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A Priori Convergence Theory for

Reduced-Basis Approximations of

Single-Parameter Elliptic Partial Differential

Equations

Yvon MADAY∗, Anthony T. PATERA†, Gabriel TURINICI‡

Abstract

We consider “Lagrangian” reduced-basis methods for single-parameter
symmetric coercive elliptic partial differential equations. We show
that, for a logarithmic-(quasi-)uniform distribution of sample points,
the reduced–basis approximation converges exponentially to the ex-
act solution uniformly in parameter space. Furthermore, the conver-
gence rate depends only weakly on the continuity-coercivity ratio of
the operator: thus very low-dimensional approximations yield accu-
rate solutions even for very wide parametric ranges. Numerical tests
(reported elsewhere) corroborate the theoretical predictions.

1 Introduction

The development of computational methods that permit rapid and reliable

evaluation of the solution of partial differential equations in the limit of

many queries is relevant within many design, optimization, control, and
characterization contexts. One particular approach is the reduced-basis
method, first introduced in the late 1970s for nonlinear structural anal-
ysis [1, 9], and subsequently developed more broadly in the 1980s and
1990s [3, 5, 10, 13, 2]. The reduced-basis method recognizes that the field
variable is not, in fact, some arbitrary member of the infinite-dimensional
space associated with the partial differential equation; rather, it resides, or

∗Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Bôıte courrier

187, 75252 Paris Cedex 05, France; Email: maday@ann.jussieu.fr
†Department of Mechanical Engineering, M.I.T., 77 Mass. Ave., Cambridge, MA,

02139, USA; Email: patera@mit.edu
‡ASCI-CNRS Orsay, and INRIA Rocquencourt M3N, B.P. 105, 78153 Le Chesnay

Cedex France; E-mail: Gabriel.Turinici@inria.fr, turinici@asci.fr

1



“evolves,” on a much lower-dimensional manifold induced by the paramet-
ric dependence.

Let Y be an Hilbert space with inner product and norm (· , ·)Y and

‖ · ‖Y = (· , ·)1/2
Y , respectively. Consider a parametrized “bilinear” form

a : Y × Y × D → R, where D ≡ [0, µmax], and a bounded linear form
f : Y → R. We introduce the problem to be solved: Given µ ∈ D, find
u ∈ Y such that

a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (1)

Under natural conditions on the bilinear form a (e.g. continuity and coer-
civity) it is readily shown that this problem admits a unique solution.

We introduce an approximation index N , the parameter sample SN =
{α1, . . . , αN}, and the solutions u(αk), k = 1, . . . , N , of problem (1) for
this set of parameters. We next define the reduced-basis approximation

space

WN = span {u(αk), k = 1, . . . , N}.
Our reduced-basis approximation is then: Given µ ∈ D, find uN (µ) ∈ WN

such that

a(uN (µ), v;µ) = f(v), ∀ v ∈ WN . (2)

This discrete problem is well posed as well under the same former continuity
and coercivity conditions.

The reduced-basis approach, as earlier developped, is typically local in
parameter space in both practice and theory. To wit, the αk are chosen in
the vicinity of a particular parameter point µ∗ and the associated a pri-

ori convergence theory relies on asymptotic arguments in sufficiently small
neighborhoods of µ∗ [5]. In this paper we present, for single-parameter
symmetric coercive elliptic partial differential equations, a first theoretical
a priori convergence result that demonstrates exponential convergence of
reduced-basis approximations uniformly over an extended parameter do-
main. The proof requires, and thus suggests, a point distribution in param-
eter space which does, indeed, exhibit superior convergence properties in a
variety of numerical tests [15]. We refer to [16, 17] for a different analysis
within the homogeneization framework.

2 Problem Formulation

Let us define the parametrized “bilinear” form a : Y × Y ×D → R as

a(w, v;µ) ≡ a0(w, v) + µa1(w, v) , (3)
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where the bilinear forms a0 : Y ×Y → R and a1 : Y ×Y → R are continuous,
symmetric and positive semi-definite; suppose moreover that a0 is coercive,
inducing a (Y -equivalent) norm ||| · |||2 = a0(· , ·). It follows from our
assumptions that there exists a real positive constant γ1 such that

0 ≤ a1(v, v)

a0(v, v)
≤ γ1, ∀ v ∈ Y . (4)

For the hypotheses stated above, it is readily demonstrated that the prob-
lem (1) has a unique solution.

Many situations may be modeled by our rather simple problem state-
ment (1), (3). For example, if we take Y = H1

0 (Ω) where Ω is a smooth
bounded subdomain of Rd=2, and set a0(w, v) =

∫
Ω
∇w · ∇v, a1 =

∫
Ω

wv,
we model conduction in thin plates; here µ represents the convective heat
transfer coefficient. If we take Y = H1

0 (Ω) for Ω ⊂ Rd=1,2, or 3, with
Ω1 ⊂ Ω (Ω1, Ω bounded and sufficiently regular), and set a0 =

∫
Ω
∇w ·∇v,

a1 =
∫
Ω1

∇w · ∇v, we model variable-property heat transfer; here 1 + µ is

the ratio of thermal conductivities in domains Ω\Ω1 and Ω1. Other choices
of a0 and a1 can model variable rectilinear geometry, variable orthotropic
properties, and variable Robin boundary conditions.

The space Y is typically of infinite dimension so u(µ) is, in general,
not exactly calculable. In order to construct our reduced-basis space WN ,
we must therefore replace u(µ) ∈ Y by a “truth approximation” uN (µ) ∈
Y N ⊂ Y , where uN is the Galerkin approximation satisfying

a(uN (µ), v;µ) = f(v), ∀ v ∈ Y N .

Here Y N , of finite (but typically very high) dimension N , is a sufficiently
rich approximation subspace such that |||u(µ)−uN (µ)||| is sufficiently small
for all µ in D; for example, for Y = H1

0 (Ω) we know that, for any desired ε >
0, we can indeed construct a finite-element approximation space, Y N (ε),
such that |||u(µ) − uN (ε)(µ)||| ≤ ε.

It shall prove convenient in what follows to introduce a generalized
eigenvalue problem: Find (ϕN

i ∈ Y N , λN
i ∈ R), i = 1, . . . ,N , satisfying

a1(ϕ
N
i , v) = λN

i a0(ϕ
N
i , v), ∀ v ∈ Y N . We shall order the (perforce real,

non-negative) eigenvalues as 0 ≤ λN
N ≤ λN

N−1 ≤ · · · ≤ λN
1 ≤ γ1, where the

last inequality follows directly from (4). We may choose our eigenfunctions
such that

a0(ϕ
N
i , ϕN

j ) = δi j , (5)

and hence a1(ϕ
N
i , ϕN

j ) = λN
i δi j , where δi j is the Kronecker-delta symbol;

and such that Y N can be expressed as span {ϕi, i = 1, . . . ,N}. Note that,
thanks to the finite dimension of our approximation space Y N , we preclude
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(the complications associated with) a continuous spectrum — and, as we
shall see, at no loss in rigor.

We conclude this section by noting that uN (µ) can be expressed as

uN (µ) =
N∑

i=1

fN
i ϕN

i

1 + µλN
i

, (6)

where fN
i = f(ϕN

i ).

3 A Priori Convergence Theory

We propose here to choose the sample points αk, k = 1, . . . , N , log-
equidistributed in D, in the sense that, if we set δN = ln(γµmax + 1)/N ,
and γ is any finite upper bound for γ1

1, then

αk = exp{− ln γ +
k∑

ℓ=1

δ̃ℓN} − γ−1,

where we assume that there exists a constant c∗ such that

δ̃kN

δN
≤ c∗, ∀k, k = 1, . . . , N

and also that
∑N

ℓ=1 δ̃ℓN = ln(γµmax + 1).
Denote the reduced-basis approximation space as WN

N = span {uN (αk), k =
1, . . . , N}. Although in general dim(WN

N ) ≤ N , we can suppose that
dim(WN

N ) = N (otherwise we eliminate elements from WN
N until it con-

tains only linearly independent vectors). Then, the (reduced basis) problem
is : Given µ ∈ D, find uN

N (µ) ∈ WN
N such that

a(uN
N (µ), v;µ) = f(v), ∀ v ∈ WN

N . (7)

This problem admits a unique solution.
Our goal is to (sharply) bound |||uN (µ) − uN

N (µ)|||, for all µ ∈ D, as
a function of N (and ultimately N as well). This error bound in the
energy norm can be readily translated into error bounds on continuous-
linear-functional outputs [12]; we do not consider this extension further
here.

We shall need two standard results from the theory of Galerkin approx-
imation of symmetric coercive problems [14]:

a(uN − uN
N , uN − uN

N ;µ) = inf
wN

N
∈WN

N

a(uN − wN
N , uN − wN

N ;µ) ; (8)

1Note that γ1, γ, and hence SN , are independent of N .
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and

a(uN , uN ;µ) ≤ a(u, u;µ) . (9)

From the definition of the ||| · ||| norm, the positive semidefiniteness of a1,
(3), (4) and (8) we can write

|||uN (µ) − uN
N (µ)|||2 ≤ a(uN (µ) − uN

N (µ), uN (µ) − uN
N (µ), µ)

≤ inf
wN

N
∈WN

N

a(uN (µ) − wN
N , uN (µ) − wN

N , µ)

≤ (1 + µmaxγ1) inf
wN

N
∈WN

N

|||uN (µ) − wN
N |||2, ∀µ ∈ D. (10)

Also from the definition of the ||| · ||| norm and the positive semidefi-
niteness of a1, (3), (4) and (9), we obtain

|||uN (µ)||| ≤ (1 + µmaxγ1)
1/2 |||u(µ)|||, ∀µ ∈ D (11)

We begin with a preparatory result in

Lemma 3.1 Let

g(z, λ) =
1

1 − λ
γ + λez

(12)

for z ∈ Z ≡ [ln(γ−1),∞] and λ ∈ Λ ≡ [0, γ] (recall γ is our strictly positive
upper bound for γ1). Then, for any q ≥ 0

|Dq
1 g(z, λ)| ≤ 2q q! , ∀ z ∈ Z, ∀λ ∈ Λ ,

where Dq
1g denotes the qth-derivative of g with respect to the first argument.

Proof. We first remark that for any p ≥ 0

0 ≤ gp(z, λ) ≤ 1, ∀ z ∈ Z, ∀λ ∈ Λ, , (13)

where gp is the pth-power of g. This follows since ∀ z ∈ Z, ez ≥ γ−1, and
hence, ∀ z ∈ Z, ∀λ ∈ Λ, 1 − λ/γ + λez ≥ 1.

We next claim that, for m ≥ 2,

Dm−1
1 g(z, λ) =

m∑

n=1

am
n gn(z, λ) , (14)

where, for m ≥ 1 (and a1
1 ≡ 1)

am+1
1 = −am

1

am+1
n = −n am

n + (n − 1)
(
1 − λ

γ

)
am

n−1, 2 ≤ n ≤ m

am+1
m+1 = m

(
1 − λ

γ

)
am

m.

(15)
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We prove this result by induction. We first differentiate g to obtain

D1
1 g(z, λ) =

−λez

(
1 − λ

γ + λez
)2 =

−
(
1 − λ

γ + λez
)

+ 1 − λ
γ

(
1 − λ

γ + λez
)2

= −g(z, λ) +

(
1 − λ

γ

)
g2(z, λ) ; (16)

(14) and (15) for m = 2 directly follows. We now differentiate (14) for
m = m, and exploit (16), to obtain

D
(m+1)−1
1 (z, λ) =

m∑

n=1

am
n n gn−1(z, λ) D1

1g(z, λ)

=
m∑

n=1

am
n n gn−1(z, λ)

[
−g(z, λ) +

(
1 − λ

γ

)
g2(z, λ)

]

=
m∑

n=1

−n am
n gn(z, λ) +

m+1∑

n=2

(n − 1)

(
1 − λ

γ

)
am

n−1 gn(z, λ) ;

(14) and (15) for m = m + 1 directly follows. Thus, (14), (15) are valid for
m ≥ 2, as required.

It now follows from (13) and (14) that, for any q ≥ 1, |Dq
1 g(z, λ)| ≤ Sq,

where Sq =
q+1∑
n=1

|aq+1
n |. We now invoke (15), and observe that ∀λ ∈ Λ,

|1 − λ
γ | ≤ 1, to obtain Sq ≤ 2q Sq−1; since S1 ≤ 2, we conclude that

Sq ≤ 2q q!, and the lemma is thus proven. �

We now prove a bound for the best approximation result in

Lemma 3.2 For N ≥ Ncrit

inf
wN

N
∈WN

N

|||uN (µ) − wN
N ||| ≤ |||uN (0)||| exp

{ −N

Ncrit

}
, ∀µ ∈ D ,

where Ncrit ≡ c∗e ln(γ µmax + 1).

Proof. To facilitate the proof, we shall effect a change of coordinates in
parameter space. To wit, we let D̃ ≡ [ln γ−1, ln(µmax+γ−1)], and introduce

τ : D̃ → D, as τ(µ̃) = eµ̃ − γ−1 so that τ−1(µ) = ln(µ + γ−1). We then set
ũ(µ̃) = u(τ(µ̃)), ũN (µ̃) = uN (τ(µ̃)), and ũN

N (µ̃) = uN
N (τ(µ̃)). We note that

ũN (µ̃) =
N∑

i=1

fN
i ϕN

i

1 − λN
i

γ + λN
i eµ̃

=
N∑

i=1

fN
i ϕN

i g(µ̃, λN
i ), (17)
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from (6), our change of variable, and the definition (12).
We now observe that in our mapped coordinate, the sample points α̃k ≡

τ−1(αk), k = 1, . . . , N , are equi-distributed with separation α̃k+1 − α̃k ≃
ln(γµmax + 1)/N . It thus follows that, given any µ̃ ∈ D̃, we can construct

a closed interval Ĩ µ̃

∆̃
of length ∆̃, that includes µ̃ and M µ̃(∆̃, δN ) distinct

points α̃P µ̃
n
, n = 1, . . . , M . Here M µ̃(∆̃, δN ) is of the order of ∆̃

δN
; more

precisely,

M µ̃(∆̃, δN ) ≥ ∆̃

c∗δN
. (18)

In what follows, we shall often abbreviate M µ̃(∆̃, δN ) as M .

Now, for any µ̃ ∈ D̃, we introduce ûµ̃ ∈ WN
N given by

ûµ̃ ≡
M∑

n=1

Q̃µ̃
n(µ̃) uN (τ(α̃P µ̃

n
)) =

M∑

n=1

Q̃µ̃
n(µ̃) ũN (α̃P µ̃

n
)

=
M∑

n=1

Q̃µ̃
n(µ̃)

N∑

i=1

fN
i ϕN

i g(α̃P µ̃
n
, λN

i ) ,

where the characteristic functions Q̃µ̃
n are uniquely determined by Q̃µ̃

n ∈
PM−1(Ĩ

µ̃

∆̃
), n = 1, . . . , M , and Q̃µ̃

n(α̃P µ̃

n′
) = δnn′ , 1 ≤ n, n′ ≤ M ; here

PM−1(Ĩ
µ̃

∆̃
) refers to the space of polynomials of degree ≤ M − 1 over Ĩ µ̃

∆̃
.

We thus obtain

ûµ̃ =

N∑

i=1

fN
i ϕN

i [Ĩ µ̃
M−1 g(·, λN

i )] (µ̃) , (19)

where, for given λ, Ĩ µ̃
M−1 g(·, λ) is the (M − 1)th-order polynomial inter-

polant of g(·, λ) through the α̃P µ̃
n
, n = 1, . . . , M ; more precisely, Ĩ µ̃

M−1 g(·, λ) ∈
PM−1(Ĩ

µ̃

∆̃
), and (Ĩ µ̃

M−1 g(·, λ))(α̃P µ̃
n
) = g(α̃P µ̃

n
, λ), n = 1, . . . , M . Note that

[Ĩ µ̃
M−1 g(·, λ)](τ−1(µ)) is not a polynomial in µ.

It now follows from (5), (6), (17) and (19) that

|||ũN (µ̃) − ûµ̃||| ≤
∣∣∣
∣∣∣
∣∣∣
∑N

i=1 fN
i ϕN

i

(
g(µ̃, λN

i ) − [Ĩ µ̃
M−1 g(·, λN

i )] (µ̃)
)∣∣∣

∣∣∣
∣∣∣

≤ supλ∈Λ |g(µ̃, λ) − [Ĩ µ̃
M−1 g(·, λ)] (µ̃)| |||uN (0)||| . (20)

We next invoke the standard polynomial interpolation remainder formula
[4] and Lemma 3.1 to obtain

sup
λ∈Λ

|g(µ̃, λ) − [Ĩ û
M−1 g(·, λ)] (µ̃)| ≤ supλ∈Λ supz∈Z

1
M ! |DM

1 g(z, λ)| ∆̃M

≤ (2∆̃)M µ̃(∆̃,δN ). (21)
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We now assume that c∗δN

2 ≤ ∆̃ and ∆̃ ≤ 1
2 ; under these conditions (recall

(18)) we obtain (2∆̃)M µ̃(∆̃,δN ) ≤ (2∆̃)∆̃/c∗δN , and hence, from (20) and
(21), we can write

|||ũN (µ̃) − ûµ̃||| ≤ |||uN (0)|||(2∆̃)∆̃/c∗δN . (22)

It remains to select a best ∆̃ satisfying c∗δN

2 ≤ ∆̃ ≤ 1
2 .

To provide the sharpest possible bound, we choose ∆̃ = ∆̃∗ ≡ 1
2e , the

minimizer (over all positive ∆̃) of (2∆̃)∆̃/δN . Our conditions on ∆̃ are
readily verified: c∗δN

2 ≤ ∆̃∗ follows directly from the hypothesis of our

lemma, N ≥ Ncrit; and ∆̃∗ ≤ 1
2 follows from inspection. We now insert

∆̃ = ∆̃∗ into (22) to obtain

|||ũN (µ̃) − ûµ̃||| ≤ |||uN (0)||| e−N/Ncrit , ∀ µ̃ ∈ D̃ .

It immediately follows that, for any µ ∈ D,

inf
wN

N
∈WN

N

|||uN (µ) − wN
N ||| = inf

wN
N

∈WN
N

|||ũN (τ−1(µ)) − wN
N |||

≤ |||ũN (τ−1(µ)) − ûτ−1(µ)||| ≤ |||uN (0)||| e−N/Ncrit ,

since û· ∈ WN
N and, for µ ∈ D, τ−1(µ) ∈ D̃. This concludes the proof. �

Then, from (10),(11), Lemma 3.1, and Lemma 3.2, we obtain

Theorem 3.3 For N ≥ Ncrit ≡ c∗e ln(γµmax + 1),

|||uN (µ) − uN
N (µ)||| ≤ (1 + µmaxγ1)

1/2 |||uN (0)||| e−N/Ncrit , ∀µ ∈ D;

furthermore,

|||u(µ) − u
N (ε)
N (µ)||| ≤ ε + (1 + µmaxγ1) |||u(0)||| e−N/Ncrit , ∀µ ∈ D,

for N (ε) such that |||u(µ) − uN (ε)(µ)||| ≤ ε.

4 Conclusions

We make several observations about the results of Theorem 3.3. First,
we obtain exponential convergence with respect to N . Second, our con-
vergence result applies uniformly for all µ ∈ D. Third, our convergence
parameter Ncrit depends only very weakly — logarithmically — on γ1, re-
lated to the form of the operator, and on µmax, related to the range of the
parameter (note we may also view the product γ1µmax as the continuity-
coercivity ratio). As a result, Ncrit will, in general, be small, and we will
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thus achieve convergence “soon” (N ≥ Ncrit) with a “large” ( 1
Ncrit

) expo-
nential decay rate. Fourth, we obtain convergence with respect to both N
and N : uN

N (µ) → u(µ) as N,N → ∞.
Let us now make several remarks concerning the point distribution.

First, the logarithmic point distribution is intimately related to our partic-
ular abstract problem, (1), (3), and, relatedly, the parametric dependence
of the solution, (6). In brief, for larger values of µ, the derivatives of
(1 + µλ)−1 will be smaller, thus permitting a larger interval in which to
recruit the points required for accurate interpolation. Second, it should
be clear from the proof of Lemma 3.2 that the requirement on the point
distribution is, in fact, rather weak: the location of the M points within
Ĩ µ̃

∆̃
is (save for conditioning issues) irrelevant. This permits, for example,

log-random distributions — particularly attractive in higher parameter di-
mensions in which tensor-product grids are prohibitively costly.

Third, the logarithmic point distribution is not an artifact of our (inter-

polant-based) proof: in numerical tests [15] the error in the actual Galerkin

approximation is also “minimized” by a logarithmic point distribution; even
point distributions that enjoy general optimality properties, such as Cheby-
shev, do not perform as well as the logarithmic distribution for our partic-
ular problem. (Indeed, for Chebyshev interpolation over the interval D, it
may be shown that Ncrit scales as

√
µmax — much worse than our lnµmax.)

Fourth, we note that numerical tests [15] roughly confirm the depen-
dence of |||uN (µ) − uN

N (µ)||| on N , γ, and µmax. However, in general, our
theoretical bound can be quite pessimistic, as might be expected given that
our proof is based on (albeit, tailored) interpolation arguments: Galerkin
optimality can always do better, for example, choosing to “illuminate”
only an appropriate subsample of SN so as to construct the best “sub-
approximation” (or sub-interpolant) amongst all O(N !) possibilities. This
property is no doubt crucial in higher parameter dimensions, in which effec-
tive scattered-data higher-order interpolants are very difficult to construct;
it is here that the superiority of the reduced-basis approach over simple
parameter-space interpolation is most evident. We do not yet have any
(uniform in µ) theory for higher parameter dimensions, although numeri-
cal results again suggest extremely rapid convergence.

Finally, we note that we address in this paper only one aspect — rapid
uniform convergence — of successful reduced-basis approaches. In other
papers [6, 7, 8, 12] we focus on (i) off-line/on-line computational decompo-
sitions that permit real-time response, and (ii) a posteriori error estimators
that ensure both efficiency and certainty.
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