
HAL Id: hal-00798391
https://hal.science/hal-00798391v1

Preprint submitted on 8 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Constrained Dynamic Software Architecture
with Attributed Graph Rewriting Systems

Cédric Eichler, Thierry Monteil, Patricia Stolf

To cite this version:
Cédric Eichler, Thierry Monteil, Patricia Stolf. Modelling Constrained Dynamic Software Architecture
with Attributed Graph Rewriting Systems. 2012. �hal-00798391�

https://hal.science/hal-00798391v1
https://hal.archives-ouvertes.fr

Modelling Constrained Dynamic Software

Architecture with Attributed Graph Rewriting

Systems

Cédric Eichler123, Thierry Monteil23, and Patricia Stolf13

1 IRIT; 118 Route de Narbonne, F-31062 Toulouse, France
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, UPS, INSA, F-31400, UTM, F-31100 Toulouse, France

Abstract. Dynamic software architectures are studied for handling adap-
tation in distributed systems, coping with new requirements, new envi-
ronments, and failures. Graph rewriting systems have shown their ap-
propriateness to model such architectures, particularly while considering
the consistency of theirs reconfigurations. They provide generic formal
means to specify structural properties, but imply a poor description of
specific issues like behavioural properties. This paper lifts this limita-
tion by proposing a formal approach for integrating the consideration
of constraints, non-trivial attributes, and their propagation within the
framework of graph rewriting systems.

Keywords: Dynamic software architectures, Graph rewriting systems, Con-
strained and attributed rewriting systems

1 Introduction

Dynamic software architectures are studied for handling adaptation in auto-
nomic distributed systems, coping with new requirements, new environments,
and failures. The description of evolving architectures cannot be limited to the
specification of a unique static topology but must cover the scope of all the
correct configurations. This scope characterize an architectural style, qualify-
ing what is correct and what is not. Naturally, once this distinction made, the
question of the specification of the modifications themselves arises, alongside
with theirs properties with regard to consistency preservation. These concerns
motivate the need for suitable description languages and formalisms avoiding
ambiguities for correct architectural design, management and analysis.

Several approaches have been proposed in the past adopting a language-based
view of this problem. Many architecture description languages (ADLs) were in-
troduced providing rigorous syntax and semantic to define architectural entities
and relations [26, 22, 2, 13, 23]. Such languages are adequate to describe the struc-
tural and behavioural properties and constraints of a system. However, ADLs

suffer from several insufficiencies for modelling and analysing dynamic software
architecture [16]. The majority of ADLs are concentrated on the structural de-
scription of architecture whereas their dynamic aspects are not well supported.
Darwin [23] only allows component replication whereas ACME [13] only allows
optional components and connections. Dynamic-Wright [1] describes dynamic
architecture in Wright [2], limiting itself to predefined dynamics, meaning that
the system should have a finite number of configurations and reconfiguration
policies known in advance.

Model-based approaches, proposing general-purpose modelling languages, al-
lows to handle dynamism and particularly the definition of reconfiguration rules
managing the evolution of an application in run-time. They provide very intu-
itive and visual formal or semi-formal description of structural properties [4].
For example, designing and describing software models using UML [25] is a
common practice in the software industry, providing a standardized definition of
system structure and terminology, as well as facilitating a more consistent and
broader understanding of the architecture [31]. Nevertheless the generic fitness
of model-based approaches implies poor means of describing specific issues like
behavioural properties. Therefore they are often coupled with description us-
ing ADLs [29, 24, 5], mapping the concepts of ADLs into the visual notation of
UML, or other formalisms [21, 17]. In spite of its wide acceptance, UML-based
descriptions appears to lack expressiveness and formal tools for guaranteeing
consistency. In fact, consistency checking in run-time may lead to combinatorial
explosions. To tackle efficiently consistency preservation in the scope of dynamic
reconfiguration, correct by design formal approaches have emerged. Based on
formal proofs and reasoning in design-time, they guarantee the correctness of a
dynamic application, requiring little or no verifications in run-time.

Graph-based methods for software modelling are appropriate for conceiving
correct by design frameworks, as theoretical work on this field provides formal
means to specify and check structural constraints and properties [30, 11]. Within
this kind of approaches, some methods are restricted to the use of type graphs
alone [33] and suffer from the same lack of expressiveness as UML-based meth-
ods. Other works [14, 20] are based on graph grammar, or graph rewriting sys-
tem, techniques. Graph grammars are appropriate for formal modelling dynamic
structures and software architectures, and are used to specify architectural style
where a graph represents a configuration. Graph rewriting rules have two dis-
tinct values. They intervene in both the characterisation of an architectural style
as part of a rewriting system and in the specification of consistency preserving
reconfiguration rules [15]. The very first thing to consider is the definition of
attributes for which two approaches prevail. The most simple one is to assign to
each elements, vertices and edges, of a graph a list of couples representing con-
stant or variable attributes along with theirs domains of definition [7]. The main
drawback is that it does not allow to conduct any operation on said attributes
or to fully propagate them. The second one is to define domains of definitions

and operators in the form of a many sorted algebraic signature [12] SIG and
to integrate attributes as vertices of the graph, elements of a SIG-algebra [3,
10]. A direct implication is a natural manipulation of attributes using operators
and their addition or deletion as regular vertices of the graph. This modularity
does not come without drawbacks. Graph rewriting rules relies on finding graph
homomorphisms, a NP-complete problem. As a consequence, increasing the size
of the input graphs seems inefficient, as well as multiplying the application of
graph rewriting rules to modify attributes whenever a domino effect is implied.

The motivation of this paper comes from two simple statements. First, clas-
sical grammar theory allows complex propagation of attributes and the speci-
fication of elaborated semantic predicates on production rules. Propagation of
attributes in graph grammars is very limited and often restricted to inheritance
[7], restraining the means to model the impact of an event, such as a reconfigura-
tion, on the attributes of an application. Semantic predicate are mostly present
in the form of implicit system of simple equalities between attributes [7, 3, 10].
Secondly, these approaches focused on attributes and structural transformation,
but disregard the appropriateness of a configuration. Yet constraints linked to
such consideration are closely related to the architecture and its components. As
a consequence, we wish, while constructing, deploying, or reconfiguring a con-
figuration, to construct a set of constraints easy to evaluate. These lasts model
some basic, more or less important, requirements of the application. As a result,
their violation could be detected and automatically handled by a manager with-
out requiring complex decision and without analysing the actual performances
of the whole application.

A motivating example further enlightening the problems tackled by this ar-
ticle is presented in the next section. Section 3 introduces our formal model
overcoming said obstacles. The characterisation of the motivating example is
presented in Section 4, before discussing optimisation and evaluation issues. Fi-
nally, Section 5 is dedicated to conclusion and perspectives.

2 Problem Statement throughout a Motivating Example.

2.1 Motivating Example

In order to illustrate the issues addressed in this article, we introduce DIET4

[6], a hierarchical load balancer for dispatching computational jobs over a dis-
tributed infrastructure, like a grid or a cloud. Its architecture consists of a set of
agents: some Master Agents (MA) manage pools of computational SErver Dea-
mons (SED) through none, one or several layers of Layer Agents (LA). These
servers can achieve specialized computational services. Communications between
agents are driven by the omniORB system (OMNI). MAs listen to client requests
and dispatch them through the architecture to the best SED that can carry out

4 Distributed Interactive Engineering Toolbox

the required service.
We stated previously that UML-based modelling suffers from a lake of expres-
siveness. This application has been described using class diagrams [32], but the
fact that a LA can manage another LA could not be taken into consideration.
It will be shown later that graph grammars do not exhibit such limitations.

A simplified architecture with a single MA and a single OMNI will be con-
sidered here. The main characteristics of the application are as follow :

1. While being deployed, each component record itself to the OMNI.
2. Each LA and each SED has a hierarchical superior.
3. The MA and each LA manage at least one LA or one SED and at maximum

ten of them - these conditions could be trivially extended to any number of
minimum and maximum managed entities, as seen later in this paper.

All instances of an architectural style are NOT created equals. At a given
time, even though a configuration meet all the requirements of the applica-
tion, another configuration may meet them in a “better way”. In particular, we
considered the following criteria : the energy consumption, the robustness, the
fault-tolerance w.r.t. the breakdown of machine or a software component, and
the quality of service. A very restricted view will be adopted here, with simple
- simplistic, even - models as they still put the addressed problem under the
spotlight.
Assume that the energy consumption depends only on the number of used ma-
chines and of the software components deployed on them.
Robustness is a little bit trickier. The first intuition is to exploit redundancy
by deploying SEDs not having a disjoint set of carried out services. However,
if every SED offering a particular service are deployed on the same machine,
the application is still vulnerable to a machine breakdown. In a similar fashion,
SEDs offering very close sets of services should not be managed by the same LA
or LAs deployed on the same machine.
A single aspect of quality of service is studied : the balance of the managed enti-
ties over the set of LAs sharing the same depth, i.e. the number of intermediate
LAs between a LA and the MA. Let LA(d) be the set of LA of depth d, and
M(c) be the number of entities managed by the component c. An entity can
be deployed and directly managed by a LA ∈ LA(d) if it does not make the
standard deviation of

⋃
la∈LA(d) M(la) become greater than an arbitrary value.

An interesting point here is that robustness and energy consumption are con-
current, in the sense that deploying more software components or using more
machines will, while ameliorating the first, impact badly on the second.

To value these three conditions, it is crucial to keep track of some attributes
of the software components :

1. the machine on which each entity is deployed,
2. the number of entities managed by each LA and the MA,
3. the depth of each LA,

4. the set of services carried out by each SED or by at least a SED managed
directly or indirectly by each LA.

By misuse of language the set of services carried out by at least a SED managed
directly or indirectly by an LA will sometimes be referred to as the set of services
carried out by the LA.

2.2 Problem Statement

How is modelling such an architecture an issue? This seemingly simple problem
still raises some interesting points underlining limitations of classical attributed
graph grammars.

– Interdependency of attributes ; the attributes of an entity depends on at-
tributes of other entities. In classical attributed grammars, attributes are
classified according to the fact that those other entities are parents or sib-
lings of the first one , it is then said to be inherited, or not, in the case of
a synthesized attribute. Similarly, those dependencies have to be handled in
a very different way whether they rely on existing attributes or attributes
of entities that has yet to be deployed. The first scenario, including the
evaluation of the depth of an LA, which depends on the depth of the en-
tity managing it, have been addressed with attributes inheritance in graph
grammars. On the other hand, evaluating the set of services offered by at
least a SED managed directly or indirectly by an LA can not be treated in
the same fashion.

– Modification of an existing attribute; the option of considering attributes
as nodes has been discarded due to its high implementation complexity.
Consequently, graph rewriting rules cannot be used to modify attributes,
and their modification are therefore not possible within the framework of
classical graph grammars.

– Conditional deployment ; whenever trying to deploy a LA or a SED, we should
verify that it does not violate the maximal cardinality condition and the
balancing condition. The first one could be handled in a structural, syn-
tactic way using negative application conditions, implying other search for
homomorphisms and thus a high computational complexity. The balancing
condition, however, is too complex to be reasonably managed using pattern
matching.

– Evaluating a configuration; we have seen that the constraints reflecting the
appropriateness of a configuration are intimately related to attributes of the
graph and do not weight on the same levels or components. Particularly,
components of the same nature have close requirements that arise or evolve
as components are deployed or as the context evolve, so that integrating such
constraints in the model as any attributes is relevant. In addition, the entity
managing the evolution of the architecture could then react quickly to their
violation, without requiring much reasoning.

These four points put under the spotlight the limits of the formalism pre-
sented in [28] and the need for its expansion described in this paper.

3 Introducing Constraints and Mutators within Graph

Rewriting Systems

3.1 Attributes, Constraints and Attributes Rewriting

Before introducing graph rewriting systems and how they may be used to model
a dynamic software architecture, a certain number of concepts have to be de-
fined. First of all, let us consider what an attribute shall be. We adopt an hybrid
formalism conserving the simplicity and the computational efficiency of “list-
ing” attributes as labels while granting the possibility of applying any operator.
Informally, an attribute is represented as a constant, a variable or the result
of any function on other attributes, as long as the signature of the function is
respected, coupled with its domain of definition. The expression of the function
may includes quantifiers. We assume the canonic notation where YX is the set
of function from X to Y.

Definition 1. (Attribute) An attribute is a couple Att = (AttA, AttD) where

– AttA is called value and is either

• a variable,
• a constant or
• an expression, a regular combination of attributes : ∀n ∈ N, ∀ sequence
of sets (Du)u∈[|1,n|], ∀ f ∈ DD1×D2×···×Dn , a couple Att = (f(A1,..,An),
AttD) is a regular combination of attributes of (Ai, DAi

)i∈[|1,n|] if and
only if AttD ⊆ D and ∀i ∈ [|1, n|], (Ai, DAi

) is a (defined) attribute and
DAi

⊆ Di.

– and AttD its domain of definition.

An attributed structure is a couple composed of the structure and a set of
indexed attributes or sequence of attributes. The first member of an attribute
will be noted within quotation marks if and only if it is constant. The fact that
the first member of an attribute is constant does not implies that it can not
change any further, but rather that at a given time the attribute is equals to a
member of its domain of definition.

Remark 1. In the approach presented here the attributes can be a regular combi-
nation of any other attributes, not necessary the attributes of the same structure.
For example, considering an attributed structure (A, ATTA) of attributed struc-
tures (Bi, ATTBi

) of attributed elements (Ci
j , ATTCi

j
). Let ATT = ATTA ∪

⋃
i ATTBi

∪
⋃

(i,j) ATTCi
j
. ∀ Att ∈ ATT, ∀N ∈ N, ∀ (Attk)k∈[|1,N |] ∈ ATTN ,

Att can be a regular combination of (Attk)k∈[|1,N |]. From now on, we adopt the
definition

Remark 2. Note that this notation is related to the approach considering many-
sorted signatures and algebras as elements are attributed over an implicit SIG-
algebra. Informally, the sorts of SIG are every defined domains of definition and
its operations are every functions from any combination of sorts to any sort.
For any attributed structure (str, ATTstr), let ATT be the set of attributes
resulting of the union of any attribute defined in the framework of str, which is
not empty as at least ATTstr ⊆ ATT. Let S = { s |∃ Att, (Att, s) ∈ ATT} and
OP = { f | ∃N ∈ N, ∃(Atti)i∈[|0,N |], f ∈ AttAtt1×Att2×···×AttN

0 }. str is attributed
over a (S,OP)-algebra.

Attributes are entirely aimed at providing informations on an algebraic struc-
ture. It is very natural to desire to exploit these bits of information by expressing
any property over a structure or its attributes. Those having been defined in a
very generic way, constraints can be seen as a specific kind of attributes taking
values in a ternary predicate logic system.

Definition 2. (Constraint) A constraint Cons = (C, D) is an attribute (C,
D) and D = {“true”, “false”, “unknown”}.

To simplify the notation, considering that constraints share the same domain
of definition, a constraint Cons = (C, D) may be referred to as C, and the domain
of definition be implicit. In the following we adopt the principles of Kleene’s
strong logic [18] [19], in particular its basic logic operations (∨,∧,¬, =⇒) and
the fact that the only truth value is “true”. The uniqueness of this truth value
means that evaluations are pessimistic, i.e. “unknown” is supposed to be false.

Remark 3. A constraint, as a regular combination of attributes, can be seen as
a classical expression of a predicate ternary logic. Considering a ternary logic
rather than a binary one implies that unlike attributes, constraints can be eval-
uated, i.e. associated with a constant, at any time. The idea here is to associate
any minimal logic expression that can not be evaluated, due for example to
an attribute implied in its expression being un-evaluable or variable, with “un-
known”.

Example 1. Let S be any mathematical structure along with the set of attributes
ATT = {Att1, Att2, Att3} = {(A1, Mach), (A2, Mach), (A3, {“true”, “false”,
“unknown”})} where A1 = m, A2 = “m̄”, and A3 = “true” and the set of
constraints CONS = {C1, C2 } = { (A1 6= A2), (C1 ∨ A3) }. Even though Att1
can not be evaluated to a constant, C1 can be evaluated to “unknown”. C2 is
then equals to “unknown” ∨ “true”, which is “true”.

In order to lighten the notation, an attributed system with constraints, i.e.
a triple composed by the system, a set of indexed attributes or sequence of at-
tributes, and a set of indexed constraints or sequence of constraints, is noted
an AC-system. Whenever defining an AC-system with AC-elements, rather than
separating each sets of attributes (resp. constraints), a single family of sequence
of attributes indexed by the sets of attributed elements is considered.

One of the issues evoked in section 2 is the fact that attributes are prone to
evolve. A reconfiguration may thus impact the attribute of the system. Classi-
cal string rewriting theory [27] tackles this issue by using mutators. A similar
approach is adopted here.

Definition 3. (A mutator on an AC-system) A mutator on an AC-system
is an arbitrary algorithm updating the value(s) of none, one or some attributes
of the AC-system.

According to this definition, the scope of mutators remains limited to the
modification of values. They can not be used neither to add or suppress an at-
tribute nor to modify the domain of definition of an attribute.

3.2 Attributed Constrained Graph Modelling a Configuration

Tools to manipulate and analyse attributes having been introduced, the struc-
tures of interest can be presented. An AC-graph, modelling a software snapshot
or configuration at a given time, consists in an AC-couple of two AC-sets of
vertices and edges where an edge is a couple of vertices (source, destination).
Following the commonly used conventions for standard graphical descriptions,
one considers that vertices represent services or architectural components and
edges correspond to their related interdependencies. Note that vertices, edges
and the graph itself are AC-structures. According to remark 1, elements are at-
tributed over the same algebra, i.e. an attribute or a constraint of the graph, a
vertex or an edge may consist in any regular combination of attributes of the
graph, any vertex and any edge. For any set S, the cardinality of S is represented
as |S|.

Definition 4. (AC-graph) An AC-graph is defined by the system G = (V, E,
ATT, CONS) where

– V and E ⊆ V2 correspond respectively to the set of vertices and edges of the
graph,

– ATT (resp. CONS) is a family of sets ATTel (resp. CONSel), indexed by
a subset of V ∪ E ∪ {G}. ATTel is a set of attributes (resp. constraints)
of arbitrary length and containing the sequence of attributes (ATTi

el = (Ai
el,

Di
el))i∈[|1,|ATTel|| (resp. (CONSi

el = (Ci
el, D

i
el))i∈[|1,|CONSel||) of the element

el.

ATT and CONS are indexed by a subset of V ∪ E ∪ {G}, so as not to impose
an empty set of attributes or constraint if an element is wished not to be at-
tributed or constrained. Consequently, 0 ≤ |ATT| ≤ |V|+ |E| +1 and 0 ≤ |CONS|
≤ |V|+ |E| +1. Now that AC-graphs are defined, it is possible to represent a
configuration of DIET as presented in section 2.

Fig. 1. An AC-graph modelling a configuration of DIET

Example 2. Figure 1 represents an AC-graph modelling some configuration of
DIET, where the naming server has been omitted for clarity concerns. The graph
is formally defined in Appendix A.

The notations used in Fig. 1 are as follow; Mach is the set of available ma-
chines, on which a software component may be deployed, Nat the set of possible
nature of a software component, {“OMNI”, “MA”, “LA”, “SED”} in the case of
a DIET architecture, Link the set of possible relationships {“ma2la”, “ma2sed”,
“la2sed”, “registered”}, and Serv the power set of S, the set of services that could
be carried out by a SED. At this time, the software architecture is composed
by eight components symbolized by eight vertices and theirs corresponding re-
lations modelled by some edges both with theirs attributes. A notable fact is
that components of the same nature have the same number of attributes, theirs
attributes being the one identified in Sect. 2. This stem from the definition of
the rewriting system that will be presented later in this paper. Attributes have
similar meanings, be it the number of managed entities, the depth of a LA...
In addition, some components as well as the graph itself are constrained to re-
flect the concerns stated in the same section. Graphically, a dot line between a
constraint and a vertex illustrates the target of said constraint. The MA should
manage strictly less than eleven entities, underlining a fundamental property of
the architectural style. Even though the maximum number of entities managed
by the LAs could be expressed in the same way, an other technique will be used
and presented later. To cope with robustness, it is specified that a LA should not
be deployed on the same machine as a component managed by the same entity
as itself or that they should have disjoint set of carried services. The graph is
constraints by two clauses Loc and Red, described in Appendix A, taking into
account the needs for redundancy and multiple localisations over the offered ser-
vices.

This is how a DIET configuration should look like. From now on, our aim
is to introduce the notions allowing to characterize the corresponding architec-
tural style, ensuring in particular that attributes are correctly updated and that
components have the required constraints.

3.3 Graph Rewriting Rules and Systems

As stated in the introduction, an architectural style can be formalised using a
graph rewriting system. The production rules of such systems require to identify
sub-structures by the means of homomorphisms. An unattributed graph homo-
morphism between two graphs is defined as an homomorphism from the set of
vertices of the first one to the set of vertices of the second graph so that if there is
an edge between two vertices of the first one there is an edge between their image
in the second one. Based on [28], we define an attributed graph homomorphism
as follow.

Definition 5. (AC-graph homomorphism) Two AC-graphs G = (V, E, ATT,
CONS) and G’ = (V’, E’, ATT’, CONS’) are homomorph -noted G → G’- if
and only if there is a graph-homomorphism h from (V, E) to (V’, E’) such as

1. ∀ v ∈ V (resp. ∀ e = (v̄, ṽ) ∈ E), |ATTv| = |ATTh(v)| (resp. |ATTe| =
|ATT(h(v̄),h(ṽ)|),

2. ∀ v ∈ V (resp. ∀ e = (v̄, ṽ) ∈ E), ∀ i ∈ [|1, |ATTv|], Di
v = Di

h(v),

3. The system of equations S = { A = A’ | (∃ v ∈ V, ∃ i ∈ [|1, |ATTv|], A =
Ai

v ∧ A’ = Ai
h(v)) ∨ (∃ e = (v̄, ṽ) ∈ E, ∃ i ∈ [|1, |ATTe|], A = Ai

e ∧ A’ =

Ai
(h(v̄,h(ṽ))) } has at least one solution.

Remark 4. – Constraints do not impact on the definition of an homomorphism.
It will be shown that they intervene in the rewriting process in a different
way. Similarly, attributes on vertices and edges are the only one that are
considered whereas attributes on the graph itself are not.

– We underline the fact that the existence of an AC-homomorphism is condi-
tioned by the resolvability of a system of equations on attributes. As stated
in the introduction, in [3, 21, 14, 20] and most of the research on attributed
graphs, the existence of a morphism is also conditioned by equalities be-
tween attributes, potentially through morphism between attributes spaces.
However, this is often the only clause relying on attributes that impact the
applicability of a graph rewriting rule.

– AC-graph isomorphism and AC-vertex morphism can be trivially deduced
from the definition of AC-graph homomorphism.

Solving the system of equation S result in identifying the value of some at-
tributes with some constants in theirs domains of definition and/or with some
other attributes. Integrating the affectation obtained by solving this system
refers to the update of the value of the attribute to reflect these identifications.
Intuitively, such an integration is nothing more than a dimension reduction of

the space formed by the potential values of the attributes. For more information
see [28].

There exists a vast number of approaches handling graph rewriting based on
attributed graphs [30, 9]. Their applicability depends on various factors, suspen-
sion condition, negative application condition(s), always including the existence
of an homomorphism between an element of the graph rewriting rule and the
graph to rewrite. Inspired by string grammar theory [27], we include in these
factors the satisfaction of a, potentially empty, set of constraints on attributes,
namely the set of constraints of the AC-rewriting rule. Consequently, the set of
constraints on a graph rewriting rule can be seen as a set of semantic predicates.

Applying a rewriting rule on a graph consists in suppressing a part of the
graph and extending it by adding some vertices and edges. In addition to classical
modifications induced by the application of a rule, a set of actions is performed
at the end of said application.

Virtually, any attributed graph rewriting formalism could be extended to
include semantic predicates, constraints and mutators. In order to fix the idea,
we chose the classical double push out formalism defined in [30] alongside with
the attribute management considered previously and used in [28].

Definition 6. (AC-graph AC-rewriting rule) An AC-graph AC-rewriting
rule is a 5-tuple (L, K, R, ATT, CONS, ACT) where

– ATT = ATTL∪ ATTR is a set of attributes, ATTrule being the set of at-
tributes of the graph rewriting rule itself,

– CONS = CONSrule∪ CONSR\K is a set of constraints, CONSrule being the
set of constraints of the graph rewriting rule itself and CONSR\K the set of
constraints of R\K,

– (L = (VL, EL), ATTL, ∅) and (R = (VR, ER), ATTR, CONSR\K) are
AC-graphs,

– K = (VK , EK) is a sub-graph of both L and R,
– ACT is a set of actions.

L\K is called the Del zone and R\K is called the Add zone, while K is called the
Inv zone.

Furthermore, graph rewriting rules are illustrated here using the delta represen-
tation, where only one graph is considered. This graph is visually partitioned
into three zones, from left to right the Del, Inv and Add zones. This graphical
representation is illustrated in Fig. 2.

A rule is applicable on a AC-graph G if :

1. there is an AC-homomorphism h : (L, ATTL, CONSL) → G, implying in
particular that the system of equations S = { A = A’ | (∃ v ∈ VL, ∃ i ∈ [|1,
|ATTv||], A = Ai

v ∧ A’ = Ai
h(v)) ∨ (∃ e = (v̄, ṽ) ∈ E, ∃ i ∈ [|1, |ATTe||], A

= Ai
e ∧ A’ = Ai

(h(v̄,h(ṽ))) } has at least a solution,

2. the application of the rule would not lead to the apparition of any dangling
edge,

3. each Cons ∈ CONSrule is evaluated to “true” by integrating the affectations
obtained by solving S and by evaluating each elementary logic expression
containing variable attributes to “unknown” as stated in remark 3.

Its application consists in :

1. erasing h(L\K),
2. integrating the affectations obtained by solving S to the remaining graph,
3. adding an isomorph copy of R\K integrating the affectations obtained by

solving S,
4. performing each action Act ∈ ACT.

Inspired from Chomsky’s generative grammars [8], graph grammars are de-
fined as a classical rewriting system and formally characterize an architectural
style.

Definition 7. (Graph Grammar)A graph grammar is defined by the 4-tuple
(AX,NT, T, P) where

– AX is the axiom, an AC-graph with a single vertex AX
– NT is the sets of non-terminal archetypes of AC-vertices,
– T is the set of terminal archetypes of AC-vertices,
– P is the set of AC-graph AC-rewriting rules, or production rules, belonging

to the graph grammar.

Each vertex occurring in a graph rewriting rule in P or in a graph obtained by
applying a sequence of productions ∈ P to the axiom is then isomorph to at least
one arch-vertex in NT or T .

Remark 5. Semantic predicates allow to easily guarantee the finition of such
rewriting systems, by imposing, for example, a limited number of deployed com-
ponents.

Definition 8. (Instance belonging to the graph grammar) An instance
belonging to the graph grammar (AX,NT, T, P) is a graph whose vertices and
edges have only constant attributes and obtained by applying a sequence of pro-
ductions in P to AX. If an instance does not contain any vertex isomorph to an
arch-vertex from NT it is said to be consistent.

Graph rewriting systems are illustrated in the next section, where they are
used to characterize the example presented in Sect. 2.

4 Characterisation of the Motivating Example.

By characterising the motivating example using the formalism presented in the
previous section, it appears undoubtedly that it addresses the problems identified
in Sect. 2.

4.1 Components arch-types : Terms of the Grammar

Firstly, let us consider what the axiom shall be. Considering the definition of
graph rewriting rules and systems, instances of the such systems are graphs
that inherit the attributes and constraints of the axiomatic graph. We wish to
expressed the redundancy and localisation constraints on instances of the archi-
tectural style, as described in appendix A, as well as the maximum number of
entities that a MA or a LA may manage and the arbitrary value intervening in
the balancing condition. Therefore, let AXDIET be (vAX , ATTAX = ((maxSon-
sLA, N), (maxSonsMA, N), (maxσ, R+)), CONSAX = (L(S,2),R(S,3))), where
here maxSonsMA = maxSonsLA = 10. Throughout this section the graph, on
which production rules will be attempted to be applied to, is noted G = (V, E,
ATT, CONS). Note that as stated in this paragraph, if G is an instance of the
architectural style defined here, ATT = ATTAX and CONSG = CONSAX .

Secondly, terminal terms of the graph rewriting system characterizing DIET
have to be defined. As they are AC-vertices, defining their attributes and con-
straints is sufficient. Remember that these term are arch-vertices and defined a
pattern of attributes and constraints for the vertices of each instance. The first
ones have already been listed in Sect. 2, while constraints stem from considera-
tions exposed in the same section. The naming system itself is not constrained
and is quite simple, let TOmni be (vOmni, ATTOmni = ((“Omni”, Nat), (m,
Mach)), ∅). Similarly, let TSeD = (vSeD, ATTSeD = ((“SeD”, Nat), (s, Serv),
(m, Mach)), ∅). The MA shall not manage more than 10 entities. Accordingly,
let TMA be (vMA, ATTMA = ((“MA”, Nat), (Nsons, N), (m, Mach)), CONSMA

= ((A2 < ATT2
AX))). Finally, we stated before that LAs of the same layer should

not be deployed on the same machine or have disjoint set of carried out services.
Hence, let TLA be (vLA, ATTLA = ((“LA”, Nat), (depth, N), (Nsons, N), (m,
Mach), (s, Serv)), CONSLA = c(vLA)), where c(v) = (c(v)i)i∈[|1,|LA((ATTG)2v)|−1|]

and ∀ṽ ∈ LA((ATTG)
2
v)\{v}, !∃ i ∈ [|1, |LA((ATTG)

2
v)| − 1|], c(v)i = ((ATTG)

4
v

6= (ATTG)
4
ṽ) ∨ ((ATTG)

5
v ∩ (ATTG)

5
ṽ = ∅).

4.2 Productions of the Rewriting System

Production rules of the graph grammar formalize the construction of instances
by defining when and how an entity may be deployed and the consequences of
such a deployment. The first rule to define is the initialisation consuming the
axiomatic vertex (Del). The naming service and the MA are deployed, as well as
a non-terminal vertex granting that the MA manages at least an entity (Add).
This vertex will be later on instantiated into a LA or a SeD. Finally, the MA
register to the naming service through the action register. Let p1 = (Lp1

, Kp1
,

Rp1
, ∅, µregistering(pv2)), where Lp1

, Kp1
, Rp1

and pv2 are defined in Fig. 2 and
µregistering(v) is the action of registering the object represented by the vertex v
to the naming service.

Fig. 2. Initialisation

Productions rules p2 and p3 model the addition of a non-terminal vertex,
that will later on be instantiated into a LA or a SeD, and manage respectively
by the MA or a LA. To deploy a new entity under a LA, the balancing condition
and the maximal number of managed entities should be respected. The appli-
cation of one of these productions leads to the incrementation of the number of
sons of the entity on which the terminal vertex is added. Let p2 = (Lp2

, Kp2
,

Rp2
, ∅, µinc(pv2MA,2)) and p3 = (Lp3

, Kp3
, Rp3

, (balancing(pv2LA), Nsons
< ATT1

AX), µinc(pv2LA,3)) where Lp2
, Kp2

, Rp2
, pv2LA, Lp3

, Kp3
, Rp3

, and
pv2MA are defined in Fig. 3, while µinc(v, i) is described below and balanc-
ing(v) = σ(((ATTG)

3
la)la∈LA(d)\{v}, (ATTG)

3
v+1) < ATT3

AX , where σ(s) is the
standard deviation of the sequence s.

µinc(v, i)
Attiv ← Attiv + 1

Fig. 3. Addition of a non-terminal term

The instantiation of a temporary vertex into a SeD is described by p4 and p5 if
it is managed by respectively the MA or a LA. After deploying the SeD, it has to

register to the naming service and, if it is managed by a LA, an update of carrying
out services must be conducted. Let p4 = (Lp4

, Kp4
, Rp4

, ∅, µregistering(pv4))
and p5 = (Lp5

, Kp5
, Rp5

, ∅, (µregistering(pv4), µupdateServ(pv2,pv4)), where Lp4
,

Kp4
, Rp4

, Lp5
, Kp5

, Rp5
, pv2, and pv4 are defined in Fig. 4, and µupdateServ(v,

ṽ) is as follows.

µupdateServ(v, ṽ)
oldServ ← (AttG)

5
v

ind ← 5
if (AG)

1
ṽ = “SeD”

ind ← 2
(AttG)

5
v ← oldServ ∪ (AttG)

ind
ṽ

if (AttG)
5
v 6= oldServ

v̄ ← v′ ∈ VG, (v
′, v̄) ∈ VE

µupdateServ(v̄, v)

Fig. 4. Instantiation of a non-terminal term into a SeD

The two last productions of the grammar, p6 and p7, describe the instan-
tiation of non-terminal term into a LA managed respectively by the MA or a
LA. Let p6 = (Lp6

, Kp6
, Rp6

, ∅, µregistering(pv4)) and p7 = (Lp7
, Kp7

, Rp7
, ∅,

µregistering(pv4)), where Lp6
, Kp6

, Rp6
, Lp7

, Kp7
, Rp7

, and pv4 are defined in
Fig. 5.

4.3 The Constrained Attributed Graph Rewriting System

Characterizing the Motivating Example

Considering the definition introduced in this section, GRSDIET , the graph rewrit-
ing system formally characterizing the motivating example introduced in Sect. 2,
is defined as GRSDIET =(AXDIET , NTDIET , TDIET , PDIET), where
NTDIET = (vtemp, ATTtemp = (“temp”, {“temp”}), CONStemp = ∅),

Fig. 5. Instantiation of a non-terminal term into a LA

TDIET = { TOmni, TMA, TLA, TSeD}, and
PDIET = { p1, p2, p3, p4, p5, p6, p7 }.

Remark 6. Efficiently representing evolving attributes. An interesting feature of
this formalism is that it offers several options for the characterization of prob-
lematic attributes or constraints. Let us consider the set of services that may be
carried out by at least a SeD managed directly or indirectly by a LA, for exam-
ple. Intuitively, this attribute depends on other ones and could be expressed as a
regular combination of the graph attributes. However, this combination should
have been evaluated whenever its value is required, for example to evaluate the
constraints of a LA. To avoid frequent evaluations, the graph representing the
configuration can be seen as an augmented data structure and the attribute be
updated whenever it has to be using mutators. The choice between these two
options rely on the complexity and frequency of updates and evaluations.

This model allows to express each limitation identified in Sect. 2, interde-
pendency between attributes, modification of existing attributes and non-trivial
requirements for conditional deployments. Furthermore, components of the ar-
chitecture are constrained to reflect the appropriateness of a configuration. These
constraints are inherited from arch-vertices as a component is deployed, and may
evolve like any attribute to reflect context changes.

Evaluation of a configuration can be done in several ways. The most straight-
forward would be to assign a, potentially infinite, weight to the violation of con-
straints to define management policies through heuristics. However, constraints
on an architecture and their satisfaction can be seen as a way of granting some
desirable properties rather than looking for an optimum. Considering that find-
ing a “good” configuration as a classical multi-criteria optimisation problem, it
could be solved by restraining it to a single-criteria, here energy consumption,

problem over the space of consistent configurations that does not violate any
constraint.

5 Conclusion

This article lift limitations of formal approaches for the characterisation of dy-
namic software architectures using graph rewriting systems. Said limitations are
put under the spotlight using an example of hierarchical dynamic software ar-
chitecture that previous approaches have failed to characterize, and that later
on serve as an illustration for our model. In particular, interdependency of at-
tributes is handled using regular combination of attributes, and mutators are
introduced to modify existing attributes. Consequently, non-trivial attributes re-
lated to structural and behavioural properties of the architecture may be handily
represented, as shown in the example. Based on such attributes, dynamic con-
straints are included in the formal model, reflecting the appropriateness of a
configuration, arising or evolving as components are deployed or as the context
change. Moreover, further properties can be guaranteed as the formalism pre-
sented in this paper tackles non-trivial conditional deployments using semantic
predicates.

Constraints and attributes facilitate the evaluation of a configuration, a basis
for the definition and the enforcement of reconfiguration policies. We plan on
developing the mechanisms evoked in this paper to achieve these aims, as well as
extending existing tools to realise management using this formalism and validate
its time efficiency with regard to other graph-based approaches.

Acknowledgement

The work presented in this paper has been funded by the ANR in the context
of the project SOP, ANR-11-INFR-001.

A Formal definition of the graph presented in Fig 1

The graph in the Fig. 1 is defined as follow.

G = (V, E, ATT, CONS) where
V = {v1, v2, v3, v4, v5, v6, v7, v8},
E = { e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v4), e4 = (v2, v7), e5 = (v3, v8), e6
= (v4, v5), e7 = (v4, v6)},
ATT = {ATTG, ATTv1 , ATTv2 , ATTv3 , ATTv4 , ATTv5 , ATTv6 , ATTv7 , ATTv8 ,
ATTe1 , ATTe2 , ATTe3 , ATTe4 , ATTe5 , ATTe6 , ATTe7 , ATTe8},
The architecture is composed by some software component, the first one being
v1, a MA managing 2 entities and deployed on a machine noted m1 ATTv1 =
{(“MA”, Nat), (“2”, N), (m1,Mach)}.

Three LAs are deployed, respectively of depth 1, 1 and 2, managing 2, 1 and
2 entities, placed on machine m2, m3 and m4. The first one managed directly or
indirectly SEDs providing the set of services s1 ∪ s2 ∪ s3, the second one s4 and
the third one s1 ∪ s2.
ATTv2 = {(“LA”, Nat), (“1”, N), (“2”, N), (m2, Mach), (s1 ∪ s2 ∪ s3, Serv)},
ATTv3 = {(“LA”, Nat), (“1”, N), (“1”, N), (m3, Mach), (s4, Serv)},
ATTv4 = {(“LA”, Nat), (“2”, N), (“2”, N), (m4, Mach), (s1 ∪ s2, Serv)}.

Finally, four SEDs deployed on m5, m6, m7 and m8 carry out the services s1,
s2, s3 and s4.
ATTv5 = {(“SED”,Nat), (s1, Serv), (m5, Mach)},
ATTv6 = {(“SED”,Nat), (s2, Serv), (m6, Mach)},
ATTv7 = {(“SED”,Nat), (s3, Serv), (m7, Mach)},
ATTv8 = {(“SED”,Nat), (s4, Serv), (m8, Mach)}.

The graph itself is constraints by L(S,2) and R(S,3), where R and L are as
follows. ∀S′ ⊆ S, ∀xs ∈ N , let the redundancy constraint R(S’,xs) be “There are
at least xs SeDs carrying each service s in S’”.
Red(S’,xs) = ∀s ∈ S′, ∃(Vi)i∈[|1,xs|] ∈ V xs

A , (∀(i, j) ∈ [|1, xs|]2, i 6= j =⇒ Vi 6=
Vj) ∧ ∀k ∈ [|1, xs|], s ∈ ATT 2

Vk
.

∀s ∈ S, ∀xs ∈ N , let the localisation constraint L(S’,xs) be “For each service in
S’, there are at least xs different machines on which at least a SeD carrying out
the service s is deployed”.
Loc(S’,xs) = ∀s ∈ S′, ∃(Vi)i∈[|1,xs|] ∈ V xs

A , (∀(i, j) ∈ [|1, xs|]2, i 6= j =⇒ (Vi 6=
Vj ∧ ATT 3

Vi
6= ATT 3

Vj
) ∧ ∀k ∈ [|1, xs|], s ∈ ATT 2

Vk
.

This means that each service should be carried out by at least 3 SEDs located
on at least two different machine. The MA has a constraints on the number of
entities it manages. The two LA of depth 1 are constrained not to be deployed on
the same machine or to offer disjoint sets of services. The last LA has a similar
constraint.
CONS = {CONSG, CONSv1 , CONSv2 , CONSv3 , CONSv4},
CONSG = {L(S,2), R(S,3)},
CONSv1 = {ATT2

v1
≤ 10},

CONSv2 = {ATT4
v2
6= ATT4

v3
∨ (ATT5

v2
∩ ATT5

v3
= ∅) },

CONSv3 = {ATT4
v3
6= ATT4

v2
∨ (ATT5

v3
∩ ATT5

v2
= ∅) } and

CONSv4 = {ATT4
v4
6= ATT3

v7
∨ (ATT5

v4
∩ ATT2

v7
= ∅) }

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) Fundamental Approaches to Software Engi-
neering, Lecture Notes in Computer Science, vol. 1382, pp. 21–37. Springer Berlin
Heidelberg (1998), http://dx.doi.org/10.1007/BFb0053581

2. Allen, R., Garlan, D.: A formal basis for architectural connec-
tion. ACM Trans. Softw. Eng. Methodol. 6, 213–249 (July 1997),
http://doi.acm.org/10.1145/258077.258078

3. Berthold, M.R., Fischer, I., Koch, M.: Attributed graph transformation with partial
attribution. Berkeley Initiative in Soft Computing , University of California at
Berkeley http://europepmc.org/abstract/CIT/302744

4. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems. pp. 28–33. WOSS ’04,
ACM, New York, NY, USA (2004), http://doi.acm.org/10.1145/1075405.1075411

5. Broto, L., Hagimont, D., Stolf, P., de Palma, N., Temate, S.: Autonomic manage-
ment policy specification in tune. In: ACM Symposium on Applied Computing.
pp. 1658–1663. Fortaleza, Ceara, Brazil (2008)

6. Caron, E., Desprez, F.: Diet: A scalable toolbox to build network enabled servers
on the grid. International Journal of High Performance Computing Applications
20(3), 335–352 (2006)

7. Chassot, C., Guennoun, K., Drira, K., Armando, F., Exposito, E., Lozes, A.:
Towards autonomous management of qos through model-driven adaptability in
communication-centric systems. ITSSA 2(3), 255–264 (2006)

8. Chomsky, N.: Three models for the description of language. In-
formation Theory, IEEE Transactions on 2(3), 113–124 (1956),
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1056813

9. Ehrig, H.: Tutorial introduction to the algebraic approach of graph grammars. In:
Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph-Grammars and
Their Application to Computer Science, Lecture Notes in Computer Science, vol.
291, pp. 1–14. Springer Berlin Heidelberg (1987), http://dx.doi.org/10.1007/3-540-
18771-5 40

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental the-
ory for typed attributed graphs and graph transformation based
on adhesive hlr categories. Fundam. Inf. 74(1), 31–61 (Oct 2006),
http://dl.acm.org/citation.cfm?id=1231199.1231202

11. Ehrig, H., Kreowski, H.J.: Graph Grammars and Their Application to Computer
Science: 4th International Workshop, Bremen, Germany, March 5-9, 1990 Proceed-
ings. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1991)

12. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification. EATCS mono-
graphs on theoretical computer science, Springer-Verlag, Berlin, New York (1985),
http://opac.inria.fr/record=b1079164

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press (2000)

14. Hirsch, D., Inverardi, P., Montanari, U.: Modeling Software Architectures and
Styles with Graph Grammars and Constraint Solving. In: Donohoe, P. (ed.)
Software Architecture (TC2 1st Working IFIP Conf. on Software Architecture,
WICSA1). pp. 127–143. Kluwer, San Antonio, Texas, USA (1999)

15. Hirsch, D., Montanari, U.: Consistent transformations for software architecture
styles of distributed systems. Electronic Notes in Theoretical Computer Science 28
(2000), http://www.sciencedirect.com/science/article/pii/S1571066105806267

16. Kacem, M.H., Jmaiel, M., Kacem, A.H., Drira, K.: Evaluation and comparison of
adl based approaches for the description of dynamic of software architectures. In:
ICEIS (3). pp. 189–195 (2005)

17. Kandé, M.M., Strohmeier, A.: Towards a uml profile for software architecture de-
scriptions. In: Proceedings of the 3rd international conference on The unified mod-
eling language: advancing the standard. pp. 513–527. UML’00, Springer-Verlag,
Berlin, Heidelberg (2000), http://dl.acm.org/citation.cfm?id=1765175.1765230

18. Kleene, S.C.: On notation for ordinal number. The Journal of Symbolic Logic pp.
150–155 (Dec 1938)

19. Kleene, S.C.: Introduction to metamathematics. Bibl. Matematica, North-Holland,
Amsterdam (1952)

20. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE Trans. Softw. Eng. 24, 521–533 (July 1998)

21. Loulou, I., Kacem, A.H., Jmaiel, M., Drira, K.: Towards a unified graph-based
framework for dynamic component-based architectures description in z. Pervasive
Services, IEEE/ACS International Conference on 0, 227–234 (2004)

22. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Spec-
ification and analysis of system architecture using rapide. IEEE Trans. Software
Eng. 21(4), 336–355 (1995)

23. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: In Proceed-
ings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software
Engineering (1996)

24. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol. 11, 2–57 (January 2002), http://doi.acm.org/10.1145/504087.504088

25. OMG: Unified Modeling Language Specification 2.0: Superstructure (2005), oMG
doc. formal/05-07-04

26. Oquendo, F.: π-method: a model-driven formal method for architecture-centric
software engineering. SIGSOFT Softw. Eng. Notes 31, 1–13 (May 2006),
http://doi.acm.org/10.1145/1127878.1127885

27. Parr, T., Fisher, K.: Ll(*): the foundation of the antlr parser generator. SIGPLAN
Not. 47(6), 425–436 (Jun 2011), http://doi.acm.org/10.1145/2345156.1993548

28. Rodriguez, I.B., Drira, K., Chassot, C., Guennoun, K., Jmaiel, M.: A rule
driven approach for architectural self adaptation in collaborative activities us-
ing graph grammars. Int. J. Autonomic Comput. 1(3), 226–245 (May 2010),
http://dx.doi.org/10.1504/IJAC.2010.033007

29. Roh, S., Kim, K., Jeon, T.: Architecture modeling language based on uml2.0.
In: Proceedings of the 11th Asia-Pacific Software Engineering Conference. pp.
663–669. APSEC ’04, IEEE Computer Society, Washington, DC, USA (2004),
http://dx.doi.org/10.1109/APSEC.2004.32

30. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific (1997)

31. Selonen, P., Xu, J.: Validating uml models against architectural pro-
files. SIGSOFT Softw. Eng. Notes 28, 58–67 (September 2003),
http://doi.acm.org/10.1145/949952.940081

32. Sharrock, R., Monteil, T., Stolf, P., Hagimont, D., Broto, L.: Non-intrusive au-
tonomic approach with self-management policies applied to legacy infrastructures
for performance improvements. International Journal of Adaptive, Resilient and
Autonomic Systems p. 19 (2010)

33. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. In: Joint APPLIGRAPH/GETGRATS Workshop on
Graph Transformation Systems (GraTra2000). pp. 200–0 (2000)

