
HAL Id: hal-00798388
https://hal.science/hal-00798388v1

Preprint submitted on 8 Mar 2013 (v1), last revised 14 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perfect Simulation Of Processes With Long Memory: a
’Coupling Into And From The Past’ Algorithm

Aurélien Garivier

To cite this version:
Aurélien Garivier. Perfect Simulation Of Processes With Long Memory: a ’Coupling Into And From
The Past’ Algorithm. 2011. �hal-00798388v1�

https://hal.science/hal-00798388v1
https://hal.archives-ouvertes.fr

Perfect Simulation Of Processes With Long

Memory:

A “Coupling Into And From The Past”

Algorithm

Aurélien Garivier

March 8, 2013

Abstract

We describe a new algorithm for the perfect simulation of variable

length Markov chains and random systems with perfect connections. This

algorithm generalizes Propp and Wilson’s simulation scheme, and is based

on the idea of coupling into and from the past. It improves on existing

algorithms by relaxing the conditions required on the kernel and by ac-

celerating convergence, even in the simple case of finite order Markov

chains. Chains of variable or infinite order are an old object of considera-

tion that raised considerable interest recently because of their applications

in applied probability, from information theory to bio-informatics and lin-

guistics.

Keywords: Perfect simulation, Context trees, Markov Chains of infinite
order, Coupling From The Past (CFTP), Coupling Into And From The Past
(CIAFTP).

1 Introduction

Since the seminal paper [21] by Propp and Wilson, perfect simulation schemes
for stationary Markov chains have been developed and applied in several fields
of applied probabilities, from statistical physics to Bayesian statistics (see for
example [18] and references therein, or [12] for a gentle introduction).

In 2002, Comets et al. [5] have proposed an extension to processes with long
memory: they provided a perfect simulation algorithm for stationary processes
called random systems with complete connections [19, 20] or chains of infinite
order [13]; these processes are characterized by a transition kernel which spec-
ifies, given an infinite sequence of past symbols, the probability distribution of
the next symbol. The idea was, after [16, 17, 2], to exploit regenerative struc-
tures of these processes. Their algorithm relies on renewal properties, under
a summable memory decay condition. As a by-product, the authors obtained
the existence of stationary process for a given kernel, together with uniqueness
properties under suitable hypotheses.

However, it appeared that these conditions on the kernel were quite restric-
tive, and actually not necessary. Foss et al. [8] and Gallo [9] showed that different

1

coupling schemes could be designed under alternative assumptions that do not
even require the kernel to be continuous. Besides, the coupling scheme described
in [5] strongly relies on regeneration, not on coalescence. Contrary to Propp and
Wilson’s algorithm, it does not converge for all mixing Markov chains, and when
it does converge the number of steps required is larger. Recently, De Santis and
Piccioni [7] tried to conciliate the two algorithms, by providing a hybrid method
that works with two regimes: coalescence for short memory, and regeneration
on long scales.

In this paper, we fill the gap between long and short scales, by providing a
relatively elaborated and yet elegant coupling procedure that purely relies on
coalescence. When the process considered is a (first order) Markov chain, this
procedure simply boils down to Propp and Wilson’s algorithm. But it permits
to handle more general, infinite memory processes characterized by a continuous
transition kernel, as defined in Section 2.

The idea is to exploit local coalescence, instead of global loss of memory
properties. From an abstract point of view, the algorithm depicted in Section 3
simply consists in running a Markov chain on an infinite, uncountable set, until
the first hit time of a given subset of states. Its concrete implementation involves
a dynamical system on a set of labeled trees described in Section 4.

Another way to consider this algorithm is to link it to the algorithm described
in [15]. In this article, Kendall explains how to adapt Propp and Wilson’s idea
in order to sample exactly from area-interaction point processes, by perfectly
simulating the equilibrium distribution of a spacial birth-and-death process. As
in the present article, the idea is that if all possible initial patterns at time t < 0
lead, following the same birth and death transitions, to the same configuration
at time 0, then this configuration has the expected distribution; whenever such a
coalescence is observable, perfect simulation is possible. This algorithm was later
generalized byWilson, who named it ‘coupling into and from the past’ (CIAFTP,
see [25] Section 7), a term that fits very well to the algorithm described in
Section 4.

We show that this perfect simulation scheme converges under less restrictive
hypotheses than were required previously. As they prove very useful in many
applications (e.g. information Theory [22, 24] or bio-informatics [4]), we detail
the case of finite, but large order Markov chains (or Variable order Markov
Chains, see [3]): our algorithm compares favorably with Propp and Wilson’s
algorithm on the extended chain in terms of computational complexity, and it
compares favorably with the procedure of [5] in terms of convergence speed.

The paper is organized as follows: Section 2 presents the notation and defi-
nitions required in the sequel. Section 3 contains the conceptual description of
the perfect simulation schemes. The key tool is an update rule constructed in
Section 3.2. Section 4 contains the detailed description of the algorithm. Then,
Section 5 gathers elements of complexity analysis, while Section 6 illustrates the
weakness of the assumptions required for the algorithm to converge, in compar-
ison to other coupling schemes. At the end of the paper, the Appendix gathers
some proofs of technical results.

2

2 Notation and definitions

The statement of the results, of the algorithm, and the proofs, require the
introduction of some notation, which is given in the following. A notation
section is always somewhat off-putting, but a large part of it is quite standard
and should be read rapidly. Some specific notions, especially regarding trees,
are required in the following: even if they may seem somewhat unusual here,
they are central in this paper and necessary in order to expose the algorithm as
clearly as possible.

2.1 Histories

As in [5], we denote by G a finite alphabet, and we denote its size by |G|.
For k ∈ N, we denote by G−k the set of all sequences (w−k, . . . , w−1), and
G∗ = ∪k≥0G

−k. By convention, ε denotes the empty sequence, and G0 = {ε}.
The set of G-valued sequences index by the set of negative integers is denoted
by G−N

+

and called the space of histories. For −∞ ≤ a ≤ b < 0 and w ∈ G−N
+

,
the sequence (wa, . . . , wb) is denoted by wa:b. An element w−∞:−1 ∈ G−N

+

will

be denoted by w. For w ∈ G−k, we note |w| = k and for w ∈ G−N
+

, |w| = ∞.

For every negative integer n, we define the projection Πn : G−N
+ → Gn by

Πn(w) = wn:−1.
A trie is a rooted tree with edges labeled by elements of G. An element

w ∈ G−N
+

can be represented as a path in the infinite, complete trie, starting
from the root, and successively following the edges labeled by w−1, w−2, . . . A
finite sequence s ∈ G∗ is represented by an internal node of this infinite trie.
This representation is illustrated, in the case of the binary alphabet G = {0, 1},
in Figure 1.

0 1

0 1

0 1 0 1 0 1 0 1

10
s

Figure 1: Trie representation of G−N
+

in the case of the binary alphabet G =
{0, 1}. The square represents s = (0, 1) ∈ G−2, and T (s) is circled. Note that
the symbols (s−2, s−1) = (0, 1) are to be read from the bottom (node s) to the
top (root).

3

2.2 Concatenation, suffix

For two sequences wa:b and zc:d, −∞ ≤ a ≤ b < 0, −∞ < c ≤ d < 0, wa:bzc:d
denotes the concatenation of wa:b and zc:d: wa:bzc:d = (wa, . . . , wb, zc, . . . , zd).
In particular, by taking a = −∞, this defines the concatenation zs of a history z
and an n-tuple s ∈ G|s|. Note that this notation is different from the convention
taken in [5]. If a > b, wa:b is the empty sequence ε.

Let h ∈ G∗ ∪ G−N
+

. If s ∈ G∗ is such that |h| ≥ |s| and h−|s|:−1 = s, we
say that s is a suffix of h and we denote h � s, defining a partial order � on
G∗ ∪G−N

+

.

2.3 Metric

Equipped the product topology, and with the ultra-metric distance δ defined by

δ(w, z) = 2sup{k<0:wk 6=zk},

G−N
+

is a complete and compact set. A ball B ⊂ G−N
+

is a set
{

zs : z ∈ G−N
+
}

for some s ∈ G∗. In reference to the trie representation of G−N
+

, we denote by
s = R(B) the root of B, and by T (s) = B the tail of s (see Figure 1). Note

that T (ε) = G−N
+

.
The set of probability distributions on G is denotedM(G), and is endowed

with the total variation distance

|p− q|TV =
1

2

∑

a∈G

|p(a)− q(a)| = 1−
∑

a∈G

p(a) ∧ q(a) ,

where x ∧ y denotes the minimum of x and y.

2.4 Complete suffix Dictionaries

A (finite or infinite) set D of elements of G∗ is called a complete suffix dictionary
(CSD) if one of the following equivalent properties is satisfied:

• every sequence w ∈ G−N
+

has a unique suffix in D:

∀w ∈ G−N
+

, ∃!s ∈ D : w � s ;

• {T (s) : s ∈ D} is a partition of G−N
+

; in that case, we write:

G−N
+

=
⊔

s∈D

T (s) .

A CSD can be represented as a trie, as illustrated in Figure 2. This representa-
tion suggests to define the depth of CSD D as the depth of this trie:

d(D) = sup{|s| : s ∈ D} .
Note that d(D) = +∞ if D is infinite. The smallest possible CSD is {ǫ} (its
trie is reduced to the root): it has depth 0 and size 1. The second smallest is
G, it has depth 1.

If a finite word h ∈ G∗ has a (unique) suffix in D, we write h � D. If D
and D′ are two CSD such that ∀s ∈ D′, s � D, then we note D′ � D. This
means that the trie representing D′ entirely shadows that of D, as illustrated
in Figure 2.

4

10

0 1

Figure 2: Trie representation of a CSD on the binary alphabet G = {0, 1}. Left:
the trie representing the Complete Suffix Dictionary D = {0, 01, 11}. Right:
{00, 10, 001, 101, 11} � {0, 01, 11}.

2.5 Piecewise constant mappings

For a given CSD D, we say that a mapping f defined on G−N
+

is D-constant if

∀s ∈ D, ∀w, z ∈ T (s), f(w) = f(z) .

The mapping f is constant if and only if it is {ǫ}-constant, and f is called
piecewise constant if there exists a CSD D such that f is D-constant. For every
h ∈ G∗ we define

f(h) = f
(

T (h)
)

= {f(z) : z ∈ T (h)} .

Note that, by definition, f(h) is a set; however, if f is D-constant and if h � D,
then f(h) is a singleton (that is, a set containing exactly one element).

Let f be a piecewise constant mapping; the set of all CSDs such that f is
D-constant has a minimal element when ordered by the inclusion relation: we
denote it Df , the minimal CSD of f . The minimal CSD Df is such that if
s ∈ Df , there exists w ∈ G∗ such that s′ = ws−|s|+1:−1 ∈ Df and f(s) 6= f(s′).

If f is D-constant, then Df can be obtained by recursive pruning of D, that
is, by pruning the nodes whose children are leaves with the same value for f as
long as possible. A D-constant mapping f can be represented by the trie D,
if each leaf s of D is labeled by the common value of the f(w) for w ∈ T (s).
Figure 3 illustrates the trie representation of a piecewise constant function, and
pruning.

2.6 Probability transition kernels

A mapping P : G−N
+ →M(G) is called a probability transition kernel, and we

denote the image of w ∈ G−N
+

by P (·|w). We say that P is continuous if it is

continuous as an application from
(

G−N
+

, δ
)

to (M(G), | · |TV). For s ∈ G∗,

we define the oscillation of P on the ball T (s) as:

ηP (s) = sup
{

∣

∣P (·|w)− P (·|z)
∣

∣

TV
: w, z ∈ T (s)

}

.

We say that a process (Xt)t∈Z with distribution ν on GZ (equipped with the
product topology and the product sigma-algebra) is compatible with kernel P

5

=

1

1

1 0

f f

01

1
w−3

w−2

w−1

1

11

w−3

w−2

w−1

Figure 3: Two representations as labeled tries of the piecewise constant function
f defined on the binary alphabet {0, 1}−N

+

by f(w) = 0 if w ∈ T (111), and
f(w) = 1 otherwise. In the second representation, the trie is minimal: it has
been obtained from the first trie by recursively pruning leaves with identical
image.

if the latter is a version of the one-sided conditional probabilities of the former,
that is:

ν
(

Xi = g|Xi+j = wj ∀j ∈ −N+
)

= P (g|w)
for all i ∈ Z, g ∈ G and ν-almost every w. A classical but key remark is that
St = (. . . , Xt−1, Xt), t ∈ Z, is a homogeneous Markov Chain on the compact

ultra-metric state space G−N
+

, with transition kernel Q given by:

∀w, z ∈ G−N
+

, Q(z|w) = P (z−1|w)1⋂
i<0

zi−1=wi
.

2.7 Update rules

An application φ : [0, 1[×G−N
+ → G is called an update rule for a kernel P if, for

all w ∈ G−N
+

and for all g ∈ G, the Lebesgue measure of {u ∈ [0, 1[: φ(u,w) =
g} is equal to P (g|w). In other words, if U is a random variable uniformly

distributed on [0, 1[, then φ(U,w) has distribution P (·|w) for all w ∈ G−N
+

. For
any continuous kernel P , Section 3.2 details the construction of an update rule
φP such that:

∀s ∈ G∗, 0 ≤ u < 1− |G|ηP (s) =⇒ φP (u, ·) is constant on T (s) . (1)

The following lemma (proved in the Appendix) is the basic observation that
makes it possible to design an algorithm working in finite time even for kernels
that are not piecewise continuous.

Lemma 1. For all u ∈ [0, 1[the mapping w → φP (u,w) is continuous, i.e,
piecewise constant.

3 Abstract description of the perfect simulation

scheme

Given a continuous transition kernel P , two questions arise:

6

1. does there exist a stationary distribution ν compatible with P? In that
case, is it unique?

2. if ν exists, how can we sample finite trajectories from that distribution?

In the past decade, [5, 7, 9] have contributed to answer these questions. Their
approach is to show that there exists a simulation scheme drawing samples of ν,
and this algorithm is based on the idea of coupling from the past. Following these
authors, we address these questions by constructing a new perfect simulation
scheme that requires looser conditions on the kernel, and that converges faster
than existing algorithms. In this section, we describe the general principle of
this algorithm, ignoring practical details of implementation. These details are
given in Section 4 below.

3.1 Perfect simulation by coupling into the past

X−2

X−3

X−4

X−5

X−4

X−5

X−2

X−3X−3

X−4

X−5

X−4

X−5

X−8

X−7

X−6 X−6

X−7

X−6

X−1

U−3 U−2 U−1

. .
.

f−3

f−2

f−1

...

...

...

...

. . .

Figure 4: Perfect simulation scheme.

Let n be a negative integer. In order to draw (Xn, . . . , X−1) from a stationary
distribution compatible with P , we use a semi-infinite sequence of independent
random variables (Ut)t<0 defined on a probability space (Ω,A, P) and uniformly
distributed on [0, 1[. The idea is to deduceXt from Ut and from the past symbols
Xt−1, Xt−2, . . . as depicted in Figure 4. Those past symbols are unknown, but
the continuity of P makes it sometimes possible to compute Xt yet.

For each t < 0, let ft be the random function G−N
+ → G−N

+

defined

7

by ft(w) = wφP (Ut, w).
1 Beware the index shift: if z = ft(w) then z−1 =

φP (Ut, w) and zi = wi+1 for i < −1.
In addition, let Ft = f−1 ◦ · · · ◦ ft and, for any negative integer n, Hn

t =
Πn ◦ Ft. As will shall see in Proposition 1 below, the continuity of P implies
that Hn

t is piecewise constant. Define

τ(n) = sup{t < 0 : Hn
t is constant} ,

where by convention τ(n) = −∞ if for all t < −1, Hn
t is not constant. When

τ(n) is finite, the result of the procedure is {Xn:−1}, the image of the constant
mapping Hn

τ(n): it is easily seen to have the expected distribution (see [21, 5]).

Remark 1. For t > n, Hn
t cannot be constant, since for n ≤ k < t, it holds

that (Hn
t (w))k = wk. Thus, τ(n) = sup{t ≤ n : Hn

t is constant} ≤ n.

Observe also that the sequence (τ(n))n is a non-increasing sequence of stop-
ping times with respect to the filtration (Fs)s, where Fs = σ(Ut : t ≥ s), when
s decreases.

From a theoretical point of view, this CIAFTP algorithm simply consists
in running an instrumental Markov chain until a given hitting time. Indeed,
the recursive definition given above shows that the sequence (Hn

t)t≤1 is a ho-

mogeneous Markov chain on the set of functions G−N
+ → Gn. The algorithm

terminates when this Markov chains hits the set of constant mappings. Such
a procedure seems to be purely abstract, as it involves infinite, uncountable
objects. But in Section 4, we show how this Markov chain on the set of func-
tions G−N

+ → Gn can be handled with a finite memory. Before we come to
the detailed implementation of the algorithm, we present in Section 3.2 the con-
struction of the update rule and we provide sufficient conditions for the stopping
time τ(n) to be finite.

3.2 Construction of the update rule φP

The algorithm abstractly depicted above, and detailed in Section 4, crucially
relies on the update rule φP that satisfies Equation (1). This section presents
the construction of this update rule for a given, continuous kernel P . To put
it in a nutshell, the construction of φP relies, for each k-tuple z ∈ G−k, on a
coupling of the conditional distributions

{

P (·|z) : z ∈ T (z)
}

. The simultaneous
construction of all these couplings requires a few definitions and properties that
are stated here and proved in the Appendix.

Provide G with any order <, so that G−N
+

can be equipped with the cor-
responding lexicographic order : w < z if there exists k ∈ −N such that
∀j > k,wj = zj and wk < zk. The continuity of P is locally quantified
by some coupling factors that we define here together with coefficients that

1Regarding measurability issues: if the set G−N
+

→ G−N
+

is equipped with the topology
induced by the distance δ defined by

δ(f1, f2) =
∑

w∈G−N+

(2|G|)−|w|δ
(

f1(w), f2(w)
)

,

and with the corresponding Borel sigma-algebra, then the measurability of ft follows from
Lemma 1.

8

are necessary for the construction of the update rule φP . For all g ∈ G, let
A−1(ε) = a−1(g|ε) = 0; for all k ∈ N and all z ∈ G−k, let

ak(g|z−k:−1) = inf
{

P (g|w) : w ∈ T (z−k:−1)
}

,

Ak(z−k:−1) =
∑

g∈G

ak(g|z−k:−1) ,

A−
k = inf

s∈G−k

Ak(s) ,

αk(g|z−k:−1) = Ak−1(z−k+1:−1) +
∑

h<g

{ak(h|z−k:−1)− ak−1(h|z−k+1:−1)} ,

(2)

βk(g|z−k:−1) = Ak−1(z−k+1:−1) +
∑

h≤g

{ak(h|z−k:−1)− ak−1(h|z−k+1:−1)} .

(3)

Note that, with our conventions, a0(g|ε) = inf{P (g|z) : z ∈ G−N
+}. Moreover, if

s, s′ ∈ G∗ are such that s � s′, then for all g ∈ G it holds that ak(g|s) ≥ ak(g|s′),
Ak(s) ≥ Ak(s

′) and the sequence
(

A−
k

)

k
is increasing.

The following propositions gather some elementary ideas that will be used
in the sequel. They are proved in the Appendix.

Proposition 1. The coupling factors of the kernel P satisfy the following in-
equalities: for all s ∈ G∗,

1− (|G| − 1)ηP (s) ≤ A|s|(s) ≤ 1− ηP (s) . (4)

Proposition 2. The following assertions are equivalent:

(i) the kernel P is continuous;

(ii) for every w ∈ G−N
+

, ηP (w−k:−1) tends to 0 when k goes to infinity;

(iii) when k goes to infinity,

sup
{

ηP (s) : s ∈ G−k
}

→ 0 ;

(iv) ∀w ∈ G−N
+

, Ak(w−k:−1)→ 1 as k →∞;

(v) A−
k → 1 as k goes to infinity.

Proposition 3. Let P be a continuous kernel, and let αk(·|·) and βk(·|·) be

defined as in (2) and (3). Then, for every w ∈ G−N
+

,

[0, 1[=
⊔

g∈G,k∈N

[αk(g|w−k:−1), βk(g|w−k:−1)[.

In other words: for every u ∈ [0, 1[and every w ∈ G−N
+

, there exists a unique
k ∈ N and a unique g ∈ G such that u ∈ [αk(g|w−k:−1), βk(g|w−k:−1)[.

Figure 5 illustrates Proposition 3 on a three-symbols alphabet. Thanks to
Proposition 3, we can now define the following update rule and check that it
satisfies Equation (1).

9

Figure 5: Graphical representation of an update rule φP on alphabet {0, 1, 2}:
for each w−k:−1, the intervals [αk(g|w−k:−1), βk(g|w−k:−1)[are represented in
black (g = 0), light grey (g = 1) and medium grey (g = 2). For example,
P (1|1) = α0(1|ε) + α1(1|1) = 1/8 + 1/4, and P (0|00) = α0(0|ε) + α1(0|0) +
α2(0|00) = 1/4 + 1/8 + 0.

Definition 1. Let φP : [0, 1[×G−N
+ → G be defined as follows:

φP (u,w) =
∑

g∈G,k∈N

g1[αk(g|w−k:−1),βk(g|w−k:−1)[(u) .

In words, for every u ∈ [0, 1[and for every w ∈ G−N
+

, φP (u,w) is the unique
symbol g ∈ G such that there exists k ∈ N satisfying:

u ∈
[

αk(g|w−k:−1), βk(g|w−k:−1)
[

.

Proposition 4. The mapping φP of Definition 1 is an update rule satisfying
Equation (1):

∀s ∈ G∗, ∀u ∈ [0, 1], ∀w, z ∈ T (s), u < A|s|(s) =⇒ φP (u,w) = φP (u, z) .

As a consequence, for every s ∈ G∗ and every u < A|s|(s), we can define φP (u, s)
as the value common of the φP (u,w) for all w ∈ T (s).

3.3 Convergence

In [5, 7], sufficient conditions on P are given in order to ensure that τ(n) is
almost-surely finite (or even that τ(n) has bounded expectation). Besides, the
authors prove that almost-sure finiteness for τ(n) is a sufficient condition to
prove the existence and uniqueness of a stationary distribution ν compatible
with P (see [5], Theorem 4.3 and corollaries 4.12 and 4.13). As a by-product,
one obtains a simulation algorithm for sample paths of ν: if U = (Ut)t∈Z is a
sequence of independent, uniformly distributed random variables, one can define
Φ : [0, 1]Z → GZ such that Φ(U)t = φP (Ut−1,Φ(U)−∞:t−1) for all t, and

ν = P(Φ(U) ∈ ·),

the law of Φ(U), is stationary and compatible with P .

10

But the conditions on P required in [5] are quite restrictive: they require
that

∞
∑

m≥0

m
∏

k=0

A−
k =∞ .

This condition requires in particular that the chain satisfies the Harris condition

A−
0 =

∑

g∈G inf
{

P (g|z) : z ∈ G−N
+
}

> 0. The authors prove that, under these

conditions, the process regenerates, and that the stopping time

τ ′(n) = sup{t ≤ n : Ht
t is constant}

is almost-surely finite, using a Kalikow-type decomposition of the kernel P as a
mixture of Markov chains of all orders.

For τ(n) to be finite, this is obviously a sufficient but certainly not a nec-
essary condition. Consider the example of order 1 Markov chains: while Propp
and Wilson [21] have shown that the stopping time τ(n) of the optimal update
rule is almost surely finite for every mixing chain (and, under some conditions,
that τ(n) has the same order of magnitude as the mixing time of the chain),
τ ′(n) is almost surely infinite as soon as the Dobrushin coefficient A−

0 of the
chain is 0. The contribution of this paper is precisely to fill the gap, by provid-
ing for general continuous kernels a Propp–Wilson procedure that may converge
even if the process is not regenerating. In fact, for Markov chains of order 1,
φP (u,w) depends only on w−1 and the algorithm presented in this paper is
simply Propp and Wilson’s exact sampling procedure.

Since the publication of [5], [9, 7] have generalized these results, relaxing the
conditions on the kernel and proposing other particular conditions covering for
different cases. Gallo [9] shows that P needs not be continuous to ensure the
existence of ν, nor to ensure the finiteness of τ(n): he gives an example of a
non-continuous regenerating chain (see also the final remark of Section 6). In
[7], De Santis and Piccioni propose another algorithm which mixes the ideas of
[5] and [21]: they propose a hybrid simulation scheme working with a Markov
regime and a long-memory regime. Our approach is different and more general:
we describe a single procedure that generalizes the sampling schemes of [5] and
[21] in a single, unified framework.

4 The Coupling Into and From the Past Algo-

rithm

In this section, we give a detailed description of the algorithm that permits to
compute effectively the mappings Hn

t . The difficulty is that their domain is the

infinite space G−N
+

, so that no naive implementation is possible. The solution
comes from the fact that, for each t, the mapping Hn

t is piecewise continuous,
and thus can be represented by a random, but finite object: namely, by its trie
representation defined in Section 2.5.

4.1 Description of the Algorithm

Consider a continuous kernel P and its update rule φP given by Definition 1. For
each u ∈ [0, 1[, Proposition 1 shows that the mapping φP (u, ·) is piecewise con-
stant; we denote by D(u) = DφP (u,·) its minimal CSD. Algorithm 1 shows how

11

the mappings Hn
t defined in Section 3 can be constructed recursively, using only

finite memory. For simplicity, it is presented as a pseudo-code involving mathe-
matical operations and ignoring specific data structures, but it is easy to deduce
a real implementation from this pseudo-code. A matlab implementation is avail-
able on-line at http://www.telecom-paristech.fr/~garivier/context/. It
contains a demonstration script illustrating the perfect simulation of the pro-
cesses mentioned in Sections 5.2 and 6.

Algorithm 1: Coupling from and into the past for continuous kernels.

Input: update rule φP , size −n of the path to sample

t← 0;1

Dn
t ← Gn;2

∀s ∈ Gn, Hn
t (s)← {s};3

while |Dn
t | > 1 do4

t← t− 1;5

draw Ut ∼ U([0, 1[) independently;6

D(Ut)← the minimal trie of Ut;7

foreach s ∈ D(Ut) do8
{

gt[s]
}

← φP (Ut, s);9

if sgt[s] � Dn
t+1 then10

En
t [s]← {s};11

else12

En
t [s]←

{

h ∈ G∗ : hgt[s] ∈ Dn
t+1

(

sgt[s]
)}

;13

En
t ←

⋃

s∈D(Ut)

En
t [s];

14

Claim 1: En
t is a CSD;15

Claim 2: Hn
t is En

t -constant, and ∀s ∈ En
t , H

n
t (s) = Hn

t+1

(

sgt[s]
)

is16

a singleton;
Dn

t ← the minimal CSD of Hn
t obtained by pruning En

t17

Output: Xn:−1 such that ∀z ∈ G−N
+

, Hn
t (z) = {Xn:−1}

For every t < 0, the mapping Hn
t being piecewise constant, we can define

Dn
t = DHn

t . Note that the definition ofHn
0 in the initialization step is consistent

with the general definition Hn
t = Πn ◦ Ft, as the natural definition of F0 is the

identity map on G−N
+

. Algorithm 1 successively computes Hn
−1, H

n
−2, . . . and

stops for the first t ≤ n such that Hn
t is constant.

The key step is the derivation of Hn
t and Dn

t from Hn
t+1, D

n
t+1 and Ut: it is

illustrated in Figure 6. It consists in three steps:

STEP 1: compute the minimal trie D(Ut) of φ(Ut, ·).

STEP 2: compute the trie En
t such that Hn

t is En
t -constant, by completing

D(Ut) with portions of Dn
t+1. Namely, for every s ∈ D(Ut), there are two

cases:

• either sgt[s] � Dn
t+1, then knowing that (Xt−|s|, . . . , Xt−1) = s, to-

gether with Ut and Hn
t , is sufficient to determine Xn:−1 (see the

dashed lines in Figure 6);

12

• or some additional symbols in the past are required by Hn
t+1, and a

subtree of Dn
t+1 has to be injected in the place of s (see the dotted

circled subtree in Figure 6).

STEP 3: prune En
t in order to obtain the minimal trie Dn

t of Hn
t .

Xt−2

Xt−1

Hn
t+1φ(Ut, ·)Hn

t
Hn

t

1

01 1 1

1

1

1

10 0 0

Xt

Xt−1

Xt−2
11

STEP 1:STEP 2:STEP 3:

=

pruning combining computing φ(Ut, ·)
φ(Ut, ·) and Hn

t+1

Figure 6: How to deduce the trie representation of Hn
t from that of Hn

t+1 and
from Ut, in three steps. Here, G = {0, 1} and n = 1. Recall that φ(Ut, ·)
gives Xt in function of (Xt−1, Xt−2, . . .), and that Hn

t+1 gives X−1 in function
of (Xt, Xt−1, Xt−2 . . .). Concerning Step 2: the dashed lines illustrates the
first case (if (Xt−2, Xt−1) = (0, 1), then Xt = φ(Ut, . . . 01) = 0 and X1 =
Hn

t+1(. . . 010) = Hn
t+1(. . . 0) = 1), while in the second case the subtree of Dn

t+1

to be inserted into En
t is circled with a dotted line.

From a mathematical point of view, Algorithm 1 can be viewed as a run of
an instrumental, homogeneous Markov chain on the set of |G|-ary trees whose
leaves are labeled by Gn, which is stopped as soon as a tree of depth 0 is
reached. One iteration of this chain, corresponding to one loop of of algorithm,
is illustrated in Figure 6.

Algorithm 1 is thus very close to the high level method termed ‘Coupling
Into And From The Past’ in [25] (see Section 7, in particular Figure 7). Indeed,
in addition to coupling the trajectories starting from all possible states at past
time t, one uses here a coupling of the conditional distributions before time t
(that is, into the past). A small difference is that we want here to sample Xn:−1

and not only X−1. The CSD Dn
t plays the role of the state denoted by X in [25],

and Hn
t plays the role of F .

4.2 Correctness of Algorithm 1

Proving the correctness of Algorithm 1, that is, the correctness of the update
rule deriving Hn

t from Hn
t+1, boils down to checking the two claims of lines 15

and 16.

Claim 1: En
t is a CSD.

Every h ∈ En
t [s] is such that h � s; let w ∈ T (s), and let

{

hgt[s]
}

=

Dn
t+1

(

wgt[s]
)

. Then h ∈ En
t [s] and w ∈ T (h), so that

T (s) =
⊔

h∈En
t
[s]

T (h) .

The result follows, as G−N
+

= ⊔s∈D(Ut) T (s).

13

Claim 2: Hn
t is En

t -constant, and ∀s ∈ En
t , H

n
t (s) = Hn

t+1

(

sgt[s]
)

is a

singleton.

We prove that Hn
t is En

t -constant by induction on t, and the formula for Hn
t (s)

comes as a by-product of the proof. For t = 0, this is obvious if one denotes
En

0 = Dn
0 = Gn. For t < 0, let h ∈ En

t . By construction h � D(Ut): denote
by s the suffix of h in D(Ut). Then φP (Ut, h) is the singleton {gt[s]}. As,
by construction, hgt[s] � Dn

t+1, Hn
t (h) = Hn

t+1(hgt[s]) is a singleton by the
induction hypothesis.

4.3 Computational complexity

For a given kernel, the random number of elementary operations performed by
a computer during a run of Algorithm 1 is a complicated variable to analyze, as
it depends not only on the number τ(n) of iterations, but also on the size of the
trees Dn

t involved. Moreover, the basic operations on trees (traversal, lookup,
node insertion or deletion, etc.) performed at each step have a computational
complexity that depends on the implementation of the trees.

In first approximation, however, one can consider the cost of these operations
to be a unit, so that the discussion on the computational complexity of the
algorithm boils down to estimating (or bounding) their number in a run. Then a
brief inspection of Algorithm 1 shows that the complexity of a run is proportional
to the sum, for t from τ(n) to −1, of the number of nodes of Dn

t . Taking into
account the complexity of the basic tree operations would typically lead to a

complexity of order O
(

∑−1
t=τ(n) |Dn

t | log |Dn
t |
)

.

Thus, analyzing the computational complexity of Algorithm 1 amounts to
bounding, at the same time, the number of iterations τ(n) and the size of
the trees Dn

t . For a general kernel P , this seems to be a very challenging
task that overpasses the ambition of this paper, involving not only the mixing
properties of the corresponding process, but also the oscillation of the kernel
directly. However, some elements of analysis are provided in the next section,
where both questions are considered successively. First a crude bound on τ(n)
is given; then, a bound on the size of Dn

t is proved for finite memory processes.

5 Bounding the size of Dn
t

We first give sufficient conditions for the algorithm to terminate, together with
bound on the expectation of the depth of Dn

t . Then, we focus on the special
but important case of (finite) variable length Markov Chains.

5.1 Almost sure termination of the coupling scheme

In general, the CSD Dn
t can be arbitrarily large with positive probability. In

[5], conditions are given that ensure the finiteness of τ(n) defined above, from
which bounds on Dn

t can be deduced. However, these conditions are quite
restrictive: in particular, it is necessary that A0(ε) > 0. [7] somewhat relaxes
these conditions using an hybrid simulation scheme, allowing for A0(ε) = 0.

A crude bound, ignoring the coalescence possibilities of the algorithm, is the
following: denoting Ln

t = d(Dn
t) the depth of the current tree at time t, an

14

immediate inspection of Algorithm 1 yields:
{

Lt
t ≤ max{Xt, L

t+1
t+1 − 1, 1} if t < n , and

Ln
t ≤ max{Xt, L

n
t+1 − 1} if t ≥ n .

where the Xt = d(D(Ut)) are i.i.d. random variables such that ∀k ∈ N,P(Xt ≤
k) = A−

k . Thus,

P(Ln
t ≤ k) ≥ P(Ln

t+1 ≤ k + 1)A−
k ≥

k−t−1
∏

j=k

A−
j .

This bound permits to show, as in [5], that τ(n) is almost-surely finite as soon
as

∞
∑

m≥0

m
∏

k=0

A−
k =∞ .

Moreover, one obtains:

E[Ln
t] ≤

n
∑

k=1



1−
∞
∏

j=k

A−
j



 .

5.2 The case of Finite Context Trees

There is at least one case where it is easy to upper-bound the size of Dn
t inde-

pendently of t ≤ n: when the kernel P actually defines a finite Context Tree,
that is, when the mapping w → P (·|w) is piecewise constant. In other words,
denoting by D the minimal CSD of this mapping, P (·|s) is a singleton for each
s ∈ D.

Even in that case, the simulation scheme described above is useful: although
the “plain” Propp-Wilson algorithm could be applied on the first order Markov
chain (Xt+1:t+d(D))t∈Z on the extended state space Gd(D), the computational
complexity of such an algorithm might well become rapidly intractable if the
depth d(D) is large, whereas the following property shows that our algorithm
keeps a possibly much more limited complexity. Such qualities of parsimony
are precisely the reason why finite context trees have proved successful in many
applications, from Information Theory and universal coding (see [22, 24, 6, 11])
to biology ([1, 4]) or linguistics [10].

We say that a CSD D is prefix-closed if every prefix of any sequence in D is
the suffix of an element of D:

∀s ∈ D, ∀k ≤ |s|, ∃w ∈ D : w � s−|s|:−k .

A prefix-closed CSD satisfies the following property:

Lemma 2. If D is a prefix-closed CSD, then for all h ∈ D (or, equivalently,
for all h � D) and for all a ∈ G, ha � D.

Proof: If h ∈ G∗ is such that for some a ∈ G, ha � D does not hold, then
(as D is a CSD) there exists s ∈ D and s′ ∈ G∗\{ǫ} such that s = s′ha. But
then s′h is a prefix of s and, by the prefix-closure property, there exists w ∈ D
such that w � s′h. Thus, one cannot have h � D.

15

We define the prefix closure
←−
D of a CSD D as the minimal prefix-closed set

containing D, that is, the set of maximal elements (for the partial order �) of

D̃ =
{

s−|s|:−k : s ∈ D, k ≤ |s|
}

.

In other words,
←−
D is the smallest set such that for all w ∈ D̃ there exists s ∈ ←−D

such that s � w.
Obviously, |←−D | ≤ |D̃| ≤ |D| × d(D). This bound is pessimistic in general:

many CSDs are already prefix-closed, and for most CSDs |←−D | is of the same
order of magnitude as |D|. But in fact, for each positive integer n, one can show

that there exists a CSD D of size n such that |←−D | ≥ c|D|2 for some constant
c ≈ 0.4.

Now, assume that D 6= {ǫ}, i.e., that P is not memoryless.

Proposition 5. For each t ≤ n, ∀k < t,
←−
D � Dn

t . Thus,

|Dn
t | ≤

∣

∣

∣

←−
D
∣

∣

∣
≤ |D| × d(D) .

Proof: We show that
←−
D � Dt

t by induction on t. First, as P is not memo-

ryless,
←−
D � D−1

−1 = G. Second, assume that
←−
D � Dn

t+1: it is sufficient to prove

that Hn
t (or Ht

t , if t ≥ n) is
←−
D -constant. Observing that

←−
D � D, for every

Ut ∈ [0, 1[and for every s ∈ ←−D it holds that φP (Ut, s) is a singleton {gt[s]}. Us-
ing successively the lemma and the induction hypothesis, sgt[s] �

←−
D � Dn

t , thus

Hn
t (s) = Hn

t+1(sgt[s]) is also a singleton. Finally, for t = n, Ht
t is
←−
D -constant

because
←−
D 6= {ǫ}.

It has to be emphasized that Proposition 5 provides only an upper-bound on
the size of Dn

t : in practice, Dn
t can be observed to be often much smaller. Even

for non-sparse, large order Markov Chains of order d, Algorithm 1 can thus be
faster than the Propp-Wilson algorithm on Gd which, in general, requires the
consideration of |G|d states at each iteration. Interested readers may want to
run the matlab experiments available at http://www.telecom-paristech.fr/

~garivier/context/.

6 Example: a continuous process with long mem-

ory

This section briefly illustrates the strengths of Algorithm 1 in comparison with
the other existing CFTP algorithms for infinite memory processes. It focuses on
a process that cannot be simulated by other methods. Of course, Algorithm 1
is also relevant for all the processes mentioned in [5, 7], which we refer to for
further examples.

The example we consider involves a non-regenerating kernel on the binary
alphabet G = {0, 1}. It is such that a0 = 0, and that the convergence of the
coupling coefficients is slow, so that neither the perfect simulation scheme of [5],
nor its improvement by [7] can be applied; yet, a probabilistic upper-bound on
the stopping time τ of Algorithm 1 can be given, which proves that there exists
a compatible stationary process. For all k ≥ 0, let

P (0|01k) = 1− 1/
√
k . (5)

16

Figure 7: Graphical representation of the update rule for the kernel defined
in (5) (dark is for 0, light grey is for 1)

The coupling coefficients of P are shown in Figure 7 Observe that P (1|0) =
limk→∞ P (0|01k) = 1, so that a0 = 0. Besides, for k ≥ 0 it holds that Ak+1 =
Ak(01

k) = 1− 1/
√
k, so that

∑

n

n
∏

k=2

A−
k <∞

and the continuity conditions of [5, 7] do not apply.
We will show that the algorithm described above can be used to simulate

samples of a process X have specification P (so that, in particular, such a
process exists; uniqueness is straightforward). It is sufficient to show that the
stopping time τ(1) is almost surely finite. Actually, −τ(1) is stochastically
upper-bounded by three times a geometric variable of parameter 3/(2

√
2) − 1.

To simplify notations, denote Ht = H−1
t , and 0 = (. . . , 0, 0) ∈ G−N

+

. For every
t < −2 if Ut−1 ≤ 1 − 1/

√
2, if Ut > 1 − 1/

√
2 and if Ut+1 ≤ 1 − 1/

√
2 then for

every w ∈ G−N
+

we have:

• Ut+1 ≤ 1− 1/
√
2 implies ft+1(w1) = w10 and Ht+1(w1) = Ht+2(0);

• Ut > 1 − 1/
√
2 implies ft(w01) = w011 and Ht(w01) = Ht+1(w011) =

Ht+2(0) on the other hand, ft(w0) = w01 and Ht(w0) = Ht+1(w01) =
Ht+2(0);

• Ut−1 ≤ 1 − 1/
√
2 implies ft−1(w1) = w10 and ft−1(w0) = w01, so that

Ht−1(w0) = Ht−1(w1) = Ht+2(0), and τ ≥ t− 1.

For every negative integer k let Ek = {U3k−1 ≤ 1 − 1/
√
2} ∩ {U3k > 1 −

1/
√
2}∩{U3k+1 ≤ 1−1/

√
2}. The (Ek)k<0 are independent events of probability

3/(2
√
2)− 1, which gives the result.

Thus, the algorithm converges fast. However, the dictionaries involved in the
simulation can be very large: in fact, it is easy to see that the depth Xt of D(Ut)
has no expectation: P(Xt ≥ k) = 1/

√
k. Of course, as Dn

t has a very special
shape, ad hoc modifications of the algorithm would easily allow, here, to draw
arbitrary long samples with low computational complexity. Moreover, paths of
renewal processes can be simulated directly. Yet, this example illustrates the
weakness of the conditions required by Algorithm 1, and the fact that neither

17

0

01

0

01

011011

01

00

01

011

0111

ss− 1 s+ 1

01k+1

01k

0111

01k

01k+1

s+ 2

01k−1

Figure 8: Convergence of the simulation scheme

regeneration, nor a rapid decreasing of the coupling coefficients are necessary
conditions for perfect simulation. More complicated variants are easy to imagine
where no other sampling method is known.

We conclude this section by the following remark: a simple modification
of this example shows that continuity is absolutely not necessary to ensure
convergence, as the proof also applies to any kernel P ′ such that for 0 ≤ k ≤ 2,
P ′(0|01k) = 1 − 1/

√
k, and for any w ∈ G−N

+

, P ′(0|w11) ≥ 1 − 1/
√
2. Such

a phenomenon has been studied in [9]: Gallo gives sufficient conditions on the
shape of the trees, together with bounds on transition probabilities, that ensure
convergence of his coupling scheme. However, his approach is quite different
and does not cover the examples presented here.

Acknowledgments

I thank the referees of the paper for their very useful help for improving the
redaction of this paper, and for pointing me to Kendall’s ‘Coupling From and
Into The Past’ method (the name is by Wilson). I also thank Sandro Gallo,
Antonio Galves and Florencia Leonardi (Numec, Sao Paulo) for stimulating
discussions on chains of infinite memory. This work was supported by USP-
COFECUB (grant 2009.1.820.45.8).

18

References

[1] G. Bejerano and G. Yona. Variations on probabilistic suffix trees: statistical
modeling and prediction of protein families. Bioinformatics, 17(1):23–43,
2001.

[2] Henry Berbee. Chains with infinite connections: uniqueness and Markov
representation. Probab. Theory Related Fields, 76(2):243–253, 1987.

[3] P. Bühlmann and A. J. Wyner. Variable length Markov chains. Ann.
Statist., 27:480–513, 1999.

[4] J. R. Busch, P. A. Ferrari, A. G. Flesia, R. Fraiman, S. P. Grynberg, and
F. Leonardi. Testing statistical hypothesis on random trees and applications
to the protein classification problem. Annals of applied statistics, 3(2), 2009.

[5] Francis Comets, Roberto Fernández, and Pablo A. Ferrari. Processes with
long memory: regenerative construction and perfect simulation. Ann. Appl.
Probab., 12(3):921–943, 2002.

[6] I. Csiszár and Z. Talata. Context tree estimation for not necessarily fi-
nite memory processes, via BIC and MDL. IEEE Trans. Inform. Theory,
52(3):1007–1016, 2006.

[7] Emilio De Santis and Mauro Piccioni. Backward coalescence times for per-
fect simulation of chains with infinite memory. J. Appl. Probab., 49(2):319–
337, 2012.

[8] S. G. Foss, R. L. Tweedie, and J. N. Corcoran. Simulating the invariant
measures of Markov chains using backward coupling at regeneration times.
Probab. Engrg. Inform. Sci., 12(3):303–320, 1998.

[9] Sandro Gallo. Chains with unbounded variable length memory: perfect
simulation and visible regeneration scheme. J. Appl. Probab., 43(3):735–
759, 2011.

[10] A. Galves, C. Galves, J. Garcia, N.L. Garcia, and F. Leonardi. Context
tree selection and linguistic rhythm retrieval from written texts. ArXiv:
0902.3619, pages 1–25, 2010.

[11] A. Garivier. Consistency of the unlimited BIC context tree estimator. IEEE
Trans. Inform. Theory, 52(10):4630–4635, 2006.

[12] Olle Häggström. Finite Markov chains and algorithmic applications, vol-
ume 52 of London Mathematical Society Student Texts. Cambridge Univer-
sity Press, Cambridge, 2002.

[13] Theodore E. Harris. On chains of infinite order. Pacific J. Math., 5:707–
724, 1955.

[14] Mark Huber. Fast perfect sampling from linear extensions. Discrete Math.,
306(4):420–428, 2006.

[15] Wilfrid S. Kendall. Perfect simulation for the area-interaction point process.
In Probability towards 2000 (New York, 1995), volume 128 of Lecture Notes
in Statist., pages 218–234. Springer, New York, 1998.

19

[16] S. P. Lalley. Regenerative representation for one-dimensional Gibbs states.
Ann. Probab., 14(4):1262–1271, 1986.

[17] S. P. Lalley. Regeneration in one-dimensional Gibbs states and chains with
complete connections. Resenhas, 4(3):249–281, 2000.

[18] D. J. Murdoch and P. J. Green. Exact sampling from a continuous state
space. Scand. J. Statist., 25(3):483–502, 1998.

[19] Octav Onicescu and Gheorghe Mihoc. Sur les châınes de variables statis-
tiques. Bull. Sci. Math., 59:174–192, 1935.

[20] Octav Onicescu and Gheorghe Mihoc. Sur les châınes statistiques. Comptes
Rendus de l’Académie des Sciences de Paris, 200:511–512, 1935.

[21] James Gary Propp and David Bruce Wilson. Exact sampling with coupled
Markov chains and applications to statistical mechanics. In Proceedings
of the Seventh International Conference on Random Structures and Algo-
rithms (Atlanta, GA, 1995), volume 9, pages 223–252, 1996.

[22] J. Rissanen. A universal data compression system. IEEE Trans. Inform.
Theory, 29(5):656–664, 1983.

[23] Walter R. Rudin. Principles of Mathematical Analysis, Third Edition. Mc-
GrawHill, 1976.

[24] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context-tree
weighting method: Basic properties. IEEE Trans. Inf. Theory, 41(3):653–
664, 1995.

[25] David Bruce Wilson. How to couple from the past using a read-once source
of randomness. Random Structures Algorithms, 16(1):85–113, 2000.

Appendix

Proof of Lemma 1

let u ∈ [0, 1[; the uniform continuity of P implies that there exists ǫ such that
if δ(w, z) ≤ ǫ, then

∣

∣P (·|w) − P (·|z)
∣

∣

TV
< (1 − u)/|G|. But then Equation (1)

implies that φP (u,w) = φP (u, z).

20

Proof of Proposition 1

For the upper-bound, observe that

ηP (s) = sup
{∣

∣P (·|w)− P (·|z)
∣

∣

TV
: w, z ∈ T (s)

}

= sup

{

1−
∑

a∈G

P (a|w) ∧ P (a|z) : w, z ∈ T (s)
}

= 1− inf

{

∑

a∈G

P (a|w) ∧ P (a|z) : w, z ∈ T (s)
}

≤ 1−
∑

a∈G

inf {P (a|w) ∧ P (a|z) : w, z ∈ T (s)}

= 1−
∑

a∈G

inf {P (a|w) : w ∈ T (s)}

= 1−A|s|(s) .

For the lower-bound, let ǫ > 0, let w ∈ T (s) and b ∈ G be such that ∀z ∈
T (s), ∀a ∈ G,P (a|z) ≥ P (b|w) − ǫ. Then for all z ∈ G−N

+

and all a 6=
b, P (a|z) ≥ P (a|w)− ηP (s) and one gets:

A|s|(s) =
∑

a∈G

P (a|w) + inf {P (a|z)− P (a|w) : z ∈ T (s)}

≥ 1 + inf {P (b|z)− P (b|w) : z ∈ T (s)} +
∑

a 6=b

inf {P (a|z)− P (a|w) : z ∈ T (s)}

= 1− ǫ− (|G| − 1)ηP (s) ,

and, as ǫ is arbitrary, the result follows.

Proof of Proposition 2

The equivalence of (i) and (ii) is obvious by definition. The equivalence with
(iii) is a simple consequence of Proposition 1. Similarly, (iii) follows from (i): if

P is continuous on the compact set G−N
+

, then it is uniformly continuous, and

ϕ(k) = sup
s∈G−k

ηP (s)→ 0

as k goes to infinity. But by Proposition 1, A−
k ≥ 1 − |G|ϕ(k). Finally, (iii)

implies (ii).
The equivalence of (ii) and (iii) can also be proved as a consequence of Dini’s

theorem (see[23], Theorem 7.13 on page 150): defining Ãk(w) = Ak(w−k:−1),

the sequence
(

Ãk

)

k
is an increasing sequence of continuous functions simply

converging to the (continuous) constant function 1, thus the convergence is
uniform.

21

Proof of Proposition 3

Let m (resp. M) be the minimal (resp. maximal) element of G. Then, for all
integer k, αk(m|w−k:−1) = Ak−1(w−k+1:−1), βk(M |w−k:−1) = Ak(w−k:−1), and

[Ak−1(w−k+1:−1), Ak(w−k:−1)[=
⊔

g∈G

[αk(g|w−k:−1), βk(g|w−k:−1)[.

The result follows from the continuity assumption: A−1(ε) = 0 andAk(w−k:−1)→
1 as k goes to infinity.

Proof of Proposition 4

We need to prove that if U ∼ U([0, 1[), then for all w ∈ G−N
+

the random
variable φP (U,w) has distribution P (·|w). It is sufficient to prove that for all
g ∈ G,

∞
∑

l=0

βl(g|w−l:−1)− αl(g|w−l:−1) = P (g|w).

For all integer k, it holds that

k
∑

l=0

βl(g|w−l:−1)− αl(g|w−l:−1) =

k
∑

l=0

al(g|w−l:−1)− al−1(g|w−l+1:−1)

= ak(g|w−k:−1) .

As an increasing sequence upper-bounded by P (g|w), ak(g|w−k:−1) has a limit
Q(g|w) ≤ P (g|w) as k tends to infinity. By continuity,

∑

g∈G

Q(g|w) =
∑

g∈G

lim
k→∞

ak(g|w−k:−1)

= lim
k→∞

∑

g∈G

ak(g|w−k:−1) = lim
k→∞

Ak(w−k:−1) = 1,

and as
∑

g∈G P (g|w) = 1 this implies that for all g ∈ G, Q(g|w) = P (g|w).
The last part of the proposition is immediate: forw, z ∈ T (s), ∀k ≤ |s|, w−k:−1 =
z−k:−1 and

⊔

g∈G,k≤|s|

[αk(g|w−k:−1), βk(g|w−k:−1)[

=
⊔

g∈G,k≤|s|

[αk(g|z−k:−1), βk(g|z−k:−1)[= [0, A|s|(s)[.

22

