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Global a Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Symmetric Coercive Elliptic Partial Di erential Equations

We consider \Lagrangian" reduced-basis methods for single-parameter symmetric coercive elliptic partial di erentialequations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced{basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.

R esultats globaux a priori pour l'approximation d' equations aux d eriv ees partielles coercives sym etriques elliptiques d ependant d'un param etre R esum e. On consid ere des m ethodes de bases r eduites de type Lagrange pour des equations aux d eriv ees partielles coercives sym etriques elliptiques et d ependant d'un param etre. On montre que, pour une r epartition logarithmiquement quasi uniforme des points d' echantillonage, l'approximation en base r eduite converge de fa con exponentielle vers la solution exacte uniform ement par rapport au param etre. De plus la convergence ne d epend que faiblement du rapport entre les coe cients de coercivit e et de continuit e de l'op erateur: ainsi une approximation de tr es basse dimension procure une solution tr es pr ecise même dans le cas d'un large eventail de param etres. Des test num eriques (report es par ailleurs) corroborent ces pr edictions num eriques Version fran caise abr eg ee Dans un espace de Hilbert H, muni du produit scalaire ( ; ) Y et de la norme k k Y on se pose le probl eme de trouver u 2 Y v eri ant (1) o u la forme bilin eaire a: Y Y D ! IR d epend d'un param etre 2 D 0; max ]. Sous des conditions classiques de continuit e et de coercivit e de a ce probl eme poss ede une solution unique. La m ethode de base r eduite consiste alors a choisir un entier N et un jeux de param etres S N = f 1 ; : : :; N g pour lesquels, de fa con pr ealable, on calcule | le plus exactement possible | les solutions associ ees u( k ); k = 1; : : :; N.Puis on r esout le syst eme (2) o u W N = Vect fu( k ); k = 1; : : :; Ng: On analyse dans cette note le cas d'un probl eme d ependant d'un seul param etre du type (3) o u a 0 : Y Y ! IR et a 1 : Y Y ! IR sont continues, sym etriques, semi positives et de plus o u a 0 est coercive induisant une norme jjj jjj 2 = a 0 ( ; ) equivalente a celle de Y . Des exemples de probl emes entrant dans ce cadre sont pr esent es, analys es et simul es sur base r eduite dans 12]. Plus particuli erement nous montrons ici que la convergence de cette m ethode en base r eduite est une fonction exponentiellement d ecroissante en le cardinal de W N , et ce uniform ement par rapport au param etre. En particulier on a la borne suivante entre la solution exacte u( ) et son approximation u N ( ) : il existe un entier N crit tel que pour tout N N crit , on a (19) avec une constante c ne d ependant que des conditions d'ellipticit e de a 0 et de max .

La d emonstration de ce r esultat repose d'une part sur le lemme classique de Cea rappel e en (10) et une estimation a priori de la meilleure approximation donn ee dans le lemme 2.

Il convient de noter que l'analyse de la meilleure approximation fait ici intervenir une approximation polynomiale de la solution, mais cette approximation polynomiale est propos ee apr es un changement de variable appropri e ( = e ~ 1 ). Le point qui doit être not e est que la m ethode de Galerkin propose naturellement une approximation dans W N qui est ( a une constante multiplicative pr es) aussi bonne que cette approximation polynomiale en une variable a d e nir. Ceci donne une sup eriorit e et un caract ere g en eral a l'approche variationelle par rapport a une \simple" interpolation puisque aucune connaissance a priori de la forme de la solution en son param etre n'est a conna^ tre.

L'analyse faite ici sugg ere une r epartition logarithmique du jeux de param etres qui donne en e et de meilleurs r esultats dans les applications comme cel a est report e dans 15]. On renvoit aussi a 12] pour plus de d etails sur la mise en oeuvre et les applications.

Introduction

Let Y be an Hilbert space with inner product and norm ( ; ) Y and k k Y = ( ; ) 1=2 Y , respectively.

Consider a parametrized \bilinear" form a: Y Y D ! IR, where D 0; max ], and a bounded linear form f: Y ! IR. We introduce the problem to be solved: Given 2 D, nd u 2 Y such that a(u( )

; v; ) = f(v); 8 v 2 Y :
(1) Under natural conditions on the bilinear form a (e.g. continuity and coercivity) it is readily shown that this problem admits a unique solution.

We introduce an approximation index N, the parameter sample S N = f 1 ; : : :; N g, and the solutions u( k ); k = 1; : : :; N, of problem (1) for this set of parameters. We next de ne the reducedbasis approximation space W N = span fu( k ); k = 1; : : :; Ng: Our reduced-basis approximation is then: Given 2 D, nd u N ( ) 2 W N such that a(u N ( ); v; ) = f(v); 8 v 2 W N :

(2) This discrete problem is well posed under the same former continuity and coercivity conditions.

The reduced-basis approach, as earlier developped, is typically local in parameter space in both practice and theory 1, 2, 4, 9, 10, 13]. To wit, the k are chosen in the vicinity of a particular parameter point and the associated a priori convergence theory relies on asymptotic arguments in su ciently small neighborhoods of 4]. In this note we present, for single-parameter symmetric coercive elliptic partial di erential equations, a rst theoretical a priori convergence result that demonstrates exponential convergence of reduced-basis approximations uniformly over an extended parameter domain. The proof requires, and thus suggests, a point distribution in parameter space which does, indeed, exhibit superior convergence properties in a variety of numerical tests 15]. We refer also to [START_REF] Fink | On the error behaviour of the reduced basis technique for nonlinear nite element approximations[END_REF][START_REF] Machiels | Output bounds for reduced-basis approximations of symmetric positive de nite eigenvalue problems[END_REF][START_REF] Maday | Blackbox reduced-basis output bound methods for shape optimization[END_REF]12] for further discussions of these results and related work and applications.

Problem Formulation

Let us de ne the parametrized \bilinear" form a: Y Y D ! IR as a(w; v; ) a 0 (w; v) + a 1 (w; v) ; [START_REF] Barrett | On the reduced basis method[END_REF] where the bilinear forms a 0 : Y Y ! IR and a 1 : Y Y ! IR are continuous, symmetric and positive semi-de nite; suppose moreover that a 0 is coercive, inducing a (Y -equivalent) norm jjj jjj 2 = a 0 ( ; ). It follows from our assumptions that there exists a real positive constant 1 such that

0 a 1 (v; v) a 0 (v; v) 1 ; 8 v 2 Y : (4) 
For these hypotheses, it is readily demonstrated that the problem (1) has a unique solution. Many situations may be modeled by our rather simple problem statement (1), (3). For example, if we take Y = H1 0 ( ) where is a smooth bounded subdomain of IR d=2 , and set a 0 (w; v) = R rw rv, a 1 = R wv, we model conduction in thin plates; here represents the convective heat transfer coe cient. Other choices of a 0 and a 1 can model variable rectilinear geometry, variable orthotropic properties, and variable Robin boundary conditions.

The space Y is typically of in nite dimension so u( ) is, in general, not exactly calculable.

In order to construct our reduced-basis space W N , we must therefore replace u( ) 2 Y by a \truth approximation" u N ( ) 2 Y N Y , solution of the Galerkin approximation a(u N ( ); v; ) = f(v); 8 v 2 Y N : Here Y N , of nite (but typically very high) dimension N, is a su ciently rich approximation subspace such that jjju( ) u N ( )jjj is su ciently small for all in D; for example, for Y = H 1 0 ( ) we know that, for any desired " > 0, we can indeed construct a nite-element approximation space, Y N(") , such that jjju( ) u N(") ( )jjj ".

It shall prove convenient in what follows to introduce a generalized eigenvalue problem: Find (' N i 2 Y N ; N i 2 IR), i = 1; : : :; N, satisfying a 1 ('

N i ; v) = N i a 0 (' N i ; v), 8 v 2 Y N .
We shall order the (perforce real, non-negative) eigenvalues as 0 N N N N 1 N 1 1 , where the last inequality follows directly from (4). We may choose our eigenfunctions such that a 0 (' N i ; ' N j ) = i j ;

(5) and hence a 1 (' N i ; ' N j ) = N i i j , where i j is the Kronecker-delta symbol; and such that Y N can be expressed as span f' i ; i = 1; : : :; Ng. Note that, thanks to the nite dimension of our approximation space Y N , we preclude (the complications associated with) a continuous spectrum | and, as we shall see, at no loss in rigor. We conclude this section by noting that, if we set f N i = f(' N i ), then u N ( ) can be expressed as

u N ( ) = N X i=1 f N i ' N i 1 + N i ; (6) 

A Priori Convergence Theory

We propose here to choose the sample points k , k = 1; : : :; N, log-equidistributed in D, where N = ln( max + 1)=N, and is any nite upper bound for 1 1 . Here ~ kN = N c ; 8k; k = 1; : : :; N, and also P N `=1 ~ `N = ln( max + 1) , where c is a real positive constant. Denote the reduced-basis approximation space as W N N = span fu N ( k ); k = 1; : : :; Ng. Although in general dim(W N N ) N, we can suppose that dim(W N N ) = N (otherwise we eliminate elements from W N N until it contains only linearly independent vectors). Then, the (reduced basis)

problem is : Given 2 D, nd u N N ( ) 2 W N N such that a(u N N ( ); v; ) = f(v); 8 v 2 W N N : (7) 
This problem admits a unique solution.

Our goal is to (sharply) bound jjju N ( ) u N N ( )jjj, for all 2 D, as a function of N (and ultimately N as well). This error bound in the energy norm can be readily translated into error bounds on continuous-linear-functional outputs 12]; we do not consider this extension further here.

We shall need two standard results from the theory of Galerkin approximation of symmetric coercive problems 14]:

a(u N u N N ; u N u N N ; ) = inf w N N 2W N N a(u N w N N ; u N w N N ; ) ; (8) 
a(u N ; u N ; ) a(u; u; ) : [START_REF] Maday | A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Di erential Equations[END_REF] From the positive semide niteness of a 1 , (3), ( 4) and ( 8) we can write

jjju N ( ) u N N ( )jjj 2 a(u N ( ) u N N ( ); u N ( ) u N N ( ); ) inf w N N 2W N N a(u N ( ) w N N ; u N ( ) w N N ; ) (1 + max 1 ) inf w N N 2W N N jjju N ( ) w N
N jjj 2 ; 8 2 D: [START_REF] Noor | Reduced basis technique for nonlinear analysis of structures[END_REF] Also from the de nition of the jjj jjj norm and the positive semide niteness of a 1 , ( 3), ( 4) and ( 9), we obtain jjju N ( )jjj (1 + max 1 ) 1=2 jjju( )jjj; 8 2 D:

(11) We rst state a preparatory result (see 8] for the proof) Lemma 1. Let g(z; ) = 1 1 + e z for z 2 Z ln( 1 ); 1] and 2 0; ] (recall is our strictly positive upper bound for 1 ). Then, for any q 0, jD q 1 g(z; )j 2 q q! ; 8 z 2 Z; 8 2 ; where D q 1 g denotes the q th -derivative of g with respect to the rst argument. We now prove a bound for the best approximation result in Lemma 2. Proof. To facilitate the proof, we shall e ect a change of coordinates in parameter space. To wit, we let e D ln 1 ; ln( max + 1 )], and introduce : e D ! D as (~ ) = e ~ 1 so that 1 ( ) = ln( + 1 ). We then set ũ(~ ) = u( (~ )), ũN (~ ) = u N ( (~ )), and ũN

N (~ ) = u N N ( (~ )). We note that ũN (~ ) = N X i=1 f N i ' N i 1 N i + N i e ~ = N X i=1 f N i ' N i g(~ ; N i ); (13) from (6) 
, our change of variable, and the de nition of g. We now observe that in our mapped coordinate, the sample points ~ k 1 ( k ), k = 1; : : :; N, ), n = 1; : : :; M. Note that e I ~ M 1 g( ; )]( 1 ( )) is not a polynomial in . It now follows from ( 5), ( 6), ( 13) and ( 15 

We now assume that c N 2 ~ and ~ 1 2 ; under these conditions (recall ( 14)) we obtain (2 ~ ) M ~ ( ~ ; N ) (2 ~ ) ~ =c N , and hence, from ( 16) and ( 17 Then, from (10),(11), Lemma 1, and Lemma 2, we obtain Theorem 3. For N N crit c e ln( max + 1), jjju N ( ) u N N ( )jjj (1 + max 1 ) 1=2 jjju N (0)jjj e N=Ncrit ; 8 2 D; furthermore for N(") such that jjju( ) u N(") ( )jjj ", jjju( ) u N(") N ( )jjj " + (1 + max 1 ) jjju(0)jjj e N=Ncrit ; 8 2 D: Remark 4. By letting " go to zero, we also have jjju( ) u N ( )jjj c jjju(0)jjj e N=Ncrit ; 8 2 D;

(19) for any N N crit with a constant c that depends only on 1 and max .

Remark 5. It must be pointed out that the analysis of the best t in lemma 2 involves a simple polynomial approximation of the solution, but this is a polynomial in the ~ variable. The Galerkin approximation provides this best t, up to a multiplicative constant, regardless of any a priori knowledge of the dependance of the solution on the parameter. This demonstrates the superiority of the reduced basis method with respect to a \simple" interpolation approximation.

  For N N crit c e ln( max + 1

  are equi-distributed with separation ~ k+1 ~ k ' ln( max + 1)=N. It thus follows that, given any ~ 2 D, we can construct a closed interval e I ~ ~ of length ~ that includes ~ and M ~ ( ~ ; N ) distinct points ~ P ~ n , n = 1; : : :; M. Here M ~ ( ~ ; N ) is of the order of ~ N ; more precisely, , we shall often abbreviate M ~ ( ~ ; N ) as M.Now, for any ~ 2 e D, we introduce û~ 2 ( ; ) is the (M 1) th -order polynomial interpolant of g( ; ) through the ~ P ~ n , n = 1; : : :; M; more precisely,

  ( ; )] (~ )j jjju N (0)jjj :(16) We next invoke the standard polynomial interpolation remainder formula 3] and Lemma 1 z; )j ~ M (2 ~ ) M ~ ( ~ ; N ) :

  ), we can write jjjũ N (~ ) û~ jjj jjju N (0)jjj(2 ~ ) ~ =c N : (18) It remains to select a best ~ satisfying c provide the sharpest possible bound, we choose ~ = ~ 1 2e , the minimizer (over all positive ~ ) of (2 ~ ) ~ = N . Our conditions on ~ are readily veri ed: c N 2~ follows directly from the hypothesis of our lemma, N N crit ; and ~ 1 2 follows from inspection. We now insert ~ = ~ into (18) to obtain jjjũ N (~ ) û~ jjj jjju N (0)jjj e N=Ncrit ; for all ~ 2 e D : It immediately follows that, for any 2 D, 1 ( )) û 1 ( ) jjj jjju N (0)jjj e N=Ncrit since û 2 W N N and, for 2 D, 1 ( ) 2 e D. This concludes the proof.

Note that 1 , , and hence S N , are independent of N.
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