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We use Nummelin splitting in continuous time in order to prove laws of iterated logarithm for additive functionals of a Harris recurrent Markov process, with deterministic or random renormalization.

Introduction

Let X be a Harris recurrent strong Markov process in continuous time, having invariant measure µ. In [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], we studied the problem of introducing Nummeling splitting in continuous time. This is a method, firstly introduced independently by Nummelin, [START_REF] Nummelin | A splitting technique for Harris recurrent Markov chains[END_REF], and Athreya and Ney, [START_REF] Athreya | A new approach to the limit theory of recurrent Markov chains[END_REF], in the discrete time case that allows to introduce renewal times for the process on an extended probability space. In [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], we translate this technique to the situation of processes in continuous time. It is a classical technique in the theory of Markov processes to translate results from discrete time to continuous time by considering what is called the R-chain in the literature. This means that we observe the continuous time process after independent exponential waiting times. We refer the reader to Meyn and Tweedie, [START_REF] Meyn | Proceedings of the Doeblin conference '50 years after Doeblin: development in the theory of Markov chains, Markov processes, and sums of random variables[END_REF] and [START_REF] Meyn | A survey of Foster-Lyapunov techniques for general state space Markov processes[END_REF], for a general survey of the subject. Hence we use the Nummelin splitting technique at random times T n , n ≥ 1, which we get when sampling the process after independent exponential waiting times. This allows to get a sequence of renewal times for the process in the following sense : There exists a sequence of stopping times (S n , R n ) such that 1. For all n, S n < R n < ∞, S n+1 = S n + S 1 • θ Sn , R n = inf{T m : T m > S n }.

2. For every n, X Rn is independent of σ{X s : s ≤ S n } and L(X Rn ) = ν for some fixed probability measure ν.

The details of this construction are recalled in section 4 of this paper.

We apply our technique to the study of the asymptotic behavior of additive functionals, for example A t = t 0 f (X s )ds. In [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], we have shown the existence of a deterministic equivalent for integrable additive functionals A t . The deterministic equivalent is a deterministic function t → v(t) such that v(t) → ∞ as t → ∞ and such that for any integrable additive functional A t , lim

M →∞ lim inf t→∞ P π (1/M ≤ A t /v(t) ≤ M ) = 1
for any initial measure π. The deterministic equivalent can be defined as follows. Take any fixed positive special function g of the process having µ(g) > 0 (see definition 2.3 below for the exact definition of special functions, for strong Feller processes, any bounded function having compact support is special) and define

v(t) := E η ( t 0 g(X s ds),
where η is an arbitrary initial measure. Then the strong Chacon-Ornstein theorem implies that for any other special function g ′ and any other initial measure η ′ ,

lim t→∞ E η ( t 0 g(X s ds) E η ′ ( t 0 g ′ (X s ds) = µ(g) µ(g ′ ) .
Hence the deterministic equivalent is unique up to a constant in the sense that for two choices of the deterministic equivalent, v and v ′ , we have that lim t→∞ v(t)/v ′ (t) = c, where c is a positive constant. In regular models, it can be shown that v(t) ∼ t α l(t), where l is a function that varies slowly at infinity. For example, for Brownian motion in dimension one, we have α = 1/2.

In the present paper, we generalize results obtained by Chen in [START_REF] Chen | How often does a Harris recurrent Markov chain recur?[END_REF], [START_REF] Chen | The law of the iterated logarithm for functionals of Harris recurrent Markov chains: Self Normalization[END_REF] and [START_REF] Chen | On the limit laws of the second order for additive functionals of Harris recurrent Markov chains[END_REF] on the almost sure asymptotic behavior of integrable additive functionals to the continuous time case.

In the first case, consider A t = t 0 f (X s )ds an additive functional such that µ(f ) > 0. In this case, it is possible to use the Chacon-Ornstein ratio limit theorem in order to compare A t to additive functionals of the R-chain (X Tn ) n where T n is the sum of n independent exponential waiting times : If we write N t := max{n :

T n ≤ t}, then t 0 f (X s )ds Nt k=1 f (X T k ) → 1 almost surely as t → ∞.
Now, it is possible to translate results obtained by Chen in [START_REF] Chen | How often does a Harris recurrent Markov chain recur?[END_REF] directly to the continuous time case, and we get the following first theorem (cf. theorem 3.1): Let L 2 (λ) := (log log λ) ∨ 1. Then for v(t) the deterministic equivalent of the process : there exists a constant C ∈ (0, ∞), depending only on the process but not on f, such that lim sup

t→∞ t 0 f (X s )ds v( t L 2 (v(t)) )L 2 (v(t)) = Cµ(f ) a.s.
Let a(n) be the deterministic equivalent of the R-chain, i.e. lim

M →∞ lim inf n→∞ P π (1/M ≤ n k=1 f (X T k ) a(n) ≤ M ) = 1
for any initial measure π and any positive function f such that µ(f ) > 0. The existence of a(n) has been proven in Chen [START_REF] Chen | How often does a Harris recurrent Markov chain recur?[END_REF]. Then the only difficulty in this first situation consists in the fact that we have to prove equivalence of the deterministic equivalent a(n) of the R-chain and of v(n). This is done in section 4.2 and in section 5 thanks to Nummelin splitting in continuous time.

Secondly, we are interested in strong limit theorems for additive functionals in the case where A t = t 0 f (X s )ds having µ(f ) = 0. This case is much more difficult since now a direct comparison with additive functionals of the R-chain is no more possible : the ratio-limit theorem is no more valid. It is in this situation that the Nummelin spitting in continuous time shows to be very useful : Taking increments of the additive functional over life cycles, i.e. putting

ξ n := Rn R n-1 f (X s )ds,
the ξ n are not independent, but very strongly mixing, and of the same law. (Actually, ξ n is independent of ξ n+2 .) Hence it is possible to apply the classical law of iterated logarithm to ξ 1 + . . . + ξ n under sufficient moment conditions, and we obtain the following law of iterated logarithm with random renormalization : Let f be a µ-integrable function such that µ(f ) = 0 and such that |f | is a special function (see definition 2.3 below for details), f is also called a charge in this case. Let B t = t 0 g(X s )ds be any additive functional such that µ(g) > 0. Then we have lim sup

t→∞ t 0 f (X s )ds √ 2B t L 2 B t = c
almost surely, where c is a constant that is positive if the asymptotic variance of ξ 1 +. . .+ξ n is positive.

Let us give some comments on our results. Firstly, as already pointed out, our results are a direct generalization of results obtained by Chen in the case of Markov chains, see [START_REF] Chen | How often does a Harris recurrent Markov chain recur?[END_REF]- [START_REF] Chen | On the limit laws of the second order for additive functionals of Harris recurrent Markov chains[END_REF]. It has not been possible to translate all results obtained by Chen to our case since in contrary to the discrete time case, the ξ n are no longer independent (in the case of Markov chains, Nummelin splitting does introduce independent increments of additive functionals over life-cycles). Touati, see [START_REF] Touati | Loi fonctionnelle du logarithme itéré pour les processus de Markov récurrents[END_REF], also gives laws of iterated logarithm, also in the continuous time case, but only under the assumption of regularity of the process, i.e. R 1 is in the domain of attraction of some stable law. However, we do not need the assumption of regularity of the process. Finally, let us also point out the work by Csáki, Földes and Hu, [START_REF] Csáki | Strong approximation of additive functionals of a planar Brownian motion[END_REF], in which the authors prove a law of iterated logarithm for additive functionals of planar Brownian motion, however using deterministic renormalization.

The paper is organized as follows. In section 4, we recall the technique of Nummelin splitting in continuous time, as introduced in [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]. Moreover, we recall known results related to this construction as well as some new technical results that will be useful in the sequel. Section 5 is devoted to the proof of theorem 3.1, section 6 gives the proof of theorems 3.2 and 3.4.

Notation

Consider a probability space (Ω, A, (P x ) x ), and on (Ω, A, (P x ) x ) a process X = (X t ) t≥0 which is strong Markov, taking values in a locally compact Polish space (E, E), with càdlàg paths, and with X 0 = x P x -almost surely, x ∈ E. We write (P t ) t for the semi group of X and we suppose that X is recurrent in the sense of Harris, with invariant measure µ, unique up to multiplication with a constant. Moreover, we shall write (F t ) t for the filtration generated by the process.

We impose the following regularity condition on the transition semi-group P t of X :

Assumption 2.1 1. The transition semi-group P t of the process X is strongly Feller, i.e. for every A ∈ E, x → P t (x, A) is continuous.

2. There exists a sigma-finite positive measure Λ on (E, E) such that for every t > 0, P t (x, dy) = p t (x, y)Λ(dy), where (t, x, y) → p t (x, y) is jointly measurable.

On the deterministic equivalent of additive functionals

We resume results of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF] on the deterministic equivalent of additive functionals. First, recall the definition of an additive functional:

Definition 2.2 An additive functional of the process X is a Ī R + -valued, adapted process A = (A t ) t≥0 such that 1. Almost surely, the process is non-decreasing, right-continuous, having A 0 = 0.

2. For any s, t ≥ 0, A s+t = A t +A s •θ t almost surely. Here, θ denotes the shift operator.

Examples for additive functionals are A t = t 0 f (X s )ds where f is a positive measurable function. Such an additive functional is said to be integrable, if µ(f ) < ∞. In [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], we have constructed a deterministic equivalent of any integrable additive functional. This is a deterministic function v → v(t) such that v(0) = 0, v(.) is non-decreasing and v(t) → ∞ as t → ∞ satisfying that for any integrable additive functional A t , A t /v(t) is bounded and bounded away from zero in probability (see corollary 2.8 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]). Recall the notion of a special function (see also [START_REF] Revuz | Markov chains[END_REF], [START_REF] Brancovan | Fonctionnelles additives spéciales des processus récurrents au sens de Harris[END_REF]): Definition 2.3 A measurable function f : E → IR + is called special if for all bounded and positive measurable functions h such that µ(h) > 0, the function

x → E x ∞ 0 exp - t 0 h(X s )ds f (X t )dt
is bounded. In the same way, an additive functional A t is called special if

x → E x ∞ 0 exp - t 0 h(X s )ds dA t is bounded.
By [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], any special function g of X with µ(g) > 0 defines a version of the deterministic equivalent via

v(t) = E π t 0 g(X s )ds, (2.1)
for any arbitrary initial measure π. v(t) is unique up to a constant in the following sense : For any other choice v ′ (t) of a deterministic equivalent, we have that lim t→∞ v(t)/v ′ (t) = c, where c is a positive constant. v(t) is called deterministic equivalent due to the following result (see corollary 2.19 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]).

Theorem 2.4 For any additive functional A of the process having E µ (A 1 ) ∈]0, ∞[, we have lim

M →∞ lim inf t→∞ P π 1 M ≤ 1 v(t) A t ≤ M = 1.
3 The law of iterated logarithm for additive functionals

We put L 2 (λ) := (log log λ) ∨ 1 for every λ ≥ 0.

Theorem 3.1 Let A be a µ-integrable additive functional of X. There exists a constant 0 < c < ∞ that depends only on the process, but not on A, such that

lim sup t→∞ A t v( t L 2 (v(t)) )L 2 (v(t)) = c µ(dx)E x (A 1 ) a.s. (3.2) 
Moreover, let f be a measurable µ-integrable function satisfying the following assumptions:

(i) µ(f ) = 0. (ii) |f | is a bounded special function.
Then we have the following: Theorem 3.2 Suppose f satisfies assumptions (i) and (ii) above. Let A = (A t ) t be any µ-integrable additive functional of the process. Then there exists a constant λ f ≥ 0, such that

lim sup t→∞ t 0 f (X s )ds 2A t L 2 (A t ) = (E µ (A 1 )) -1/2 λ f a.s.
Here, λ f > 0 if (6.20) below holds.

Remark 3.3 Under the additional hypothesis

∞ 0 f (x)P t f (x)dt converges in L 1 (E, µ),
we have that

(λ f ) 2 = 2 ∞ 0 f (x)P t f (x)dtµ(dx). (3.3)
Finally, let M be a locally square integrable local (P x , (F t ) t )-martingale, with M 0 = 0, having continuous paths, for any initial value x. We suppose moreover that ∀y, ∀s, t :

M t+s -M t = M s • θ t P y -a.s., (3.4) 
and the process < M > is an additive functional of X satisfying

E µ (< M > 1 ) < ∞. (3.5)
Then we have the following theorem:

Theorem 3.4 Under the assumptions (3.4) and (3.5), we have

lim sup t→∞ M t 2A t L 2 (A t ) = (E µ (A 1 )) -1/2 λ M a.s.
Moreover, we have also that

lim sup t→∞ M t v( t L 2 (v(t)) )L 2 (v(t)) = c (E µ (A 1 )) -1/2 λ M a.s.
Here,

λ 2 M = E µ (< M > 1 )
, and c is a constant that depends only on the process.

Remark 3.5 The events lim sup t→∞ Mt √ 2AtL 2 (At) = (E µ (A 1 )) -1/2 λ M etc of theorem 3.1
to 3.4 belong to the sigma-field J of invariant sets, and since X is Harris, by Revuz and Yor, [START_REF] Revuz | Continuous martingales and Brownian motion, 3rd edition[END_REF], chapter X, proposition 3.6 and 3.10, its probability is either zero or one. Hence the convergence holds almost surely, independently of the choice of the initial distribution.

Remark 3.6 Touati, see [START_REF] Touati | Loi fonctionnelle du logarithme itéré pour les processus de Markov récurrents[END_REF], has shown the statement of theorem 3.4 for regular models, i.e. models where v(t) ∼ t α l(t) as t → ∞, for some 0 < α ≤ 1, and where l varies slowly at infinity. However, our result holds always.

Example 3.7 We consider the following statistical problem that has been studied by Höpfner and Kutoyants, see [START_REF] Höpfner | On a problem in statistical inference in null recurrent diffusions[END_REF]. Observe the trajectory of a one-dimensional diffusion

dX t = ϑb(X t )dt + σdW t , X 0 = 0,
where σ > 0 is known, where ϑ is some unknown parameter and b continuous such that the diffusion is recurrent. The model is not necessarily regular.

In this model, the maximum likelihood estimator is given by

θt = t 0 b(X s )dX s / t 0 b 2 (X s )ds. Let I t := t 0 b 2 (X s )ds and M t := t 0 b(X s )σdW s . Hence, I t ( θt -ϑ) = M t .
Now, applying theorem 3.4, we get

lim sup t→∞ √ I t √ L 2 I t ( θt -ϑ) < ∞ a.s.,
which means that we have to consider random rates of convergence.

Preliminaries on Nummelin splitting in continuous time

We use the Nummelin splitting in continuous time, as developed in [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], in order to introduce a recurrent atom for the process. We recall briefly the construction:

Introduce a sequence (σ n ) n≥1 of i.i.d. exp(1)-waiting times, independent of the process X itself. Let T 0 := 0, T n := σ 1 + . . . + σ n and Xn := X Tn . Then the chain X = ( Xn ) n is recurrent in the sense of Harris and its one-step transition kernel U 1 (x, dy) := ∞ 0 e -t P t (x, dy)dt satisfies a minorization condition:

U 1 (x, dy) ≥ α1 C (x)ν(dy), (4.6) 
where 0 < α < 1, µ(C) > 0 and ν a probability measure equivalent to µ(• ∩ C) (cf [START_REF] Revuz | Markov chains[END_REF], [START_REF] Höpfner | Limit theorems for null recurrent Markov processes[END_REF], proposition 6.7). The set C can be chosen to be compact.

Then it is possible to define on an extension of the original space (Ω, A, (P x )) a Markov process Z = (Z t ) t≥0 , taking values in E × [0, 1] × E such that the T n are jump times of the process and such that under P x , ((Z 1 t ) t , (T n ) n ) has the same distribution as ((X t ) t , (T n ) n ). We give the details as introduced in [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF] : First of all, define the following transition kernel Q((x, u), dy) from E × [0, 1] to E :

Q((x, u), dy) =      ν(dy) if (x, u) ∈ C × [0, α] 1 1-α U 1 (x, dy) -αν(dy) if (x, u) ∈ C×]α, 1] U 1 (x, dy) if x / ∈ C . (4.7) 
We now recall the construction of

Z t = (Z 1 t , Z 2 t , Z 3 t ) taking values in E × [0, 1] × E as given in [9]. Write u 1 (x, x ′ ) := ∞ 0 e t p t (x, x ′ )dt. Let Z 1 0 = X 0 = x. Choose Z 2 0 according to the uniform distribution U on [0, 1]. On {Z 2 0 = u}, choose Z 3 0 ∼ Q((x, u), dx ′ ). Then inductively in n ≥ 0, on Z Tn = (x, u, x ′ ) : 1. Choose a new jump time σ n+1 according to e -t p t (x, x ′ ) u 1 (x, x ′ ) dt on IR + ,
where we define 0/0 := a/∞ := 1, for any a ≥ 0, and put T n+1 := T n + σ n+1 .

2. On {σ n+1 = t}, put Z 2 Tn+s := u, Z 3 Tn+s := x ′ for all 0 ≤ s < t.

3. For every s < t, choose

Z 1 Tn+s ∼ p s (x, y)p t-s (y, x ′ ) p t (x, x ′ ) Λ(dy).
Choose Z 1 Tn+s := x 0 for some fixed point x 0 ∈ E on {p t (x, x ′ ) = 0}. Moreover, given Z 1 Tn+s = y, on s + u < t, choose

Z 1 Tn+s+u ∼ p u (y, y ′ )p t-s-u (y ′ , x ′ ) p t-s (y, x ′ ) Λ(dy ′ ). Again, on {p t-s (y, x ′ ) = 0}, choose Z 1 Tn+s+u = x 0 . 4. At the jump time T n+1 , choose Z 1 T n+1 := Z 3 Tn = x ′ . Choose Z 2 T n+1 independently of Z s , s < T n+1 , according to the uniform law U. Finally, on {Z 2 T n+1 = u ′ }, choose Z 3 T n+1 ∼ Q((x ′ , u ′ ), dx ′′ ).
Note that by construction, given the initial value of Z at time T n , the evolution of the process during [T n , T n+1 [ does not depend on the chosen value of Z 2 Tn . We will write P π for the measure related to X, under which X starts from the initial measure π(dx), and IP π for the measure related to Z, under which Z starts from the initial measure π(dx) ⊗ U (du) ⊗ Q((x, u), dy). In the same spirit we denote E π the expectation with respect to P π and IE π the expectation with respect to IP π . Moreover, we shall write IF for the filtration generated by Z, C G for the filtration generated by the first two coordinates Z 1 and Z 2 of the process, and IF X for the sub-filtration generated by X interpreted as first coordinate of Z.

4.1 Some auxiliary results and remarks on the construction of Z Proposition 4.1 The law of (Z 1 t ) t under IP π equals the law of (X t ) t under P π . Moreover, for any given fixed time t,

L(Z 3 t |Z 1 t )(dx ′ ) = u 1 (Z 1 t , x ′ )Λ(dx ′ ).
Proof The first assertion is proposition 2.8 c) of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]. We show the second assertion : Let f, g : E → IR + be bounded measurable positive functions . Put Φ(x) := u 1 (x, x ′ )g(x ′ )Λ(dx ′ ). We define

A n := σ{F T n-1 , T n }. Note that since Z 1 Tn = Z 3 T n-1 , L(Z Tn |A n ) = δ Z 1 Tn (dx)U (du)Q((Z T 1 n , u), dx ′ ). Then IE x [f (Z 1 t )g(Z 3 t )] = n IE x [f (Z 1 t )g(Z 3 t )1 {Tn≤t<T n+1 } ] = n IE x [IE[f (Z 1 t )g(Z 3 t )1 {t<T n+1 } |A n ]1 {Tn≤t} ] = n IE x 1 0 du Q((Z 1 Tn , u), dx ′ )g(x ′ ) ∞ 0 e -s 1 {t-Tn≤s} ds p t-Tn (Z 1 Tn , y) p s-(t-Tn) (y, x ′ ) u 1 (Z 1 Tn , x ′ ) f (y)Λ(dy) 1 {Tn≤t} = n IE x p t-Tn (Z 1 Tn , y)f (y)e -(t-Tn) ( ∞ 0 e -s p s (y, x ′ )ds)g(x ′ )Λ(dx ′ ) Λ(dy) 1 {Tn≤t} = n IE x p t-Tn (Z 1 Tn , y)f (y)Φ(y)e -(t-Tn) Λ(dy) = n IE x E Z 1 Tn (f • Φ(X t-Tn ); t -T n ≤ T 1 ) 1 {Tn≤t} = E x [f (X t )Φ(X t )],
since Z 1 Tn ∼ X Tn . This yields the assertion.

• Write A := C × [0, α] × E.

Now we put

S 0 := 0, R 0 := 0, S n+1 := inf{T m > R n : Z Tm ∈ A}, R n+1 := inf{T m : T m > S n+1 }.
Then the sequence of IF -stopping times R n generalizes the notion of life-cycle decomposition in the case of existence of a recurrent atom in the sense which is precised in [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF].

Proposition 4.2 a) Z Rn+• is independent of F R n-1 for all n ≥ 1. b) Z Rn ∼ ν(dx)U (du)Q((x, u), dx ′ ) for all n ≥ 1. c) The sequence of (Z Rn ) n≥1 is i.i.d.
Proof The assertion is true by construction, see proposition 2.13 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]. • Proposition 4.3 Let A t be any integrable additive functional of X. Then, up to multiplication by a constant, for any initial measure π and any n ≥ 1,

IE π (A R n+1 -A Rn ) = IE ν (A R 1 ) = E µ (A 1 ).
Proof This is proposition 2.20 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF].

• Moreover, we have the following:

Proposition 4.4 Let f be a measurable µ-integrable function. Put R 0 := 0,

ξ n := Rn R n-1 f (X s )ds, n ≥ 1.
Then the sequence (ξ n ) n is a stationary ergodic sequence under

IP ν . Moreover, for n ≥ 2, ξ n is independent of F R n-2 .
Proof Fix some n ≥ 1 and some positive measurable bounded function Φ : IR n → IR.

Then, for any k ≥ 1, using the Markov property with respect to

F R k-1 , IE ν (Φ(ξ k , . . . , ξ n+k )) = IE ν (IE Z R k-1 (Φ(ξ 1 , . . . , ξ n+1 ))) = IE ν (Φ(ξ 1 , . . . , ξ n+1 )),
which yields the stationarity. For the ergodicity, note that the sigma field of invariant sets of (ξ n ) n is contained in the sigma-field of invariant sets J of the process, which is trivial, as indicated earlier. The last assertion is an immediate consequence the construction of Z.

• Remark 4.5 The last assertion of proposition 4.4 implies in particular that the sequence (ξ n ) n is a strongly mixing sequence with mixing coefficients α n = 0 for n ≥ 2; n ∈ IN.

In the sequel we shall also need the following technical result.

Proposition 4.6 Let f satisfy the assumptions (i) and (ii) of theorem 3.2. Let ξ n be as in proposition 4.4.

Then IE π (|ξ k | 3 ) < ∞.
Proof We interpret X as first coordinate of Z. Note that

ξ 3 k = R k R k-1 R k R k-1 R k R k-1 f (X s )f (X u )f (X v )dsdudv = 6 R k R k-1 ( R k s ( R k u f (X v )dv)f (X u )du)f (X s )ds ≤ 6 R k R k-1 ( R k s ( R k u |f |(X v )dv)|f |(X u )du)|f |(X s )ds.
Now, using Markov's property with respect to F u , we get

IE π (|ξ k | 3 ) ≤ 6IE ν R 1 0 R 1 s |f |(X u )IE Zu ( R 1 0 |f |(X t )dt)du |f |(X s )ds ≤ CIE ν R 1 0 |f |(X s )ds R 1 s |f |(X u )IE Zu (T 1 )du +CIE ν R 1 0 R 1 s |f |(X u )du |f |(X s )ds. (4.8) 
In this last step, we have used that

IE Zu ( R 1 T 1 |f |(X t )dt) ≤ IE Z 3 u ( R 1 0 |f |(X t )dt) ≤ C
by proposition 2.16 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]. Recall that IE Z 3 u designs expectation when the first component starts from x = Z 3 u , the second is chosen according to the uniform distribution on [0, 1] and the third component is chosen according to Q.

Have a look at the second expression in (4.8): Using Markov's property with respect to F s , we get that

IE ν R 1 0 R 1 s |f |(X u )du |f |(X s )ds = IE ν R 1 0 |f |(X s )IE Zs R 1 0 |f |(X u )du ds ≤ CIE ν R 1 0 |f |(X s )IE Zs (T 1 )ds + IE ν R 1 0 |f |(X s )IE Zs R 1 T 1 |f |(X u )du ds ≤ CIE ν R 1 0 |f |(X s )IE Zs (T 1 )ds + IE ν R 1 0 |f |(X s )IE Z 3 s R 1 0 |f |(X u )du ds ≤ CIE ν R 1 0 |f |(X s )IE Zs (T 1 )ds + CIE ν R 1 0 |f |(X s )ds = CIE ν R 1 0 |f |(X s )IE Zs (T 1 )ds + Cµ(|f |).
Here we have used proposition 5.16 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]:

IE Z 3 s R 1 0 |f |(X u )du ≤ C.
Hence, writing Ψ(Z s ) := IE Zs (T 1 )|f |(X s ), we have to study

IE ν R 1 0 Ψ(Z s )ds. But IE ν R 1 0 Ψ(Z s )ds = IE ν T 2 0 Ψ(Z s )ds + n≥1 IE ν 1 {Z T k / ∈A ∀1≤k≤n} T n+2 T n+1 Ψ(Z s )ds . (4.9)
Have a look at the first term:

IE ν T 2 0 Ψ(Z s )ds = IE ν T 1 0 Ψ(Z s )ds + IE ν T 2 T 1 Ψ(Z s )ds = IE ν T 1 0 Ψ(Z s )ds + IE ν IE Z 3 0 T 1 0 Ψ(Z s )ds = IE ν T 1 0 Ψ(Z s )ds + ν(dx) u 1 (x, x ′ )Λ(dx ′ )IE x ′ T 1 0 Ψ(Z s )ds. (4.10) But IE ν T 1 0 Ψ(Z s )ds = ∞ 0 IE ν 1 {s≤T 1 } Ψ(Z s ) ds,
and since Ψ(Z s ) does not depend on Z 2 s ,

IE ν 1 {s≤T 1 } Ψ(Z s ) = = ν(dx) u 1 (x, x ′ )Λ(dx ′ ) ∞ s e -t p t (x, x ′ ) u 1 (x, x ′ ) dt p s (x, y)p t-s (y, x ′ ) p t (x, x ′ ) Ψ(y, x ′ )Λ(dy)
= ν(dx) e -s p s (x, y)Λ(dy) u 1 (y, x ′ )Ψ(y, x ′ )Λ(dx ′ ).

A simple calculus shows that

u 1 (y, x ′ )Ψ(y, x ′ )Λ(dx ′ ) = |f |(y).
Hence,

IE ν 1 {s≤T 1 } Ψ(Z s ) = IE ν 1 {s≤T 1 } |f |(X s ) .
The same argument applies to the second expression in (4.10), and we get

IE x ′ T 1 0 Ψ(Z s )ds = IE x ′ T 1 0 |f |(X s )ds.
Finally, for all the other terms in (4.9), we first use Markov's property with respect to F Tn , noticing that {Z T k / ∈ A ∀1 ≤ k ≤ n} ∈ F Tn . Hence we have to investigate the following expression

IE Z Tn T 2 T 1 Ψ(Z s )ds = IE Z 3 Tn T 1 0 Ψ(Z s )ds,
and the same argument as above shows that this equals

IE Z 3 Tn T 1 0 |f |(X s )ds.
We deduce that

IE ν R 1 0 Ψ(Z s )ds = IE ν R 1 0 |f |(X s )ds = µ(|f |).
We are now going to treat the first term in (4.8): Using once again Markov's property, we get

IE ν R 1 0 |f |(X s )ds R 1 s |f |(X u )IE Zu (T 1 )du = IE ν R 1 0 |f |(X s )ds IE Zs R 1 0 |f |(X u )IE Zu (T 1 )du ≤ CIE ν R 1 0 |f |(X s )ds IE Zs T 1 0 IE Zu (T 1 )du (4.11) +IE ν R 1 0 |f |(X s )ds IE Zs R 1 T 1 |f |(X u )IE Zu (T 1 )du
Have a look at the second term in (4.11):

IE Zs R 1 T 1 |f |(X u )IE Zu (T 1 )du = IE Z 3 s R 1 0 |f |(X u )IE Zu (T 1 )du,
and an argument similar to that in (4.9) leads to

IE Z 3 s R 1 0 |f |(X u )IE Zu (T 1 )du ≤ C.
Hence by proposition 5.16 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], the second term in (4.11) is bounded.

Write Φ(Z s ) := IE Zs T 1 0 IE Zu (T 1 )du, hence it remains to investigate

IE ν R 1 0 |f |(X s )Φ(Z s )ds = IE ν T 2 0 |f |(X s )Φ(Z s )ds + n≥1 IE ν 1 {Z T k / ∈A ∀1≤k≤n} T n+2 T n+1 |f |(X s )Φ(Z s )ds .
In each of these terms, we take conditional expectation of Φ(Z s ) with respect to X s = Z 1 s , in the same way as in (4.9). On {X s = x}, we thus have to calculate

IE(Φ(Z s )|X s = x) = u 1 (x, x ′ )Λ(dx ′ ) ∞ 0 e -t p t (x, x ′ ) u 1 (x, x ′ ) dt t 0 du p u (x, y)p t-u (y, x ′ ) p t (x, x ′ ) Λ(dy) ∞ 0 e -s p s (y, x ′ ) u 1 (y, x ′ ) sds = Λ(dx ′ ) ∞ 0 e -t dt t 0 du p u (x, y)p t-u (y, x ′ )Λ(dy) ∞ 0 e -s p s (y, x ′ ) u 1 (y, x ′ ) sds = Λ(dx ′ ) ∞ 0 e -u du p u (x, y)Λ(dy) ∞ 0 e -t p t (y, x ′ )dt ∞ 0 e -s p s (y, x ′ ) u 1 (y, x ′ ) sds = Λ(dx ′ ) ∞ 0 e -u du p u (x, y)Λ(dy)u 1 (y, x ′ ) ∞ 0 e -s p s (y, x ′ ) u 1 (y, x ′ ) sds = ∞ 0 e -u du p u (x, y)Λ(dy) ∞ 0 e -s Λ(dx ′ )p s (y, x ′ ) sds = 1.
This concludes our proof. •

Some results related to the deterministic equivalent

Proposition 4.7 Let f be a bounded, positive special function of X, let C be a constant such that

sup x IE x R 1 0 f (X s )ds ≤ C (see proposition 2.16 of [9]). Put v * (t) := C + E ν t 0 f (X s )ds.
Then we have for any c ≥ 1, v * (ct) ≤ (c + 1)v * (t).

Proof Using Markov's property for X we have:

v * (2t) -v * (t) = E ν (E Xt t 0 f (X s )ds).
Now we identify X with the first coordinate of Z:

E x t 0 f (X s )ds = IE x t 0 f (Z 1 s )ds ≤ ≤ IE x ( R 1 0 f (Z 1 s )ds + t+R 1 R 1 f (Z 1 s )ds) ≤ C + IE x (IE Z R 1 ( t 0 f (X s )ds)) = C + IE ν t 0 f (Z 1 s )ds.
Hence, v * (nt) ≤ nv * (t) for all n. Then, for any c ≥ 1,

v * (ct) ≤ v * (([c] + 1)t) ≤ ([c] + 1)v * (t) ≤ (c + 1)v * (t).
• 5 Proof of theorem 3.1

In this section we give the proof of the law of iterated logarithm for additive functionals as stated in theorem 3.1.

Proof Let f be some special function of X. We suppose f ≥ 0, bounded, with µ(f ) > 0.

It is enough to prove that lim sup

t→∞ t 0 f (X s )ds v( t L 2 (v(t)) )L 2 (v(t))
= cµ(f ) a.s.

(5.12) 1) random variables independent of the process X and T 0 := 0, T n = σ 1 + . . . + σ n , as introduced in the section 5 for splitting construction. Define Xn := X Tn . Then the chain ( Xn ) is recurrent in the sense of Harris, with the same invariant measure µ. The special functions of the chain ( Xn ) and those of the process X are the same.

with v(t) = E ν t 0 f (X s )ds. Let σ n , n ∈ IN , be i.i.d. exp(

Now, let

a(n) := IE ν n k=1 f ( Xk ).
This is a version of deterministic equivalent of the chain ( Xn ), see Chen ([3]).

In the sequel, c denotes a positive constant that depends only on the process, not on f. Chen's law of iterated logarithm for discrete Harris chains, see [START_REF] Chen | How often does a Harris recurrent Markov chain recur?[END_REF], theorem 2.2, applied to the chain ( Xn ) gives :

lim sup n→∞ n k=0 f ( Xk ) a( n L 2 (a(n)) )L 2 (a(n))
= Lµ(f ) a.s.

(5.13)

Here the constant L depends only on the recurrence behavior of the chain ( Xn ) : Chen shows (5.13) first for a particular additive functional which is the number of visits to an atom before time n. The constant L is the limit obtained for this chain. Then, (5.13) is obtained by passing to a general additive functional, using Chacon-Ornstein theorem.

Let N t = n≥1 1 {Tn≤t} . N t is a Poisson process with intensity 1, lim t→∞ N t = ∞ a.s., and the substitution of N t in (5.13) gives:

lim sup t→∞ Nt k=0 f ( Xk ) a( Nt L 2 (a(Nt)) )L 2 (a(N t )) = Lµ(f ) a.s. ( 5.14) 
Using the Chacon-Ornstein limit-quotient theorem for additive functionals or the law of large numbers for Poisson process we get:

lim t→∞ Nt k=0 f ( Xk ) t 0 f (X s )ds = 1 a.s., (5.15) 
and thus lim sup

t→∞ t 0 f (X s )ds a( Nt L 2 (a(Nt)) )L 2 (a(N t )) = Lµ(f ) a.s. (5.16) 
We now want to compare the normalization in (5.12) with that of (5.16).

Remark that

M t = Nt k=0 f ( Xk ) - t 0 f (X s )ds = t 0 f (X s )dN s - t 0 f (X s )ds
is a martingale. For all k > 0, T n ∧ k is a bounded stopping time. Using the stopping-rule,

IE ν N Tn∧k k=0 f ( Xk ) = IE ν Tn∧k 0 f (X s )ds.
(5.17)

By monotone convergence, we can replace in the previous equation T n ∧k by T n and obtain

a(n) = IE ν Tn 0 f (X s )ds.
But under IP ν , (T n ) n and X are independent and T n is the sum of n independent random variables that are exponentially exp(1) distributed. So if we firstly integrate with respect to X, we obtain

a(n) = E(v(T n )), (5.18) 
where expectation is taken only with respect to T n which is the sum of n independent exp(1)-variables.

Now denote as previously

v * (t) = C + v(t), where C > 0 is a constant such that sup x IE x R 1 0 f (X s )ds ≤ C. We write v * (T n ) ≤ v * (n)1 {Tn≤n} + v * ( T n n n)1 {Tn≥n} . But v * ( T n n n)1 {Tn≥n} ≤ ( T n n + 1)v * (n)1 {Tn≥n} .
Hence we get

v * (T n ) ≤ v * (n) + T n n v * (n)1 {Tn≥n} ≤ v * (n)(1 + T n n ),
and taking expectations with respect to T n yields

a * (n) ≤ 2v * (n), where a * (n) = C + a(n).
In the same way,

v * (T n ) v * (n) ≥ v * ( Tn n n)1 { Tn n >1-ε} v * (n(1 -ε) 1 1-ε} ) ≥ v * ((1 -ε)n)1 { Tn n >1-ε} (1 + 1 1-ε )v * (n(1 -ε)) hence, v * (T n ) v * (n) ≥ 1 { Tn n >1-ε} (1 + 1 1-ε )
, and taking expectation yields

a * (n) ≥ v * (n) 1 2 + ε ′ p n ,
where p n = P (T n ≥ n(1 -ε)) → 1 as n → ∞. Hence we have shown:

1 2 = lim inf a * (n) v * (n) ≤ lim sup a * (n) v * (n) ≤ 2.
And thus almost surely

1 2 ≤ lim inf a * (N t ) v * (N t ) ≤ lim sup a * (N t ) v * (N t ) = 2.
In the same way, using lim t→∞ Nt t = 1, one shows that almost surely

1 2 ≤ lim inf v * (N t ) v * (t) ≤ lim sup v * (N t ) v * (t) = 2,
and finally, since

v(t)/v * (t) → 1, 1 2 ≤ lim inf a(N t ) v(t) ≤ lim sup a(N t ) v(t) = 2.
In the same way we show that with some constants

C 1 > 0 and C 2 < ∞ C 1 = lim inf a( Nt L 2 a(Nt) )L 2 a(N t ) v( t L 2 v(t) )L 2 v(t) ≤ lim sup a( Nt L 2 a(Nt) )L 2 a(N t ) v( t L 2 v(t) )L 2 v(t) = C 2 . (5.19) 
Hence,

lim sup t 0 f (X s )ds v( t L 2 v(t) )L 2 v(t) ≤ lim sup t 0 f (X s )ds a( Nt L 2 a(Nt) )L 2 a(N t ) lim sup a( Nt L 2 a(Nt) )L 2 a(N t ) v( t L 2 v(t) )L 2 v(t) = LC 2 µ(f ),
and this yields the desired result.

• Corollary 5.1 As a consequence of the above proof, in particular of (5.18), it is evident that in the regular case, i.e. if

v(t) ∼ t α l(t) as t → ∞
for some 0 < α ≤ 1 and for some function l that varies slowly at infinity,

a(n) = v(n).
6 Proof of theorem 3.2 and theorem 3.4

Let f be a measurable µ-integrable function such that µ(f ) = 0 and such that |f | is a special function. Put ξ n := Rn R n-1 f (X s )ds. Then the sequence of ξ 1 , ξ 3 , ξ 5 , . . . is a sequence of i.i.d. variables having IE(ξ i ) = 0 and IE(|ξ i | 3 ) < ∞, see proposition 4.6. The same is true of the sequence ξ 2 , ξ 4 , . . . . As a consequence, (ξ n ) n is a strictly stationary sequence that is uniformly strong mixing in a very strong sense, since for any n, σ{ξ k , k ≤ n} is independent of σ{ξ n+l , l ≥ 2}. Put

Σ n = ξ 1 + . . . + ξ n , then IE ν (Σ 2 n ) = nIE ν (ξ 2 1 ) + 2(n -1)IE ν (ξ 1 ξ 2 ) ∼ nσ 2 where σ 2 = IE ν (ξ 2 1 ) + 2IE ν (ξ 1 ξ 2 )
. We suppose that σ 2 > 0. (6.20)

We apply the Hartman-Wintner law of iterated logarithm for strongly mixing variables which is a consequence of theorem 2 of Rio, [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF]. Note that the condition (1.5) of [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] on exponential mixing rates is satisfied due to proposition 4.6. We thus get, putting

λ f := σ, (6.21) lim sup Σ n √ 2nL 2 n = lim sup Rn 0 f (X s )ds √ 2nL 2 n = λ f almost surely as n → ∞. (6.22) 
We are now able to give the proof of theorem 3.2 :

Proof of theorem 3.2 Let N t := n≥1 1 {Rn≤t} .
Using (6.22), we get immediately that lim sup

R N t 0 f (X s )ds 2N t L 2 (N t ) = λ f . (6.23) 
Here λ f depends only on the function f and on the transition of the process, but not on the specific choice of R n . Now, note that, using Markov's property,

IP ν sup Rn≤t≤R n+1 | t Rn f (X s )ds| ≥ ε nL 2 (n) = IP ν sup 0≤t≤R 1 | t 0 f (X s )ds| ≥ ε nL 2 (n) ≤ IP ν 1 ε 2 ( sup 0≤t≤R 1 | t 0 f (X s )ds|) 2 ≥ n .
Summing over n yields

n IP ν sup Rn≤t≤R n+1 | t Rn f (X s )ds| ≥ ε nL 2 (n) ≤ 1 ε 2 IE ν ( sup 0≤t≤R 1 | t 0 f (X s )ds|) 2 ≤ 1 ε 2 IE ν R 1 0 |f |(X s )ds 2 < ∞
by proposition 4.6. Using Borel-Cantelli's lemma, we thus conclude that lim sup

t 0 f (X s )ds 2N t L 2 (N t ) = λ f , since lim sup sup R N t ≤s≤t | s R N t f (X u )du| 2N t L 2 (N t ) = 0.
Note that the additive functional N t can be replaced by any µ-integrable additive functional A, using the ratio limit theorem. This concludes the proof.

•

Proof of remark 3.3 The proof is given in several steps and follows the ideas of the proof of lemma 2.3 of Chen [START_REF] Chen | The law of the iterated logarithm for functionals of Harris recurrent Markov chains: Self Normalization[END_REF].

1. We start by showing the following result. Let

N t := n≥1 1 {Sn≤t} . Let v(t) = IE ν (N t + 1). Put R t = inf{R n : R n > S Nt+1 }. Then we have lim t→∞ 1 v(t) IE ν ( Rt 0 f (X s )ds) 2 = λ 2 f (6.24)
and in particular also

lim n→∞ 1 n 0 v(t)dt n 0 IE ν ( Rt 0 f (X s )ds) 2 dt = λ 2 f . (6.25)
Equation ( 6.24) is shown as follows. As in the proof of proposition 3.8 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], writing S 0 := R 0 = 0, we have

Rt 0 f (X s )ds 2 =   n≥0 1 {Sn≤t} R n+1 Rn f (X s )ds   2 = n≥0 m≥0 1 {Sn≤t} 1 {Sm≤t} ( R n+1 Rn f (X s )ds)( R m+1 Rm f (X s )ds) = n≥0 m≥0
1 {Sn≤t} 1 {Sm≤t} ξ n+1 ξ m+1 . Now, using the independence of ξ n+1 of {S n ≤ t} and the independence properties of the sequence (ξ n ) n itself, we obtain immediately, as in [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF],

IE ν ( Rt 0 f (X s )ds) 2 = n≥0 IE ν (1 {Sn≤t} ξ 2 n+1 ) + 2 n≥0 IE ν (1 {S n+1 ≤t} ξ n+1 ξ n+2 ). (6.26)
The first term in (6.26) equals 

n≥0 IE ν (1 {Sn≤t} ξ 2 n+1 ) = IE ν (N t + 1)IE ν (ξ 2 
IE ν (1 {Sn≤t} ξ 2 n+1 ) v(t) = IE ν (ξ 2 1 ).
Concerning the second term in (6.26), note that

n≥0 IE ν (1 {S n+1 ≤t} ξ n+1 ξ n+2 ) = n≥0 IE ν (1 {Sn≤t} ξ n+1 ξ n+2 ) - n≥0 IE ν (1 {Sn≤t<S n+1 } ξ n+1 ξ n+2 ) = IE ν (N t + 1)IE ν (ξ 1 ξ 2 ) - n≥0 IE ν (1 {Sn≤t<S n+1 } ξ n+1 ξ n+2 ). (6.28)
The first term converges to IE ν (ξ 1 ξ 2 ), once divided by v(t). In order to treat the second term in (6.28), note that

n≥0 IE ν (1 {Sn≤t<S n+1 } ξ n+1 ξ n+2 ) = n≥0 IE ν (1 {Sn≤t<S n+1 } ( S n+1 Rn f (X s )ds)( R n+2 R n+1 f (X s )ds)) + n≥0 IE ν (1 {Sn≤t<S n+1 } ( R n+1 S n+1 f (X s )ds)( R n+2 R n+1 f (X s )ds)). (6.29)
Recall that (G t ) t is the filtration generated by the first two coordinates of Z. In the first term of (6.29), we are going to use conditional expectation with respect to G S n+1 :

IE ν (1 {Sn≤t<S n+1 } ( S n+1 Rn f (X s )ds)( R n+2 R n+1 f (X s )ds)) = IE ν (1 {Sn≤t<S n+1 } ( S n+1 Rn f (X s )ds)IE ν [ R n+2 R n+1 f (X s )ds|G S n+1 ]).
But, since L(Z 3 S n+1 |G S n+1 ) = ν(dx ′ ), and then using Markov's property firstly with respect to F S n+1 and then with respect to

F T 1 , IE ν [ R n+2 R n+1 f (X s )ds|G S n+1 ] = ν(dx ′ )IE (Z 1 S n+1 ,Z 2 S n+1 ,x ′ ) R 1 T 1 f (X s )ds = ν(dx ′ )IE x ′ R 1 0 f (X s )ds = IE ν ξ 1 = cµ(f ) = 0,
where the last equality follows from proposition 4.3 and from µ(f ) = 0. Hence the first term in (6.29) vanishes. In order to treat the second term, we use that |f | is bounded by a constant. Hence, writing

A n := σ{F S n+1 , R n+1 }, IE ν (1 {Sn≤t<S n+1 } ( R n+1 S n+1 |f |(X s )ds)( R n+2 R n+1 |f |(X s )ds)) ≤ C IE ν 1 {Sn≤t<S n+1 } (R n+1 -S n+1 )IE ν R n+2 R n+1 |f |(X s )ds | A n . But IE ν [ R n+2 R n+1 |f |(X s )ds | A n ] does not depend on R n+1 , and since Z 1 R n+1 = Z 3 S n+1 , we get IE ν R n+2 R n+1 |f |(X s )ds | A n = IE Z 3 S n+1 R 1 0 |f |(X s )ds ≤ C,
since |f | is a special function, see proposition 2.19 of [START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF]. Thus,

IE ν 1 {Sn≤t<S n+1 } (R n+1 -S n+1 )IE ν R n+2 R n+1 |f |(X s )ds | A n ≤ CIE ν 1 {Sn≤t<S n+1 } (R n+1 -S n+1 ) = CIE ν 1 {Sn≤t<S n+1 } IE ν [R n+1 -S n+1 |G S n+1 ] ≤ C α IE ν 1 {Sn≤t<S n+1 } , since IE ν [R n+1 -S n+1 |G S n+1 ] = ν(dx ′ ) ∞ 0 t e -t p t (Z 1 S n+1 , x ′ ) u 1 (Z 1 S n+1 , x ′ ) dt ≤ ∞ 0 t e -t dt 1 α p t (Z 1 S n+1 , x ′ )Λ(dx ′ ) = 1 α , since by construction, u 1 (Z 1 S n+1 , x ′ ) ≥ αν(x ′ ).
Here ν(dx ′ ) = ν(x ′ )Λ(dx ′ ). Thus, after summation in n, the second term in (6.29) is bounded by

C ′ n IE ν 1 {Sn≤t<S n+1 } = C ′ , since n 1 {Sn≤t<S n+1 } = 1.
Thus, the second term in (6.28), once divided by v(t), converges to 0, as t → ∞. Finally, (6.26), (6.27) and (6.28) give the desired (6.24).

Let

h(x) := f (x) ∞ 0 P t f (x)dt.
Note that Unfortunately, the term on the right hand side of (6.32) is not an additive functional of the process, since the function h t-s depends also on s. That's why we have to integrate once more. Integrating with respect to t over the interval [0, n] and using Fubini gives , where θn is the shift operator of the discrete time chain Xn = X Tn . Let a(n) be the deterministic equivalent of the chain X, then by theorem 6.1 of Chen, [START_REF] Chen | On the limit laws of the second order for additive functionals of Harris recurrent Markov chains[END_REF], On the other hand, by the first assertion of theorem 3. 

E ν ( t 0 f (X s )ds) 2 = 2E ν t 0 t s f (X s )f (X r )drds = 2E ν t 0 t-s 0 f (X s )P r f (X s )drds = 2E ν t 0 h(X s )ds -2E ν t 0 f (X s ) ∞ t-s P r f (X s )drds. ( 6 
lim

P

  r f (X s )drds|dt ≤ E ν n 0 ds( n-s 0 |h t |(X s )dt)ds t |(x)dt,then as in the proof of proposition 3.8 of[START_REF] Löcherbach | On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions[END_REF], the right hand side of (6.33) can be bounded byt |(X s )dt)ds ≤ IE ν (N n + 1) • H n (x)µ(dx) = IE ν (N n + 1) n 0 µ(|h t |)dt.

(

  

L 2

 2 sup M Tn a( n L 2 (a(n)) )L 2 (a(n)) = λ M almost surely. Write for short b(n) := a( n L 2 (a(n)) )L 2 (a(n)). Hence we have lim sup M Nt b( Nt ) = λ M almost surely,where Nt := n 1 {Tn≤t} . The same argument as in the proof of theorem 3.1 shows that for c(t) := v( t L 2 (v(t)) )L 2 (v(t)), 0 < lim inf b(v( Nt)) )L 2 (v( Nt )) = cλ Malmost surely, where the constant c depends only on the process. Hence we get the lower bound lim sup M t v( t L 2 (v(t)) )L 2 (v(t)) ≥ cλ M .

  Since t → v(t) is non-decreasing, we have n 0 v(t)dt ≥ v(n/2) • n/2. Recall the definition of v * (t) of proposition 4.7. Then by proposition 4.7 and by the Chacon-Ornstein ratio limit theorem. Moreover, µ(|h t |) → 0 as t → ∞ by our assumption. Hence, This is seen as follows. Write ∆ t := Rt t f (X s )ds. Then IE ν ( Similar arguments to that of proof of proposition 4.6 give IE ν ∆ 2 t ≤ C for some constant independent of t, and thus

												6.34)
	As a consequence,								
			E ν		n 0 ds( n 0 |h t |(X s )dt)ds n 0 v(t)dt	≤	IE ν (N n + 1) n 0 µ(|h t |)dt n 0 v(t)dt	.	(6.35)
	lim sup	IE ν (N n + 1) v(n/2)	= lim sup	v(n) v(n/2)	= lim sup	v(n) v * (n)	•	v * (n) v * (n/2)	•	v * (n/2) v(n/2)	< ∞
									1 n	0	n	µ(|h t |)dt → 0.
	As a consequence of (6.35) and (6.30), (6.31), we obtain finally
						lim n→∞	n 0 E ν ( t 0 f (X s )ds) 2 dt n 0 v(t)dt	= 2µ(h).	(6.36)
	3. Finally,										
	lim n→∞	1 0 v(t)dt n	0	n	IE ν (						0	t	f (X s )ds) 2 dt = 0.	(6.37)
							0	Rt	f (X s )ds) 2 -IE ν (	0	t	f (X s )ds) 2
						= IE ν ∆ 2 t -2IE ν (	0	t	f (X s ds)∆ t .
								n→∞ lim	n 0 IE ν ∆ 2 t dt
												1/2	0	n	t dt IE ν ∆ 2	1/2

Rt 0 f (X s )ds) 2 -IE ν ( n 0 v(t)dt = 0, since n/( n 0 v(t)dt) → 0. Moreover, n 0 IE ν ( t 0 f (X s ds)∆ t dt ≤ n 0 IE ν ( t 0 f (X s ds)) 2 dt

( n 0 v(t)dt) 1/2 = 0, which gives (6.37). (6.25), (6.36) and (6.37) finally yield the desired result

Since M has continuous paths, it is well-known that M Rn is measurable with respect to F Rn-. Hence we have

Since M is an additive functional, we have that

(ξ 1 ). Now, as in (4.9), we write

in order to conclude that for all x,

Hence the sequence (ξ n ) n is a σ{ξ 1 , . . . , ξ n }-martingale difference sequence, which is stationary and ergodic due to proposition 4.4. The same argument as above applies and allows us to get that

Then the Hartmann-Wintner law of iterated logarithm, see [START_REF] Stout | The Hartman-Wintner law of the iterated logarithm for martingales[END_REF], yields lim sup

almost surely. Now, the proof of the first part of theorem 3.4 is exactly as the proof of theorem 3.2.

In order to prove the second assertion of theorem 3.4, note moreover that Mn := M Tn is a F Tn -martingale such that Mn+k -Mn = Mk • θ Tn = Mk • θn ,