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Abstract

In a recent past, there has been a growing interest for examining the po-
tential of Image Processing tools to assist Art Investigation. Simultaneously,
several research works showed the interest of using multifractal analysis for
the description of homogeneous textures in images. In this context, the goal
of the present contribution is to study the benefits of using the wavelet leader
based multifractal formalism to characterize paintings. To that end, after a
brief review of the key theoretical concepts, methods and tools underlying the
wavelet leader based formulation of multifractal analysis, two sets of digitized
painting are analyzed. The first one, the Princeton Experiment, consists of a
set of 7 paintings and of their 7 copies, made by the same artist. It enables
to examine the potential of multifractal analysis in forgery detection. The
second one is composed of several partially digitized paintings by Van Gogh
and contemporaries, made available by the Van Gogh and Kröller-Müller
Museums (The Netherlands), in the framework of the Image processing for

Art Investigation research program. It enables to show various differences in
the regularity of the textures of Van Gogh’s paintings from different periods
or between Van Gogh’s and contemporaries’s paintings. These preliminary
results plead for the constitution of interdisciplinary research teams gathering
experts in art, image processing, mathematics and computer sciences.

Keywords: Image Processing, Texture Classification, Regularity,
Multifractal Analysis, Wavelet Leaders, Paintings, Van Gogh, Forgery
Detection, Period Dating.
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1. Introduction

Image Processing for Art Investigation. The ever growing power of
digital devices (faster processors, better computers, higher resolution scan-
ners, larger storage facilities,. . . ) naturally and unavoidably gave birth to
the desire of using such tools for Art Investigation. Yet, it is only recently, at
the turn of the 3rd millennium, that conditions were met to transform this
desire into some form of reality. Various research groups started to apply
standard image processing tools to digitized painting, to develop new proce-
dures or customize them to the specificities of such an application (cf. [? ]
for an example of early contribution, [? ? ] for review notes, and [? ] for
the presentation of state-of-the-art and joint recent research contributions).
With the development of computer-assisted and statistical signal-image pro-
cessing tools, the purpose of scientists is not to supplant art historians but,
on the opposite, to provide them with additional material that could be ex-
tracted automatically, and using objective and reproducible criteria; this will
allow progresses by diversifying the tools at hand. For paintings, it may for
instance help to assess quantitative measures related to stylometry, brush-
strokes, texture,. . . This may contribute to formulate elements of answers to
questions such as deciding at which period a painting was made, detecting
forgery or correctly attributing a painting to its author.

Wavelet and Fractal for Image Processing. Over the last 15 years,
elaborating on multiresolution decomposition and filter banks, wavelet anal-
ysis has become one of the inescapable image processing tool. In essence,
wavelet coefficients evaluate the content of an image at a given space posi-
tion x = (x1, x2), and a given analysis scale a. Wavelet coefficients usually
take large values when the correponding wavelet is located on any of the
contours of the image while they fluctuate around small values when the
wavelet is located inside smooth textures. For an introduction, review and
examples, the reader is referred to e.g., [? ]. The statistical properties of
wavelet coefficients have already been successfully used in stylistic analysis
of paintings and forgery detection, cf. e.g., [? ? ? ].

Fractal geometry refers to an analysis paradigm that relies on the idea
that the richest part of the information to be extracted from an image lies in
the way the statistics of some space-scale dependent quantities vary as a func-
tion of the analysis scale a. In other words, instead of basing the analysis on
the search of specific features of space-scales, it is preferred to postulate that
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space-scales are all and jointly equally important and that the key informa-
tion consists in the mechanisms relating ones to the others. This dependence
is usually postulated in the form of power laws: aζ (with ζ referred to as the
scaling exponent), which explains why fractal is also termed scaling or scale
invariance. Wavelet analysis consists in decomposing an image on elemen-
tary shapes (the wavelet basis) which are all deduced from three fundamental
functions, the mother wavelets by translation and dilation, see Eq. (1). Scal-
ing invariance properties of the image will imply power-law behaviors of the
coefficients. Therefore wavelets constitute a natural decomposition system
for characterizing fractal properties of images. Fractal tools can be used both
for the analysis of contours and textures. There is a rich literature discussing
the relevance of fractal paradigms to analyze or model natural images, a re-
cent and interesting review can be consulted in [? ]. In the context of Art,
it was used in [? ] to characterize some of Jackson Pollock’s masterpieces.

Goals, contributions and outline. Beyond fractal analysis, essentially
aiming at characterizing how irregular an object is globally, typically by
means of a single scaling exponent, multifractal analysis consists of a sig-
nal/image processing tool that concentrates on describing the fluctuations
along space of the local regularity of the object, hence often requiring the
potential use of a collection of scaling exponents. While popular for the
analysis of 1D signal, multifractal analysis remained barely used for image
processing for technical, practical and theoretical reasons (cf. a contrario [?
]). However, this situation has recently been changed when it has been shown
that a theoretically sound and practically efficient formulation of multifractal
analysis could be obtained if based on wavelet leaders, a simple construction
elaborating on 2D discrete wavelet transform coefficients, cf. [? ? ? ? ].
This resulted in a powerful tool for the analysis of textures in images, as
detailed theoretically in [? ] and explored practically in [? ].

The present contribution aims at exploring the potential of the wavelet
leader multifractal analysis for art painting texture classification. First (cf.
Section 2), the principles and practical procedures underlying the wavelet
leader multifractal analysis will be presented in a manner geared towards
practitioners (hence avoiding theoretical developments and proofs, for which
the reader will be referred to earlier publications). This introduction will be
illustrated with results computed on various real paintings. Then (cf. Sec-
tion 3), it will be shown when and how the wavelet leader multifractal analysis
enables to discriminate between original paintings and copies, in the context
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of an original experiment conducted by the Machine Learning and Image

Processing for Art Investigation Research Group at Princeton University (cf.
www.math.princeton.edu/ipai/index.html). Finally (cf. Section 4), the
wavelet leader multifractal analysis will be applied to a set of Van Gogh’s
and contemporaries’s paintings made available by the Van Gogh and Kröller-
Müller Museums (The Netherlands), in the context of the Image Processing

for Art Investigation research project (cf. www.digitalpaintinganalysis.org/).

2. Multifractal Analysis

2.1. Wavelet Coefficients and Global Regularity

2.1.1. 2D Discrete Wavelet Transform

An orthonormal wavelet basis in two dimensions consists in the choice of
three smooth, compactly supported functions ψ1, ψ2, ψ3 such that the system

ψi
j,(k1,k2)

(x1, x2) = 2−jψi(2−jx1−k1, 2
−jx2−k2), j, k1, k2 ∈ Z, i = 1, 2, 3 (1)

constitute an orthonormal basis of L2(R2). Let X(x) (with x = (x1, x2))
denote a gray level image. We will denote by Dm

X(j,k) (with k = (k1, k2), m
= 1, 2, 3) the coefficients of the imageX on this wavelet basis, i.e. Dm

X(j,k) =
�X|ψi

j,k�. Note that these coefficients are not computed as integrals, but
using the classical pyramidal recursive algorithm supplied by the fast wavelet

transform. In nature, Dm
X(j,k) measures the amount of energy of X located

in the neighborhood of (2jk1, 2
jk2) of width ∼ 2j and in the frequency bands

localized around ±2−j. For an introduction to the 2D Discrete Wavelet
Transform (2D DWT), the reader is referred to e.g., [? ].

In the present work, it has been chosen to work with mother wavelets
obtained as tensor products of the minimal compact support Daubechies
wavelet families, parametrized by their number of vanishing moments Nψ [?
]. It has been discussed elsewhere that this family has ideal theoretical and
practical properties with respect to scaling and fractal analysis (cf. e.g., [?
]).

The 2D DWT naturally outputs L2 normalized wavelet coefficients, while
it is now well-admitted (cf. e.g., [? ? ]) that for scaling or fractal analysis,

a L1 normalization, d
(m)
X (j, k1, k2) = 2−jD

(m)
X (j, k1, k2), is better suited and

will hence be used from now on.
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2.1.2. Global regularity

The wavelet coefficients d
(m)
X (j,k) enable to define and measure a property

of X, which plays a key role with respect to fractal analysis: Its global
regularity hm, defined as

hm = sup{� : X ∈ C�}, (2)

where X(x) is said to belong to C�, � ∈ R, iff:

∃C > 0 : ∀j, k1, k2,m |d
(m)
X (j, k1, k2)| ≤ C2j�. (3)

An intuitive interpretation of hm is postponed to Section 2.3.
It follows from (3) that

hm = lim inf
2j→0

log

�

sup
m,k1,k2

|d
(m)
X (j, k1, k2)|

�

log(2j)
. (4)

Practically, this implies that hm can be measured by performing linear re-
gressions of the log of the magnitudes of the largest wavelet coefficients at
scales 2j versus the log of the scales a = 2j [? ? ].

2.2. Wavelet leader multifractal formalism

The purpose of multifractal analysis is to base image classification on
exponents derived from power-law behaviors of space-averaged quantities
computed at different scales. Several such quantities have been proposed;
however, a natural interpretation of multifractal analysis (mentioned in Sec-
tion 2.3) implies that a quantity more natural to consider is based on the
wavelet leaders, which we now define.

2.2.1. Wavelet leaders

Let λj,k1,k2 denote the dyadic square

λj,k1,k2 = [k12
j, (k1 + 1)2j)× [k22

j, (k2 + 1)2j),

and denote by 3λj,k1,k2 the union of λj,k1,k2 and its 8 closest neighbours, i.e.

3λj,k1,k2 = [(k1 − 1)2j, (k1 + 2)2j)× [(k2 − 1)2j, (k2 + 2)2j).
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First, if the global regularity exponent hm is positive, then the wavelet
leaders of L

(γ)
X are simply defined as [? ? ? ]:

L
(γ)
X (j, k1, k2) = sup

m,λ�⊂3λj,k1,k2

|d
(m)
X (λ�)|, (5)

The wavelet leader L
(γ)
X (j, k1, k2) located on each node of the dyadic grid

(j, k1, k2) is obtained by replacing the wavelet coefficient d
(m)
X (j, k1, k2) by

the largest of all the |d
(m)
X (λ�)| that are located at scales finer or equal to

2j within a small neighborhood around the location (x1 = 2jk1, x2 = 2jk2).
This construction is illustrated in Fig. 1.

If hm is negative, then the supremum in (5) can be infinite, in which case,
one first “smoothes” the data by dividing the wavelet coefficients by a power
large enough so that the supremum becomes finite. More precisely, let γ ≥ 0
be defined as

γ =

�

0 if hm > 0,
� if hm ≤ 0.

(6)

where, in practice, � is chosen as the multiple of 1/2 such that 0 < �+ hm ≤
1/2.

The wavelet leaders of L
(γ)
X are defined in all cases as

L
(γ)
X (j, k1, k2) = sup

m,λ�⊂3λj,k1,k2

|2γjd
(m)
X (λ�)|. (7)

Mathematically, this renormalization of the wavelet coefficients is equiv-
alent to replacing the initial image by a fractional integral of order �, which
amounts to shift the exponent hm of the data by �.

2.2.2. Multifractal Formalism

Multifractal analysis consists in deriving power-law exponents from space
averages of wavelet leaders at the scales available in the data. One can
introduce an extra parameter q by actually computing space averages of the
q-th order of the wavelet leaders, at a given scale a = 2j: Let

S(2j, q, γ) =
1

nj

�

k1,k2

L
(γ)
X (j, k1, k2)

q, (8)

where nj denotes the number of wavelet coefficients actually computed at
scale a = 2j. The scaling function of the image is then defined as

ζ(q, γ) = lim inf
2j→0

log(S(2j, q, γ))

log(2j)
. (9)
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Note that, by construction, the scaling function is concave with respect to
q [? ]. This formalism hence essentially assumes that the S(2j, q, γ) behave
as power laws with respect to the analysis scale a = 2j, in the limit of fine
scales 2j → 0:

S(2j, q) ∼ λq2
jζ(q,γ) when j → −∞, (10)

From a practical perspective, it is expected that this power law behaviors
hold over a broad range of scales. Therefore, the ζ(q, γ) are referred to
as the scaling exponents. These power law behaviors constitute the found-
ing relation connecting the concepts of (multi-)fractal and scale invariance.
Moreover, it is fundamental to note that Multifractal Analysis requires the
use of both positive and negative values of q around 0 to fully characterize
the fractal properties of X (cf. e.g., [? ? ? ]), this will be further discussed
in Section 2.3.

The scaling function ζ(q, γ) characterizes the fractal properties of the im-
age X [? ] and can hence be involved in any of the usual image processing
tasks: Characterization, model selection, classification, detection, . . . This
has been successfully applied to design image classification procedure (cf.
e.g., [? ]). Scaling functions obtained from one of the Princeton paintings
and one of the Van Gogh’s paintings are illustrated in Figs. 2 and 3, bottom
row.

Because the practical measure of the function ζ(q, γ) for all q can be
tedious and its use for hypothesis testing intricate, it has been proposed to
use a polynomial expansion in the neighboorhood of q = 0 by [? ? ]:

ζ(q, γ) =
�

p≥1

c(γ)p

qp

p !
. (11)

Though this expansion may not be valid in certain specific cases, its power
still lies in the fact that, when well-defined, the coefficients c

(γ)
p can be esti-

mated directly (without the burden of estimating the ζ(q, γ) themselves), as
they are related to the dependence of the cumulant of order p of the quanti-
ties lnL

(γ)
X (j, k1, k2) (cf. [? ? ]). By concavity of the scaling function, note

that c2 ≤ 0. Therefore, in practice, it is often preferred to approximate the
expansion by estimating only the first values of the c

(γ)
p s.

2.3. Hölder Exponents and Multifractal Spectrum

The wavelet leader based multifractal formalism described in the previous
section constitutes one of the most powerful tools to estimate the multifractal
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spectrum of an image. This theoretical connection is now detailed in partic-
ular because it supplies a motivation for the use of wavelet leaders. However,
the theoretical material developed in this section is not practically used for
the analysis of the paintings described in the forthcoming sections.

Let X(x) : x ∈ R
d → X ∈ R denote the function of interest, assumed

to be such that its hm > 0 (hence γ is set to γ = 0 for this section. For an
image, d = 2 and x = (x1, x2).

The local regularity of X at location x0 can be measured by comparing
X(x0) to a local power law behavior: |X(x) − P

x0
(x)| ≤ C|x − x0|

α, with
α > 0, and where C > 0 and P is a polynomial such that deg(P ) < α. The
Hölder exponent h(x0) is the largest such α.

Though theoretically based on a measure of local regularity, it is essential
to point out that multifractal analysis does not aim at providing the user
with information in the form of a space dependent function h(x), but instead
with a global measure of the spatial geometry underlying the fluctuations
of h along space. This is achieved via the so-called multifractal spectrum,
consisting of the Hausdorff dimensions D of the sets of locations x, for which
the Hölder exponents take the same value h: D(h) = dimH{x : h(x) =
h}. Because it is a dimension, the multifractal spectrum is confined to 0 ≤
D(h) ≤ d. By convention, D(h) = −∞ for the Hölder exponents that are
not present in X. For theoretical introductions to multifractal analysis, the
reader is referred to e.g., [? ? ]. Note however that, theoretically, the Hölder
exponent at a point x can be recovered by a regression on la log-log scale, of
the wavelet leaders located above x, with respect to the scale 2j, see [? ]. This
explains why wavelet leaders were the natural candidates in the obtention of
multifractal analysis.

It can be shown theoretically that the Legendre transform of the the
scaling function ζ(q, 0) provides an upper bound of D(h):

D(h) ≤ L(h) = inf
q∈R

(d+ qh− ζ(q)). (12)

For experimental data, which are never known with an infinite precision,
the spectrum D(h) can never be computed, and, in practice L(h) is the only
quantity that can be estimated. Therefore, with a slight abuse of language,
one often calls L(h) the multifarctal spectrum. Also, the polynomial ex-
pansion (11) can be recast on L(h), starting with (cf. ?? for a complete
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formula):

L(h) � d+
c2
2

�

h− c1
c2

�2

, (13)

for h close to c1. This approximation shows that c1 corresponds to the value
of h where L(h) is maximal, hence to the most typical regularity exponent h
observed in X, while −c2 essentially measures the dispersion of the hs actu-
ally along the various locations x (explaining why this is sometimes referred
to as the strength of the multifractality). The Legendre transform used above
(cf. Eq. (12)) indicates that the obtention of the full curve L(h) requires the
use of both positive qs (capturing the lowest hs) and negative qs (capturing
the largest hs). Moreover, when positive, hm corresponds to the smallest
value of h that exists in X (i.e., for which L(h) �= −∞, or in simpler words,
the leftmost point of L(h)), hence its name hm where m stands for minimal.

Multifractal spectra obtained from one of the Princeton paintings and
one of the Van Gogh’s paintings are illustrated in Figs. 2, and 3 bottom
row.

2.4. Estimation Procedures

The procedures to estimate practically the ζ(q, γ), the c
(γ)
p or the function

L(h) have been presented in detail and their performance studied in [? ? ?

], and are hence not further recalled here. They are essentially based on
weighted linear regressions in suited log-log diagrams, which are illustrated
in Figs. 2 and 3, middle row, for one of the Princeton paintings and and one
of the Van Gogh’s paintings.

3. Original versus Copy: the Princeton Experiment

Appealing though it may be, applying multifractal analysis immediately
and blindly to masterpieces, such as Van Gogh’s paintings, to detect forgery
or to classify them according to given artistic periods is difficult as in many
cases conservators and art historians are often still debating on what are
the correct answers and also because the direct transposition of the question
must be formulated into an Image Processing language. Instead, we chose to
test multifractal analysis on the Princeton experiment data.

3.1. The Princeton Experiment

The Machine Learning and Image Processing for Art Investigation Re-

search Group at Princeton University (cf. www.math.princeton.edu/ipai/index.html)
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had the brilliant idea of setting up a scientific experiment. It is described in
detail at www.math.princeton.edu/ipai/datasets.html as well as in [? ?

]: Charlotte Caspers, an art conservation student from Stichting Restauratie
Atelier Limburg, specializing in art reconstruction, was proposed to perform
a series of seven paintings, using different materials (various brushes, canvas,
paints). All of them are small (� 15 × 15 cm2), with indoor environment
still life subjects. This is described in Table 1 and the paintings shown in
Fig. 4. After some delay (two weeks), she was requested to make as close as
possible copies of her originals, in the same conditions, and using for each
one the same materials. Original and copies were scanned at a very high res-
olution (800 dpi), enabling to analyze the very fine scales of the texture, (as
a pixel essentially represents 32×32 µm2). The Princeton group is gratefully
acknowledged for making the material of this experiment available to other
research teams.

3.2. Multifractal Properties

To analyze and assess fractal properties in paintings, small patches of
N×N pixels are selected manually as pieces of homogeneous textures. Then,
the wavelet leader multifractal formalism, as described in Section 2, is applied
to each of them. As illustrated in Figs. 2 and 3, with N = 1024, the struc-
ture functions S(j, q, γ) are satisfactorily following the power-law behavior
postulated in Eq. (10), for a range of values of qs around 0, q ∈ [−5 : 5].
These hold for all 7 paintings, for both the original and the copies, for many
different patches located at various places of the painting (bird, bag, upper
background, lower background, . . . ). Other figures, in the spirit of Fig. 5,
are not reported here for sake of space, but are available upon request. This
hence validates that the fractal (or scaling) properties in these paintings, can
be regarded as relevant features to describe their textures.

An important aspect of the wavelet leader based multifractal analysis
procedure consists in the fact that the range of scales a ∈ [am, amax], within
which the scaling behaviors hold (as in Eq. (10)), is selected a posteriori
by the expert (assisted by some statistical procedures [? ]) from visual
inspection of the log-log diagrams such as those in Fig. 2. Therefore, the
selection of the relevant range of scales is not an a priori arbitrary choice but
rather constitutes per se an important output of the analysis: It provides
information on the scales in actual units within which fractal properties hold.
For the Charlotte Casper’s paintings, it can be estimated that scaling holds
over a decade, with scales ranging from [0.5 × 0.5] to [5 × 5] mm2. This
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shows that scaling properties are not related to the shape or type of subject
or object actually represented in the paintings, but rather to fine details of
the various textures.

Furthermore, when comparing patches with the same location on the
original and on the copy, it is observed that scaling properties do exist for
both paintings but are different. This is illustrated in Fig. 5, where the scaling
functions and the multifractal spectra significantly differ. Interestingly, it is
found that the multifractal spectra estimated from the copies tend to be
systematically shifted to the right on the Hölder exponent axis, compared to
those measured on originals. Technically, this is effectively measured on c1,
which estimates the position of the maximum of the multifractal spectrum:

It is often observed that c
(copy)
1 > c

(origin.)
1 . Consistently, it is observed

that h
(copy)
min > h

(origin.)
min . Both these observations clearly indicate that the

textures of the copies are systematically globally more regular and smoother

than those of the original same patches.

3.3. Results

3.3.1. Test procedure set-up

This section aims at deciding whether the differences observed between
the multifractal parameters estimated on copies and original are statistically
significant, providing confirmations for or rejecting the above case observa-
tions by means of statistical procedures.

A key point in the observations described above (cf. Section 3.2) lied
in the fact that multifractal analysis was applied to well-chosen patches of
homogeneous textures: the bird, as in the example illustrated in Fig. 2, the
bag, the backgrounds,. . . This requires a human/expert decision and cannot
be easily automated. Here, it has been chosen instead to split each painting
blindly into adjacent non-overlapping patches of N ×N pixels. The wavelet
leader based multifractal formalism is applied independently to each of them.
The scaling range is kept fixed ([0.5× 0.5] to [5× 5] mm2) according to the
preliminary analysis described above. In the results reported below, patch
sizes N = 29, 210, 211 have been used and yield consistent conclusions. Tables
are given for N = 210.

Along another line, the digitized paintings are provided in the form of 3
8 bits matrices corresponding respectively to the RGB channel outputs sup-
plied by the scanner. Systematically, these 3 channels have been transformed
into a single Intensity gray-level image I, and into 3 channels corresponding
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to the classical HSL (Hue, Saturation, Lightness) representation system for
colors (cf. e.g., en.wikipedia.org/wiki/HSLandHSV for the exact defini-
tions of the transformation RGB → I and RGB ↔ HSL). For each original
and copy, for each patch, these 7 instances (RGB, I, HSL) were analyzed
independently.

Three characteristic multifractal parameters have been systematically re-
tained for the test procedures: hm, c1 and c2. Results shown are those ob-
tained using the minimal compact support orthonormal Daubechies wavelet
ψ with Nψ = 2 vanishing moments [? ], and are consistent with those ob-
tained when Nψ is increased.

To test whether significant changes are observed between the estimated
multifractal parameters from original and copy, a set of classical non para-
metric hypothesis tests are applied and p-values are computed against the
null hypothesis H0 which holds if no change is observed. Two categories of
tests where used. PairWise tests (SignTest and SignRank) compare estimates
obtained from patches with same locations on original and copy. Non Pair-
Wise tests (Wilcoxon RankSum) compare globally the vectors of multifractal
attributes estimated over the entire originals and copies, with no explicit ref-
erence to the locations in the painting of the estimated parameters. They are
hence far more demanding, as they could be applied to sets of painting that
are not copies of a set of originals. A situation which is much more likely
to be of interest as it corresponds to the situation where a set of paintings
that are questionably attributed to one master are tested against a set of
paintings indisputably attributed to this master, but need not be copies of
the reference set. The level of significance is, as classically done, set to 0.05
(i.e., differences are regarded as statistically significant whenever p ≤ 0.05,
with a 5% level of chances of incorrectly deciding so).

Tests are applied both to the multifractal parameters estimated from all
7 channels and to the L channel only (hence to a single gray-level image).

3.3.2. Results

The differences between original and copy in the estimated multifractal
parameters are shown by means of box-plots in Fig. 6. The p-values resulting
from the different tests are reported in Table 2. Carefully reading this table
and figure yields the following observations:

- When significant, changes in c1 and hm are observed to occur system-
atically jointly and with larger values for copies compared to originals.
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- Parameter c2 is rarely found discriminant, and when so, the changes in
c2 are not systematically in the same direction.

- For Paintings 1 to 3, both PairWise and Non PairWise yields significant
changes be they applied to All-Channels or to the Luminance only.

- For Paintings 5 and 7, discrimination is achieved for PairWise tests
applied to All-Channels only.

- For Paintings 4 and 6, no discrimination is achieved.

Such observations induce the following humble conclusions, summarized
in Table 3:

- Multifractal Properties: When significant changes are found, the multi-
fractal spectra computed from the textures of the copies appears glob-
ally shifted to the right, with quasi no deformation: The change in hm

(the leftmost point) is comparable to the change in c1 (location of the
maximum, and c2 (width of the spectrum) is not changed. Therefore,
the textures in copies are systematically globally more regular than
those of the originals, but they show neither a larger nor a smaller
variability around this global regularity. Let us also recall the impor-
tant fact that fractal properties are observed for scales ranging from
[0.5 × 0.5] to [5 × 5] mm2. Fractal properties may hence tentatively
and for that case be related to brushstrokes, though there is no objec-
tive consensus on what scales are related to what characteristics of the
paintings (cf. [? ? ] for interesting discussions on these issues).

- Painting Properties: Clear and obvious discriminations are achieved
for the 3 first paintings whose common feature is the use of Soft &
Hard brushes, while discrimination is not or barely achieved when using
Soft brushes only, so that the natural conclusion is to attribute this
difference to the brush actually used. The fact that the PairWise tests
yield detection for paintings 5 and 7 remain to be interpreted. The
reasons why no discrimination is achieved for Paintings 4 and 6 also
remain to be understood. For these paintings, as shown in Fig. 7,
scaling and fractal properties are equally valid as for those of other
paintings but are not discriminant. In Fig. 7, a strong canvas structure
is observed and may constitute the dominant feature of the texture.
Because, it exists for both the original and the copy, it may prevent
discrimination.
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4. Van Gogh’s Paintings Multifractal Properties

4.1. The Image Processing for Art Investigation research project

Let us now turn to the analysis of Van Gogh’s paintings. In the frame-
work of the Image Processing for Art Investigation research project (cf.
digitalpaintinganalysis.org/) initiated by R. Johnson (Cornell Univer-
sity) and I. Daubechies (Princeton University), the Van Gogh and Kröller-
Müller Museums (The Netherlands), made available a set of partial and
low resolution digitized versions of Van Gogh’s and contemporaries’s paint-
ings. For obvious reasons, high resolution copies are not completely available
but checkerboarded on their right-half. The scanning resolution is 200dpi.
To investigate the potential of image processing tools for art investigation,
a series of stylometry challenges were set up under the supervision of R.
Johnson, J. Coddington (MoMA, New York) and L. van Tilborgh (Van
Gogh Museum, Amsterdam). These challenges are presented in details at
www.digitalpaintinganalysis.org/Challenges.htm. In the present con-
tribution, it has been chosen to illustrate the results obtained on the dating

and authenticity challenges, described below.

4.2. Methodology

Because paintings naturally consist of different textures, they are not
analyzed globally. Instead, fractal property analysis is based on the manual
selection of small patches of N×N = 512×512 pixels for each painting. The
wavelet leader multifractal formalism, described in Section 2, is applied to
each of the seven channels (RGB, HSL, Intensity, cf. Section 3.3.1 above) of
a patch, and the corresponding multifractal attributes ζ(q), D(h), hm, c1, c2
are computed.

The choice of a patch for each single painting is based on the following
criteria:

- Homogeneity of texture. Patches are manually located on pieces of tex-
ture that appear homogeneous for all seven channels in order to limit
the presence of large-scale coherent structures and heterogeneity po-
tentially obstructing the analysis (such as the arms of the windmill in
f503, or a combination of background and subject). Note that differ-
ent channels of the same patch may reveal very different textures and
structures (cf. e.g. the Red Channel of painting f452 in Fig. 9, and the
Saturation Channel in Fig. 10). In addition, care has been taken to
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place the patches on regions for which the painting can be assumed to
have been subject to similar techniques, combinations of brushes, etc.
(e.g. the heads of flowers in a bouquet, a part of the background).

- Scaling and multifractal properties. The patches are chosen based on
the quality of their scaling properties, including careful inspection of the
wavelet coefficient based structure functions prior to fractional integra-
tion, and theoretical constraints on parameter estimates (for instance,
c2 ≤ 0). Furthermore, estimates for the patches are required to be
stable with respect to small changes in the position of the patch.

The lower scanning resolution (compared to that in the Princeton Ex-
periment) makes it more difficult to decide accurately on the range of scales
to involve in estimation. However, scaling properties are overall found to
systematically hold for all paintings in the two challenges for scales ranging
from 0.5× 0.5 mm2 to 4× 4 mm2.

While some of the paintings do not leave much freedom for choosing a
patch because of their limited size (e.g. f441 and s448, cf. Figs. 8 and 12,
respectively), others do (e.g. f297, f392 or f411). For these, different patches
could be selected for analysis. A careful inspection suggests that, within the
natural statistical fluctuation of the estimation procedures, the multifractal
attributes obtained on different patches from a single painting are consistent.
This is illustrated in Fig. 9, where three patches for the painting f452 are
compared.

4.3. Dating Challenge

4.3.1. Description

Van Gogh, while in France, had two major periods of creation, in Paris
(ending early 1888) and later in Southern France (Provence). While a number
a paintings of the master are unambiguously attributed to the Paris or to the
Provence periods, the decision is still under debate amongst experts and art
historians for a number of others. Investigations by art experts often rely on
a number of material and stylometric features (density of brush strokes, size
or scale of the brush strokes, thickness of contour lines, layers, colors, . . . ).
In an attempt to investigate the potential benefits of computer-based image
processing procedures to assist painting analysis, two sets of 8 paintings
from the Paris and Provence period were selected as benchmark references
and 3 paintings, whose dates of creation are unknown, are proposed to the
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challenge. Low resolution partial and digitized copies of these three sets of
Van Gogh’s masterpieces are shown in Fig. 8 (nomenclature corresponds to
the Van Gogh museum catalog).

4.3.2. Results

In Fig. 10, logscale diagrams, scaling functions and multifractal spectra
for the Saturation Channel for an arbitrary selection of one painting for each
of the three classes are illustrated. It suggests that for this example, the
painting from the Provence period may show globally less regularity than
the Paris period.

To attempt to further quantify this observation, we choose to analyze
in more detail the reduced set c1, c2, hm of point estimates obtained by the
wavelet leader based multifractal analysis for all paintings. Because the re-
course to machine learning (such as Support Vector Machines) for 19(= 8+8+
3) subjects in a 42(= 7*3*2)D space does not make any sense, we instead in-
spected manually a large collection of 2D projections of this space. The most
convincing discrimination is obtained with parameter hm computed from the
Red-Channel and c1 from the Saturation-Channel, with the saturation chan-
nels being particularly discriminant, cf. Fig. 11. Interestingly, saturation in
colors is known by art historians as one of the features used to discriminate
both periods (cf. www.digitalpaintinganalysis.org/Challenges.htm).
Note, however, that multifractal analysis does not discriminate saturation
on its level but instead on the regularity of the texture in the Saturation-
Channel. This projection supports the above observation that textures in
Van Gogh’s during the Paris period appear to be more regular, possiblly
indicating more regularity in the brushtrokes themselves. This is consistent
with findings in [? ] reporting large wavelet coefficients at fine scales (hence
more irregularity) for non Van Gogh’s than for Van Gogh’s paintings. Also,
the results obtained here suggest that paintings f386 and f605 are closer to
the Provence period cluster (Red), while f572 is closer to the Paris period
cluster (Blue). It must be noted however that following these fractal prop-
erty criteria, f411 from the Provence period would incorrectly be attributed
to the Paris period.

4.4. Authenticity Challenge

4.4.1. Description

In this challenge, digitized copies of 4 paintings by Van Gogh, and 4
by contemporaries, are provided, and one painting is labelled unknown and
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proposed for classification. The latter painting is a known contemporary copy
of an original Van Gogh’s painting. However, the original Van Gogh is not in
the available data set, hence preventing us from performing comparisons as
conducted in the Princeton experiment case. Experts state that the colors of
the copies have remained truer to the original colors than those of the painting
by the master. Essentially, their distinction between Van Gogh’s and true
Van Gogh’s is based on a careful analysis of Van Gogh’s brushstroke referred
to as vigourous with non overlapping and netly defined strokes, as opposed to
those of his contemporaries ever found too academic and regular or too messy
and irregular (cf. www.digitalpaintinganalysis.org/Challenges.htm).

The challenge consists in devising numerical features that distinguish the
two test sets and enable to associate the test painting with the one or the
other group. The nine paintings are shown in Fig. 12.

4.4.2. Results

Fig. 13 proposes logscale diagrams, scaling functions and multifractal
spectra for the Red Channel for an arbitrary choice of one painting each out
of the reference classes, and for the painting whose label is to be determined.

A careful inspection of the multifractal spectra leads to suggest that Van
Gogh’s painting tends to be globally more regular. Systematic estimation of
the hm, c1, c2 parameters on the 7 channels of the 9 paintings and manual
analysis and 2D projections as described in the dating challenge reveal that
the Saturation and Red Channels are most discriminant between the two
sets, and that the Non Van Gogh paintings are overall more irregular, with
smaller values for hm and c1 (cf. Fig. 14). These 2D projections also indicate
that the painting under investigation, s506, is further from the Non Van
Gogh’s paintings cluster and closer to the Van Gogh cluster. This incorrectly
contradicts experts decision but may interestingly indicate that the copyist
was more successful here in reproducing Van Gogh’s brushstroke regularity.

5. Conclusions and Perspectives

This contribution illustrated the potential and possibilities of the wavelet
leader multifractal formalism analysis applied to digitized paintings to assist
art investigation.

At the technical level, it showed that the wavelet leader multifractal for-
malism must be used in complements of the classical wavelet coefficients to
well assess the relevance of fractal properties as well as the range of scales
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where they can be regarded as relevant. Also, multifractal analysis cannot
be used blindly to pieces of images or paintings that consist of a collection
of different textures or of mixtures of different objects and subjects. Instead,
a careful selection of patches consisting of homogeneous textures must be
achieved. This is where interventions of art experts could prove useful: They
may peak specific patches that contain a particular interest with respect to
the techniques used, the status of the colors,...

At the painting level, it is worth mentioning that the range of scales
where fractal properties where found to hold are the same (from 0.5 mm to 5
mm) for the Princeton experiment and for the Van Gogh’s painting (though
scanned at different resolutions). This has been obtained independently by
two different multifractal experts. Again, interpretation of why this range
of scales should carry fractal properties in painting should significantly ben-
efit from close discussions with art experts. Also, art experts could further
contribute significantly to the kind of analysis proposed here by suggesting,
for each painting, which patch should analyzed in priority given a specific
interest or question.

This contribution showed, we believe, promising results: Multifractal
analysis enables to measure features that fruitfully characterize painting tex-
tures. This first attempt can be further complemented by increasing the
number and type of attributes estimated. Measures of anisotropy are cur-
rently being investigated.

Hopefully, such results may promote further and closer interactions be-
tween image processing researchers and art experts. Such exchanges could
enable the constitution of data sets, where both technical issues (scanner res-
olution and techniques) and art expertise is well documented, the formation
of real interdisciplinary teams where art experts would propose questions for
which image processing could help to formulate answers.
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Figure 1: Wavelet leaders: The wavelet leader LX(j, k1, k2), located at scale 2j and
position 2jx1, 2

jx2, is obtained as the largest of all wavelet coefficients located in a narrow

spatial neighborhood and at any finer scale 2j
�

≤ 2j .
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j = j for numerous qs, Linear Regression for q = 2, Scaling
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Figure 4: The Princeton Experiment: The 7 originals, numbered hereafter 1 to 7,
from left to right and top to bottom.
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Pair Ground Paint Brushes Pixel

1 CP Canvas Oils S & H 6272× 6528
2 CP Canvas Acrylics S & H 6272× 6528
3 Smooth CP Board Oils S & H 6272× 6528
4 Bare Linen Canvas Oils S 3200× 6144
5 Chalk & Glue Oils S 3328× 4608
6 CP Canvas Acrylics S 3456× 5504
7 Smooth CP Board Oils S 6400× 6528

Table 1: The Princeton Experiment. Soft brushes were sable or synthetic; hard brushes
were flat hog hair.
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Figure 5: Multifractal Analysis. Three first lines: original (left) and copy (right). Last
line: estimated multifractal attributes: original (black) and copy (red).
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1 hm c1 c2 2 hm c1 c2

All-Chan. 0.00 0.00 0.15 All-Chan. 0.00 0.00 0.00
Lum. 0.00 0.03 0.62 Lum. 0.24 0.00 0.41

All-Chan 0.00 0.00 0.01 All-Chan. 0.00 0.00 0.00
Lum. 0.00 0.01 0.20 Lum. 0.00 0.00 0.10

All-Chan 0.00 0.00 0.02 All-Chan. 0.00 0.00 0.00
Lum. 0.03 0.14 0.28 Lum. 0.00 0.02 0.03

All-Chan −0.14 −0.07 −0.01 All-Chan. −0.20 −0.11 −0.02
Lum. −0.15 −0.06 0.01 Lum. −0.23 −0.12 0.02

3 hm c1 c2 4 hm c1 c2

All-Chan. 0.00 0.00 0.73 All-Chan. 0.21 0.39 0.0
Lum. 0.00 0.03 1.00 Lum. 0.48 0.48 0.48

All-Chan 0.00 0.00 0.58 All-Chan. 0.44 0.47 0.06
Lum. 0.00 0.00 0.74 Lum. 0.31 0.40 0.81

All-Chan 0.01 0.03 0.53 All-Chan. 0.58 0.90 0.21
Lum. 0.08 0.21 0.54 Lum. 0.87 1.00 0.87

All-Chan −0.07 −0.06 −0.00 All-Chan. 0.01 0.01 −0.01
Lum. −0.10 −0.08 0.00 Lum. 0.02 0.01 0.01

5 hm c1 c2 6 hm c1 c2

All-Chan. 0.01 0.00 0.08 All-Chan. 0.60 0.60 0.04
Lum. 0.39 0.15 0.77 Lum. 1.00 0.60 0.31

All-Chan 0.02 0.00 0.02 All-Chan. 0.32 0.07 0.01
Lum. 0.38 0.06 0.62 Lum. 0.33 0.39 0.11

All-Chan 0.38 0.24 0.49 All-Chan. 0.39 0.79 0.37
Lum. 0.72 0.87 0.98 Lum. 0.94 0.94 0.61

All-Chan −0.05 −0.05 −0.02 All-Chan. 0.03 −0.02 0.15
Lum. −0.01 −0.02 0.00 Lum. 0.02 −0.01 0.01

7 hm c1 c2

All-Chan. 0.00 0.01 0.54
Lum. 0.87 0.24 0.24

All-Chan 0.01 0.00 0.98
Lum. 0.50 0.31 0.57

All-Chan 0.29 0.13 0.26
Lum. 0.75 0.77 0.90

All-Chan −0.03 −0.05 0.00
Lum. −0.02 −0.03 −0.00

Table 2: P-values. For each 7 sub-tables (corresponding to the 7 images), the p-values
correspond to the pairWise SignTest (Top), PairWise RankTest (MiddleTop), NonPair-
Wise Wilcoxon RankSum (Middle-bottom:). The Bottom pair of lines shows the mean
value of the difference between Original and Copy. In each pair of lines, the top line cor-
responds to the test applied to all 7 channels, while the bottom shows results for the test
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Pair Ground Paint Brushes Discr.

1 CP Canvas Oils S & H PW/NPW
2 CP Canvas Acrylics S & H PW/NPW
3 Smooth CP Board Oils S & H PW/NPW
4 Bare Linen Canvas Oils S ·
5 Chalk & Glue Oils S PW
6 CP Canvas Acrylics S ·
7 Smooth CP Board Oils S PW

Table 3: Discriminating Original from Copy. Copies have textures which are sig-
nificantly globally more regular than those of originals for Paintings 1 to 3. This is well
detected both using pairwise (PW) and non pairwise (NPW) tests. It is also the case for
Paintings 5 and 7, but only for PairWise (PW) tests, i.e., only when comparing patches
with same locations on original and copy.
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Paris period

1 : F297 2 : F360 3 : F374 7 : F469

8 : F524 11 : F358 12 : F371 16 : F452
Provence period

4 : F392 5 : F415 6 : F451 10 : F607

14 : F411 15 : F441 17 : F475 18 : F538
To be classified

9: F572 ; 13: F386 ; 19: F605

Figure 8: Dating challenge: Provence vs. Paris periods. 8 paintings from the Paris
period (top), 8 paintings from the Provence period (middle), 3 paintings to be classified.
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Figure 9: Multiple patches from one single painting. The multifractal spectra
computed on 3 different patches extracted from the Red Channel Van Gogh’s Painting from
the Paris period f452 suggests that estimates from the 3 patches of visually different texture
are consistent. The precise values for the multifractal attribute triple (c1, c2, hm) are (from
left to right): (0.93,−0.051, 0.050), (0.93,−0.081,−0.051), (0.96,−0.076,−0.007).

32



f452

700 1400 2100 2800

280

560

840

1120

1400

1680

1960

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
!10

!5

0

5

scale [mm]

!15 !10 !5 0 5 10 15
!20

!15

!10

!5

0

5

10

15

q

!(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

f605

140 280 420 560

350

700

1050

350

700

1050

350

700

1050

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
!10

!5

0

5

scale [mm]

!15 !10 !5 0 5 10 15
!20

!15

!10

!5

0

5

10

q

!(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

f475

650 1300 1950 2600

650

1300

1950

650

1300

1950

650

1300

1950

100 200 300 400 500

100

200

300

400

500

0.25 0.5 1 2 4 8
!10

!5

0

5

scale [mm]

!15 !10 !5 0 5 10 15
!20

!15

!10

!5

0

5

10

q

!(q)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

h

D(h)

Figure 10: Dating challenge: Paris vs. Provence periods. Multifractal spectrum
computed on patches extracted from the Saturation Channel of Van Gogh’s Paintings
from the Paris period (F452, left), from the Provence period (F475, right), to be classified
(F605, middle) from its multifractal properties.
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Figure 11: Dating challenge: Paris vs. Provence periods. Plots of hm computed
from the Red Channel vs. c1 from the Saturation Channel suggests that paintings f386
f605 are closer to the Provence period cluster (Red), while f572 is closer to the Paris
period cluster (Blue).
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Van Gogh

1 : F518 2 : F752 3 : F764 4 : F799
Non Van Gogh

5 : s447 6 : s448 7 : s457 8 : s503
Unknown

5 : s506

Figure 12: Authenticity challenge: Van Gogh’s vs. non Van Gogh’s Paintings. 4
paintings from Van Gogh (top), 4 paintings not from Van Gogh (middle), and the painting
to be classified.
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Figure 13: Authenticity challenge: Van Gogh’s vs. non Van Gogh’s Paintings.

Multifractal spectrum computed on patches extracted from the Red Channel of Van Gogh’s
(left) and non Van Gogh’s (right) Paintings compared to the painting under test (middle).
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Figure 14: Authenticity challenge: Van Gogh’s vs. non Van Gogh’s Paintings.

Plots of hm computed from the Saturation Channel versus c1 (left) and hm (right) from
the Red Channel suggest that painting s506 is closer to the Van Gogh cluster (Blue) than
to the Non Van Gogh cluster (Red). 37


