Guillaume Tartavel
email: tartavel@telecom-paristech.fr

Yann Gousseau
email: gousseau@telecom-paristech.fr

Gabriel Peyré
email: gabriel.peyre@ceremade.dauphine.fr

Constrained Sparse Texture Synthesis

Keywords: texture synthesis, sparse decomposition, dictionary learning, variational methods

come

Introduction

Texture synthesis aims at generating an image that is visually similar to a given input exemplar but at the same time exhibits a strong randomness. Classical methods learn a global statistical model from the exemplar, and then sample a realization from this distribution. Simplest models consider independent stationary coefficients over a Fourier [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF] or a wavelet basis [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF][START_REF] De | Multiresolution sampling procedure for analysis and synthesis of texture images[END_REF]. More realistic syntheses are achieved by using an adapted representation learned from the exemplar [START_REF] Zhu | Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling[END_REF] or by using higher order models taking into account dependencies among the coefficients [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF].

Another class of methods are based on the Markov Random Field (MRF) assumption that each pixel of the texture depends only on its neighborhood. [START_REF] Cross | Markov random field texture models[END_REF] introduced a parametric MRF model to textures. [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] and [START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF] propose a nonparametric MRF model where the probability law of a pixel given its neighbors is sampled directly from an exemplar of the texture to be synthesized. These approaches have been improved by several author, see for instance the recent review [START_REF] Wei | State of the art in examplebased texture synthesis[END_REF].

These patch-based synthesis methods share similarities with recent sparsitybased methods developed for image restoration. These methods build a dictionary to perform a sparse expansion of the patches of the image in order to achieve state of the art denoising results, see for instance the work of Elad and Aharon [START_REF] Elad | Image denoising via learned dictionaries and sparse representation[END_REF]. Peyré shows in [START_REF] Peyré | Sparse modeling of textures[END_REF] that dictionary learning can be used for texture synthesis, the dictionary encoding in a compact manner the geometric features of the input image.

Our method builds upon the sparse texture synthesis method of Peyré [START_REF] Peyré | Sparse modeling of textures[END_REF], but extends it significantly to achieve state of the art results in terms of visual quality. We integrate several constraints to enrich the model and propose a variational energy that is minimized during the synthesis.

Dictionary Learning

The first step of our method trains a dictionary to approximate patches from the input exemplar. We take here the opportunity to introduce our notations while recalling the process of dictionary learning.

Matrix Notation. We denote a i and a j the rows and columns of a matrix A = (a j i) i,j . The transposed matrix is denoted by A * . Its ℓ 2 (Frobenius) norm is defined by

||A|| 2 = tr(A * A) = i,j |a j i | 2 .
The indicator function ι C of a set C is by definition equal to +∞ outside C and equal to 0 inside C. The ℓ 0 pseudo-norm of a vector w counts its non-zeros coordinates, ||w|| 0 = # {i \ w i = 0}.

Patches and Dictionary. We process and synthesize an image u by manipulating its patches. Given a set (x k) K k=1 of K pixel locations, the patch extractor is Π(u) = (p k) k ∈ R L×K where for t ∈ {0, . . . , τ -1} 2 , p k (t) = u(x k + t) defines the patch p k ∈ R L of τ × τ pixels, so that L = dτ 2 where d = 1 for grayscale images and d = 3 for color images. We constrain the sampling locations on a regular grid x k = k∆ for k ∈ Z 2 where the spacing ∆ > 0 controls the amount of sub-sampling.

A dictionary D = (d n) N n=1 ∈ R L×N is used to approximate the patches P = Π(u) as P ≈ DW , where W ∈ R N ×K are the coefficients of the approximation. Note that this corresponds to approximating independently each patch as p k ≈ Dw k within the dictionary. The quality of the approximation is measured using the

ℓ 2 norm, ||P -DW || 2 = K k=1 ||p k -Dw k || 2 2 .
Learning Stage. Given an exemplar u 0 of a texture we want to synthesize, an adapted dictionary D 0 ∈ R L×N is learned to provide an optimal sparse approximation of the patches P 0 = Π(u 0) ∈ R L×K . Similarly to most dictionary learning methods, such as [START_REF] Elad | Image denoising via learned dictionaries and sparse representation[END_REF], we solve a non-convex optimization problem over the coefficients W 0 ∈ R N ×K and the dictionary D 0

(W 0 , D 0) ∈ argmin W,D ||P 0 -DW || 2 + ι C cols (W) + ι C dict (D) (1)
where we enforce the coefficients to be S-sparse using

C cols = W ∈ R N ×K \ ||w k || 0 S ∀k (2)
and where the atoms of the dictionary are constrained to be normalized using

C dict = D ∈ R L×N \ ||d n || 1 ∀n .
Several algorithms have been proposed to minimize approximately a nonconvex energy of the form [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF], see for instance the K-SVD method of [START_REF] Elad | Image denoising via learned dictionaries and sparse representation[END_REF].

Variational Formulation of the Synthesis Process

Once the dictionary D 0 has been learned from an input exemplar u 0 , a texture u (and the associated coefficients W of Π(u)) is synthesized by minimizing a non-convex energy E(u, W) equal to

1 Z ||Π(u)-D 0 W || 2 + ι C cols (W)+ ι Crows (W)+ αW 2 2 (µ u , µ u0)+ β||h⋆ (u -u 0)|| 2 . (3
)
Here Z = ⌈ τ ∆ ⌉ 2 is constant so that the ℓ 2 data fidelity is normalized with respect to the number of extracted patches. The two parameters α, β > 0 are weighting the influence of their respective terms. The synthesized images are stationary points of E that are sampled at random with an iterative scheme, which is described in Sect. 4. We now give the precise definition and the rationale for each term of this energy.

Sparse Coding Constraint. The sparse coding energy 1 Z ||Π(u) -D 0 W || 2 + ι C cols (W) is the same as the one used for the dictionary learning minimization [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF]. It requires that all the patches of u are well approximated by an S-sparse expansion in D 0 .

Frequency Constraint. The constraint C rows imposes that all the geometrical features of u 0 encoded in the dictionary are represented with the same respective proportions in u and u 0 . It enforces that atoms of D 0 be used with the same frequencies of occurrence for the sparse expansion of both Π(u 0) and Π(u). It is defined as

C rows = W ∈ R N ×K \ ∀n, ||w n || 0 F n 0 .
The frequencies F n 0 are estimated from the input exemplar coefficients W 0 as

F n 0 = K K 0 ||w n 0 || 0 , (4)
where K and K 0 are the number of patches extracted from u and u 0 respectively.

Histogram Constraint.

Maintaining the gray-level or color histogram of a texture is perceptually important for texture synthesis. This is achieved by penalizing the deviation between the empirical gray-level or color distributions µ u and µ u0 of u and u 0 . An efficient and robust distance between distributions is the optimal transport distance, also known as the Wasserstein distance (see e.g. [START_REF] Villani | Topics in optimal transportation[END_REF]). When u and u 0 have the same number of pixels, the L 2 Wasserstein distance is defined as

W 2 2 (µ u , µ u0) = min σ ||u -u 0 • σ|| 2 . (5
)
where σ runs over all the permutations of the pixels. This definition can be extended for images having a different number of pixels. For grayscale images, the optimal permutation is computed by simply sorting the pixel values. For color images, the Wasserstein distance is more involved to compute and to minimize. We approximate it as the sum of the grayscale distances along the three channels in a principal component orthogonal basis.

Low-Pass Constraint. Low frequency patterns, whose sizes exceed τ , are not controlled by the patch decomposition. To avoid the apparition of artifacts, we penalize the deviation of the low frequencies of u with respect to those of u 0 using the term ||h ⋆ (u -u 0)|| 2 , where ⋆ is the discrete convolution. We use a box filtering kernel h = (τ -2) 1 i,j τ which performs an averaging over the spatial extension of a patch.

Synthesis Algorithm

The synthesis is obtained by randomly sampling the stationary points of E(u, W) by a block-coordinate descent method that minimize E iteratively with respect to u and W . Pseudo-code 1 details the different steps of the method that are detailed in the remaining part of this section.

Algorithm 1: texture synthesis algorithm by minimization of (3).

Data: input texture u0. Input: parameters τ, ∆, S, α, β, N . Output: synthesized texture u.

1. Dictionary learning: compute (D0, W0) by minimizing (1). 2. Frequency estimation: compute (F n 0)n using (4). coefficient update:

W ≈ argmin W E(u, W), see Sect. 4.2.

Step 1: Minimization with respect to u

Given a fixed set of coefficients W , we compute the minimization of E(u, W) with respect to u alone

min u ẼW (u) = 1 Z ||Π(u) -P || 2 + αW 2 2 (µ u , µ u0) + β||h ⋆ (u -u 0)|| 2 (6)
where P = D 0 W is fixed.

Gradient Descent. The function ẼW is smooth almost everywhere since W 2 2 is defined in [START_REF] Elad | Image denoising via learned dictionaries and sparse representation[END_REF] as the minimum among a set of paraboloids. It has a Lipschitz gradient. We thus use a gradient descent scheme to solve approximately (6)

u (ℓ+1) = u (ℓ) -η∇ ẼW (u (ℓ))
where u (0) is initialized from the previous iteration of the synthesis process. The gradient of ẼW reads

∇ ẼW (u) = 2R(u, P) + α∇ u W 2 2 (µ u , µ u0) + 2β h ⋆ h ⋆ (u -u 0) (7)
where

R(u, P) = 1 Z Π * (Π(u) -P)
and where h(x) = h(-x). The step sizes η must be smaller than twice the inverse of the Lipshitz constant of this gradient, 0

< η < 4 × (1 + α + β) -1 .
Gradient of the Wasserstein Distance. When u and u 0 are grayscale images with the same number of pixels, the gradient of

u → W 2 2 (µ u , µ u0) reads ∇ u W 2 2 (µ u , µ u0) = 2 u -u 0 • σ u0 • σ -1 u
where σ v is a permutation that order the pixel values (v i) i of an image v, v σv (1) . . . v σv (i) v σv (i+1) . . .

The permutation σ u is not unique when u → W 2 2 (µ u , µ u0) is not differentiable. However, a descent direction is obtained by considering any valid ordering. When u and u 0 are color images, ∇ u W 2 2 (µ u , µ u0) is computed as the sum of the gradients over the three channels of the principal components of the distribution of the pixels of u 0 .

Non-linear Improved Reconstruction. We note that 1 Z Π * Π = diag i (ρ i /Z) where ρ i Z is the number of patches that overlap at a pixel location i. In the case of a perfect tiling,

ρ i = Z is constant and 1 Z Π * Π = Id: we can thus write diag i (Z/ρ i)R(u, P) = u -Π + P where Π + = (Π * Π) -1 Π * = diag i (1/ρ i)Π * is the pseudo-inverse of Π.
The term R(u, P) thus involves images that are reconstructed linearly by an averaging of patches. This step thus typically induces blur in the image u recovered at convergence. We improve this reconstruction by replacing the linear pseudoinverse Π + by a Non-Linear (NL) reconstruction operator Π + NL , and replace, in the gradient expression [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF], R(u, P) by R NL (u, P) = u -Π + NL (P).

Graph-Cuts Reconstruction. As a particular example of non-linear, edgepreserving, reconstruction operator Π + NL (P), we use the graph-cut reconstruction introduced in [START_REF] Kwatra | Graphcut textures: Image and video synthesis using graph cuts[END_REF] for texture synthesis. The idea is to sequentially blend each pair of adjacent patches along a cut. The patches are juxtaposed instead of being averaged. For a given patches collection, the resulting image is much sharper than the image obtained by linear reconstruction Π + (P).

A vertical cut γ between two consecutive patches (p 1 , p 2) in P is a vertical path splitting the overlapping pixels into 2 groups. It is thus a subset of edges joining pairs of pixels (x 1 , x 2). An optimal cut is computed by minimizing a functional measuring how well the two patches can be juxtaposed seamlessly along γ

J(γ, p 1 , p 2) = (x1,x2)∈γ ||p 1 (x 1) -p 2 (x 1)|| 2 + ||p 1 (x 2) -p 2 (x 2)|| 2 ||p 1 (x 1) -p 1 (x 2)|| 2 + ||p 2 (x 1) -p 2 (x 2)|| 2 . (8
)
The minimization of J(γ, p 1 , p 2) with respect to γ is done by linear programming.

The full image reconstruction Π + NL (P) is performed in a greedy manner. Patches are first merged using vertical cuts resulting in complete rows. These rows are then merged together using large horizontal cuts.

Note that the resulting term R NL (u, P) = u -Π + NL (P) does not correspond anymore to the true L 2 gradient. The non-linear behavior of the graph cut operator makes it difficult to analyze the convergence of the resulting process. Numerical simulations indicate that the process converges in practice, and that no blur is created by these iterations. An interesting question for future work is to understand whether the modification of the descent scheme can be re-casted as a minimization of some edge-preserving energy.

Step 2: Minimization with respect to W

The minimization of E with respect to W when u is fixed corresponds to the following combinatorial optimization problem min

W ||P -D 0 W || 2 + ι C cols (W) + ι Crows (W) (9)
where P = Π(u) is fixed. Even in the case where C rows is dropped (usual sparse coding), this problem is known to be NP-hard. We thus extend the Matching Pursuit (MP) greedy algorithm [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] to take into account the additional constraint C rows and compute an approximate solution of (9). Pseudo-code 2 describes the steps of this Constraint Matching Pursuit (CMP) algorithm, that are detailed in the remaining part of this section.

Index Selection

Step. At step ℓ, the algorithm greedily updates the coefficients W (ℓ) to reduce as much as possible the amplitude of the residual R (ℓ) = P -D 0 W (ℓ) while staying within the constraint sets C rows and C cols . This update only increases by at most one the number of non-zero coefficients

ε ⋆ = argmin ||ε||0=1 ||P -D 0 (W (ℓ) + ε)|| 2 + ι C cols (W (ℓ) + ε) + ι Crows (W (ℓ) + ε).
Algorithm 2: constrained matching pursuit to approximately solve [START_REF] Kwatra | Graphcut textures: Image and video synthesis using graph cuts[END_REF].

Data: patches P , dictionary D0. Input: sparsity S, frequencies F0. Output: coefficients W . for ℓ = 0 to SK -1 do -select the indices (k ⋆ , n ⋆) by solving [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF].

-update the coefficients to obtain W (ℓ+1) using (11).

-update the residual R (ℓ+1) = P -D0W (ℓ+1) using [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF].

Similarly as in the case of the MP algorithm, the optimal 1-sparse vector ε ⋆ indexes an atom d n ⋆ and a patch r

(ℓ) k ⋆ of the residual R (ℓ) = (r (ℓ)
k) k . These indices can also be shown to maximize the correlations

(k ⋆ , n ⋆) = argmax (k,n)∈I ℓ | r (ℓ) k , d n | (10
)
where I ℓ is the set of indices that are still available at step ℓ

I ℓ = (k, n) \ n ′ =n ||(w (ℓ)) n ′ k || 0 < S and k ′ =k ||(w (ℓ)) n k ′ || 0 < F n 0 where W (ℓ) = (w (ℓ)) n k k,n are the coefficient at step ℓ.

Coefficient Update

Step. The coefficients are then updated according the MP rule

(w (ℓ+1)) n k = (w (ℓ)) n k + r (ℓ) k , d n if (k, n) = (k ⋆ , n ⋆), (w (ℓ)) n k otherwise; (11
)
and the residual R (ℓ+1

) = P -D 0 W (ℓ+1) becomes r (ℓ+1) k = r (ℓ) k -r (ℓ) k , d n • d n if k = k ⋆ , r (ℓ) k otherwise. (12
)
Computational Complexity. Under the assumption that S L, N K, the number of operations of the CMP algorithm is O(KN (L + log K)) when precomputing the inner products and using a heap max-search. The computation of all inner products p k , d n provides a rough lower bound KN L for both our algorithm and the original version of MP [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF].

Multi-scale Synthesis

The energy E(u, W) is highly non-convex and the optimization process is likely to fall in bad local minima. Following several works on texture synthesis such as [START_REF] Peyré | Sparse modeling of textures[END_REF], we use a multi-scale strategy, that is particularly efficient when synthesizing images with features having various scales, such as a quasi-periodic tiling of small scale features.

We first proceed by filtering and down-sampling the input exemplar u 0 to produce a multi-scale hierarchy of J images (u j) J-1 j=0 , where u j corresponds to a sub-sampling by a factor 2 j . Keeping a fixed patch size but a varying resolution allows the method to capture details of varying sizes. A dictionary D j is learned for each u j following the method described in Sect. 2. The synthesis algorithm detailed in pseudo-code 1 is then applied for j = J -1, . . . , 1, 0 with (u j , D j) in place of (u 0 , D 0). Between two scales j and j -1, the current texture u output at scale j is up-sampled by a factor 2 using bi-cubic interpolation to serve as the initialization for the synthesis step at scale j.

Synthesis Experiments

In this section, we provide comparisons between the proposed method and 3 classical synthesis algorithms. We also illustrate the contribution of each term in the energy (3).

Choice of the Parameters. For all numerical experiments in this section, we use patches of width τ = 12 and a spacing ∆ = τ /2. The synthesis is performed through J = 3 scales. We choose S = 4 non-zero values per patch and N = 384 elements in the dictionary. The parameters of the energy (3) are chosen as α = β = 1; we observed that changing these values within reasonable proportions has little visual influence on the results.

Comparison. Our results are compared with 3 other decomposition-based texture synthesis algorithms [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF][START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF][START_REF] Peyré | Sparse modeling of textures[END_REF]]. Peyré's approach [START_REF] Peyré | Sparse modeling of textures[END_REF] is, to the best of our knowledge, the only synthesis model using sparse dictionary decomposition; our work is based on this approach. The method from Portilla and Simoncelli [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF] is a state of the art method for generic texture synthesis. Let us here emphasize that we are interested in algorithms that truly generate a new texture from an exemplar. Copy-paste methods such as the classical Efros-Leung algorithm [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] and numerous related approaches (see e.g. [START_REF] Wei | State of the art in examplebased texture synthesis[END_REF]) produce visually striking results on a larger class of textures than [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF]. However they merely proceed, either explicitly or not, by stitching together pieces from the exemplar, as illustrated in Fig. 1. These approaches are therefore not included in the present comparison. The method from Heeger and Bergen [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF] is included for methodological reasons. It relies on the prescription of both the marginals of wavelet coefficients and the gray level (or color) distribution of images. Therefore, it is closely related to our method, albeit working in a prescribed, non-adaptive dictionary.

In Figure 2 are displayed several successful synthesis examples on textures from the Brodatz database [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF]. On these, the proposed method performs significantly better than the method from Heeger and Bergen [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF], especially for structured textures. This is mostly due to the fact that learned dictionary are Original Coordinates Synthesis [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] Coordinates Fig. 1. A synthesis example using the method from [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF]. From left to right: input, pixel coordinates visualized via a colormap, synthesis result, original position of the pixels used for the synthesis. Although pixels are synthesized one at a time, the texture is produced by stitching together pieces from the exemplar.

Input [7] [12]
Our method [START_REF] Peyré | Sparse modeling of textures[END_REF] Fig. 2. From left to right: input texture, result using [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF], result using [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF], result from the proposed method, and result using the original framework [START_REF] Peyré | Sparse modeling of textures[END_REF]. The latter is often too smooth because of the multi-scale processing. All textures are from the Brodatz album [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF].

more efficient than wavelet dictionary at capturing edges, corners or other geometric characteristics of these textures. Second, results on these examples are comparable to those from [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF]. Observe that this last method relies on second order statistics (correlations) between wavelet coefficients, while our approach only controls the proportion in which each dictionary atom is used. This indicates that the learned atoms could provide an interesting mathematical model of textons, as defined in [START_REF] Julesz | A theory of preattentive texture discrimination based on first-order statistics of textons[END_REF]. Third, the importance of the penalty terms we introduced in energy (3) is evident through the comparison with the original method [START_REF] Peyré | Sparse modeling of textures[END_REF].

In Figure 3 are displayed two failure examples, a very large scale texture in the first row and a micro-texture in the second row. While the synthesis of very large scale textures without copy-pasting is still an open problem, micro-textures are successfully captured by relatively simple models such as the random phase model from [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. A rough explanation of the inability of our method to synthesize such textures is that the sparse decomposition model is not adapted for noise-like patches.

Input [7] [12]

Our method [START_REF] Peyré | Sparse modeling of textures[END_REF] Fig. 3. Failure examples. Top: a large scale texture, bottom: a micro-texture for which the sparse hypothesis is not adapted.

Step-by-Step Analysis. In this second set of experiments, we illustrate the contributions of both the different components of energy (3) and the chosen minimization strategy. For each tested texture, we compare the following synthesis procedures:

basic: only keep the first two terms (sparse coding constraint) and the fourth term (histogram constraint) of energy (3), which gives a method very similar to the initial framework of [START_REF] Peyré | Sparse modeling of textures[END_REF], -atom frequency: add the atom frequency constraint C rows , -graph cut: add the graph-cut reconstruction described in Sect. 4.1, -multi-scale: add the multi-scale strategy described in Sect. 4.3, -low frequency: add the low frequency constraint (last term of (3)), yielding the complete proposed procedure.

Several observations can be drawn from the results shown in Fig. 4. First, the atom frequency constraint is important for the generation of geometric structures and avoids an excessive use of smooth patches. Second, the non-linear image reconstruction procedure yields sharper results than the averaging of patches by the operator Π * . Third, the multi-scale strategy introduces large scale coherence, without the computational cost of using larger patch sizes. Last, the low frequency constraint prevents from large scale variations due to the independence of patches.

Conclusions and Future Work

In this article we presented a variational approach to the texture synthesis problem. It extends significantly the initial sparsity-based framework of [START_REF] Peyré | Sparse modeling of textures[END_REF].

We identified a set of constraints to make the sparse approach suitable for texture synthesis. The first constraint controls the frequency of occurrence of each atom of the dictionary. The second constraint compensates the lack of coherence between adjacent patches. The third refinement is a cut-based reconstruction in the patch-based framework. The last and common refinement is the multi-scale processing.

The resulting model is well adapted to textures with sharp edges and small quasi-periodic patterns as shown in Fig. 2. It is less suitable for textures with high frequencies or structures at very large scale. Interesting perspectives include a better modeling of noisy textures, possibly through constraints on the power spectrum of images as in [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF], as well as the use of a multi-scale learned dictionary. Another perspective is to explore the variational approach which formulates the synthesis problem as a (highly non-convex) minimization problem. This paper uses a basic gradient descent but more efficient approaches may be used. The solutions given by the minimization algorithm are (at most) local minima of the energy. Do they all look similar? If not, how to get a "good" solution?

3 .

 3 Initialization: set u to be a random white noise image. 4. Block-coordinate minimization: repeat until convergence image update: u ≈ argmin u E(u, W), see Sect. 4.1.

Fig. 4 .

 4 Fig. 4.Step-by-step examples. For each example, the result in the second column is obtained using a basic sparse synthesis scheme. Each column then shows the effect of adding a new constraint or of changing the minimization strategy. The last column is the complete proposed synthesis procedure.

Tartavel, Gousseau, Peyré

Acknowledgement: this work has been partly supported by the ANR project MATAIM and by the ERC project SIGMA-Vision.