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Abstract

We determine the Lyapunov spectrum and stable manifolds of some stochastic flows on the
Poincaré group associated to Dudley’s relativistic processes.
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1 Introduction

In 1966 Dudley [6] defined a class of relativistic processes with Lorentzian-covariant dynamics in
the framework of special relativity. Such a process & with values in Minkowski space-time R4,
is differentiable and has velocity smaller than the speed of light. So it can be parametrized by
its proper time, which amounts to impose to the velocity ét to be an element of the unit pseudo
sphere H%f R The restriction to the tangent space of H¢ of Minkowski ambient pseudo-
metric turns H? into a Riemannian manifold of constant negative curvature. The invariance of
the process («ft,ft) by the natural action of the set of Lorentz transforms on H? x R imposes
to the laws of & to be invariant by the action of the isometries of HY. Among this class of
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relativistic processes, there is essentially only one which is continuous. It corresponds to the case
where §t is a Riemannian Brownian motion in the hyperbolic space and in this case (&,ft)
called Dudley diffusion. Forty years after this seminal work, Franchi and Le Jan [8] extended
Dudley diffusion to the framework of any Lorentz manifold. They defined relativistic processes
with Lorentzian-covariant dynamics on generic Lorentzian manifolds by rolling without slipping a
Dudley diffusion on the unit tangent space. They studied the asymptotic behavior of such diffusion
in the Schwarzschild space-time. Bailleul [3] succeeded to compute the Poisson boundary of Dudley
diffusion in Minkowski space-time and showed that it coincides with the causal boundary of R
The asymptotic behavior of relativistic diffusions was investigated in other non flat Lorentzian
manifolds ([1], [7]) with the aim of describing how the asymptotic behavior of the diffusion reflects
the asymptotic geometry of the manifold.

In this work we ask a new question concerning these processes dealing with the asymptotic
behaviour of some stochastic flow associated to it. As Brownian motion on a Riemannian manifold
, the relativistic diffusion [8] is obtained by projecting a diffusion process with values in the
orthonormal frame bundle, solution of a stochastic differential equation. This SDE generates a
stochastic flow which, in our Lorentzian framework, consists in a stochastic perturbation of the
geodesic flow. Existence and computation, for example, of the Lyapunov spectrum and stable
manifolds of these flows may be investigated in the same way as it was done by Carverhill and
Elworthy [5] for the canonical stochastic flow in the Riemannian framework. The main difficulty
to study the flow of relativistic processes comes from the fact that the orthonormal frame bundle
of a Lorentz manifold is never compact. Nevertheless in this article we provide a study of the
asymptotic dynamics of the stochastic flow generated by Dudley processes in the Minkowski
space-time (without restricting ourselves to the diffusion case). Precisely, in this framework,
the orthonormal frame bundle is identified with the Poincaré group G := PSO(1,d) x R:? and
denoting ¢; the left invariant stochastic flow associated to one of Dudley’s processes in G we
obtain the description of the Lyapunov spectrum and the stable manifolds of ¢;. Precisely we
obtain the following two results.

Theorem 1 (Lyapunov spectrum). There exist a constant « > 0 and two asymptotic random Lie
sub-algebras Vg C V2 of Lie(G) such that for some norm || - || on Lie(G) and X € Lie(G) we
have for almost every trajectory

) N a if X eLie(G)\ V2
7 log lldee(Id)(X) |, 1a) S 0 it Xe VaA\Vs
—a if X eV \{0}

Theorem 2 (Stable manifolds). Denote by V3 := exp(Vg) and d the distance associated to a
left invariant and Ad(SO(d))-invariant Riemanian metric in G. Then for any two distinct points
g and g in G we have

o If§' € gV, then
1 _ _
;10gd(<pt(g),<pt(g’)) — —a.

t——+00
o If§' ¢ gV, then
litfgglfd(%(g)a%(g/)) > 0.

We begin by constructing, in section 2, Dudley processes as projections of left Lévy processes
on the Poincaré group G, identified with the orthonormal frame bundle of the Minkowski space-
time. These Lévy processes are solutions of stochastic integral equations and induce a left invariant
stochastic flow ¢; in G. In section 3 we find the asymptotic behavior of Dudley processes and
exhibit the asymptotic random variables (0o, Aoo) € ST x R% . Finally in section 4 we prove
Theorems 1 and 2 and explicit the projection of the stable manifold in H¢ x R"% by showing that
it corresponds to a skew product of a horosphere by a line.

Note that stochastic flows generated by Lévy processes on semi-simple Lie groups were inten-
sively studied by Liao ([12], [11], [13]). But his results cannot be used directly here since our
Lévy processes lie in the Poincaré group which is not semi-simple. Moreover in our work we



suppose only that the Levy measure is integrable at infinity whereas Liao [13] request the entire
integrability of it.

Our work is also strongly inspirited by the work of Bailleul and Raugi [4] where the authors
used Raugi’s methods [14] to find the Poisson boundary of Dudley diffusion.

2 Dudley processes and their lift in the Poincaré group

We present in this section the geometrical framework of special relativity and define a natural
class of relativistic Markov processes with Lorentzian-covariant dynamics introduced by Dudley
in [6]. They are obtained by projecting left Lévy processes with values in the Poincaré group and
are described by two parameters: a diffusion coefficient 0 € R and a jump intensity Lévy measure
von RY.

2.1 Minkowski space-time and Poincaré group

The Minkowski space-time R1? is R x R? endowed with the Lorentz quadratic form ¢ defined by

2 2 2
v& = (507517" '7§d) ERx Rda q(&) = (50) - (51) - (&d) .
We denote by E:: (€1,..., &%) the space component of &.
Set
Q = Diag(1,-1,...,—1)
the matrix of ¢ in the canonical basis (e, e1,...,e4). Time orientation is given by the constant

vector field eg and some ¢ € RY? is said to be future oriented when q(&,e9) > 0. A path 7,
in R is said to be time-like when it is differentiable almost everywhere and q(¥s) > 0 and
q(¥s,€0) > 0. The Poincaré group is the group of affine g-isometries which preserve orientation
and time-orientation. It is the semi-direct product connected group

G := PSO(1,d) x R

where G := PSO(1,d) denotes the group of linear g-isometries which preserve orientation and
time-orientation. An element g = (g,¢) € G is made up of its linear part g € G and its translation
part £&. We identify G with the sub-group of G which fixes 0. By this way, we identify RY4 with
the homogeneous space G/G. The identity element of G and G is denoted by Id (thus for us
Id = (Id,0)). At § = (g,&) € G we associate the affine frame ((g(eo), g(e1), . .., g(eq)); &) of R14

and G is identified with the bundle of g-orthonormal, oriented and time-oriented, frames over
RY4. We denote by

T G —s RLd
g=1(9,¢) — &

the projection associated to this trivial fibration and G = #71{0}. The canonical basis being fixed
we identify G with the matrix group

G = {g € SLR™"), 9Qg" = Q. q(g(eo),e0) > 0},

and its Lie algebra is
Lie(G) = {X € Mas1(R), XQ-QX'=0}

0 b
:{(b c)’ beRd,cEMd(R)s.tcz—cf}.

We have Lie(G) = Lie(G) x R and for X = (X, z),Y = (Y,y) € Lie(G)

[X,Y]=(X,Y],Xy—Yaz).



We identify Lie(G) with Ker(diq7) and its elements are vertical for the fibration 7. We set

t t
Vii=eoe; +eey 1=1,...,d

Vij =[Vi,V;] = eieé — ejef- 7> .

Moreover we set

Hj := (0,e9) € Lie(G)

which is horizontal for the fibration 7. _ B
Notation For X € Lie(G) we denote by X' the left invariant vector field in G associated.
Denote by K the subgroup of G' made of the rotations of R%. We have

K{<(1) 2),ke$0(d)},

and K is also the stabilizer of ey under the action of G' on R*¢. The homogeneous space G/K
can be identified with the orbit of ey under the action of G which is the unit pseudo sphere
H? .= {¢ € RV, ¢(¢) = 1,£° > 0} and is a Riemannian manifold of constant negative curvature
when its tangent space is endowed with the restriction of ¢ on it.

For » € Rt and 0 € S?~! ¢ R?, define

d
o i, | _ [ cosh(r) sinh(r)6*
S(r,0) = exp (T;9 VZ) N (sinh(r)@ Id + (cosh(r) — 1)80t ) -
Each g € G can be decomposed in polar form g = S(r(g),0(g))R where R € K.

2.2  Dudley processes

In this paragraph we define the relativistic processes introduced by Dudley in [6]. These processes
enjoy two natural properties:

e they are G-invariant i.e their dynamics are invariant by a change of g-orthonormal frame

o their trajectories in RV¢ are time-like: they are almost everywhere differentiable,and the
tangents vectors are time-like and time oriented.

First remark that no Markov processes with values in R? is G-invariant. Indeed, the law at
some time ¢ > 0 of such process starting at 0 would be a G-invariant probability measure in R*¢
which is necessary trivial by the following lemma.

Lemma 1. The only G-invariant probability measure in RV is the Dirac measure at 0.

Proof. Let p be a G-invariant probability measure in R4, First suppose that the support of
i is not contained in the g-orthogonal hyperplane of some light-like line {u(eq + 0),u € R} (
0 := Zle Oie; € ST71 ). So there Aexist a compact set C jn the complement of this hyperplane
such that u(C) > 0. For g = S(r,0), r > 0 and & = (£°,¢) € R4, denoting || - || the Euclidean

norm in RY4 we have

19(&)1 = 2a(9(€). 0)? — a(9(6)) = 20(€. 9~ (¢0))* — a(€) = 2 (cosh(r)e — sinh(r)d ) q()

- 2

=2 (cosh(r)(fo —0-&)+e70- f) —q(§)
=2 (cosh(r)q(g, co+0)+e0- 5)2 —q(&)-

Since C' is a compact set in the complement of the g-orthogonal hyperplan to {u(eoJré), u € R}
then infeec [g(€, €0 + 6)| > 0 and thus 7 can be chosen such that infeee ||g(€)]] is arbitrary large.
Thus g can be chosen such that C and ¢g(C) are disjoint. Furthermore g(g(¢), eoJré) =q(&, g7 eo+
0)) = e"q(¢,e0 4 0) and thus g(C) belongs to the complement of the hyperplan g-orthogonal to

eo+ 6. By iteration we can find a sequence g = S(r,0), k € N such that the compact sets gi(C')



are pairwise disjoint. Thus we obtain a contradiction writing 1 > pu(Urgi(C)) = >, 1(gr(C)) =
>k 1(C) = 400

Now if the support of i is contained in some hyperplan tangent to the light-cone and is not
restricted to 0, we can find a compact set C' in this hyperplan with 0 ¢ C' and p(C) > 0 and we
can choose a rotation R € K such that R(C) is not in the hyperplan. Thus u(C) = u(R(C)) =0
and it gives a contradiction. So we proved that u is necessary the Dirac measure in {0}. (|

Thus RM = G /G cannot be the space of states of some non-trivial G-invariant Markov process.
But é-homogeneous spaces of the form G / K where K is a compact subgroup of G have some
K-invariant probability measure and may be endowed with some G-invariant Markov processes
(see [13] or [9] ). The smallest spaces of states we can consider correspond to the maximal compact

sub-group of G. Thus it is natural to consider the space of states G /K ~ H¢ x Rb4, The group
K is seen as the subgroup of G which stabilize 0 and eg under the action of G on R4,
We denote by 7 : G +— H? x R14 ~ G/K the canonical projection

Vi =(9.6) €G (3) = (g(eo), ).

The following Proposition exhibit all the relativistic processes in H? x RM?. Tt is essentially
an application of a result of Liao ( Theorem 2.1 and 2.2 p 42 in [13] ).

Proposition 1. The Markov processes on H? x RV, starting at (o, &o), which are G-invariant
and whose trajectories are time-like are of the form ((s,&s) where (s is a G-invariant Markov
process on H? and & = & + afot (sds; a being some positive constant. For such a process there
exist o > 0 and a measure v on RY satisfying

—+o0
/ min(1, r?)v(dr) < +oo,
0

such that (G, &) = m(ge) in law where gy is a left Levy process on G starting at go s.t (Co,&0) =
7w(go) of which generator L is defined by

o d

Vf € C*(G) LI@G) = aHyf@) + T > (V@)

+oo d -
i /0 /Sd (f(gs(r’ o) = 1§ = rlrepa) ; oz‘ﬁlf(f?)) v(dr)de.

Definition 1 (Dudley processes). When a = 1 then ét = (; and &; is parametrized by its proper
time, i.e q(«ft) = 1. When moreover ¢ or v is non trival we call (ét,ft) a Dudley process and we
consider exclusively these processes in the sequel. When v =0 («ft, &;) is continuous and is called
Dudley diffusion.

Remark 1. The process & is differentiable and ét is cadlag.

Proof of Proposition 1. Let ((;, &) a Markov (Feller) process on H? x R starting at ((o, &),
which is G-invariant and whose trajectories are time-like. By choosing go such that ({o, &) = 7(go)
and considering the Markov process g, 1 ((t, &) it remains to prove the proposition in the case where

(€05 €0) = (€0, 0).
Set

H; :=(0,¢;) € Lie(GQ), i=1,...,d.
The family { Ho, H;, Vi, Vij }icjeq1,...,ay form an orthonormal basis of Lie(G) for an Ad(K )-invariant
inner product on Lie(é) and Ker diam = {Vij}icjequ,....a}-
We set
Xo:=Hy Xi=H, Xawi:=Vi i=1,....d.
An h = (h,€) € G can be decomposed in i = exp ( ¢ ri(h)X ) ( a1 T i(h)X. ) R where
Re K,2%h) =€ and for i = 1,...,d 2*(h) = £ and z%t?(h) = r(h)0?(h). By Theorem 2.1 and



2.2 p 42 of [13], (¢, &) coincide in law with 7(§;) where §; is a left Levy process in G, starting at
Id, which is K-right invariant and generated by

Z a”XX f(g +Zb1X f(g / (f er(h)qx Xif(g )) ﬁ(dil)

4,j=0 —0 £im<1

The matrice A := (a;;) is a positive symmetric , (b); € R24+1 and II is a Levy measure invariant

by K-conjugation in G. The right K-invariance of §; ensures that for all kK € K ~ SO(d) ,
diag(1, k, k) Adiag(1,k,k)~! = A. Thus, A is necessarily of the form

o 0 0
0 6ld o'ld|,
0 o'ld old

where 6,6 > 0 and 6o > (0’)2. Moreover, using again K-invariance it comes b* = 0 for i =
1,...,2d and we set a := b°. The trajectories of §; projected in R¢ need to be differentiable so
the jump measure II is supported on G and 6 and & are necessarily null. Since the trajectories
are time-oriented we have a > 0. The push forward of I by 7 is supported on G/K ~ H¢ and is
K-invariant. Thus II can be chosen of the form

+oo
VfeCy(G) IIf :/0 L F(S(r,0))v(dr)dd

where v is a Levy measure on R% ( i.e satisfying [ min(1,r?)v(dr) < 4+00). O

Denote by g; the G-component of g;. Thus g:(eg) = & and & = fot gs(ep)ds. By definition g
is a G-valued left Levy process, K-right invariant, generated by £ defined by

2

02 & Feo
VFECHG) Li) =G (VP rw)+ /S< (35000~ 10) ~ ooy 30V >>u<dr>d9.

i=1

Denote by II the Levy measure supported on G defined by

+o0
mf = /O [ st owidna.

Define Uy := {g € G,7(g) < 1} which is a K invariant neighborhood of Id in G. For f € C*(G)
we have the following It6 formula (see [2]) for g,

flg) = f(1d) +JZ/ Vf(ge- dBUr—/ Zvl (95— ds+// f(gs-)) N(ds, dh)

T / /U 0 (f(gsh) Zez ) dsTI(dh) 1)

- /O /(Uo)c (f(g‘37 h) - f(gs*)) N(dS, dh)’

where By is a Brownian motion of R?, N is a Poisson random measure on R x G of intensity measure
dt ® IT and N (ds,dh) := N(ds,dh) — dsII(dh) is the compensated random measure associated.

3 Asymptotic random variables

In this section we determine the asymptotic behavior of w(g:) = (g¢(eo), &) under an integrability
condition on the jump intensity measure v (Ass.1). Writing g; = nia;k; in some Iwasawa decom-
position of G we first prove (Prop.2), applying the Itd formula (1) and the law of large number,

that the abelian term a; = exp(a;V1) is positively contracting, G+ converges almost surely to a



positive constant « depending explicitly on o and v. Next we prove (Prop.4) that the nilpotent
term n; converges almost surely to an asymptotic random variable n., and this convergence is
exponentially fast with rate . Then we investigate (Prop.5) the asymptotic behavior of & in
RY4. Geometrically, seen in the projective space, the H?valued process g:(eg) converges to a
limit angle A € OH? ~ S~ of which n., is a stereographic projection. Moreover, the process &;
is asymptotic to some affine hyperplane g-orthogonal to 6, of which position is fixed by another
asymptotic random variable Ao, € R . Figure 1 sum up the asymptotic results.

Asymptotic angle Asymptotic affine hyperplane

Figure 1: Asymptotic behavior of a Dudley diffusion

3.1 Iwasawa decomposition in G

Although a polar decomposition of G was used to introduce g; (defining the K invariant mea-
sure II), Iwasawa decomposition seems to be more adapted to describe its asymptotic dynamics.
Introduce briefly this decomposition.

The maximal abelian subalgebra contained in Vect{Vy,...,V4}, which is the orthogonal sub-
space of Lie(G) of K for the Killing form, is of dimension one. Let choose A := Vect{V;} one of
them. The linear endomorphism ad(V;) of Lie(G) is diagonalisable with eigenvalues —1,0 and 1.
Set

N ={X € Lie(@), ad(V})X = - X} N ={X € Lie(G), ad(V1)X = X}

the eigenspace corresponding respectively to the eigenvalue —1 and 1. Explicitly
N =Vect{V; — V15, i=2,...,d} and N = Vect{V;+ Vi, i=2,...,d}.

The eigenspace corresponding to 0 is A ® M where M is the sub algebra of elements of K which
commute with the elements of A. Explicitly

00
M = Vect{Vij, i,j=2...dy =< [0 0 , Ceso(d—1)
00

The subspace N is a nilpotent Lie algebra (even abelian since [N, N] = 0). The corresponding
Iwasawa decomposition of Lie(G) is

Lie(G)=Na A K.



For X € Lie(G) we denote by { X} (resp. {X} 4 and {X}) its projection in N (resp. A and
K ) thus X = {X}n + {X}a+ {X}x. Denoting by A := exp(A), N := exp(N) the subgroup
corresponding we obtain the corresponding Iwasawa decompositions of G

G = NAK.

Moreover, the mapping from N x A x K to G which maps (n,a, k) to nak is an analytic diffeo-
morphism. For g € G we denote by g = (9)n(g) a(g)k its decomposition in Iwasawa coordinates.
To simplify notations set ny := (g:)n, at := (g¢)a and ky = (g¢) i, thus g¢ = nearks.

Note that we have other Iwasawa decompositions like Lie(G) = N @ A® K (with G = NAK).
Iwasawa and polar coordinates.
For ¢ € G written in polar form g = exp (r Zle 0t (V; — Vh)) R where R € K, we have

q(eo, g(eo)) = cosh(r).
Now denoting by b € R?~2 and u € R such that (g)y = exp (Z?:z bi(V; — VM)) and (g)a =

exp (uV7) we can compute explicitly ¢g(eg, g(eg)) in terms of b and u and we obtain

cosh(r) = <1 + @) cosh(u) + @ sinh(u). (2)

Moreover u can be expressed in term of 6 and r via

e = cosh(r) + 0 sinh(r) (3)

3.2 Asymptotic behavior of the G-component

The aim of this section is to show that n; converges almost surely to an asymptotic NV-valued ran-
dom variable n, and that the convergence is exponentially fast. This result, stated in Proposition
4, appears to be a consequence of the contracting property of a;. For this we need the following
integrability condition on v. The group G is semi simple and the tools used in this section are
very closed from those of Liao [13]. Nevertheless we present a self-contained proof in our specific
framework and our results are established under a weaker assumption than the ones of [13] ( see
remark 3 ). Namely we suppose that the following integrability condition is satisfied.

Assumption 1.

—+o0
/ rv(dr) < +o0.
1

The following proposition computes explicitly the linear drift of a; which appears to be positive.
The proof is essentially a consequence of the law of large number.

Proposition 2. Let denote by oy the R-valued process such that a; = exp(a;Vy). Then the
following convergence holds almost surely

The positive constant o is

d—1 4 /+°° rcosh(r) — sinh(r)
v(dr).

eTTee sinh(r)

Proof. First define log : A - A ~ R exp(uV;) — uV; and apply It6 formula (1) to the smooth
map f: g+ log(g)a. Remark that for g,h € G (gh)a = (9)a ((9)xh) , and

f(gs—h) — f(gs—) = log (ks—g) 4 -



Moreover

d
Vilf(gsf) = —log(gs— et )a

dt ~ {(Ad(k-)Vi)

_ 4y (etAdwsf)vi)
dt o

_ d tAd(ks—)V; g
= —{4d (e ) Ad(re-)Vita

t=0 A
(Vil)2f(gsf)* {Ad (gs e’ ) Vita

t=0

= {[{Ad( s=)WViti, Ad(ks—)Vil} 4 -

For k € K we have Ad(k)V; = Z;l:l k;;V; where k = (k;j) € K ~ SO(d). Then we compute

t=0

d

> {{Ad(ke- )i} . Ad(E, =>

i=1 i=1j

since {V;}x = Vi; (and 0 for j =1 ) and [Vi;, Vi] = V1d;; we get

M=~
Mm

ks—)ij (ks—)a {[{V; e Vil} 4

Il
-
Il

1

d

S {{Ad(ks Vi, Ad(k =SSk — (d- 1)V

i=1 Jj=2 i=

—

Thus Itd formula (1) can be written

d—1 t
log(as) = M; + ot + / / log(ks_h)aN(ds,dh)

// <logkz —h)a —r(h Zez W Ad(ks Vi}A)dsH(dh),
Uo

where M; :== 0 3.0, fOt{Ad(ks_)Vi}AdB;f —l—fot Ju, (ks_h) AN (ds, dh) is a martingale. Tts bracket is
0 Jo Sy AU )VidallPds + [y [y, [og(ks—h)al?dsti(d) =t (0 + [y, [[log(h)al[*TI(dR))
and thus we obtain that almost surely

M,

— 0.
t t—+o
Moreover, making the change of variable b/ = ks,hks__l we obtain using the K-invariant by

conjugation of II

// <1ogk _h)a—r(h 291 W{ Ad(ks V}A> dsTI(dh)
Uo

t d
:// log(h')a — r(h') Zoz kAR {Ad(ks—)V;} 4 TI(dR')ds
0 JUy
d d
/ / log(h')a = r(h) Y Y (ke )ij0? (') (ks— )i Vi TI(dR')ds
Uo i=1 j=1

= /0 /U lOg(h’)A — T(h’)gl(h/)vl H(dh/)ds

1
= t/ / log(S(r,0))a — r0*Vy v(dr)df
si-1Jo

By (3) we have log(S(r,0))a = log(cosh(r) 4+ 6 sinh(r))V; and the previous term equals

t/Sdi1 /01 log(cosh(r) + o sinh(r)) — ro! v(dr)dfVy = t/ol </_11 log (cosh(r) 4+ wsinh(r)) — ru%) v(dr)Vy
_, /1 rcosh(r) — sinh(r)
0 sinh(r)

v(dr)



It remains to consider the asymptotic behavior of the stochastic integral fot Jiye log(ks—h)aN (ds,dh).
9

We know that there exist T; jump times of a Poisson process of intensity measure II(U§) and ran-
dom variable hy, i.i.d of law II|ye /II(Ug) and independent of (77); such that

/Ot/C log(ks—h)aN(ds,dh) = Z log(kp—hn) a.

n, Ty <t

Moreover by invariance of II under conjugation by K we check easily that the random variables
= Ad( —)hy, are ii.d of common law II[yg /IL(U§) and we have

t Ny
/ / log(ks—h) AN (ds,dh) = > " log(h},) 4
0 0 n=1

where N; is a Poisson process of intensity measure II(U§) and independent of (h!,),. Moreover
since f;roo rv(dr) < 4oo then log(hl,)4 is integrable and the law of large number ensures that

: / / log(k,—h) AN (ds,dh) — TI(US)E[log(h,)a].

The proof is ended by checking that

1 +°° 1 cosh(r) — sinh(r)
E[log(h, = d .
log(h,)4] = 7 / D= v
o
Remark 2. When fl rv(dr) = +oco we obtain E[|log(hl)a|] = +00. Nevertheless

+oo 1
E [— min (log(hl,) 4,0)] = / / — min (log(cosh(r + 6" sinh(r)), 0) %V(d?‘)

/Jroo/ 181z¥1( ) v(dr)
- /1 QSTh(r)(l —e "(r+1)p(dr) < foc.

Now, applying a generalized law of large numbers we deduce that almost surely

1t
;/0 /g log(k,-h)aN(ds, dh) Rl +o00,

and so
677
— —> +o0.
t t—+oo

The following proposition establishes that g; is bounded in expectation on a finite time interval.
This result is used to prove the convergence of n; in the next Proposition.

Proposition 3. Fix T > 0. Then

E| sup 7(g:)| < +oo.

te[0,T)

Proof. We cannot directly apply It6 formula to g — 7(g) since it is not regular at Id. But we can
find a smooth function 7 such that 7 > r on Uy and 7 = r on Ug. For such a function we have

o) = 70+t Lo+ Tt [ k)=o) Nasan. @)
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Where 7y := ofot VI#(gs-)dB: and my; = fot Jo, (Flgs-1) = 7(gs-)) N(ds,dh) are martingales,
I == o? fo i1 (Vl) 7(gs-)ds and

t d
= 7 (gs—S(r —7(gs-) — 1 Wi (ge- v(dr)ds
o= [f S( (02-80.0) = g.-) = 30V TG, >> A (dr)d

are processes with finite variation.

To prove the proposition we will bound the supremum on [0,7] of each of these five terms
by means of || X'7||o and [|(X")%7|« for some X € Vect{V;,i = 1,...,d}. Thus we need the
following lemma.

Lemma 2. For X € P = Vect{V;,i =1,...,d} we have | X'7| s < +00 and ||(X")?7||s < +o0.

Proof of the lemma. Uy being a compact set it suffices to show that the supremum is finite on U§.
Since 7 = r on U§ it remains to prove that sup,¢ye |X'r(g)] < 400 and SUPge e [(XY2r(g)] < +o0.

The polar decomposition of g can be written g = k exp(r(g)Vh)k for some k,k € K. Setting z € R?
such that X = >, 2"V; we have

d
r(gexp(sX))=r (eXp( )V1) exp (SZ ))

i=1

Let 6 € S?! be such that (kx)? = ||z[|#’. Then we compute explicitly, for g € U§:

d
r <exp( )V1) exp <SZ )) = (cosh) ™" (cosh(r(g)) cosh(s||z[|) + 6" sinh(r(g)) sinh(s||z||))

=1

= r(g) + alle0* + Lo ||2%<1 —(0Y) 1 O(s*).

Then it comes that

d
X'r(g) = S-rlgexp(sX))| =[]0,
s=0
and thus sup ¢y Xlr(g)‘ < ||z
Moreover ) h(r(g))
o o _ 5cosh(r(g a2
(X) T(g) - ds27’(geXp(SX)) oo ||1'H smh(r(g)) (1 (9 ) )

and 50 Supye e (X2 (g9)] < 2f2)2.

Return to the proof of Proposition 3. By Doob’s norm inequalities (see [10]) we obtain

E| sup |iu|?| <4E [(r)?] < 40%E l/ Z\Vl 7#(gs-)] ds] <4a—2Tdmax||Vlr||2 < 4o0.
| t€[0,T] ]

and

T
E | sup [iuf?| < 4E [(7r)?] < 4B l/ Loy s 1700t 00) = ) viaranas

_te[o,T]
1
< 8dT/ r2v(dr) max ||V7||% < 4o0.
O 1
We have also

E

sup ||| < aQTdmaxH(V;l)QfHOO < 4o00.
te[0,T) ?

11



Moreover applying a Taylor inequality to u € [0, 1] — 7(g,—S(ur,8)) it comes

2
1
57" sup <Z€z )f < 400

fesd—1

f(gs*S(rae)) gs 77’291‘/[ T\gs—

o0

and thus

E

T 1
sup |Ji|| < = (/ r?v(dr) > sup Zelvl 7| < +oo.
te[0,T) 2 0 fesd—1

Finally, to bound the supremum of the last term of (4) we need the assumption 1. Indeed, since
[7(gs-S(r,0)) — 7(gs-)| < rsupgega—1 H (Zl GZVZ-Z) FHOO we obtain

lt:EépT] / / 7(9s-h) = 7(g5-)dsTl(dh)

We can now state the main result of this section, the convergence of n; to some asymptotic
random variable n., and the speed of convergence.

<Td (/ m/(dr)> max ||\/;l7:||OO < +o0.

O

Proposition 4. Denote by by = (bi)i=a....a the R¥~-valued process such that

d
N = exp (Z bim N (V; — Vu)) .
i=2

Then by converges almost surely to bs, exponentially fast with rate o, i.e

1
hmsup 1og||bt — boo|| £ —0u. (5)
As a consequence n; converges almost-surely to no = exp (Zl S Ui (V; — Vh)) and defining
hy = e’mvln;olgt we obtain
li ! he) =0 6
Jm ;7‘( ) =0 as. (6)

Proof. Denoting by [t] the integer part of ¢t we decompose b; = Zg-t]zl(bj —bj_1) + b — by. To
prove that b; converge and (5) holds it is sufficient to verify that

hmsup log sup ||bj —bjts]| < —a as. (7)
jooo J s€[0,1]

For j € N and s € [0, 1] we have gjflgjﬂ = k;lajflnjflnjﬂajﬂkjﬂ and thus

ng s = ag (95 g5sky) a5 (8)

Denote by bj , = (62,8)1‘:2,_“,(1 € R?~! such that (g;lgj+skj)N = exp (ZZ 5 b; {Vi— Vh)). Then,
(8) implies that

bjss —bj = e “bjs. (9)

Since g; is a Levy process, (SUPse[o,l] r(gj_lngrS))jeN are 1.i.d random variables. Moreover, by

Proposition 3 their common expectation E[SUPse[o,1] r(gs)] is finite. Thus, applying the law of
large number it comes

1
= sup r(g; Ygjvs) — 0 as. (10)
J s€l0,1] J—00

12



Since 7((g; gjs)n) < 2r(g; givs) and, by (2), byl = 2 (cosh (7 (g5 giasks) ) = 1) we
deduce from (10) that for € > 0 there exists jo such that for j > jp

1.5 < . (11)

Since, by Proposition 2, a; = ja + o(j) thus (7) follows from (9) and (11). To finish the proof of
the proposition we need to check (6). We have

r(he) = eV ntnsar) < r(e”*™Viay) 4 r(a; 'ngtniay),
and r(e=*"1a;) = |y — at| = o(t) and we obtain from (2) ( since a; *n'nsa; € N),

IbtbooIQ)

r(a; 'ntnsay) = cosh™ (1 + 2 5

So by (5) we have also r(a; 'n; 'neat) = o(t) and (6) holds. O

Remark 3. o Without integrability condition, we can nevertheless show that g; satisfy the
irreducibility and contraction conditions of [18] and deduce that a; converges almost surely
to 400 and ny converges to neo. Nevertheless, by remark 2, we obtain in the case where

1+°O rv(dr) = 400, that almost surely St converges to +oo.

o In [13] the author uses a stronger hypothesis to prove the rate of convergence of a Lévy process
m a semi-stimple group. It corresponds in our case to assume that f0+oo rv(dr) < 4o0.

3.3 Asymptotic behavior of the R"“~-component

The linear endomorphism & — exp(V7)¢ is diagonalisable with eigenvalues —1,0,+1. Denote by
U~,U% and U™ the respective eigenspaces. Explicitly U~ = Vect{eg—e1}, U’ = Vect{ea, ..., eq}
and Ut = Vect{eg + e1}. For £ € RM we denote by (£)~, (¢)° and (£)* its projection on each
eigenspace. Explicitly we obtain

© = —5a6eotenleo—en, (O =JalEeo—e)eo+er)

d
©)° = al& eei

=2

Recall that by definition, & = fot gs(eo)ds. The following proposition gives the asymptotic
behavior of &;.

Proposition 5. There exists an asymptotic random variable Moo > 0 such that
-1 _ .
(N0 &) S Aoo(€0 — €1),

and moreover

1
limsup - log ||(n2'&) ™ — Aso(e0 — €1)|| < —a. (12)
t—4oo
We also have
1 1
limsup ~ log [|(n'&)°]| <0, and, limsup = log||(n &) || < . (13)
t—+oo t t—+oo t
Proof. We have
1, K B
- §q(nOO &,e0+e1) = —§q(noo nsas(eg), €o + e1)ds (14)
0

13



and the integrand can be written

1 _ _ _
7§q(noo1nsas(eo), eo+e1) =—=q(e nog nsas(ep), e

where hs = e_asngglgS as defined in Proposition 4.
Denote by (7, 0s) € RT x S¢~1 the polar decomposition of hs(eg) € H?. So 7 = r(h,) and

f%e*’”q(hs(eo), (eo+e1)) = %e*as (cosh(fs) — 6} sinh(fs)) €

1 _
Lo (ost70) o

(aus—7s)
. o]

Proposition 4 ensures that 75 = o(s) a.s, so fixing € > 0 arbitrary small we can find sy > 0 such
that for all s > sg the integrand of (14) is positive and bounded by e~(®=%)s. This ensures the
convergence of (n1&)™ to Aao(eg — e1) with Ao > 0. Moreover for ¢ > s

1

a—¢&

e—(a—e)t,

1 +oo
,iq(ngolé't, ey + 61> — )\OO‘ < / e—(a—a)sds _
t

which prove (12).
Now

71§t Z/ TL nsas 60) ez)dsezv

and for i = 2,....d we have q(nz!nsas(co), es) = ale”*Vintnsay(eo), ) = O} sinh(7) s0
|‘1(ngolnsas(eo) )| < e and this ensures that lim SUD; s 400 7 1og l(n gt) | <o0.
Moreover,
b1
(n;olé—t)‘i‘ = =q n n aé(eo) €p — €1 ds (60 — 61)
0 2
and
1 -1 1 as
561(7%0 nsas(eo), eo — e1) = 5e**q(h(eo), €0 — €1)
1 ~ 1 i ]
= 560‘5 (cosh(Fs) — 0} sinh(Fs)) € 5[6”‘“”,6“”5],
So t
|2 1| < l(nzi€ag) I + / e +e)s gy,
s0
and thus limsup, , %log [(nl&)*| < e -

3.4 Geometric description of the convergence

Denote by p : Rb4\ {0} — PR the projection onto the projective space of dimension d. The
hyperboloid H¢ is mapped onto the interior of a projective ball and its boundary (OH? ~ S4-1)
is the image of the g-isotropy cone

OH® :=p ({£,q(&) = 0} \ {0}).

From the relation

q(e,me(eo + e1)) = qlge(eo), ne(eo + 1)) = gleo, a; H(eo +e1)) = ™™ — 0,
we deduce that all limit points of p(&;) are g-orthogonal to 6 := P(ne(eo +e1)). Since the only
point of p(H) which is g-orthogonal to 0 is fu itself it comes that p(€;) converges to o in PIR.
Now, identifying PYR with its affine chart {¢, £ = 1} we can consider that 6, € S?. From (2)

14



sinh(rs)
cosh(ry)

S¢. The two asymptotic random variables 0 and n.. are linked by

we deduce that r; — +00 and since p(ét) =pleg+0; ) it comes that 6; converges to 0 in

P(eo + 0o0) = P(noo(eo +€1))

or more explicitly, bo, € R4~ (defined by n., = exp (Z bist(Vy — Vh)) ) is the stereographic

=2 “ 00

gL (1]
1 |beo|? 2boo '

Concerning the asymptotic behavior of &, Proposition 5 ensures that ¢(&,n.(eo + €1)) con-
verges t0 Aoo. Thus geometrically & is asymptotic to an affine hyperplan which is ¢- orthogonal
t0 neo(eg + €1) (or eg + 0 ) and passing by A (eg — €1) -

projection of 6.,

4 Lyapunov spectrum and stable manifolds

4.1 Lyapunov spectrum

The Levy process g;, with values in G and starting at some g, can be obtained by solving the
following left invariant stochastic integro-differential equation in G

Vfe CUG), f(G) = +JZ/Vfgé )odB: + /Hogé d”//Uo (G0 1)~ G )

+/0 /U0 <f(§sh) Zel Wi f(Gs- )) dsII(dh) (15)

" /0 /(UO)C (f(gsih) - f(gs*)) N(dS, dh)

This stochastic differential equation induces a stochastic flow ¢, in G which maps g on the
solution at time ¢ and starting at § of (15). By left invariance ¢; is also defined by

Ot - é — é
g — ggtv
where g, is starting at Id. _
Denote by | - || any norm on Lie(G) and by || - ||5 the left invariant (Finsler) metric associated

in G on T3G. For v € TzG we aim to investigate the asymptotic exponential rate of growth or
decay of ||dp:(g)(v)|l,,(5)- Denote by Lg the left translation by g in G. By left invariance of
the flow, ||d<pt( ) (v ||%(g = ||d<pt(Id (X) |, 1ay where X := (dLg)~*(v) € TiaG = Lie(G). For
§=0(g,¢) € Gand X,Y € Lie(G) it comes

Ad(§)(X) = (Ad(g)(X), gz — Ad(g)(X)¢) (16)
ad(Y)(X) = (ad(Y)(X), Yz — Xy). (17)
The endomorphism X — ad(V1,0)(X X) is diagonalisable on Lie(G). Its eigenvalues are —1,0, 1

and we denote by U- UO and U+ the eigenspaces associated.
We can check that

XecUte= XecNandzrecU"
XelU'e—= XcAdMandz € U°
XecU «—XecNandzecU".

15
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Set B
Joo i= (Moo, Aec(eg —€1)) € G

and V2 := Ad(joo) (17+), VO = Ad(juo) (170 + z7+).
We denote by ~
he = (€71, 0) 9 9e,

where we recall that g; := :(Id) is starting at Id.

Theorem 1. Let X € Lie(é). For almost every trajectory
) N a if X eLie(G)\ VY
S0 e (1) (a2 3 0 i X eVO\VL

—a it X eV \{0}

Proof. By left invariance of || - ||, [|dee(1d)(X) 4, ) = [ Ad(gi ™" )(X)]|. We set, for § € G

Ad =Ssup ————.
[Ad(g)]] == s p X

~ ~ -1
Let X € Lie(G). Writting g, * = (ht) (e7*V1,0) g5} we deduce that

1A ((e=*"1,0) gb) (X))

= < [[Ad(g; ) (X))l
[Ad(he)|
< | Ad(he) 1A (7", 0) 1) (X)) (18)
Suppose for the moment that
Jim sup — - log HAd (he)™ H <0 (19)
t——+o0
and limsup — log‘HAd(ht)H <0. (20)
t——+o0

Then we deduce from (18) that 1 log [[Ad(g; ')(X)| and 2 log [|Ad ((e~**"1,0) g!') (X)]| have the
same limit when ¢ goes to co. T he linear isomorphism Ad (e’mvl , 0) is diagonalisable with eigen-

values e~%, 1 and e associated tespectively to the eigenspaces U +, U0 and U~ Decomposing

Ad(§oo) "M (X) in the direct sum U~ ® U° ® Ut and using a Euclidean norm || - || on Lie(G) for
which this decomposition is orthogonal, we deduce easily the theorem (note that the convergence
is independant of the chosen norm).

Thus it remains to prove (19) and (20). We have

(
hy = (e7tY1, 0) gl ge = (e7*"1, 0) (ny', —As(e0 — €1)) (neasks, &)
(ht, —taV1 (n_lft) o /\ooeta(eo . 61))

(Id, e~ teW1 (n ft) oo™ (e —61)) (ht, 0)

Let e > 0. By Proposition 4 we can find tg > 0 such that V¢t > tq r(hs) < et and by Proposition
5 we have

le™" (&) — Ao’ (eo — e1) | < e[[(n'&)~ — Asoleo — e1) | + [[(nd ool + e[l (n &)+

< eEt
Now using the following Lemma 3 we deduce easily (19) and (20). O

Lemma 3. There exist positive constants «, 3, such that for g € G and & € RH¢

1Ad(g, 0)|| < ae"®
[Ad(Id, )] < BlEl + -
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Proof. All norms are equivalent and it suffices to check the inequalities for some particuliar norms.
Let choose the following SO(d)-invariant euclidean norm on Lie(G)

1(X, )| == VTr(XPX) + a'a.

We obtain easily
|Ad(g, 0)]| = e,

Taking now ||(X, z)| := /Tr(XtX) + Vatx we get

|Ad(1d, (X, )] = VIXX) + [}z = X¢| < [|(X, 2)] + |x¢]
< N6 )| + VX X) max €] < (X, 2)]| (1+max|e'])

Thus [|Ad(Id, &)|| <1+ «|/¢]| for a constant o > 0 independant of .

O
4.2 Stable manifolds
First, remark that V_ and VY are Lie sub-algebras of Lie(é). Denote by
V. :=exp(Vy), and V. :=exp(VY)
the closed subgroup of G associated.
Fix now a euclidean norm || - || on Lie(G) which is Ad(K)-invariant. Such a norm is of the

form

¢
H ((0 b ) )H VR + B2Tr (CTC) + 7277 + 62(20)2,

for some positive constants x, 8, v and 6. We denote by d the distance in G associated to the
left invariant Riemanian metric induced by || - ||. To simplify notations, we denote by d(g, h) the
distance between (g,0) and (h,0) for g,h € G.

The following result shows that the stable manifold associated to ¢ is @V,

Theorem 2. Let § and §' two distinct points in G.
o If§' € gV then
1 . ~
Tlogd (:(9), 1(9) , =2 —o

t——+oo

o If§ ¢ Vs then
liggfd(@t(g)th(gl)) > 0.

The properties of d we need in the proof of Theorem 2 are sum up in the following proposition

Proposition 6. i) Left invariance
Vg,he @, d(g,gh)=d(dd,h).
Thus d(Id, g=1) = d(Id, §) and triangularity inequality writes:
Vg, h e G, d(d,gh) < d(d,§) + d(d, h)
it) K-right invariance
VjeGand ke K, d((k,0),§(k,0))=d(Id, )

iii) For X € Lie(G)
a(1d, exp(X)) < | X
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i) There exists a neighborood O of 0 in Lie(G) and a constant C > 0 such that

VX e, C|X|<d (Id,exp()?))

v) ¥(g,€) € G
d(Id,g) < d(Id, (g,¢))

vi) For g =S(r,0)R and ¢’ = S(r',0')R’ we have
K

NEEwTe

vii) For allT >0 and 0 € Sd-1

d(S(r,0),S(r",0) <d(g,9")

d(1d,S(r,0)) = kr

Proof of Proposition 6. i) and ii).The left and K-right invariance follows from the definition of
the metric as being a left invariant Riemannian metric on G defined from an Ad(K)-invariant

inner product on Lie(G). Inequality ii) is obtained remarking that the length of the path ¢ €
[0,1] — exp (tf() is equal to || X]|.

iv). Denote by exp : Lie(G) — @ be the exponential map at Id induced by the metric || - | in
G: for X € Lie(G), exp(X) = v¢ (1) where t € [0,1] — v¢(t) is the geodesic starting from Id in
the direction X. The differential at 0 of exp is known to be identity and there exists a sufficient
small neighborhood O’ of 0 € Lie(G) such that:

VX e, |IX|=d (1,&5(5()) . (%)

Furthermore, the map &Tfl o exp can be defined in a neighborhood of 0 and its differential at 0
is the identity: exp ' o exp(X) = X + o(|| X||). So we can find © neighborhood of 0 and C' > 0
such that for all X € O, C||X|| < ||exp " o exp(X)|| < %HXH Taking O small enough so that
exp o exp(O) C O, we can apply (%) to exp o exp(X), thus yielding ||exp " o exp(X)|| =
d (I,exp(f()) for every X € O.

v). Each path s € [0,1] — (gs,&5) joining Id to (g, ) is of length fol (951 ds, 95 t€s)||ds which

is greater than fol (g5 gs,0)||ds corresponding to the path s € [0, 1] — (gs, 0) joining Id to (g, 0).
vi). Consider a path s € [0,1] — S(rs, 05)Rs joining g to ¢’. We compute, using dot notation
for 4
ds

0 +08 4 sinh(rs )0,
RIS, 00 LS 00R) = (D Pabo b simh(ra)fs )
ds Fof + sinh(rs)f,  (cosh(rs) — 1) (9593; - 9592) +RI'R,

Its length [ := fol Ry S(re,00) " 4.S(ry, 0,) Ry | dt is larger than

1 1
/n||f595+sinh(rs)és||ds:/ n\/(i’s)Q+sinh(rs)2|\9s|\2ds.
0 0

Moreover, the path s — S(rs, 0s) which join S(r,0) to S(r’,6’) is of length

/01\/F;2 ((7)2 + sin(r,)2116,12) + 57 (2(cosh(r) — 1)2]6,]|? ) ds (21)
< L:”” /01 w\/(0)? + sinh(r) 0, 2ds.  (22)

Thus
2 232
d(S(r,0), S0, ')y < Y22,
K
and taking the infimum over all the path joining g to ¢’ we obtain vi). O
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Proof of Theorem 2. Let Y € Lie(G) \ {0} be such that exp(Y) = §~'§. Then

d(i(@),01(7) =d (14, g exp (V) 3u) = d (1d, exp (Ad(g7H())) -
By Theorem 1, if Y € Ad(goo)(UT) (ie. if g’ € gV then ||Ad(g; )(Y)]|| converge to 0 exponen-
tially fast with rate a and so for large t it evolves in O. Thus, using 4ii) and v) of Proposition 6

we obtain the first point of the theorem as a direct consequence of Theorem 1.
Set X := Ad(g:2)(Y), thus

and write

(X*, 2%), where XT € N and 2zt € U*

VN
=l
N———
+
Il

0
X) = (X9 2Y), where X°c A@ M and 2° € U

()?)7 = (X", 7),where X~ e Nand 2z~ €eU".

Now suppose that §’ ¢ gV which is equivalent to ()N( )O #0or ()N( ) - #0.

Suppose first that (f() B #0. Thus Y € Lie(G)\V2 and by Theorem 1 [|Ad(g; 1)Y || converges
to +o0o exponentially fast. Now suppose by contradiction that 1tl£>n _ﬁgof d (Id, exp (Ad(g; 1)57)) =0.
Then we can find a s; such that d (Id, exp (Ad(g;l)(f/))) converges to 0 and for large ¢

Ad(g;l)(f/) lies in O. The inequality iv) of Proposition 6 give us the contradiction and we
have proved the second point of the Theorem if ()~() B #0.

- 0
So we can suppose (X) =0 and (X) #0.
First case: X° #0 . By v) of Proposition 6, d(Id, g; ' exp(Y)g;) < d (Id, g7 texp (}7) gt)
and it remains to prove that 1itm infd(Id, g; " exp(Y)g;) is positive. But ¥ = Ad(ns)(X) and
—00
X=XT+X"ce No Ae M\ N. Consider an Iwasawa decomposition of exp(X) in G
exp(X)=nam, n € N, a € A, and m € M,
and am # Id. Since Vg, h d(Id, gh) < d(1d, g) + d(Id, h) we get
d(Id, g; * exp(Y)g:) = d(Id, hy te Vi mame! V1 A1)
> d(Id, h; te 7 Viame! Vi hy) — d(Id, by e Vinet*Vih,).
Writting 7 = exp(Z), Z € N and d(Id, hy ‘e~ **Vinet*Vih,) is dominated by e~t*+7 ()| Z|| (by
Lemma 3 and #i7) of Proposition 6) and converges exponentially fast to zero (recall that by Propo-

sition 4 7(hs) = o(t) a.s. ). Thus it remains to prove that lim inf d(Id, h; 'e~**Viame!*V1hy) > 0
to finish the proof in the first case. This is ensured by the following Lemma.

Lemma 4. Leta € A and m € M s.t am # 1d. Then 3C > 0, Vg € G, d(Id,g"tamg) > C.

Proof of lemma 4. Consider the polar decomposition g = S(r,0)R. Suppose first that a = Id and
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m # Id. Then we get
d(1d, g~ "mg) = d(1d, S(r, —0)mS(r,0)) = d(S(r,0), mS(r,0)) = d(S(r,0), S(r,mf)m)
il (S(r,0),S(r,md)) by vi) of Proposition 6

> % 4
VR +23?

> \/ﬁ (d(S(r,0), S(r,0)m™") — d(S(r,0)m™", S(r,mh)))
= \/ﬁ (dd,m=") — d(S(r,0), mS(r,0)))
- __r (d(Id, m) — d(Id,gflmg))

N

—1 > K
Thus d(Id, g~ 'mg) > Ry ey
Suppose now a # Id. Let u # 0 such that a = exp(uV7), then an explicit computation gives:

d(1d,m) > 0.

d
coshr(g~ tamg) = cosh(u) (cosh(r)2 — ((m0)*")? sinh(r)Q) — sinh(r)? Z 0" (mf)" (23)
d
= cosh(u) + (Cosh(u)(l — ((mo)h)?) — Z Gi(me)i> sinh(r)? (24)
> cosh(u) + (1 — 0'(m#)) sinh(r)?  we used (mf)" = ' (25)
> cosh(u). (26)

Then by vi) and vii) of Proposition 6 it comes

K
d(1d, “lamg) > ————ku > 0.
(Id, g™ amg) > —=—= 7

Return to the proof of Theorem 2. _
Second case: X? =0 but x° #0 . So X = (XT,z7 + 2°) and explicitely

+ 0
) = (Id, §)(exp(X 1), 0),

= X
exp(X) = (exp(X ), 20 + 2T +

where we have set & := 29 + 2 + %
Thus
it exp(Y)ge = by (e, 0) exp(X) (e"*¥, 0)hy
= (Id, hy e V1¢) (exp(Ad(h; te™tV1) X)), 0),
and

d(1d,g; exp(Y)ge) > d (Id, (Id, hy te™tVig)) — d(1d, (exp(Ad(h;'e™**V1)X), 0)).

As done previously in the first case, d(Id, (exp(Ad(h;'e~**V1)X), 0)) converges exponentially
fast to 0 and it remains to prove that

. . —1_—taVh
liminfd (Id, (Id, by 'e™"*"2€)) > 0. (27)

Suppose by contradiction that we can find s; such that d (Id, (Id, I”Ls_tle_sto‘v1 («E))) converges to
0. By iv) of Proposition 6 for large ¢

d(Id, (Id, h;'e > *V1(€))) > ||hy e V1 (Q)|
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Since 222° € U+ we obtain directly that q(&) = q(2°) which is negative since
to be non zero. But

is supposed

||h 1 _5taV1 H2 <Zq —1 —smdﬁ(g) ) >+52 ( 16_“&‘/1(5),60)2

d
> min(y, §)* <Zq (hgte"ov1(e), ei)2>

1=0
= min(y, §) (2Q(h;1e’stavl (&), e0)? — q (hy e 5N (é))Q) > —min(v,6)%q(z°) > 0.

O

4.3 Projection on H? x R"? of the stable manifolds

We explicit here the projection of VL on H? x Rl’d._Recall that by definition an element of
V5, is of the form §o, exp(X,z)js! where (X,2) € N x UT. We deduce, since in this case

exp(X,z) = (exp(X), z), that an element of w(V) is of the form

(noo exp(X)n (eo), unoo(eo 4 e€1) 4+ Moo (Id — Noo eXp(X)ngol) (eo — el)) , (28)

where X lies in A/ and u € R. o
Since exp(X)(eg + e1) = eg + €1 for X € N we obtain

q(no exp(X)n3 (e0), nos (€0 + €1)) = q(n e, 0 + €1) = qleo, noo(eo + €1))

and thus when X describes N then n., exp(X)n!(ep) draws the intersection between H¢ and
the affine hyperplan passing by ey and g-orthogonal to ns(eg + e1). This submanifold of R4 is
a paraboloid of codimension 2 and is mapped by p (the projection onto the projective space) on
a sphere tangent at OH? in 6, and passing by p(eq). It is called the horosphere tangent at 6
and passing by eg and is denoted by Hoo

Moreover, since

q(Noo eXp(X)ngol(eo —e1),Nec(e0+e1)) =qleo —e1,e0+e1) =0,

we get that when X describes A then n exp(X)n!(eg — e1) describes the intersection between
the light cone {£,¢(§) = 0} and the hyperplan passing by eg — e; and g-orthogonal to ne(eg +
e1). Thus, when X describes N then (Id — ne exp(X)n _1) (eg — e1) draws a paraboloid P

in the hyperplan g-orthogonal to ns(ep 4+ €1). For each ¢ in the horosphere Moo corresponds
a unique X; € N such that € = ne exp(X¢)ns (eo) and the one-to-one function v : & —

(Id — Moo exp(XS)ngol) (o — e1) maps Hoo on Po
Then by (28), we obtain the following one-to-one map

Hoo X (noo(eg +€1)) —> m(Vy)

(£,€) — (€ €+ Act(©))

and w(V,) is a skew product of the line (no(eg + e1)) with the horosphere Ho
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Figure 2: m(V

) is a skew-product of a horosphere with a line
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