Camille Tardif 
email: camille.tardif@uni.lu
  
Lyapunov spectrum of a relativistic stochastic flow in the Poincaré group

Keywords: Relativistic processes. Lévy processes in Lie groups. Poincaré group. Lyapunov spectrum. Hyperbolic dynamics. AMS Subject Classification: 37H15, 60G51, 83A05

published or not. The documents may come     Lyapunov spectrum of a relativistic stochastic flow in the Poincaré group.

Introduction

In 1966 Dudley [START_REF] Dudley | Lorentz-invariant Markov processes in relativistic phase space[END_REF] defined a class of relativistic processes with Lorentzian-covariant dynamics in the framework of special relativity. Such a process ξ t with values in Minkowski space-time R 1,d , is differentiable and has velocity smaller than the speed of light. So it can be parametrized by its proper time, which amounts to impose to the velocity ξt to be an element of the unit pseudo sphere H d of R 1,d . The restriction to the tangent space of H d of Minkowski ambient pseudometric turns H d into a Riemannian manifold of constant negative curvature. The invariance of the process ( ξt , ξ t ) by the natural action of the set of Lorentz transforms on H d × R 1,d imposes to the laws of ξt to be invariant by the action of the isometries of H d . Among this class of relativistic processes, there is essentially only one which is continuous. It corresponds to the case where ξt is a Riemannian Brownian motion in the hyperbolic space and in this case ( ξt , ξ t ) is called Dudley diffusion. Forty years after this seminal work, Franchi and Le Jan [START_REF] Franchi | Relativistic diffusions and Schwarzschild geometry[END_REF] extended Dudley diffusion to the framework of any Lorentz manifold. They defined relativistic processes with Lorentzian-covariant dynamics on generic Lorentzian manifolds by rolling without slipping a Dudley diffusion on the unit tangent space. They studied the asymptotic behavior of such diffusion in the Schwarzschild space-time. Bailleul [START_REF] Bailleul | Poisson boundary of a relativistic diffusion[END_REF] succeeded to compute the Poisson boundary of Dudley diffusion in Minkowski space-time and showed that it coincides with the causal boundary of R 1,d . The asymptotic behavior of relativistic diffusions was investigated in other non flat Lorentzian manifolds ( [START_REF] Angst | Etude de diffusions à valeurs dans des variétés lorentziennes[END_REF], [START_REF] Franchi | Relativistic diffusion in Gödel's universe[END_REF]) with the aim of describing how the asymptotic behavior of the diffusion reflects the asymptotic geometry of the manifold.

In this work we ask a new question concerning these processes dealing with the asymptotic behaviour of some stochastic flow associated to it. As Brownian motion on a Riemannian manifold , the relativistic diffusion [START_REF] Franchi | Relativistic diffusions and Schwarzschild geometry[END_REF] is obtained by projecting a diffusion process with values in the orthonormal frame bundle, solution of a stochastic differential equation. This SDE generates a stochastic flow which, in our Lorentzian framework, consists in a stochastic perturbation of the geodesic flow. Existence and computation, for example, of the Lyapunov spectrum and stable manifolds of these flows may be investigated in the same way as it was done by Carverhill and Elworthy [START_REF] Carverhill | Lyapunov exponents for a stochastic analogue of the geodesic flow[END_REF] for the canonical stochastic flow in the Riemannian framework. The main difficulty to study the flow of relativistic processes comes from the fact that the orthonormal frame bundle of a Lorentz manifold is never compact. Nevertheless in this article we provide a study of the asymptotic dynamics of the stochastic flow generated by Dudley processes in the Minkowski space-time (without restricting ourselves to the diffusion case). Precisely, in this framework, the orthonormal frame bundle is identified with the Poincaré group G := P SO(1, d) ⋉ R 1,d and denoting φ t the left invariant stochastic flow associated to one of Dudley's processes in G we obtain the description of the Lyapunov spectrum and the stable manifolds of ϕ t . Precisely we obtain the following two results.

Theorem 1 (Lyapunov spectrum). There exist a constant α > 0 and two asymptotic random Lie sub-algebras V - ∞ ⊂ V 0 ∞ of Lie( G) such that for some norm • on Lie( G) and X ∈ Lie( G) we have for almost every trajectory

1 t log dϕ t (Id)( X) ϕt(Id) -→ t→+∞      α if X ∈ Lie( G) \ V 0 ∞ 0 if X ∈ V 0 ∞ \ V - ∞ -α if X ∈ V - ∞ \ {0}
Theorem 2 (Stable manifolds). Denote by V - ∞ := exp(V - ∞ ) and d the distance associated to a left invariant and Ad(SO(d))-invariant Riemanian metric in G. Then for any two distinct points g′ and g in G we have

• If g′ ∈ gV - ∞ then 1 t log d (ϕ t (g), ϕ t (g ′ )) -→ t→+∞ -α. • If g′ / ∈ gV - ∞ then lim inf t→∞ d (ϕ t (g), ϕ t (g ′ )) > 0.
We begin by constructing, in section 2, Dudley processes as projections of left Lévy processes on the Poincaré group G, identified with the orthonormal frame bundle of the Minkowski spacetime. These Lévy processes are solutions of stochastic integral equations and induce a left invariant stochastic flow ϕ t in G. In section 3 we find the asymptotic behavior of Dudley processes and exhibit the asymptotic random variables (θ ∞ , λ ∞ ) ∈ S d-1 × R * + . Finally in section 4 we prove Theorems 1 and 2 and explicit the projection of the stable manifold in H d × R 1,d by showing that it corresponds to a skew product of a horosphere by a line.

Note that stochastic flows generated by Lévy processes on semi-simple Lie groups were intensively studied by Liao ([12], [START_REF] Liao | Stable manifolds for stochastic flows induced by Lévy processes on Lie groups[END_REF], [START_REF] Liao | Lévy processes in Lie groups[END_REF]). But his results cannot be used directly here since our Lévy processes lie in the Poincaré group which is not semi-simple. Moreover in our work we suppose only that the Levy measure is integrable at infinity whereas Liao [START_REF] Liao | Lévy processes in Lie groups[END_REF] request the entire integrability of it.

Our work is also strongly inspirited by the work of Bailleul and Raugi [START_REF] Bailleul | Where does randomness lead in spacetime?[END_REF] where the authors used Raugi's methods [START_REF] Raugi | Fonctions harmoniques sur les groupes localement compacts à base dénombrable[END_REF] to find the Poisson boundary of Dudley diffusion.

Dudley processes and their lift in the Poincaré group

We present in this section the geometrical framework of special relativity and define a natural class of relativistic Markov processes with Lorentzian-covariant dynamics introduced by Dudley in [START_REF] Dudley | Lorentz-invariant Markov processes in relativistic phase space[END_REF]. They are obtained by projecting left Lévy processes with values in the Poincaré group and are described by two parameters: a diffusion coefficient σ ∈ R and a jump intensity Lévy measure ν on R * + .

Minkowski space-time and Poincaré group

The Minkowski space-time R 1,d is R × R d endowed with the Lorentz quadratic form q defined by

∀ξ = (ξ 0 , ξ 1 , . . . , ξ d ) ∈ R × R d , q(ξ) = ξ 0 2 -ξ 1 2 -• • • -ξ d 2 .
We denote by ξ := (ξ 1 , . . . , ξ d ) t the space component of ξ.

Set Q = Diag(1, -1, . . . , -1)
the matrix of q in the canonical basis (e 0 , e 1 , . . . , e d ). Time orientation is given by the constant vector field e 0 and some ξ ∈ R 1,d is said to be future oriented when q(ξ, e 0 ) > 0. A path γ s in R 1,d is said to be time-like when it is differentiable almost everywhere and q( γs ) > 0 and q( γs , e 0 ) > 0. The Poincaré group is the group of affine q-isometries which preserve orientation and time-orientation. It is the semi-direct product connected group

G := P SO(1, d) ⋉ R 1,d
where G := P SO(1, d) denotes the group of linear q-isometries which preserve orientation and time-orientation. An element g = (g, ξ) ∈ G is made up of its linear part g ∈ G and its translation part ξ. We identify G with the sub-group of G which fixes 0. By this way, we identify R 1,d with the homogeneous space G/G. The identity element of G and G is denoted by Id (thus for us Id = (Id, 0)). At g = (g, ξ) ∈ G we associate the affine frame ((g(e 0 ), g(e 1 ), . . . , g(e d )); ξ) of R 1,d and G is identified with the bundle of q-orthonormal, oriented and time-oriented, frames over R 1,d . We denote by π :

G -→ R 1,d g = (g, ξ) -→ ξ
the projection associated to this trivial fibration and G = π-1 {0}. The canonical basis being fixed we identify G with the matrix group

G = g ∈ SL(R d+1 ), gQg t = Q, q(g(e 0 ), e 0 ) > 0 ,
and its Lie algebra is

Lie(G) = X ∈ M d+1 (R), XQ -QX t = 0 = 0 b t b C , b ∈ R d , C ∈ M d (R) s.t C = -C t .
We have Lie(

G) = Lie(G) × R 1,d and for X = (X, x), Y = (Y, y) ∈ Lie( G) [ X, Y ] = ([X, Y ], Xy -Y x).
We identify Lie(G) with Ker(d Id π) and its elements are vertical for the fibration π. We set

V i := e 0 e t i + e i e t 0 i = 1, . . . , d V ij := [V i , V j ] = e i e t
je j e t i j > i.

Moreover we set

H 0 := (0, e 0 ) ∈ Lie( G)
which is horizontal for the fibration π. Notation For X ∈ Lie( G) we denote by X l the left invariant vector field in G associated. Denote by K the subgroup of G made of the rotations of R d . We have

K := 1 0 0 k , k ∈ SO(d) ,
and K is also the stabilizer of e 0 under the action of G on R 1,d . The homogeneous space G/K can be identified with the orbit of e 0 under the action of G which is the unit pseudo sphere

H d := {ξ ∈ R 1,d , q(ξ) = 1, ξ 0 > 0}
and is a Riemannian manifold of constant negative curvature when its tangent space is endowed with the restriction of q on it. For r ∈ R + and θ ∈ S d-1 ⊂ R d , define

S(r, θ) := exp r d i=1 θ i V i = cosh(r) sinh(r)θ t sinh(r)θ Id + (cosh(r) -1)θθ t .
Each g ∈ G can be decomposed in polar form g = S(r(g), θ(g))R where R ∈ K.

Dudley processes

In this paragraph we define the relativistic processes introduced by Dudley in [START_REF] Dudley | Lorentz-invariant Markov processes in relativistic phase space[END_REF]. These processes enjoy two natural properties:

• they are G-invariant i.e their dynamics are invariant by a change of q-orthonormal frame

• their trajectories in R 1,d are time-like: they are almost everywhere differentiable,and the tangents vectors are time-like and time oriented.

First remark that no Markov processes with values in R 1,d is G-invariant. Indeed, the law at some time t > 0 of such process starting at 0 would be a G-invariant probability measure in R 1,d which is necessary trivial by the following lemma.

Lemma 1. The only G-invariant probability measure in R 1,d is the Dirac measure at 0.

Proof. Let µ be a G-invariant probability measure in R 1,d . First suppose that the support of µ is not contained in the q-orthogonal hyperplane of some light-like line {u(e 0 + θ), u ∈ R} ( θ := d i=1 θi e i ∈ S d-1 ). So there exist a compact set C in the complement of this hyperplane such that µ(C) > 0. For g = S(r, θ), r > 0 and ξ = (ξ 0 , ξ) ∈ R 1,d , denoting • the Euclidean norm in R 1,d we have

g(ξ) 2 = 2q(g(ξ), e 0 ) 2 -q(g(ξ)) = 2q(ξ, g -1 (e 0 )) 2 -q(ξ) = 2 cosh(r)ξ 0 -sinh(r) θ • ξ 2 -q(ξ) = 2 cosh(r)(ξ 0 -θ • ξ) + e -r θ • ξ 2 -q(ξ) = 2 cosh(r)q(ξ, e 0 + θ) + e -r θ • ξ 2 -q(ξ).
Since C is a compact set in the complement of the q-orthogonal hyperplan to {u(e 0 + θ), u ∈ R} then inf ξ∈C |q(ξ, e 0 + θ)| > 0 and thus r can be chosen such that inf ξ∈C g(ξ) is arbitrary large. Thus g can be chosen such that C and g(C) are disjoint. Furthermore q(g(ξ), e 0 + θ) = q(ξ, g -1 (e 0 + θ)) = e r q(ξ, e 0 + θ) and thus g(C) belongs to the complement of the hyperplan q-orthogonal to e 0 + θ. By iteration we can find a sequence g k = S(r k , θ), k ∈ N such that the compact sets g k (C) are pairwise disjoint. Thus we obtain a contradiction writing 1

≥ µ(∪ k g k (C)) = k µ(g k (C)) = k µ(C) = +∞.
Now if the support of µ is contained in some hyperplan tangent to the light-cone and is not restricted to 0, we can find a compact set C in this hyperplan with 0 / ∈ C and µ(C) > 0 and we can choose a rotation R ∈ K such that R(C) is not in the hyperplan. Thus µ(C) = µ(R(C)) = 0 and it gives a contradiction. So we proved that µ is necessary the Dirac measure in {0}.

Thus R 1,d = G/G cannot be the space of states of some non-trivial G-invariant Markov process. But G-homogeneous spaces of the form G/ K where K is a compact subgroup of G have some K-invariant probability measure and may be endowed with some G-invariant Markov processes (see [START_REF] Liao | Lévy processes in Lie groups[END_REF] or [START_REF] Hunt | Semi-groups of measures on Lie groups[END_REF] ). The smallest spaces of states we can consider correspond to the maximal compact sub-group of G. Thus it is natural to consider the space of states G/K ≃ H d × R 1,d . The group K is seen as the subgroup of G which stabilize 0 and e 0 under the action of G on R 1,,d .

We denote by π :

G -→ H d × R 1,d ≃ G/K the canonical projection ∀g = (g, ξ) ∈ G π(g) = (g(e 0 ), ξ).
The following Proposition exhibit all the relativistic processes in

H d × R 1,d .
It is essentially an application of a result of Liao ( Theorem 2.1 and 2.2 p 42 in [START_REF] Liao | Lévy processes in Lie groups[END_REF] ).

Proposition 1. The Markov processes on H d × R 1,d , starting at (ζ 0 , ξ 0 ), which are G-invariant and whose trajectories are time-like are of the form (ζ s , ξ s ) where ζ s is a G-invariant Markov process on H d and ξ t = ξ 0 + a t 0 ζ s ds; a being some positive constant. For such a process there exist σ > 0 and a measure ν on R + satisfying

+∞ 0 min(1, r 2 )ν(dr) < +∞, such that (ζ t , ξ t ) = π(g t ) in law where gt is a left Levy process on G starting at g0 s.t (ζ 0 , ξ 0 ) = π(g 0 ) of which generator L is defined by ∀f ∈ C 2 ( G) Lf (g) = aH l 0 f (g) + σ 2 2 d i=1 (V l i ) 2 f (g) + +∞ 0 S d f (gS(r, θ)) -f (g) -r1 r∈[0,1] d i=1 θ i V l i f (g) ν(dr)dθ.
Definition 1 (Dudley processes). When a = 1 then ξt = ζ t and ξ t is parametrized by its proper time, i.e q( ξt ) = 1. When moreover σ or ν is non trival we call ( ξt , ξ t ) a Dudley process and we consider exclusively these processes in the sequel. When ν = 0 ( ξt , ξ t ) is continuous and is called Dudley diffusion.

Remark 1. The process ξ t is differentiable and ξt is càdlàg.

Proof of Proposition 1. Let (ζ t , ξ t ) a Markov (Feller) process on H d × R 1,d starting at (ζ 0 , ξ 0 ),
which is G-invariant and whose trajectories are time-like. By choosing g0 such that (ζ 0 , ξ 0 ) = π(g 0 ) and considering the Markov process g-1 0 (ζ t , ξ t ) it remains to prove the proposition in the case where (ζ 0 , ξ 0 ) = (e 0 , 0).

Set

H i := (0, e i ) ∈ Lie( G), i = 1, . . . , d.
The family {H 0 , H i , V i , V ij } i<j∈{1,...,d} form an orthonormal basis of Lie( G) for an Ad(K)-invariant inner product on Lie( G) and Ker d Id π = {V ij } i<j∈{1,...,d} . We set

X 0 := H 0 X i := H i X d+i := V i i = 1, . . . , d. An h = (h, ξ) ∈ G can be decomposed in h = exp d i=0 x i ( h)X i exp 2d i=d+1 x i ( h)X i R where R ∈ K, x 0 ( h) = ξ 0 and for i = 1, . . . , d x i ( h) = ξ i and x d+i ( h) = r(h)θ i (h)
. By Theorem 2.1 and 2.2 p 42 of [START_REF] Liao | Lévy processes in Lie groups[END_REF], (ζ t , ξ t ) coincide in law with π(g t ) where gt is a left Levy process in G, starting at Id, which is K-right invariant and generated by

Lf (g) = 1 2 2d i,j=0 a ij X l i X l j f (g)+ 2d i=0 b i X l i f (g)+ G f (g h) -f (g) - 2d i=0 1 r(h)≤1 ξ i (h)≤1 x i ( h)X i f (g) Π(d h).
The matrice

A := (a ij ) is a positive symmetric , (b i ) i ∈ R 2d+1 and Π is a Levy measure invariant by K-conjugation in G. The right K-invariance of gt ensures that for all k ∈ K ≃ SO(d) , diag(1, k, k)Adiag(1, k, k) -1 = A. Thus, A is necessarily of the form   σ 0 0 0 σId σ ′ Id 0 σ ′ Id σId   ,
where σ, σ ≥ 0 and σσ ≥ (σ ′ ) 2 . Moreover, using again K-invariance it comes b i = 0 for i = 1, . . . , 2d and we set a := b 0 . The trajectories of gt projected in R 1,d need to be differentiable so the jump measure Π is supported on G and σ and σ are necessarily null. Since the trajectories are time-oriented we have a > 0. The push forward of Π by π is supported on G/K ≃ H d and is K-invariant. Thus Π can be chosen of the form

∀f ∈ C 0 (G) Πf = +∞ 0 S d-1 f (S(r, θ))ν(dr)dθ
where ν is a Levy measure on R * + ( i.e satisfying min(1, r 2 )ν(dr) < +∞).

Denote by g t the G-component of gt . Thus g t (e 0 ) = ξt and ξ t = t 0 g s (e 0 )ds. By definition g t is a G-valued left Levy process, K-right invariant, generated by L defined by

∀f ∈ C 2 (G) Lf (g) = σ 2 2 d i=1 (V l i ) 2 f (g)+ +∞ 0 S d f (gS(r, θ)) -f (g) -r1 r∈[0,1] d i=1 θ i V l i f (g) ν(dr)dθ.
Denote by Π the Levy measure supported on G defined by

Πf = +∞ 0 S d-1
f (S(r, θ))ν(dr)dθ.

Define U 0 := {g ∈ G, r(g) ≤ 1} which is a K invariant neighborhood of Id in G. For f ∈ C 2 (G) we have the following Itô formula (see [2]) for g t f (g t ) = f (Id) + σ d i=1 t 0 V l i f (g s -)dB i s + σ 2 2 t 0 d i=1 (V l i ) 2 f (g s -)ds + t 0 U0 (f (g s -h) -f (g s -)) Ñ (ds, dh) + t 0 U0 f (g s -h) -f (g s -) -r(h) d i=1 θ i (h)V l i f (g s -) dsΠ(dh) (1) 
+ t 0 (U0) c (f (g s -h) -f (g s -)) N (ds, dh),
where B t is a Brownian motion of R d , N is a Poisson random measure on R×G of intensity measure dt ⊗ Π and Ñ (ds, dh) := N (ds, dh) -dsΠ(dh) is the compensated random measure associated.

Asymptotic random variables

In this section we determine the asymptotic behavior of π(g t ) = (g t (e 0 ), ξ t ) under an integrability condition on the jump intensity measure ν (Ass.1). Writing g t = n t a t k t in some Iwasawa decomposition of G we first prove (Prop.2), applying the Itô formula (1) and the law of large number, that the abelian term a t = exp(α t V 1 ) is positively contracting, αt t converges almost surely to a positive constant α depending explicitly on σ and ν. Next we prove (Prop.4) that the nilpotent term n t converges almost surely to an asymptotic random variable n ∞ and this convergence is exponentially fast with rate α. Then we investigate (Prop.5) the asymptotic behavior of ξ t in R 1,d . Geometrically, seen in the projective space, the H d -valued process g t (e 0 ) converges to a limit angle θ ∞ ∈ ∂H d ≃ S d-1 of which n ∞ is a stereographic projection. Moreover, the process ξ t is asymptotic to some affine hyperplane q-orthogonal to θ ∞ of which position is fixed by another asymptotic random variable λ ∞ ∈ R * + . Figure 1 sum up the asymptotic results.

H d

Asymptotic angle

Asymptotic affine hyperplane 

λ ∞ > 0 θ ∞ ∈ S d-1 θ ∞ ∈ S d-1

Iwasawa decomposition in G

Although a polar decomposition of G was used to introduce g t (defining the K invariant measure Π), Iwasawa decomposition seems to be more adapted to describe its asymptotic dynamics.

Introduce briefly this decomposition. The maximal abelian subalgebra contained in Vect{V 1 , . . . , V d }, which is the orthogonal subspace of Lie(G) of K for the Killing form, is of dimension one. Let choose A := Vect{V 1 } one of them. The linear endomorphism ad(V 1 ) of Lie(G) is diagonalisable with eigenvalues -1, 0 and 1.

Set N = {X ∈ Lie(G), ad(V 1 )X = -X} N = {X ∈ Lie(G), ad(V 1 )X = X}
the eigenspace corresponding respectively to the eigenvalue -1 and 1. Explicitly

N = Vect{V i -V 1i , i = 2, . . . , d} and N = Vect{V i + V 1i , i = 2, . . . , d}.
The eigenspace corresponding to 0 is A ⊕ M where M is the sub algebra of elements of K which commute with the elements of A. Explicitly

M = Vect{V ij , i, j = 2 . . . d} =      0 0 0 0 0 0 0 0 C   , C ∈ so(d -1)    .
The subspace N is a nilpotent Lie algebra (even abelian since [N , N ] = 0). The corresponding Iwasawa decomposition of Lie(G) is Moreover, the mapping from N × A × K to G which maps (n, a, k) to nak is an analytic diffeomorphism. For g ∈ G we denote by g = (g) N (g) A (g) K its decomposition in Iwasawa coordinates.

Lie(G) = N ⊕ A ⊕ K.
To simplify notations set n t := (g t ) N , a t := (g t ) A and k t = (g t ) K , thus g t = n t a t k t . Note that we have other Iwasawa decompositions like Lie(G) = N ⊕ A ⊕ K (with G = N AK). Iwasawa and polar coordinates.

For g ∈ G written in polar form g = exp r d i=1 θ i (V i -V 1i ) R where R ∈ K, we have q(e 0 , g(e 0 )) = cosh(r). Now denoting by b ∈ R d-2 and u ∈ R such that (g) N = exp d i=2 b i (V i -V 1i
) and (g) A = exp (uV 1 ) we can compute explicitly q(e 0 , g(e 0 )) in terms of b and u and we obtain

cosh(r) = 1 + b 2 2 cosh(u) + b 2 2 sinh(u). (2) 
Moreover u can be expressed in term of θ and r via

e u = cosh(r) + θ 1 sinh(r) (3) 

Asymptotic behavior of the G-component

The aim of this section is to show that n t converges almost surely to an asymptotic N -valued random variable n ∞ and that the convergence is exponentially fast. This result, stated in Proposition 4, appears to be a consequence of the contracting property of a t . For this we need the following integrability condition on ν. The group G is semi simple and the tools used in this section are very closed from those of Liao [START_REF] Liao | Lévy processes in Lie groups[END_REF]. Nevertheless we present a self-contained proof in our specific framework and our results are established under a weaker assumption than the ones of [START_REF] Liao | Lévy processes in Lie groups[END_REF] ( see remark 3 ). Namely we suppose that the following integrability condition is satisfied.

Assumption 1. +∞ 1 rν(dr) < +∞.
The following proposition computes explicitly the linear drift of a t which appears to be positive. The proof is essentially a consequence of the law of large number.

Proposition 2. Let denote by α t the R-valued process such that a t = exp(α t V 1 ). Then the following convergence holds almost surely

α t t -→ t→∞ α > 0.
The positive constant α is

α := d -1 2 σ 2 + +∞ 0 r cosh(r) -sinh(r) sinh(r) ν(dr).
Proof. First define log : A → A ≃ R exp(uV 1 ) → uV 1 and apply Itô formula (1) to the smooth map f : g → log(g) A . Remark that for g, h ∈ G (gh) A = (g) A ((g) K h) A and

f (g s-h) -f (g s-) = log (k s-g) A .
Moreover

V l i f (g s-) = d dt log(g s-e tVi ) A t=0 = d dt log e tAd(ks-)Vi A t=0 = {Ad(k s-)V i } A (V l i ) 2 f (g s-) = d dt {Ad g s-e tVi K V i } A t=0 = d dt {Ad e tAd(ks-)Vi K Ad(k s-)V i } A t=0 = {[{Ad(k s-)V i } K , Ad(k s-)V i ]} A . For k ∈ K we have Ad(k)V i = d j=1 k ij V j where k = (k ij ) ∈ K ≃ SO(d). Then we compute d i=1 {[{Ad(k s-)V i } K , Ad(k s-)V i ]} A = d i=1 d j=1 d l=1 (k s-) ij (k s-) il {[{V j } K , V l ]} A , since {V j } K = V 1j (and 0 for j = 1 ) and [V 1j , V l ] = V 1 δ jl we get d i=1 {[{Ad(k s-)V i } K , Ad(k s-)V i ]} A = d j=2 d i=1 ((k s-) ij ) 2 V 1 = (d -1)V 1 .
Thus Itô formula (1) can be written

log(a t ) = M t + d -1 2 σ 2 t + t 0 U c 0 log(k s-h) A N (ds, dh) + t 0 U0 log(k s-h) A -r(h) d i=1 θ i (h){Ad(k s-)V i } A dsΠ(dh),
where

M t := σ d i=1 t 0 {Ad(k s-)V i } A dB i s + t 0 U0 (k s-h) A Ñ (ds, dh) is a martingale. Its bracket is σ 2 t 0 d i=1 {Ad(k s-)V i } A 2 ds + t 0 U0 log(k s-h) A 2 dsΠ(dh) = t σ 2 + U0 log(h) A 2 Π(dh)
and thus we obtain that almost surely

M t t -→ t→+∞ 0.
Moreover, making the change of variable h ′ = k s-hk -1 s-we obtain using the K-invariant by conjugation of Π

t 0 U0 log(k s-h) A -r(h) d i=1 θ i (h){Ad(k s-)V i } A dsΠ(dh) = t 0 U0 log(h ′ ) A -r(h ′ ) d i=1 θ i (k -1 s-h ′ ){Ad(k s-)V i } A Π(dh ′ )ds = t 0 U0 log(h ′ ) A -r(h ′ ) d i=1 d j=1 (k s-) ij θ j (h ′ )(k s-) i1 V 1 Π(dh ′ )ds = t 0 U0 log(h ′ ) A -r(h ′ )θ 1 (h ′ )V 1 Π(dh ′ )ds = t S d-1 1 0 log(S(r, θ)) A -rθ 1 V 1 ν(dr)dθ
By (3) we have log(S(r, θ)) A = log(cosh(r) + θ 1 sinh(r))V 1 and the previous term equals

t S d-1 1 0 log(cosh(r) + θ 1 sinh(r)) -rθ 1 ν(dr)dθV 1 = t 1 0 1 -1 log (cosh(r) + u sinh(r)) -ru du 2 ν(dr)V 1 = t 1 0 r cosh(r) -sinh(r) sinh(r) ν(dr)
It remains to consider the asymptotic behavior of the stochastic integral t 0 U c 0 log(k s-h) A N (ds, dh). We know that there exist T i jump times of a Poisson process of intensity measure Π(U c 0 ) and random variable h n i.i.d of law Π| U c 0 /Π(U c 0 ) and independent of (T i ) i such that

t 0 U c 0 log(k s-h) A N (ds, dh) = n,Tn≤t log(k T - n h n ) A .
Moreover, by invariance of Π under conjugation by K we check easily that the random variables

h ′ n := Ad(k T - n )h n are i.i.d of common law Π| U c 0 /Π(U c 0 ) and we have t 0 U c 0 log(k s-h) A N (ds, dh) = Nt n=1 log(h ′ n ) A ,
where N t is a Poisson process of intensity measure Π(U c 0 ) and independent of (h ′ n ) n . Moreover since +∞ 1 rν(dr) < +∞ then log(h ′ n ) A is integrable and the law of large number ensures that

1 t t 0 U c 0 log(k s-h) A N (ds, dh) -→ t→+∞ Π(U c 0 )E[log(h ′ n ) A ].
The proof is ended by checking that

E[log(h ′ n ) A ] = 1 Π(U c 0 ) +∞ 1 r cosh(r) -sinh(r) sinh(r) ν(dr)V 1 . Remark 2. When +∞ 1 rν(dr) = +∞ we obtain E[|log(h ′ n ) A |] = +∞. Nevertheless E [-min (log(h ′ n ) A , 0)] = +∞ 1 1 -1
min log(cosh(r + θ 1 sinh(r)), 0 dθ 1 2 ν(dr)

= +∞ 1 1 e -r -log(v) dv 1 sinh(r) ν(dr) = +∞ 1 1 2 sinh(r)
(1e -r (r + 1))ν(dr) < +∞. Now, applying a generalized law of large numbers we deduce that almost surely

1 t t 0 U c 0 log(k s -h) A N (ds, dh) -→ t→+∞ +∞,
and so

α t t -→ t→+∞ +∞.
The following proposition establishes that g t is bounded in expectation on a finite time interval. This result is used to prove the convergence of n t in the next Proposition.

Proposition 3. Fix T > 0. Then E sup t∈[0,T ] r (g t ) < +∞.
Proof. We cannot directly apply Itô formula to g → r(g) since it is not regular at Id. But we can find a smooth function r such that r ≥ r on U 0 and r = r on U c 0 . For such a function we have r(g t ) = r(Id) + mt + mt +

I t + J t + t 0 U c 0 (r(g s -h) -r(g s -)) N (ds, dh). ( 4 
)
Where mt := σ t 0 V l i r(g s -)dB i s and mt := t 0 U0 (r(g s -h)r(g s -)) Ñ (ds, dh) are martingales,

I t := σ 2 t 0 d i=1 V l i 2 r(g s -)ds and J t := t 0 r∈[0,1] θ∈S d-1 r (g s -S(r, θ)) -r(g s -) -r d i=1 θ i V l i r(g s -) dθν(dr)ds
are processes with finite variation.

To prove the proposition we will bound the supremum on [0, T ] of each of these five terms by means of X l r ∞ and (X l ) 2 r ∞ for some X ∈ Vect{V i , i = 1, . . . , d}. Thus we need the following lemma.

Lemma 2. For X ∈ P = Vect{V i , i = 1, . . . , d} we have X l r ∞ < +∞ and (X l ) 2 r ∞ < +∞.

Proof of the lemma. U 0 being a compact set it suffices to show that the supremum is finite on U c 0 . Since r = r on U c 0 it remains to prove that sup g∈U c 0 |X l r(g)| < +∞ and sup g∈U c 0 |(X l ) 2 r(g)| < +∞. The polar decomposition of g can be written

g = k exp(r(g)V 1 )k for some k, k ∈ K. Setting x ∈ R d such that X = i x i V i we have r(g exp(sX)) = r exp(r(g)V 1 ) exp s d i=1 (kx) i V i .
Let θ ∈ S d-1 be such that (kx) i = x θ i . Then we compute explicitly, for g ∈ U c 0 :

r exp(r(g)V 1 ) exp s d i=1 (kx) i V i = (cosh) -1 cosh(r(g)) cosh(s x ) + θ 1 sinh(r(g)) sinh(s x ) = r(g) + s x θ 1 + s 2 2 x 2 cosh(r(g)) sinh(r(g)) (1 -(θ 1 ) 2 ) + O(s 3 ).
Then it comes that

X l r(g) = d ds r(g exp(sX)) s=0 = x θ 1 ,
and thus sup g∈U c 0 X l r(g) ≤ x . Moreover

(X l ) 2 r(g) = d 2 ds 2 r(g exp(sX)) s=0 = x 2 cosh(r(g)) sinh(r(g)) (1 -(θ 1 ) 2 )
and so sup g∈U c 0 (X l ) 2 r(g) ≤ 2 x 2 .

Return to the proof of Proposition 3. By Doob's norm inequalities (see [START_REF] Kallenberg | Foundations of modern probability[END_REF]) we obtain

E sup t∈[0,T ] | mt | 2 ≤ 4E ( mT ) 2 ≤ 4σ 2 E T 0 d i=1 V l i r(g s -) 2 ds ≤ 4σ 2 T d max i V l i r 2 ∞ < +∞.
and

E sup t∈[0,T ] | mt | 2 ≤ 4E ( mT ) 2 ≤ 4E T 0 r∈[0,1] θ∈S d-1 |r (g s -S(r, θ)) -r(g s -)| 2 ν(dr)dθds ≤ 8dT 1 0 r 2 ν(dr) max i V l i r 2 ∞ < +∞.
We have also

E sup t∈[0,T ] |I t | ≤ σ 2 T d max i (V l i ) 2 r ∞ < +∞.
Moreover applying a Taylor inequality to u ∈ [0, 1] → r(g s -S(ur, θ)) it comes r (g s -S(r, θ))r(g s -)r

d i=1 θ i V l i r(g s -) ≤ 1 2 r 2 sup θ∈S d-1 i θ i V l i 2 r ∞ < +∞
and thus

E sup t∈[0,T ] |J t | ≤ T 2 1 0 r 2 ν(dr) sup θ∈S d-1 i θ i V l i 2 r ∞ < +∞.
Finally, to bound the supremum of the last term of ( 4) we need the assumption 1. Indeed, since |r(g

s -S(r, θ)) -r(g s -)| ≤ r sup θ∈S d-1 i θ i V l i r ∞ we obtain E sup t∈[0,T ] t 0 U c 0 r(g s -h) -r(g s -)dsΠ(dh) ≤ T d +∞ 1 rν(dr) max i V l i r ∞ < +∞.
We can now state the main result of this section, the convergence of n t to some asymptotic random variable n ∞ and the speed of convergence. -valued process such that

n t = exp d i=2 b i-1 t (V i -V 1i ) .
Then b t converges almost surely to b ∞ exponentially fast with rate α, i.e

lim sup t→+∞ 1 t log b t -b ∞ ≤ -α. (5) 
As a consequence n t converges almost-surely to n ∞ := exp

d i=2 b i-1 ∞ (V i -V 1i
) and defining h t := e -tαV1 n -1 ∞ g t we obtain

lim t→+∞ 1 t r (h t ) = 0 a.s. (6) 
Proof. Denoting by [t] the integer part of t we decompose b t =

[t] j=1 (b j -b j-1 ) + b t -b [t] .
To prove that b t converge and (5) holds it is sufficient to verify that lim sup

j→∞ 1 j log sup s∈[0,1] b j -b j+s ≤ -α a.s. (7) 
For j ∈ N and s ∈ [0, 1] we have g -1 j g j+s = k -1 j a -1 j n -1 j n j+s a j+s k j+s and thus

n -1 j n j+s = a j g -1 j g j+s k j N a -1 j . (8) 
Denote by bj,s = ( bi

j,s ) i=2,...,d ∈ R d-1 such that g -1 j g j+s k j N = exp d i=2 bi j,s (V i -V 1i ) . Then, (8) implies that b j+s -b j = e -αj bj,s . (9) 
Since g t is a Levy process, sup s∈[0,1] r(g -1 j g j+s ) j∈N are i.i.d random variables. Moreover, by Proposition 3 their common expectation E[sup s∈[0,1] r(g s )] is finite. Thus, applying the law of large number it comes

1 j sup s∈[0,1] r(g -1 j g j+s ) -→ j→∞ 0 a.s. (10) 
Since r((g -1 j g j+s ) N ) ≤ 2r(g -1 j g j+s ) and, by (2), bj,s 2 = 2 cosh r g -1 j g j+s k j N -1 we deduce from (10) that for ε > 0 there exists j 0 such that for j > j 0 bj,s ≤ e εj .

(

Since, by Proposition 2, α j = jα + o(j) thus (7) follows from ( 9) and [START_REF] Liao | Stable manifolds for stochastic flows induced by Lévy processes on Lie groups[END_REF]. To finish the proof of the proposition we need to check [START_REF] Dudley | Lorentz-invariant Markov processes in relativistic phase space[END_REF]. We have

r(h t ) = r(e -αtV1 n -1 ∞ n t a t ) ≤ r(e -αtV1 a t ) + r(a -1 t n -1 ∞ n t a t ),
and r(e -αtV1 a t ) = |α t -αt| = o(t) and we obtain from (2) ( since

a -1 t n -1 ∞ n t a t ∈ N ), r(a -1 t n -1 ∞ n t a t ) = cosh -1 1 + e 2αt b t -b ∞ 2 2 .
So by [START_REF] Carverhill | Lyapunov exponents for a stochastic analogue of the geodesic flow[END_REF] we have also r(a -1 t n -1 t n ∞ a t ) = o(t) and ( 6) holds.

Remark 3.

• Without integrability condition, we can nevertheless show that g t satisfy the irreducibility and contraction conditions of [START_REF] Liao | Lévy processes in Lie groups[END_REF] and deduce that α t converges almost surely to +∞ and n t converges to n ∞ . Nevertheless, by remark 2, we obtain in the case where +∞ 1 rν(dr) = +∞, that almost surely αt t converges to +∞. • In [START_REF] Liao | Lévy processes in Lie groups[END_REF] the author uses a stronger hypothesis to prove the rate of convergence of a Lévy process in a semi-simple group. It corresponds in our case to assume that +∞ 0 rν(dr) < +∞.

Asymptotic behavior of the R 1,d -component

The linear endomorphism ξ → exp(V 1 )ξ is diagonalisable with eigenvalues -1, 0, +1. Denote by U -, U 0 and U + the respective eigenspaces. Explicitly U -= Vect{e 0e 1 }, U 0 = Vect{e 2 , . . . , e d } and U + = Vect{e 0 + e 1 }. For ξ ∈ R 1,d we denote by (ξ) -, (ξ) 0 and (ξ) + its projection on each eigenspace. Explicitly we obtain (ξ) -= -1 2 q(ξ, e 0 + e 1 )(e 0e 1 ), (ξ) + = 1 2 q(ξ, e 0e 1 )(e 0 + e 1 )

(ξ) 0 = d i=2 q(ξ, e i )e i .
Recall that by definition, ξ t = t 0 g s (e 0 )ds. The following proposition gives the asymptotic behavior of ξ t . Proposition 5. There exists an asymptotic random variable λ ∞ > 0 such that

(n -1 ∞ ξ t ) --→ t→+∞ λ ∞ (e 0 -e 1 ),
and moreover lim sup

t→+∞ 1 t log (n -1 ∞ ξ t ) --λ ∞ (e 0 -e 1 ) ≤ -α. (12) 
We also have

lim sup t→+∞ 1 t log (n -1 ∞ ξ t ) 0 ≤ 0, and, lim sup t→+∞ 1 t log (n -1 ∞ ξ t ) + ≤ α. (13) 
Proof. We have

- 1 2 q(n -1 ∞ ξ t , e 0 + e 1 ) = t 0 - 1 2 q(n -1
∞ n s a s (e 0 ), e 0 + e 1 )ds [START_REF] Raugi | Fonctions harmoniques sur les groupes localement compacts à base dénombrable[END_REF] and the integrand can be written

- 1 2 q(n -1 ∞ n s a s (e 0 ), e 0 + e 1 ) = - 1 2
q(e -αsV1 n -1 ∞ n s a s (e 0 ), e -αsV1 (e 0 + e 1 ))

= -1 2 e -αs q(h s (e 0 ), (e 0 + e 1 )),

where h s = e -αs n -1 ∞ g s as defined in Proposition 4. Denote by (r s , θs ) ∈ R + × S d-1 the polar decomposition of h s (e 0 ) ∈ H d . So r = r(h s ) and -1 2 e -αs q(h s (e 0 ), (e 0 + e 1 )) = 1 2 e -αs cosh(r s ) -θ1 s sinh(r s ) ∈ αs+rs) , e -(αs-rs) ].

1 2 [e -(
Proposition 4 ensures that rs = o(s) a.s, so fixing ε > 0 arbitrary small we can find s 0 > 0 such that for all s > s 0 the integrand of ( 14) is positive and bounded by e -(α-ε)s . This ensures the convergence of (n -1 ∞ ξ t ) -to λ ∞ (e 0e 1 ) with λ ∞ > 0. Moreover for t > s 0

- 1 2 q(n -1 ∞ ξ t , e 0 + e 1 ) -λ ∞ ≤ +∞ t e -(α-ε)s ds = 1 α -ε e -(α-ε)t ,
which prove [START_REF] Liao | Dynamical properties of Lévy processes in Lie groups[END_REF]. Now

(n -1 ∞ ξ t ) 0 = d i=2 t 0 q(n -1
∞ n s a s (e 0 ), e i )dse i , and for i = 2, . . . , d we have q(n -1 ∞ n s a s (e 0 ), e i ) = q(e -αsV1 n -1 ∞ n s a s (e 0 ), e i ) = θi s sinh(r s ) so |q(n -1

∞ n s a s (e 0 ), e i )| ≤ e rs and this ensures that lim sup t→+∞

1 t log (n -1 ∞ ξ t )0 ≤ 0. Moreover, (n -1 ∞ ξ t )+ = t 0 1 2 q n -1
∞ n s a s (e 0 ), e 0e 1 ds (e 0e 1 ) and 1 2 q(n -1 ∞ n s a s (e 0 ), e 0e 1 ) = 1 2 e αs q(h t (e 0 ), e 0e 1 ) = 1 2 e αs cosh(r s ) -θ1 s sinh(r s ) ∈ 1 2 [e αs-rs , e αs+rs ].

So (n -1 ∞ ξ t ) + ≤ (n -1 ∞ ξ s0 ) + + t s0
e (α+ε)s ds, and thus lim sup t→+∞

1 t log (n -1 ∞ ξ t ) + ≤ α.

Geometric description of the convergence

Denote by p : R 1,d \ {0} → P d R the projection onto the projective space of dimension d. The hyperboloïd H d is mapped onto the interior of a projective ball and its boundary (

∂H d ≃ S d-1
) is the image of the q-isotropy cone

∂H d := p ({ξ, q(ξ) = 0} \ {0}) .
From the relation q( ξt , n t (e 0 + e 1 )) = q(g t (e 0 ), n t (e 0 + e 1 )) = q(e 0 , a -1 t (e 0 + e 1 )) = e -αt -→ t→∞ 0,

we deduce that all limit points of p( ξt ) are q-orthogonal to θ ∞ := p(n ∞ (e 0 + e 1 )). Since the only point of p(H) which is q-orthogonal to θ ∞ is θ ∞ itself it comes that p( ξt ) converges to θ ∞ in P d R. Now, identifying P d R with its affine chart {ξ, ξ 0 = 1} we can consider that θ ∞ ∈ S d . From [START_REF] Applebaum | Lévy flows on manifolds and Lévy processes on Lie groups[END_REF] we deduce that r t → +∞ and since p( ξt ) = p(e 0 + θ t sinh(rt) cosh(rt) ) it comes that θ t converges to θ ∞ in S d . The two asymptotic random variables θ ∞ and n ∞ are linked by p(e 0 + θ ∞ ) = p(n ∞ (e 0 + e 1 ))

or more explicitly, b ∞ ∈ R d-1 (defined by n ∞ = exp d i=2 b i-1 ∞ (V 1 -V 1i ) ) is the stereographic projection of θ ∞ θ ∞ = 1 1 + b ∞ 2 1 -b ∞ 2 2b ∞ .
Concerning the asymptotic behavior of ξ t , Proposition 5 ensures that q(ξ t , n ∞ (e 0 + e 1 )) converges to λ ∞ . Thus geometrically ξ t is asymptotic to an affine hyperplan which is q-orthogonal to n ∞ (e 0 + e 1 ) (or e 0 + θ ∞ ) and passing by λ ∞ (e 0e 1 ) .

4 Lyapunov spectrum and stable manifolds

Lyapunov spectrum

The Levy process gt , with values in G and starting at some g, can be obtained by solving the following left invariant stochastic integro-differential equation in

G ∀f ∈ C 2 ( G), f (g t ) = f (g) + σ d i=1 t 0 V l i f (g s -) • dB i s + t 0 H l 0 (g s -)ds + t 0 U0 (f (g s -h) -f (g s -)) Ñ (ds, dh) + t 0 U0 f (g s -h) -f (g s -) -r(h) d i=1 θ i (h)V l i f (g s -) dsΠ(dh) (15) 
+ t 0 (U0) c (f (g s -h) -f (g s -)) N (ds, dh).
This stochastic differential equation induces a stochastic flow ϕ t in G which maps g on the solution at time t and starting at g of (15). By left invariance ϕ t is also defined by

ϕ t : G -→ G g -→ gg t ,
where gt is starting at Id. Denote by • any norm on Lie( G) and by • g the left invariant (Finsler) metric associated in G on T g G. For v ∈ T g G we aim to investigate the asymptotic exponential rate of growth or decay of dϕ t (g)(v) ϕt(g) . Denote by L g the left translation by g in G. By left invariance of the flow, dϕ t

(g)(v) ϕt(g) = dϕ t (Id)( X) ϕt(Id) where X := (dL g ) -1 (v) ∈ T Id G = Lie( G). For g = (g, ξ) ∈ G and X, Y ∈ Lie( G) it comes Ad(g)( X) = (Ad(g)(X), gx -Ad(g)(X)ξ) (16) ad( Y )( X) = (ad(Y )(X), Y x -Xy) . (17) 
The endomorphism X → ad(V 1 , 0)( X) is diagonalisable on Lie( G). Its eigenvalues are -1, 0, 1 and we denote by U -, U 0 and U + the eigenspaces associated. We can check that

X ∈ U + ⇐⇒ X ∈ N and x ∈ U + X ∈ U 0 ⇐⇒ X ∈ A ⊕ M and x ∈ U 0 X ∈ U -⇐⇒ X ∈ N and x ∈ U -.
Proof. All norms are equivalent and it suffices to check the inequalities for some particuliar norms. Let choose the following SO(d)-invariant euclidean norm on Lie( G) (X, x) := Tr(X t X) + x t x.

We obtain easily Ad(g, 0) = e r(g) .

Taking now (X, x) := Tr(X t X) + √ x t x we get

Ad(Id, ξ)(X, x) = Tr(X t X) + x -Xξ ≤ (X, x) + Xξ ≤ (X, x) + Tr(X t X) max i |ξ i | ≤ (X, x) 1 + max i |ξ i | .
Thus Ad(Id, ξ) ≤ 1 + α ξ for a constant α > 0 independant of ξ.

Stable manifolds

First, remark that V - ∞ and V 0 ∞ are Lie sub-algebras of Lie( G). Denote by

V - ∞ := exp(V - ∞ ), and V 0 ∞ := exp(V 0 ∞ ) the closed subgroup of G associated. Fix now a euclidean norm • on Lie( G) which is Ad(K)-invariant. Such a norm is of the form 0 b t b C , x := κ 2 b t b + β 2 Tr (C t C) γ 2 x t x + δ 2 (x 0 ) 2 ,
for some positive constants κ, β, γ and δ. We denote by d the distance in G associated to the left invariant Riemanian metric induced by • . To simplify notations, we denote by d(g, h) the distance between (g, 0) and (h, 0) for g, h ∈ G.

The following result shows that the stable manifold associated to ϕ t is ϕ 0 V - ∞ .

Theorem 2. Let g and g′ two distinct points in G.

• If g′ ∈ gV - ∞ then 1 t log d (ϕ t (g), ϕ t (g ′ )) -→ t→+∞ -α. • If g′ / ∈ gV - ∞ then lim inf t→∞ d (ϕ t (g), ϕ t (g ′ )) > 0.
The properties of d we need in the proof of Theorem 2 are sum up in the following proposition

Proposition 6. i) Left invariance ∀g, h ∈ G, d(g, gh ) = d(Id, h).
Thus d(Id, g-1 ) = d(Id, g) and triangularity inequality writes:

∀g, h ∈ G, d(Id, gh ) ≤ d(Id, g) + d(Id, h) ii) K-right invariance ∀g ∈ G and k ∈ K, d ((k, 0), g(k, 0)) = d(Id, g) iii) For X ∈ Lie( G) d Id, exp( X) ≤ X .
iv) There exists a neighborood O of 0 in Lie( G) and a constant C > 0 such that

∀ X ∈ O, C X ≤ d Id, exp( X) v) ∀(g, ξ) ∈ G d (Id, g) ≤ d (Id, (g, ξ)) vi) For g = S(r, θ)R and g ′ = S(r ′ , θ ′ )R ′ we have κ κ 2 + 2β 2 d (S(r, θ), S(r ′ , θ ′ )) ≤ d(g, g ′ )
vii) For all r ≥ 0 and θ ∈ S d-1 d (Id, S(r, θ)) = κr Proof of Proposition 6. i) and ii).The left and K-right invariance follows from the definition of the metric as being a left invariant Riemannian metric on G defined from an Ad(K)-invariant inner product on Lie( G). Inequality iii) is obtained remarking that the length of the path t ∈ [0, 1] → exp t X is equal to X . iv). Denote by exp : Lie( G) → G be the exponential map at Id induced by the metric • in G: for X ∈ Lie( G), exp( X) = γ X (1) where t ∈ [0, 1] → γ X (t) is the geodesic starting from Id in the direction X. The differential at 0 of exp is known to be identity and there exists a sufficient small neighborhood O ′ of 0 ∈ Lie( G) such that:

∀ X ∈ O ′ , X = d I, exp( X) . ( * )
Furthermore, the map exp -1 • exp can be defined in a neighborhood of 0 and its differential at 0 is the identity: exp -1 • exp( X) = X + o( X ). So we can find O neighborhood of 0 and C > 0 such that for all X ∈ O, C X ≤ exp v). Each path s ∈ [0, 1] → (g s , ξ s ) joining Id to (g, ξ) is of length 1 0 (g -1 s ġs , g -1 s ξ s ) ds which is greater than 1 0 (g -1 s ġs , 0) ds corresponding to the path s ∈ [0, 1] → (g s , 0) joining Id to (g, 0). vi). Consider a path s ∈ [0, 1] → S(r s , θ s )R s joining g to g ′ . We compute, using dot notation for d ds R -1 s S(r s , θ s ) -1 d ds (S(r s , θ s )R s ) = 0 ṙs θ t s + sinh(r s ) θs t ṙs θ s + sinh(r s ) θs (cosh(r s ) -1) θs θ t sθ s θt s + R -1 s Ṙs .

Its length l := 1 0 R -1 t S(r t , θ t ) -1 d dt S(r t , θ t )R t dt is larger than Moreover, the path s → S(r s , θ s ) which join S(r, θ) to S(r ′ , θ ′ ) is of length 

≥ cosh(u) + (1θ t (mθ)) sinh(r) 2 we used (mθ) 1 = θ 1 (25) ≥ cosh(u). Return to the proof of Theorem 2. Second case: X 0 = 0 but x 0 = 0 . So X = (X + , x + + x 0 ) and explicitely exp( X) = (exp(X + ), x 0 + x + + X + x 0 2 ) = (Id, ξ)(exp(X + ), 0), where we have set ξ := x 0 + x + + X + x 0 2 . Thus g-1 t exp( Y )g t = h-1 t (e -tαV1 , 0) exp( X)(e tαV1 , 0) ht = (Id, h -1 t e -tαV1 ξ)(exp(Ad(h -1 t e -tαV1 )X), 0), and d(Id,g -1 t exp( Y )g t ) ≥ d Id, (Id, h -1 t e -tαV1 ξ)d(Id, (exp(Ad(h -1 t e -tαV1 )X), 0)).

As done previously in the first case, d(Id, (exp(Ad(h -1 t e -tαV1 )X), 0)) converges exponentially fast to 0 and it remains to prove that lim inf 
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 26 Then by vi) and vii) of Proposition 6 it comesd(Id, g -1 amg) ≥ κ κ 2 + 2β 2 κu > 0.

t→∞dFigure 2 :

 2 Figure 2: π(V - ∞ ) is a skew-product of a horosphere with a line

Set g∞ := (n ∞ , λ ∞ (e 0e 1 )) ∈ G and V - ∞ := Ad(g ∞ ) U + , V 0 ∞ := Ad(g ∞ ) U 0 + U + . We denote by ht := e -tαV1 , 0 g-1 ∞ gt , where we recall that gt := ϕ t (Id) is starting at Id. Theorem 1. Let X ∈ Lie( G). For almost every trajectory

Proof. By left invariance of • , dϕ t (Id)( X) ϕt(Id) = Ad( gt -1 )( X) . We set, for g ∈ G Ad(g) := sup

Let X ∈ Lie( G). Writting g-1

Suppose for the moment that lim sup

and lim sup

Then we deduce from (18) that 1 t log Ad(g -1 t )( X) and 1 t log Ad e -tαV1 , 0 g-1 ∞ ( X) have the same limit when t goes to ∞. The linear isomorphism Ad e -tαV1 , 0 is diagonalisable with eigenvalues e -αt , 1 and e αt associated respectively to the eigenspaces U + , U 0 and U -. Decomposing Ad(g ∞ ) -1 ( X) in the direct sum U -⊕ U 0 ⊕ U + and using a Euclidean norm • on Lie( G) for which this decomposition is orthogonal, we deduce easily the theorem (note that the convergence is independant of the chosen norm).

Thus it remains to prove (19) and (20). We have ht = e -tαV1 , 0 g-1

Let ε > 0. By Proposition 4 we can find t 0 > 0 such that ∀t > t 0 r(h t ) ≤ εt and by Proposition 5 we have

Now using the following Lemma 3 we deduce easily (19) and (20).

Lemma 3. There exist positive constants α, β, γ such that for g ∈ G and ξ

)( Y ) converge to 0 exponentially fast with rate α and so for large t it evolves in O. Thus, using iii) and iv) of Proposition 6 we obtain the first point of the theorem as a direct consequence of Theorem 1.

Set

and write

Suppose first that X -= 0. Thus Y ∈ Lie( G)\V 0 ∞ and by Theorem 1 Ad(g -1 t ) Y converges to +∞ exponentially fast. Now suppose by contradiction that lim inf

Then we can find a s t such that d Id, exp Ad(g -1 st )( Y ) converges to 0 and for large t 

Writting n = exp(Z), Z ∈ N and d(Id, h -1 t e -tαV1 ne tαV1 h t ) is dominated by e -tα+r(ht) Z (by Lemma 3 and iii) of Proposition 6) and converges exponentially fast to zero (recall that by Proposition 4 r(h t ) = o(t) a.s. ). Thus it remains to prove that lim inf d(Id, h -1 t e -tαV1 ame tαV1 h t ) > 0 to finish the proof in the first case. This is ensured by the following Lemma. Proof of lemma 4. Consider the polar decomposition g = S(r, θ)R. Suppose first that a = Id and Since X + x 0 2 ∈ U + we obtain directly that q(ξ) = q(x 0 ) which is negative since x 0 is supposed to be non zero. But

Projection on

the stable manifolds

We explicit here the projection of

∞ where (X, x) ∈ N × U + . We deduce, since in this case exp(X, x) = (exp(X), x), that an element of π(V - ∞ ) is of the form

where X lies in N and u ∈ R.

Since exp(X)(e 0 + e 1 ) = e 0 + e 1 for X ∈ N we obtain q(n ∞ exp(X)n -1 ∞ (e 0 ), n ∞ (e 0 + e 1 )) = q(n -1 ∞ e 0 , e 0 + e 1 ) = q(e 0 , n ∞ (e 0 + e 1 ))

and thus when X describes N then n ∞ exp(X)n -1 ∞ (e 0 ) draws the intersection between H d and the affine hyperplan passing by e 0 and q-orthogonal to n ∞ (e 0 + e 1 ). This submanifold of R 1,d is a paraboloïd of codimension 2 and is mapped by p (the projection onto the projective space) on a sphere tangent at ∂H d in θ ∞ and passing by p(e 0 ). It is called the horosphere tangent at θ ∞ and passing by e 0 and is denoted by H ∞ .

Moreover, since q(n ∞ exp(X)n -1 ∞ (e 0e 1 ), n ∞ (e 0 + e 1 )) = q(e 0e 1 , e 0 + e 1 ) = 0, we get that when X describes N then n ∞ exp(X)n -1 ∞ (e 0e 1 ) describes the intersection between the light cone {ξ, q(ξ) = 0} and the hyperplan passing by e 0e 1 and q-orthogonal to n ∞ (e 0 + e 1 ). Thus, when X describes N then Idn ∞ exp(X)n -1 ∞ (e 0e 1 ) draws a paraboloïd P ∞ in the hyperplan q-orthogonal to n ∞ (e 0 + e 1 ). For each ξ in the horosphere H ∞ corresponds a unique X ξ ∈ N such that ξ = n ∞ exp(X ξ )n -1 ∞ (e 0 ) and the one-to-one function ψ : ξ → Idn ∞ exp(X ξ )n -1 ∞ (e 0e 1 ) maps H ∞ on P ∞ . Then by (28), we obtain the following one-to-one map

and π(V - ∞ ) is a skew product of the line n ∞ (e 0 + e 1 ) with the horosphere H ∞ .