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DIVERGENCE-FREE WAVELET PROJECTION METHOD FOR
INCOMPRESSIBLE VISCOUS FLOW

SOULEYMANE KADRI HAROUNA∗ AND VALÉRIE PERRIER†

Abstract. We present a new wavelet numerical scheme for the discretization of Navier-Stokes
equations with physical boundary conditions. The temporal discretization of the method is inspired
from the projection method. Helmholtz-Hodge decomposition using divergence-free and curl-free
wavelet bases satisfying physical boundary conditions allows to define the projection operator. This
avoids the use of Poisson equation solver and reduce the steps of usual methods with more accuracy.
Numerical experiments conducted on lid driven cavity flow simulation show the effectiveness and the
precision of the method.
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1. Introduction. The numerical simulation of turbulent flows is a continuing
challenge encountered in several scientific areas: oceanography, engineering, etc. Tur-
bulent flows are modelized by the Navier-Stokes equations, which are derived from
newtonian laws in the context of hydrodynamics [29]. The incompressible version of
these equations are:  vt − ν∆v + (v · ∇)v +∇p = 0

∇ · v = 0
(1.1)

on Ω ⊂ Rd, where v ∈ Rd denotes the velocity vector field, p ∈ R is the pressure
and ν > 0 is the kinematic viscosity. In the following, the two-dimensional equations
(d = 2) are considered, the extension to higher dimension being straightforward.

To take into account the physic of the problem, one supposes that the fluid is
confined in Ω, so it does not cross the boundary Γ = ∂Ω. In this case, the velocity
field v must be tangential to the boundary:

v · n = 0 on Γ. (1.2)

The viscous friction of the fluid particles leads to no slip on the boundary Γ:

v = 0 on Γ. (1.3)

One can also study a particular region of the fluid, so it is not confined in Ω: the fluid
can pass through Γ. In this case, we suppose known the velocity v on the boundary:

v = g on Γ, (1.4)

with
∫

Γ
g · nds = 0 to satisfy the incompressibility constraint.

The difficulty in the numerical resolution of Navier-Stokes equations comes from
the nature of equations which are nonlinear. The interest of the velocity-pressure
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formulation is that physical boundary condition (1.2), (1.3) or (1.4) can be easily
incorporated into the numerical approximation of v. The projection method has for
advantage to decouple the computation of the velocity v and the pressure p [7, 28].

To incorporate the incompressibility constraint and boundary conditions, we con-
sider the divergence-free function space with free-slip boundary condition:

Hdiv(Ω) = {u ∈ (L2(Ω))2 : ∇ · u = 0, u · n|Γ = 0}. (1.5)

By Stokes theorem, the space Hdiv(Ω) is orthogonal to any gradient in (L2(Ω))2 [18].
Then, projecting the Navier-Stokes equations (1.1) onto Hdiv(Ω) yields: vt + P[−ν∆v + (v · ∇)v] = 0, on Ω

∇ · v = 0
(1.6)

where P denotes the orthogonal projector from (L2(Ω))2 to Hdiv(Ω). According to
the Helmholtz-Hodge decomposition, the pressure verifies the following equation:

∇p = −ν∆v + (v · ∇)v − P[−ν∆v + (v · ∇)v]. (1.7)

Now the difficulty relies on the integration in time of (1.6). The conventional projec-
tion method consists in a splitting of this operator: vt − νP∆v.

In the simplest case of periodic boundary conditions, the first equation of (1.6)
becomes:

vt − ν∆v + P[(v · ∇)v] = 0, (1.8)

and the pressure p is recovered via:

∇p = v − P[(v · ∇)v] (1.9)

This formulation was used by [13, 14] to derive a divergence-free wavelet resolution
method . One can remark that this approach is very close to the projection method,
since the numerical resolution of (1.8) reduces to a heat kernels integration with
source term as the projection onto divergence-free function space of the nonlinear
term P[(v · ∇)v]. Using a backward Euler schemes in time, the method of [13, 14] is
summarized as follows: starting with vn, compute vn+1 by

vn+1 − vn − δtν∆vn+1 + δtP[(vn · ∇)vn] = 0, (1.10)

where the term (vn · ∇)vn is computed explicitly on the mesh grid points. Each
time step requires the computation of projector P, which is done using an iterative
algorithm [12]. The method gives rise to sparse representation of the velocity and
coherent structures of the flow, then an adaptive discretizations can be derived easily.
Our objective in the next coming sections is to provide an effective numerical method
similar to (1.10), more flexible for desired boundary conditions and easy to implement.

In the case of physical boundary conditions (1.2), (1.3) and (1.4) the situation be-
comes more complicated. The projector P does not more commute with the Laplacian
operator:

P(∆v) 6= ∆P(v). (1.11)
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Taking the divergence of (1.7), we see that p is linked to the nonlinear term (v · ∇)v
by:

∆p = ∇ · [(v · ∇)v]. (1.12)

The resulting equations (1.6), (1.9), (1.7) and (1.12) can be solved by standard meth-
ods for heat and Poisson equation, for which a large number of works exist [18, 29].

From another point of view, the construction of divergence-free wavelet bases on
square /cubic domains satisfying physical boundary conditions [24, 26, 27], allows
to have an explicit wavelet method to compute the Helmholtz-Hodge decomposition
[25]. Based on this new numerical issue to compute the projector P, we present a new
formulation of the projection method for Navier-Stokes equations [1, 7, 20, 28]. The
method will not use a Poisson solver as in usual approaches.

The layout of the paper is as follows. In Section 2 we recall the setting of
divergence-free wavelet bases on the square satisfying boundary conditions, and the
computation of the Leray-Hopf projector P. In Section 3 we present the classical
divergence-free wavelets schemes for the Stokes equations and we use the ingredients
of previous sections to derive a new projection method for Navier-Stokes equations
based on divergence-free wavelets. Section 4 presents numerical results that valid our
method.

2. Divergence-free and Curl-free Wavelets on [0, 1]2. This section intro-
duces the principles of the construction and main properties of divergence-free and
curl-free wavelets bases. The construction will be provided on the square [0, 1]2 and
for more details see [25].

2.1. Divergence-free and Curl-free Wavelets . Since the seminal works of
Lemarié-Rieusset and collaborators [19, 21], the construction of divergence-free and
curl-free wavelets is based on one-dimensional multiresolution analyses linked by dif-
ferentiation / integration. It follows two principle steps:

(i) Construct two biorthogonal multiresolution analyses of L2(0, 1) denoted (V 1
j , Ṽ

1
j )

and (V 0
j , Ṽ

0
j ) satisfying:

d

dx
V 1
j = V 0

j and Ṽ 0
j = {

∫ x

0

f(t)dt : f ∈ Ṽ 1
j } ∩H1

0 (0, 1). (2.1)

Each space is spanned by scaling functions

V 1
j = span{ϕ1

j,k ; 0 ≤ k ≤ Nj − 1} and Ṽ 1
j = span{ϕ̃1

j,k ; 0 ≤ k ≤ Nj − 1}, (2.2)

and

V 0
j = span{ϕ0

j,k ; 0 ≤ k ≤ Nj − 2} and Ṽ 0
j = span{ϕ̃0

j,k ; 0 ≤ k ≤ Nj − 2}, (2.3)

whose dimension Nj ' 2j depends on some free integer parameters (δ0, δ1). The
scaling functions ϕ1

j,k satisfy ϕ1
j,k = 2j/2ϕ1(2jx− k) inside the interval [0, 1], but this

is no more true near the boundaries 0 and 1 (idem for ϕ̃1
j,k). In practice, the scale

index j must be great than some index jmin, to avoid boundary effects [23]. The
biorthogonality between bases writes: < ϕ1

j,k/ϕ̃
1
j,k′ >= δk,k′ .
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Biorthogonal wavelets are bases of the complement spaces of (V 1
j , Ṽ

1
j ), denoted

(W 1
j , W̃

1
j ):

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥ W̃ 1

j = Ṽ 1
j+1 ∩ (V 1

j )⊥. (2.4)

These spaces are generated by finite dimensional biorthogonal wavelet bases on the
interval [23]:

W 1
j = span{ψ1

j,k ; 0 ≤ k ≤ 2j − 1} and W̃ 1
j = span{ψ̃1

j,k ; 0 ≤ k ≤ 2j − 1} (2.5)

Biorthogonal wavelet bases of W 0
j = span{ψ0

j,k}j≥jmin and W̃ 0
j = span{ψ̃0

j,k}j≥jmin
are simply defined by respectively differentiating and integrating the wavelets bases
of (W 1

j , W̃
1
j )j≥jmin [19, 26]:

ψ0
j,k = 2−j(ψ1

j,k)′ and ψ̃0
j,k = −2j

∫ x

0

ψ̃1
j,k (2.6)

Homogeneous Dirichlet boundary conditions can be simply imposed on (V 1
j , Ṽ

1
j )

by removing scaling functions that reproduce constant at each boundary 0 and 1,
prior biorthogonalization [23]. Then, the spaces

V dj = V 1
j ∩H1

0 (0, 1) = span{ϕ1
j,k ; 1 ≤ k ≤ Nj − 2} (2.7)

and

Ṽ dj = Ṽ 1
j ∩H1

0 (0, 1) = span{ϕ̃1
j,k ; 1 ≤ k ≤ Nj − 2} (2.8)

provide biorthogonal multiresolution analyses for H1
0 (0, 1) [9, 10, 23].

(ii) Divergence-free and Curl-free Wavelets Construction

Following (1.5), Hdiv(Ω) is the curl of H1
0 (Ω) stream functions and Hcurl(Ω) is

the gradient of H1
0 (Ω) potentials:

Hdiv(Ω) = {u = curl(Ψ) : Ψ ∈ H1
0 (Ω)} (2.9)

and

Hcurl(Ω) = {u = ∇q : q ∈ H1
0 (Ω)}. (2.10)

Since the spaces (V dj ⊗V dj )j≥jmin provide a MRA of H1
0 (Ω) (2.8), divergence-free and

curl-free scaling functions on Ω = [0, 1]2 are constructed by taking the curl of and the
gradient of scaling functions of V dj ⊗ V dj respectively:

Φdiv
j,k := curl[ϕdj,k1 ⊗ ϕ

d
j,k2 ] =

∣∣∣∣∣∣
ϕdj,k1 ⊗ (ϕdj,k2)′

−(ϕdj,k1)′ ⊗ ϕdj,k2
, 1 ≤ k1, k2 ≤ Nj − 2 (2.11)

and

Φcurl
j,k := grad[ϕdj,k1 ⊗ ϕ

d
j,k2 ] =

∣∣∣∣∣∣
(ϕdj,k1)′ ⊗ ϕdj,k2

ϕdj,k1 ⊗ (ϕdj,k2)′
, 1 ≤ k1, k2 ≤ Nj − 2 (2.12)
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The choice of spaces V dj ensures the orthogonality between scaling functions Φdiv
j,k and

Φcurl
j,k . Moreover, boundary conditions are satisfied by construction.

Let {ψdj,k} be the wavelet basis of W d
j = V dj+1 ∩ (Ṽ dj )⊥. Accordingly, anisotropic

divergence-free and curl-free wavelets on [0, 1]2 are constructed by taking respectively
the curl and the gradient of the three types of scalar anisotropic wavelets associated
to V dj ⊗ V dj :

Ψdiv,1

j,k
:= curl[ϕdjmin,k ⊗ ψ

d
j2,k2 ] and Ψcurl,1

j,k
:= ∇[ϕdjmin,k ⊗ ψ

d
j2,k2 ],

Ψdiv,2

j,k
:= curl[ψdj1,k1 ⊗ ϕ

d
jmin,k] and Ψcurl,2

j,k
:= ∇[ψdj1,k1 ⊗ ϕ

d
jmin,k],

Ψdiv,3

j,k
:= curl[ψdj1,k1 ⊗ ψ

d
j2,k2 ] and Ψcurl,3

j,k
:= ∇[ψdj1,k1 ⊗ ψ

d
j2,k2 ].

2.2. Leray-Hopf Projector Computation . In this section we introduce briefly
some settings and definitions to compute in practice the Leray-Hopf projector P, using
divergence-free wavelet bases.

The divergence-free wavelet basis constructed in Section 2 provides an alternative
wavelet basis for Hdiv(Ω):

Hdiv(Ω) = span{Ψdiv
j,k}, ∀ j,k, ∇ ·Ψdiv

j,k = 0 and Ψdiv
j,k · n = 0. (2.13)

The Helmholtz-Hodge decomposition theorem states that for any vector field u ∈
L2(Ω)2, there exist unique q ∈ H1(Ω) with

∫
Ω
q = 0, such that:

u = udiv +∇q and P(u) = udiv. (2.14)

Searching udiv in terms of its divergence-free wavelet series

udiv =
∑
j,k

ddiv
j,k Ψdiv

j,k, (2.15)

and by the orthogonality Ψdiv
j,k ⊥ ∇q in (L2(Ω))2, we obtain:

〈u,Ψdiv
j,k〉 = 〈udiv,Ψ

div
j,k〉. (2.16)

Accordingly the computation of coefficients (ddiv
j,k) is reduced to the resolution of a

linear systems:

Mdiv(ddiv
j,k) = (〈u,Ψdiv

j,k〉) (2.17)

where Mdiv denotes the Gram matrix of the basis {Ψdiv
j,k} and the computation of its

elements and the right term (〈u,Ψdiv
j,k〉) in (2.17) are done following [25]. Since in

dimension d = 2, the Ψdiv
j,k are ”curl” functions, the matrix Mdiv is no more than the

matrix of the 2D Laplacian operator on the wavelet basis associated to the multireso-
lution analysis (V dj ⊗V dj ) of H1

0 (Ω). Following [8], we showed in [25] that its diagonal
is an optimal preconditioner. The tensor structure of the basis allows to reduce the
complexity of matrix-vector product Mdiv(ddiv

j,k). If J is the maximal one dimension

space resolution i.e NJ ' 2J , the theoretical complexity of the inversion of system
(2.17) with a preconditioned conjugate gradient method is about O(23J), see [25] for
details.
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3. A New Projection Method by Divergence-free Wavelets. The purpose
in this section is to introduce a new formulation of time discretization of unsteady
Stokes and Navier-Stokes equations, for incompressible viscous flows. The method
can be seen as a variant of the projection method [1, 7, 20, 28], where we have
replaced the operator splitting by an exact Helmholtz-Hodge decomposition of the
intermediate velocity field. The method allows to compute the exact velocity field
from the intermediate one by using only boundary condition satisfied by this velocity
field. Then, we prevent some numerical difficulties and drawbacks related to the
computation of the pressure at each time step with artificial boundary conditions
[1, 20].

3.1. General Principles of Divergence-free Wavelet Schemes for the
Stokes Equations. The use of divergence-free wavelet bases in the numerical simu-
lation of turbulent flow began with the works of Urban [11, 30], for the resolution of
stationary Stokes problem:  −ν∆v +∇p = f ,

∇ · v = 0,
(3.1)

in Ω = [0, 1]2, with periodic or homogeneous Dirichlet boundary conditions.

The main advantage of using divergence-free wavelet basis in the resolution of
Stokes equations is the direct representation of the incompressibility constraint of the
flow. To solve (3.1), as in the Urban’s works [30, 31] variational approach with a
Galerkin type approximation can be used. In this case, the velocity field v is searched
in terms of its divergence-free wavelet coefficients:

v(x) =
∑
j,k

dj,kΨdiv
j,k(x). (3.2)

Replacing (3.2) in (3.1), the computation of coefficients dj,k is done by solving a

linear system with the stiffness matrix of divergence-free wavelet basis:∑
j,k

dj,k〈ν∇Ψdiv
j,k,∇Ψdiv

j′
,k′〉 = 〈f ,Ψdiv

j′
,k′〉, ∀ j′,k′. (3.3)

The matrix of terms 〈ν∇Ψdiv
j,k,∇Ψdiv

j′
,k′〉 is symmetric and the associated bilinear

form is coercive [30]. The problem is thus reduced to an elliptic problem on the
divergence-free function space and standard estimations on the truncature error and
on the regularity of the solution can be derived. In addition, the formulation (3.3)
has the advantage to eliminate directly the pressure p which is computed by a post
processing procedure [30].

In comparison with classical approaches based on finite differences, finite elements
or wavelet method [5, 18], equation (3.3) has the advantage of reducing the number
of degree of freedom: only coefficients {dj,k} are computed instead of one type of

coefficients per components of the velocity v. Moreover, adaptive methods can be
applied and optimal preconditioning for the stiffness matrix can be provided explicitly.
However, for homogeneous Dirichlet boundary condition, the method was less effective
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in the approximation at the edges and preconditioning becomes a problem in three
dimension for example. Since the homogeneous divergence-free wavelets construction
of [30] uses only trial functions that have their support strictly inside of Ω, the loss of
precision at boundaries creates numerical instabilities.

For the instationary problem, recently Stevenson [27] has proposed a new theo-
retical variational formulation of the Stokes equations. The method of Stevenson is
an extension of Urban’s method to the instationary problem and use divergence-free
wavelets satisfying a free-slip boundary condition. However, unhomogeneous bound-
ary conditions can not be considered easily in these methods.
Contrarily to Urban and Stevenson works, our objective in next coming sections con-
sists on developing a method that uses Galerkin variational formulation with standard
wavelet basis and the Leray-Hopf projector P. Especially to construct a new projec-
tion method using divergence-free wavelets satisfying the free-slip boundary condition.
The advantage is that classical wavelet method can be used to solve the diffusion
problem and the incompressibility constraint is incorporated via the projector P. The
approach includes one phase devoted to the temporal discretization and a second one
of spacial discretization.

3.1.1. A New Projection Method for the unstationary Stokes equa-
tions. We consider in this section the unsteady Stokes problem, with no-sleep bound-
ary conditions: 

∂tv − ν∆v +∇p = f ,

v = 0 on ∂Ω,

∇ · v = 0.

(3.4)

For the temporal discretization of equations (3.4) we use finite difference method.
Given a time step δt and considering the approximation vn(x) ≈ v(x, nδt), using a
backward Euler scheme we get:

vn+1 − vn

δt
− ν∆vn+1 +∇pn+1 = fn, ∇ · vn+1 = 0. (3.5)

However, scheme (3.5) is inefficient since it requires, at each time step, the evaluation
of coupled equations for (vn+1, pn+1).

Let us introduce a new variable ṽ by setting ṽ = vn+1 +∇Φn+1, one can prove
that ṽ verifies the following system:

ṽ − vn

δt
− ν∆ṽ +∇[pn+1 − 1

δt
Φn+1 + ν∆Φn+1] = fn, vn+1 = P(ṽ). (3.6)

If the pressure pn+1 is defined as:

pn+1 − 1

δt
Φn+1 + ν∆Φn+1 = 0, (3.7)

then, the system of equations (3.6) reduces to:

ṽ − vn

δt
− ν∆ṽ = fn, vn+1 = P(ṽ). (3.8)
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Equation (3.8) requires the resolution of heat operator and the computation of pro-
jector P which is done as described in Section 2.2. For the spacial operator approxi-
mation, we use a Galerkin method on a suitable tensorial wavelet basis.

3.1.2. Spatial discretization of Stokes equations. To discretize in space
(3.8), we use the multiresolution analysis of (L2(Ω))d that contains the divergence-
free wavelets. A such multiresolution analysis is constituted by the approximation
spaces Vj = (V 1

j ⊗ V 0
j ) × (V 0

j ⊗ V 1
j ). Then, the components of vn = (vn1 , v

n
2 ) are

searched under the form of a finite dimensional wavelet series:

vn1 =
∑
|j|<j,k

d1
j,kψ

1
j1,k1 ⊗ ψ

0
j2,k2 and vn2 =

∑
|j|<j,k

d2
j,kψ

0
j1,k1 ⊗ ψ

1
j2,k2 , (3.9)

and similarly for ṽ with coefficients [d̃1
j,k] and [d̃2

j,k].

To compute the inverse of the matrix of operator (1 − δtν∆) at each time step
we use the method of [6]. This method remains in the context of alternated direction
implicit methods. Precisely, for small α > 0, we have:

(1− α∆) ≈ (1− α ∂2

∂x2
)(1− α ∂2

∂y2
). (3.10)

Thus, in (3.8) we have only to invert the matrix of one-dimensional heat operator

(1 − δtν ∂2

∂x2 ), and this is done once before to start the time integration procedure.

Ultimately, the computation of coefficients [d̃1
j,k] and [d̃2

j,k] from those of vn(x) is

reduced to solving a matrices linear system:

A1
δt[d̃

1,n

j,k
]A0

δt =M1[d1,n

j,k
]M0 + δtM1fn1M0 (3.11)

and

A0
δt[d̃

2,n

j,k
]A1

δt =M0[d2,n

j,k
]M1 + δtM0fn2M1, (3.12)

where Aiδt and Mi correspond to stiffness matrix of operator (1− δtν ∂2

∂x2 ) and mass
matrix on the one-dimensional wavelet bases of {V ij }i=0,1. The elements of these
matrices are computed analytically by solving en eigenvalue problem [2].

Summarized, starting with an initial value ṽ0(x) = v0(x) = v(0, x), compute its
coefficients [d̃1,0

j,k
] and [d̃2,0

j,k
] on Vj = (V 1

j ⊗ V 0
j ) × (V 0

j ⊗ V 1
j ) by an interpolation

procedure [24] and for 1 ≤ n ≤ N , repeat:

Step 1: Find [d̃1,n

j,k
] and [d̃2,n

j,k
] solution of

A1
δt[d̃

1,n

j,k
]A0

δt =M1[d1,n

j,k
]M0 + δtM1fn1M0

A0
δt[d̃

2,n

j,k
]A1

δt =M0[d2,n

j,k
]M1 + δtM0fn2M1

Step 2: Find [ddiv,n+1

j,k
] solution of

M1[d̃1,n

j,k
]A0

d − (A0
d)
T [d̃2,n

j,k
]M1 =M1[ddiv,n+1

j,k
]R1 +R1[ddiv,n+1

j,k
]M1
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where R1 is the stiffness matrix of wavelet basis {ψdj,k}, its terms correspond to

< (ψdj,k)′, (ψdj′,k′)
′ > and the terms of A0

d correspond to < ψ0
j,k, (ψ

d
j′,k′)

′ >.

Step 3: Compute [d1,n+1

j,k
] and [d2,n+1

j,k
] from [ddiv,n+1

j,k
] using the change of basis

between {(ψ1
j,k)′} and {ψ0

j,k}.

As the matrices A1
δt and A0

δt are inverted once before starting the algorithm, Step
1 is thus only a matrix multiplication. If J denotes the maximal space resolution,
the theoretical complexity of this step is O(23J). Step 2 correspond to vn+1 = P(ṽ)
and it is solved with a preconditioned conjugate gradient method, then its theoretical
complexity is O(23J). The last step is a change of basis, which complexity is linear.
We deduce that the theoretical complexity of the method is about O(23J).

3.1.3. Stability and consistency analysis. The main concerns in this section
is to analyze the stability and consistency of the modified projection method (3.8),
for the Stokes problem. For sake of simplicity we take fn = 0 in (3.8) and suppose
that vn ∈ L2(Ω)d and regular enough.

To prove the stability of our schemes, standard energy estimate will be used with
ṽ as test function, thanks to the boundary conditions on ṽ. Taking the inner product
of equation (3.8) with 2ṽ, we have

‖ṽ‖2L2 + ‖ṽ − vn‖2L2 − ‖vn‖2L2 + 2νδt‖∇ṽ‖2L2 = 0. (3.13)

Since ṽ = vn+1 +∇φn+1, which is an orthogonal decomposition in L2(Ω)d, equation
(3.13) is simplified as

‖vn+1‖2L2 + ‖vn+1 − vn‖2L2 + 2‖∇φn+1‖2L2 − ‖vn‖2L2 + 2νδt‖∇ṽ‖2L2 = 0. (3.14)

Then the modified projection method (3.7) and (3.8) is unconditionally stable for the
Stokes equations.

The consistency of the method is a consequence of the following theorem
Theorem 3.1. Let v be a solution of Stokes equations starting from a smooth

initial data v0(x) and let vδt be the numerical solution of the semi-discrete modified
projection method (3.7) and (3.8), then:

‖v − vδt‖L∞([0,T ];L2) ≤ C1δt, (3.15)

‖∇v −∇vδt‖L∞([0,T ];L2) ≤ C2δt
1/2. (3.16)

Proof. Let vn+1 be the solution of (3.7) and (3.8) computed from vn = v(x, nδt).
Then the consistency error εn+1 is defined by: εn+1 = v(x, nδt + δt) − vn+1. This
error is linked to ṽ by:

ṽ = v(x, nδt+ δt) +∇Φn+1 − εn+1. (3.17)

Replacing (3.17) in (3.8) and using (3.7), we get:

−εn+1 + νδt∆εn+1 + δt∇pn+1 + v(x, nδt+ δt)− vn− νδt∆v(x, nδt+ δt) = 0. (3.18)
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The Taylor expansion series of v(x, nδt+ δt) gives:

v(x, nδt+ δt) = vn + δt∂tv(x, nδt) +O(δt2), (3.19)

the terms v(x, nδt+ δt)− vn − νδt∆v(x, nδt+ δt) of (3.18) are simplified as:

v(x, nδt+ δt)− vn − νδt∆v(x, nδt+ δt) = δt[∂tv(x, nδt)− ν∆v(x, nδt)] +O(δt2).

Since ∂tv(x, nδt)− ν∆v(x, nδt) = −∇p(x, nδt), equation (3.18) rewritten as:

−εn+1 + νδt∆εn+1 = δt∇[p(x, nδt− pn+1] +O(δt2). (3.20)

By definition, εn+1 is divergence-free: ∇ · εn+1 = 0. Taking −εn+1 as a test function
in (3.21) yields:

1

2
‖εn+1‖2L2 + νδt‖∇εn+1‖2L2 ≤ Cδt2, (3.21)

which ends the proof.

The spacial approximation error depends on the regularity of the solution v and
the approximation order of the scaling function basis. If the dual wavelet basis has r
vanishing moments: ∫

R
xkψ̃(x)dx = 0, 0 ≤ k ≤ r − 1, (3.22)

for all 0 ≤ s ≤ r − 1, the following Jackson type estimation holds:

‖v −Pj(v)‖L2 ≤ C2−js‖v‖Hs(Ω). (3.23)

For edge scaling functions, the constant C in (3.23) is very important compared to
internal scaling functions, this increases the numerical approximation error at the
edges, which goes to zeros as j goes to infinity, see [24].

To investigate the convergence rates of the method, two numerical tests are con-
ducted. The first one to evaluate the time discretization error and the second one to
evaluate the spatial discretization error. As exact solution, we used: v1(x, y) = cos(2πx) sin(2πy)− sin(2πy),

v2(x, y) = − sin(2πx) cos(2πy) + sin(2πx),
p(x, y) = cos(2πx)− cos(2πy).

(3.24)

The right-hand side term f is computed appropriately to ensure that (3.24) is the
exact solution of (3.1) with ν = 1/8π2. The final time of the simulation is t = 10−2,
the maximal space resolution is fixed at j = 8 and the wavelet generators of (V 1

j , Ṽ
1
j )

correspond to biorthogonal spline with r = r̃ = 3.

Remark 3.1.
We notify that to achieve these experiences, all techniques on interpolation and ex-
trapolation with biorthogonal multiresolution analyses on the interval [0, 1] must be
well understood. We refer to [23, 24] for more details.
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Figure 3.1. Time discretization `2-error on v according to the time step δt, log-log scale, j = 8
and slope = 1.

`2-errors νt `2-errors νt
Backward Euler 1.0446E−4 1.26.E−4 1.4620E−6 1.26E−6

Crank-Nicholson 2.8147E−5 - 4.9471E−8 -

Figure 3.2. Time discretization `2-errors on v according to νt.

Since the theoretical rate of convergence is obtained on Fig. 3.1, we investigate
also the order of operator approximation (3.10) according to νt on a backward Euler
scheme and on a Crank-Nicholson scheme. Fig. 3.2 shows this rate where the time
step corresponds to δt = t/10 in each case. For the spatial discretization error, the
final time of the simulation is t = 10−4 and δt = t/10. Fig. (3.3) shows this error.
Despite of the edge scaling functions approximation error effect, in the two cases, the
expected rates of convergence are obtained.

Backward-Euler
j 6 7 8 9
L2-error 1.9057E−4 1.6758E−5 1.46208E−6 7.1220E−7

H1-error 3.0627E−4 4.1319E−5 1.14088E−5 7.2127E−6

Crank-Nicholson
j 6 7 8 9
L2-error 7.3498E−6 6.3924E−7 4.9471E−8 3.3322E−8

H1-error 1.0475E−4 9.5745E−6 1.410E−6 8.8480E−7

Figure 3.3. Spatial discretization `2-errors according to the resolution j, for t = 10−4.
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3.2. Divergence-free Wavelet Schemes for Navier-Stokes Equations .
Divergence-free wavelet schemes in the numerical resolution of Navier-Stokes equa-
tions were introduced firstly by Deriaz and Perrier [13, 14]. As mentioned in the
introduction, the work of Deriaz and Perrier was limited to periodic boundary con-
ditions. In this section, based on the projection method algorithms [7, 28], we are
going to extend the works of [13, 14] to physical boundary conditions. This section
gives also more details and precision on the step of projection of the method applied
to Stokes equations in Section 3.1.

3.3. Temporal discretization of Navier-Stokes equations. In velocity pres-
sure formulation, with physical boundary conditions, the most famous method in the
numerical resolution of Navier-Stokes equations is the projection method [7, 28]. There
is many kinds of projection method according to the chosen pressure boundary con-
dition [1]. Without loss of generality, we focus here on the second order boundary
approximation in time one, called projection method with accurate pressure boundary
condition [15]. The principle steps of this method can be summarized as follows [15]:

• Prediction step: compute an intermediate velocity field ṽ such as
ṽ−vn
δt + (vn+1/2 · ∇)vn+1/2 = ν∆ ṽ−vn

2

ṽ = 0, on ∂Ω

(3.25)

• Correction step: project ṽ onto the divergence-free functions space to get
vn+1 

ṽ = vn+1 + δt∇pn+1/2,

∇ · vn+1 = 0,

∇pn+1/2 · n = −n · [∇× (∇× ṽ)], on ∂Ω

(3.26)

In the classical approaches [1, 7, 20, 28], to compute the velocity vn+1, one needs first
to solve a Poisson equation:

δt∆pn+1/2 = ∇ · ṽ, (3.27)

and the specification of boundary for (3.27) defines the kind of projection operator.
Otherwise, taking the inner product of the Navier-Stokes system (1.1) with the unit
normal n and unit tangent t vectors at ∂Ω leads respectively to

∇p · n = ν∆v · n and ∇p · t = ν∆v · t. (3.28)

Since the velocity vn+1 is unknown in (3.26), boundary condition like (3.28) can not be
incorporate directly to (3.27). To deal with this problem, several boundary conditions
have been investigated in the literature [15, 20] and the most common one is:

∇pn+1/2 · n = 0. (3.29)

Equation (3.29) defines an artificial Helmholtz decomposition of ṽ. This lack of
appropriate boundary conditions for (3.26) is partly the reason of boundary’s os-
cillation problem plaguing the projection method [15]. Particularly, the condition
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∇pn+1/2 · n = −n · [∇× (∇× ṽ)] is introduced to have O(δt2) approximation order
on vn+1 at boundaries [15].

Since one knows to construct divergence-free wavelets basis satisfying boundary
conditions, we are going to use this basis to compute the exact Helmholtz-Hodge
decomposition of ṽ without using a Poisson equations solver.

The Helmholtz-Hodge decomposition theorem is written slightly different on (H1
0 (Ω))d,

it depends on the inner product considered. Moreover the divergence-free function
subspace of (H1

0 (Ω))d corresponds to:

Hdiv,0(Ω) = {u ∈ (H1
0 (Ω))d : ∇ · u = 0}. (3.30)

Since Hdiv,0(Ω) is a proper closed subspace of (H1
0 (Ω))d, we have:

(H1
0 (Ω))d = Hdiv,0(Ω)⊕Hdiv,0(Ω)⊥.

Considering the (H1
0 (Ω))d standard inner product defined by: (u,v)(H1

0 (Ω))d = (∇u,∇v)(L2(Ω))d ,
on can see that:

Hdiv,0(Ω)⊥ = {(−∆)−1∇q : q ∈ L2(Ω)}, (3.31)

where (−∆)−1 denotes the Green’s operator related to Dirichlet’s homogeneous prob-
lem for −∆ operator, see [18]. Otherwise, a coarse version of De Rhams’s theorem
[18] states that if f ∈ (H−1(Ω))d satisfies:

< f ,u >(L2(Ω))d= 0, ∀ u ∈ Hdiv,0(Ω),

then there exists p ∈ L2(Ω) such that:

f = ∇p.

The arising question is can one find scalar potential p such that:

(−∆)−1∇q = ∇p. (3.32)

To answer this, let φ1 ∈ H2
0 (Ω) and φ2 ∈ (H1

0 (Ω))d be respectively the solutions of
the following Poisson equations:

−∆φ1 = q and −∆φ2 = ∇q.

By the uniqueness of these solutions, we get: φ2 = ∇φ1 = (−∆)−1∇q. Indeed, for
any u ∈ (H1

0 (Ω))d we have:∫
Ω

∆φ2 · u = −
∫

Ω

∇q · u =

∫
Ω

q∇ · u,

and replacing q by −∆φ1 leads to:∫
Ω

∆φ2 · u = −
∫

Ω

∆φ1∇ · u =

∫
Ω

∇∆φ1 · u =

∫
Ω

∆∇φ1 · u.

This gives:

φ2 = ∇φ1 = (−∆)−1∇q.
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Then, the space Hdiv,0(Ω)⊥ is a curl-free function space derived from scalar potentials
and any function u ∈ (H1

0 (Ω)d can be decomposed as:

u = udiv,0 +∇p, (3.33)

with p ∈ H1(Ω) and udiv,0 ∈ Hdiv,0(Ω).

Decomposition (3.33) can not be computed with classical algorithm based on
Poisson solver. Taking the inner product of (3.33) with the unit normal n and unit
tangent t vectors respectively yields:

∇p · n = 0 and ∇p · t = 0. (3.34)

Satisfying both these boundary conditions on p is very difficult in practice. Thus,
system (3.26) is not a Helmholtz-Hodge decomposition, as far as that goes for (3.26)
with only boundary condition (3.29). Further, setting ṽ = vn+1 + δt∇pn+1/2 with
both ṽ and vn+1 in (H1

0 (Ω))d leads necessarily to boundary conditions (3.26) on the
pressure pn+1/2. Moreover, up to an integration constant, each boundary condition
in (3.34) defines a unique solution pn+1/2 to (3.27), what makes more difficult the
numerical resolution.

Analysing differently the problem and trusting the Poisson equations solver, one
can take advantage of the boundary conditions like (3.34) and the Helmholtz-Hodge
decomposition to derive new correction step for (3.25). Indeed, let φn+1/2 be a scalar
potential in L2(Ω) satisfying

ṽ = vn+1 + δt∇φn+1/2, with ṽ ∈ (H1
0 (Ω))d. (3.35)

Substituting this change of variable in (3.25), it comes that the vector function ṽ
verifies the system 

ṽ−vn
δt + (vn+1/2 · ∇)vn+1/2 = ν∆ ṽ−vn

2

ṽ = 0, on ∂Ω

(3.36)

and the new correction step is defined by:

vn+1 = P(ṽ), (3.37)

where P denotes the orthogonal projector from (H1
0 (Ω))d onto Hdiv,0(Ω), according

to the (L2(Ω))d scalar product. Similarly, the pressure pn+1/2 is uniquely defined up
to a constant from φn+1/2 by:

pn+1/2 = φn+1/2 − νδt

2
∆φn+1/2. (3.38)

In the same way, according to (3.31), if we replace ∇φn+1/2 by (−∆)−1∇φn+1/2 in
(3.35), we can define pn+1/2 by:

∇pn+1/2 = (−∆)−1∇φn+1/2 +
νδt

2
∇φn+1/2, (3.39)

In each two cases, Navier-Stokes formulation (3.36) is a change of variables and this is
a great difference from the classical projection methods which are operator’s splitting.

Remark 3.2.
Equation (3.39) is a classical Helmholtz equation with Dirichlet homogeneous boundary
condition, for the unknown (−∆)−1∇φn+1/2.
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3.4. Spacial discretization. The spacial discretization used is the same as for
the Stokes equations in Section 3.1. Then, at a given resolution j, the components of
vn are searched in the form of a finite dimensional wavelet series:

vn1 =
∑
|j|<j,k

d1,n

j,k
ψ1
j1,k1 ⊗ ψ

0
j2,k2 and vn2 =

∑
|j|<j,k

d2,n

j,k
ψ0
j1,k1 ⊗ ψ

1
j2,k2 , (3.40)

and similarly for ṽ with coefficients [d̃1
j,k] and [d̃2

j,k]. Following [1, 20], the nonlinear

term (vn+1/2 · ∇)vn+1/2 is approximated by:

(vn+1/2 · ∇)vn+1/2 =
3

2
(vn · ∇)vn − 1

2
(vn−1 · ∇)vn−1, (3.41)

and (3.41) is computed explicitly with finite differences method on the mesh grid
points. Next, each component of (vn+1/2 · ∇)vn+1/2 is projected respectively onto
the wavelets basis {ψ1

j1,k1
⊗ ψ0

j2,k2
} and {ψ0

j1,k1
⊗ ψ1

j2,k2
}. This choice impose a CFL

condition on the time step [13]: δt ≤ Cδx4/3.

The computation of coefficients [d̃1
j,k] and [d̃2

j,k] from those of vn and (vn+1/2 ·
∇)vn+1/2, is reduced to solving a matrices linear system:

A1
δt
2

[d̃1
j,k]A0

δt
2

= R1
δt
2

[d1,n

j,k
]R0

δt
2
− δtM1[(vn+1/2 · ∇)vn+1/2]1M0, (3.42)

A0
δt
2

[d̃2
j,k]A1

δt
2

= R0
δt
2

[d2,n

j,k
]R1

δt
2
− δtM0[(vn+1/2 · ∇)vn+1/2]2M1, (3.43)

where Mε, Aεδt
2

and Rεδt
2

correspond to mass matrices and stiffness matrices of op-

erators (1 − 1
2δtν∆) and (1 + 1

2δtν∆) on the one-dimensional bases of {V εj }ε=0,1

respectively.

4. Lid driven cavity flow. To validate the divergence-free wavelet modified
projection method, in the case of Navier-Stokes equations, we focus on the classical
problem of lid-driven cavity flow. This problem has been investigate by many authors
since the pioneer work of [3, 17]. Recently, Bruneau and Saad [4] have revised this
problem and obtained good results using multigrid solver with various and special
numerical discretization technique. The particularity of the work of [4] resides in
the special discretization of the convection term and high space resolution are used:
j = 10 or j = 11.

The objective in this section is to compare the results obtains with method (3.36)
and (3.37) to those of [3, 4, 17]. Thus, one can evaluate the accuracy and performance
of this new method. The wavelet basis generators of (V 1

j , Ṽ
1
j ) are the biorthogonal

spline with three vanishing moments: r = r̃ = 3. Since the horizontal velocity v1 does
not satisfy homogeneous Dirichlet boundary condition, homogenization technique is
used for this component [24]. The advection term (vn · ∇)vn is computed with a
tow-order finite difference method on the mesh grid points. On Fig. 4.1 and Fig. 4.2,
we plot the middle horizontal and vertical profiles of the velocity obtained for j = 7
and Re = 1000, compared to the results of [4] obtained with j = 10. Fig. 4.3 and Fig.
4.4, show the values of these profiles for j = 7 and j = 8, compared to the results of
the work of literature.
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Figure 4.1. Horizontal velocity profile v1 in the middle of the cavity at the steady state. Solid
line (present work) and circle (Bruneau et Saad [4]): Re = 1000 and j = 7.
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Figure 4.7. Divergence-free scaling function coefficients contour at t = 80, Re = 10000 and
j = 8.
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Figure 4.8. Divergence-free wavelet coefficients at different scales j, for t = 80 and Re = 10000.


