. Let M be a subset of Y , F : X  Y



be a set-valued map. We denote F⊕(M) = {x ∈ X;F (x) ∩ M 6= ∅} , and
F	(M) = {x ∈ X;F (x) ⊆ M}. The subset F⊕(M) is called the inverse image
of M by F and F	(M) is called the core of M by F .

Proposition 5 A set-valued map F : X  Y is usc if and only if the core of
any open set is open: F is usc if and only if F	stY = stXF

	

If furthermore F is with nonempty values (or if Dom(F ) is closed) F is usc
if and only if the inverse image of any closed subset is closed: F is usc if and
only if F⊕clY = clXF

⊕.

Intuitively, a function is continuous if, roughly speaking, it can be drawn as a
single unbroken curve with no ”holes” nor ”jumps”. In other words, a continuous
function transforms a connected set into a connected set. For a set M ⊆ X, we
write F (M) = ∪x∈MF (x).

Proposition 6 Let F be a usc set-valued map such that, for all x ∈ X, F (x)
is a closed (resp. open) connected set. Then, for any connected set M , F (M) is
a closed (resp. open) connected set.

X

Y

Fig. 2. A quasi-simple map.

We say that a usc set-valued map F is a closed (resp. open) quasi-simple map
if for all x ∈ X, F (x) is a closed (resp. open) connected set, and if furthermore,
for any {x} = stX(x) ∈ X, F (x) is degenerate. A quasi-simple map F is simple
if it is the smallest of all quasi-simple maps with the same data on open points,
i.e, a quasi-simple map F1 is simple if for any quasi-simple map F2 such that
for any {x} = stX(x) ∈ X, F1(x) = F2(x), then, for all x ∈ X, F1(x) ⊆ F2(x).
Fig. 2 is an example of a quasi-simple map, while Fig. 3 is a simple map. The
class of simple maps is interesting because it corresponds to our intuition (i.e.
a single ubroken curve with no “holes” nor “jump”) of continuous functions (at
least when a simple map is interval-valued, see section 3).

In particular if f is a function defined for all {x} = stX(x) ∈ X with f(x) ∈ Y
and f(x) closed (resp. open), there exists a (unique) closed (resp. open) simple
map such that for all {x} = stX(x) ∈ X, F (x) = {f(x)}.



Remark 1. V. Kovalevsky [12] defines the “continuous” functions as the ones
that are called lower semicontuinous in our framework. More precisely, V. Ko-
valevsky uses prop. 8 below as the definition of a continuous function.

Definition 7 A set-valued map F : X  Y is called lower semicontinuous (lsc)
at x ∈ Dom(F ) if for any open subset M ⊂ Y such that M ∩F (x) 6= ∅, then for
all y ∈ stX(x), F (y) ∩M 6= ∅.

Fig. 1(b) gives an example of an lsc set-valued map. This definition is the
adaptation to the (discrete) set-valued setting of the celebrated characterization
of continuous function (a function f is continuous at x if and only if it maps
any sequence converging to x to sequences converging to f(x).) However, as no
convergence can be defined in a discrete space, we have to use a topological
definition. We have the following characterization of lsc maps.

Proposition 8 A set-valued map F : X  Y is lsc if and only if the inverse
image of any open set is open: F is lsc if and only if F⊕stY = stXF

⊕

If furthermore F is with nonempty values (or if Dom(F ) is closed) F is lsc
if and only if the core of any closed subset is closed: F is lsc if and only if
F	clY = clXF

	.

However, it is not possible to obtain simple lsc set-valued maps with interesting
properties for our goal, and V. Kovalevsky then studies connectivity-preserving
set-valued maps, that would be called Darboux maps in a more classical set-
ting. In our framework (as in the classical one), some connectivity-preserving
maps exist that are not usc, although prop. 6 shows that there exists usc maps
preserving connectivity.

3 Interval-valued maps

Recall that a set X is said to be unicoherent if X is connected and for any
two closed connected sets M and N of X such that X = M ∪N , then M ∩N
is connected. In the sequel, X0 denotes a finite discrete topological space, and
X ⊂ X0 denotes an unicoherent subset of X0.

An interval is a connected subset of H1. Remark that H1 is a totally ordered
set, in the sense where H1 is in bijection with 1

2Z: we identify the open sets of

H1 with the elements of 1
2Z \ Z and the closed sets of H1 with the elements of

Z. We thus have . . . < {0} < {0, 1} < {1} < . . ., and operations such as λ + 1
2

(where λ ∈ H1), max or min on any subset of H1 are well-defined. We say that
a set-valued map F is an interval-valued map if the images of F are intervals.
We say that an interval-valued map is bounded if there exists λ and µ in H1 such
that λ ≤ min{ν ∈ F (X)} and µ ≥ max{ν ∈ F (X)}. It is easy to check that
interval-valued maps verify important classical theorems, such as for example,
the intermediate value theorem (which is a simple consequence of Pr. 6 and of
the connectedness of an interval).

As illustrated on Fig. 3, a simple closed-valued interval-valued map from H1

toH1 is what one would intuitively draw when dealing with a classical continuous
function. Thus we will use the following definition.



Definition 9 A closed-valued, interval-valued simple map F from X to H1,
with dom(F ) = X is called a plain map on X.

1-1-2 {1,2} 2{0,1}0

0

1

-1
{-1,0}{-2,-1}

{0,1}

{-1,0}

Fig. 3. A plain map F from H1 to H1.

Remark that, as X is finite, a plain map is bounded. We have the following
property.

Proposition 10 If F is a plain map on X, then F	 is an open-valued usc map
and F⊕ is a closed-valued usc map.

3.1 Level sets and extrema

We need to adapt to the set-valued case the notions of upper and lower level
sets. In the sequel, F denotes an interval-valued map from X to H1. Let λ ∈ Z,
we write [F C λ] = F	(] − ∞, λ[) = { x ∈ X | ∀µ ∈ F (x), µ < λ }. The
set [F C λ] is called the (strict) lower level set (of F , at level λ). Similarly,
the (strict) upper level set (of F , at level λ) is the set [F B λ] = F	(]λ,+∞[).
Thanks to prop. 10, the upper and lower level sets of a plain map are open.

The connected components of a set M ⊆ X will be denoted by CC(M). If
x ∈ M , the connected component of M that contains x will be denoted by
CC(M,x), and by extension, we write CC(M,x) = ∅ if x 6∈ M . If ∅ 6= C ⊆ M
and C is connected, the connected component of M containing C, denoted by
CC(M,C) is CC(M,x) with x ∈ C.

Definition 11 (Extrema) A connected component of [F C λ] is a minimum
of F if it does not contain any other connected component of [F C µ] for any
µ < λ. A connected component of [F B λ] is a maximum of F if it does not
contain any other connected component of [F B µ] for any µ > λ. An extremum
of F is either a maximum or a minimum of F .

We say that a set M is flat for F if for all x ∈ M , F (x) = F (M). Remark
that F (M) is not always a degenerate set and that an extremum of a set-valued
map is not always flat: for example, the point x in Fig. 1(a) is both a minimum



and a maximum, and although this extremum is flat, it is not degenerate. It is
easy to draw an example where a minimum of a set valued map contains several
maxima, and hence is not flat.

Lemma 12 The extrema of a plain map F are flat open sets. Furthermore, for
any extrema M of F , F (M) is degenerate.

Proposition 13 Let F be a plain map on X that is not constant. Then the
extrema of F are separated.

In the same way as the strict level sets, we can define the (large) lower and
upper level sets [F D λ] = X \ [F C λ] = F⊕(] −∞, λ]) = { x ∈ X | ∃µ ∈
F (x);µ ≤ λ } and [F E λ] = X \ [F B λ]. Thanks to prop. 10, [F D λ] and
[F E λ] of a plain map F are closed.

Combining lower and upper level sets relations, we write [F ≡ λ] = [F E
λ] ∩ [F D λ] = { x ∈ X | λ ∈ F (x) } and [F 6≡ λ] = X \ [F ≡ λ] = { x ∈
X | λ 6∈ F (x) } = [F C λ] ∪ [F B λ].

The following relations are natural. We indeed have [F E λ] = [F C λ] ∪ [F ≡
λ], [F D λ] = [F B λ] ∪ [F ≡ λ] and [F 6≡ λ] = [F C λ] ∪ [F B λ]. Similarly,
we have for any λ1 and λ2 in H1, λ1 < λ2 ⇒ [F E λ1] ⊆ [F E λ2] and λ1 <
λ2 ⇒ [F D λ2] ⊆ [F D λ1]. But if we have λ1 < λ2 ⇒ [F C λ1] ∩ [F B λ2] = ∅,
the following relation is uncommon.

λ1 < λ2 6⇒ [F E λ1] ∩ [F D λ2] = ∅ (5)

Indeed, for instance, for x such as F (x) = [1, 2], we have both x ∈ [F E 1] and
x ∈ [F D 2]. Note that we may also have:

[F C λ+
1

2
] $ [F E λ] (6)

Indeed, with the same example, if F (x) = [1, 2], x ∈ [F E 1], but x 6∈ [F C 3
2 ].

But, by the very definition of a plain map, if F is plain, for any λ ∈ H1, we
always have the following property.

Proposition 14 A set-valued map F is a plain map if and only if, for any
λ ∈ H1,

[F E λ] = clX([F C λ+
1

2
]) and [F D λ] = clX([F B λ− 1

2
]) (7)

We can reconstruct F from its lower and upper level sets, with the following
process: set fmin(x) = min{λ ∈ Z;x ∈ [F E λ]} and fmax(x) = max{λ ∈ Z;x ∈
[F D λ]}. Then F (x) = [fmin(x), fmax(x)]. The process is simpler if F is plain:
then for any degenerate open set x ∈ X, we have F (x) = {min{λ ∈ Z;x ∈
[F C (λ + 1)]}} = {max{λ ∈ Z;x ∈ [F B (λ − 1)]}}. The other images of a
simple/plain map F can be deduced from these ones.



Definition 15 Let T ⊆ 2X . We say that T is a tree (of subsets of X) if (i)
X ∈ T , and (ii), if M,N ∈ T , then either M ∩N 6= ∅, M ⊆ N , N ⊆M . In the
last two cases, we say that M and N are nested.

For a plain map F , let us denote U	(F ) = {M ;M ∈ CC([F C λ]), λ ∈ H1},
U⊕(F ) = {M ;M ∈ CC([F E λ]), λ ∈ H1}, L	(F ) = {M ;M ∈ CC([F B λ]), λ ∈
H1} and L⊕(F ) = {M ;M ∈ CC([F D λ]), λ ∈ H1}. We remark that any two
elements of one of these four sets are either disjoint or nested, hence they are
trees. The set U	(F ) (resp. L	(F )) is the tree of open connected components
of the lower (resp. upper) level sets of F , while U⊕(F ) (resp. L⊕(F )) is the tree
of closed connected components of the lower (resp. upper) level sets of F . In the
literature, similar trees have been called min- or max-trees, or component trees.

4 Shapes of Interval-Valued Maps

Topology is not so important when we consider independently the min or the
max tree. It becomes fundamental when considering both trees at the same time,
which is at the basis of the so-called tree of shapes.

Definition 16 Let M ⊆ X. We call cavities of M in X the components of
X \M . Let p∞ ∈ X a reference point. We call saturation of M with respect to
p∞ the set sat(M,p∞) = X \ CC(X \M,p∞).

For any λ ∈ H1, we call quasi-shape of x the set:

Sλ(F, x) = sat(CC([F 6≡ λ], x), p∞) (8)

We thus have two different types possible for a given shape:

either Sλ(F, x) = sat(CC([F B λ], x), p∞) (9)

or Sλ(F, x) = sat(CC([F C λ], x), p∞). (10)

But all the shapes being open, the type of a shape can not be known from the
shape itself (contrary to the case of the continuous framework [7]).

Consider the family of sets:

S(F, x) = {Sλ(F, x) }λ \ ∅. (11)

and denote by S(F ) the set formed by all the S(F, x) for all x ∈ X.
The notion of surface used in this paper is the one of n-surface.

Definition 17 (n-surface,[5, 9]) A discrete space Y is a 0-surface if Y is made
of exactly two points x and y such that x 6∈ stY (y) and y 6∈ stY (x). A discrete
space Y is a n-surface (n > 0) if Y is connected and if, for any x ∈ Y , clY (x)∪
stY (x) \ {x} is a (n− 1)-surface.

The notion of well-composed connected set has been introduced in [13, 14].
Several extensions have been proposed in the literature [15, 11, 23]. In this paper,
we extend it to maps by considering at the same time upper and lower level sets.



Definition 18 (Well-composed set and map) A connected set M is well-
composed if ∂M = clX(M) ∩ clX(X \ M) is a n-surface. A set N is well-
composed if any connected component of ∂N is a n-surface. A plain map F is
well-composed if for any λ ∈ H1, both [F C λ] and [F B λ] are well-composed.

Remark 2. Note that a well-composed set is a regular open set [18].

Lemma 19 If a plain map F is well-composed, then for any λ ∈ H1, and for
any connected component C ∈ CC([F E λ]) (resp. C ∈ CC([F D λ])), there exists
a connected component CC ∈ CC([F C λ + 1

2 ]) (resp. CC ∈ CC([F B λ − 1
2 ]))

such that C = clX(CC).

Lemma 20 If a plain map F is well-composed, then for any λ ∈ H1, and for
any connected component M ∈ CC([F E λ]) (resp. M ∈ CC([F D λ])), we have
sat(clX(M)) = clX(sat(M)).

Theorem 21 If F is a well-composed plain map, then any two quasi-shapes are
either disjoint or nested. Hence S(F ) is a tree.

The proof of Th. 21 is essentially the same as the one of Th. 2.6 in [7], adapted
for the set-valued case of a plain map, and with a different ending that uses
Lemma 20 and Lemma. 19. Due to space constraint, this proof will be provided
in an extended version of this paper.

Definition 22 We call shape of x the smallest non-empty quasi-shape of x de-
fined by:

S(F, x) =
⋂

S∈S(F,x)

S (12)

We denote by S(F ) the set formed by all the shapes of x for all x ∈ X

The intersection in (12) is open as an intersection of open sets in a discrete
space; moreover it is non-empty, as S(F, x) is one of the quasi-shapes of x by
proposition 21.

Corollary 23 The set S(F ) is a tree (called the tree of shapes).

5 Interpolation

In order to apply the framework, we need a way to interpret any function defined
on a grid as a well-composed plain map. Unfortunately, directly interpreting a
set of data as a plain map (as in Fig. 4.a) does not lead to a well-composed
plain map. We do not want to modify the original data, as it is done in [20].
Closer to what we propose in this paper are the magnification process of [17], and
even closer is [21], where new points are introduced thanks to subdivision of the
space, the value on the points being derived from a majority rule. However, none
of the previous approaches is equivalent to the simple interpolation we propose
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(a) Original data seen as a plain map. (b) Minimum interpolation.
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Fig. 4. Original data (a) and (b,c,d) three different interpolations F of the same 2D
image that are plain maps. The original image values are depicted in bold in (b,c,d);
contours of connected components of [F C 7] are in red, whereas contours of connected
components of [F B 5] are in green and blue. One can remark that (a) and (d) are
not well-composed and that the saturation of the components of (a) and of (d) do not
satisfy Lemma 19 and 20, contrary to the components of (b) and (c). In particular, the
saturation of the red component in (a) or (d) does not include the blue component.

hereafter. More precisely, we map a function defined on Zn to a function defined
on the Khalimsky grid Hn using an adequate space subdivision.

Let us denote by Hn
1 the set of the elements of Hn that are open sets:

Hn
1 = {h1 × . . .× hn;∀i ∈ [1, n], hi ∈ H1

1}.

With 2H1
1 = {{2x, 2x+ 1};x ∈ Z}, we can define several subsets of Hn

1 :

2Hn
1 = {h1 × . . .× hn;∀i ∈ [1, n], hi ∈ 2H1

1} and In1 = Hn
1 \ 2Hn

1

and the subset of In1 : Cn1 = {h1 × . . .× hn;∀i ∈ [1, n], hi ∈ H1
1 \ 2H1

1}.
Let us denote by M(Z) the set of multisets having Z as the underlying set

of elements; for instance we have {1, 1, 2} ∈ M(Z). Let op : M(Z) → 1
2Z be



an operator over a multiset of integers that is increasing with respect to any
element of the multiset, that is, ∀z = {z1, . . . , zk} ∈ M(Z),∀i ∈ [1, k], we have:

z′i ≤ zi ⇒ op({z1, . . . , zi−1, z′i, zi+1, . . . , zk}) ≤ op(z).

Some well-known eligible operators are the minimum, the maximum, and the
median (with med({a, b}) = (a+ b)/2). From any operator op we can derive an
“interpolation” of a function f : Zn → Z into a plain map F : Hn  H1:

Iop :

{
(Zn → Z) −→ (Hn  H1)

f 7−→ Iop(f)

where Iop(f) is recursively defined by:

∀h ∈ Hn, Iop(f)(h) =

2f(h1

2 , . . . ,
hn

2 ) if h ∈ 2Hn
1

op({I(f)(h′); h′ ∈ stX(clX(h)) ∩ 2Hn
1 }) if h ∈ In1

span({I(f)(h′); h′ ∈ stX(h) ∩Hn
1 }) otherwise.

Furthermore, the elements of Cn1 shall not lead to extrema in Iop(f).

Proposition 24 Any plain map obtained thanks to the max- or the min-interpo-
lation is well-composed.

The max- and min- interpolation reproduces the Rosenfeld 4- and 8- topology.
The tree of shapes obtained with this interpolation is the one computed by all
previous existing algorithms [7]. However, the max- or the min-interpolation do
not lead to a self-dual filtering. This is illustrated in Fig 4.b.

Proposition 25 The median interpolation of a function defined on Z2 leads to
a self-dual plain map.

This proposition is illustrated on Fig. 4.c.

Conjecture 26 With the suitable space subdivision, the median interpolation
leads to a self-dual map whatever the dimension of the space.

Remark 27 Fig. 4.d shows that the mean operator is not suited for our type of
interpolation.

6 Conclusion

In this paper, we have shown how to obtain a well-composed plain map from any
set of data defined on a grid, and we provide a median-interpolation operator
inducing a true self-dual tree. In another paper [10], we provide a quasi-linear
algorithm for computing the tree of shapes from a n-dimensional well-composed
plain map. A dedicated algorithm (less memory consuming) will also be provided
for the 2D case.
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