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Chapter 1. Introduction

1 Historical perspective on quantum control

Along with the development of laser technology, a rising interest has naturally
appeared in connection with using lasers to influence matter at the quantum
dynamical level. This new field of research, commonly designated as “quantum
control”, has roots that go back to the earliest days of laser development in
the 1960’s. What distinguishes quantum control from the traditional means
of chemical manipulation is the use of delicate quantum wave interferences to
alter the outcome of molecular scale dynamics phenomena. Research in quan-
tum control accelerated in the 1980’s, with the first successful results in Shi
et al. (1988); Tannor and Rice (1985); Shapiro and Brumer (1989) driven by
the recognition of the role of quantum interference and the need for rigorous
design tools. The introduction of the evolutionary paradigm (see Section 17)
in Judson and Rabitz (1992) and the accompanying experimental successes of
Assion et al. (1998); Levis et al. (2001); Weinacht et al. (1999); Bardeen et al.
(1997a, 1998); Hornung et al. (2000); Kunde et al. (2000) in the 1990’s have
brought an exciting new set of theoretical questions and laboratory possibil-
ities to the field. The time scales involved lie mostly within the femtosecond
(1071%) - picosecond (107'2) range with spatial dimensions extending from one
or two atoms to large polyatomic molecules and solid state structures.

In practice the outcome of a control experiment is measured in terms of
quantum observables (e.g. selective dissociation of interatomic bonds) asso-
ciated with Hermitian operators acting on the the system at hand. The con-
trol proocess consists of steering the appropriate observable or wavefunction
from the initial state to a final desired state. In the laboratory this is gener-
ally done by time-varying laser fields. We refer the reader to Chapter 2 for a
precise mathematical transcription of these concepts.

Although prospects for industrial applications motivated much of the early
research on quantum control, current applications span a wide range, from
high harmonic generation (Bartels et al. (2000)) and fast switching in semi-
conductors (Kunde et al. (2000)) to Hamiltonian identification (see Section 22).

2 Multidisciplinarity

Although research on quantum control was initiated within the field of phys-
ical chemistry, the subject has developed to involve researchers from myriad
fields, including engineering, mathematics, computer science and physics. The



introduction of control tools from the engineering contexts opened the field
to the influence of (applied) mathematicians; later, computer scientists also
became involved through their interest in quantum computing. Besides tech-
niques employed by control specialists working on controllability, observability
and stabilization issues, the applied mathematics tools involved include the
resolution of the control problem through deterministic (direct optimization or
critical point equations) or stochastic (evolutionary algorithms) approaches.
The variety of research paradigms contributing to quantum control has proved
to be beneficial to the field and will likely be central to future advances.

3 Outline

This volume addresses numerical methods in various aspects of the chemical
sciences and the present chapter contributes in that fashion to the subject of
quantum control. However, in order to appreciate how numerical methods are
relevant for quantum control it is essential to understand how they fit into the
overall subject including its laboratory implementations. Thus, the chapter
attempts to give a full perspective on the subject including its theoretical
foundations as well as its current state in the laboratory.

The balance of this review will proceed as follows: after an introduction of
the fundamental concepts in Chapter 2 we present in Chapter 3 theoretical
results regarding on the controllability of bilinear quantum systems. Then, in
Chapter 4 we present the available numerical and experimental algorithmical
approaches employed to control quantum phenomena. Present topics of inter-
est and open questions are the object of the Chapter 5. Concluding remarks
are presented in Chapter 6. The text draws on many works in the literature
and especially a recent prospectus (Brown and Rabitz (in press)) on the field.

Chapter 2. Basic principles

4 Mathematical formulation of the Hamiltonian and control law

Each particular control setting requires an appropriate quantum control model.
The section will be mostly devoted to the description of the bilinear dipole
coupling, which is often employed in practice. However, some other control
paradigms will be presented and their domain of applicability and specific ca-
pabilities discussed. Controlling a quantum system requires the introduction
of external interactions. Here, we will only consider control tools that act at



the atomic/molecular level, with other, more classical tools such as tempera-
ture, pressure, catalysts etc. being outside of our scope. The primary control
for quantum systems discussed here will be the electric field of a laser.

Most of this paper will work under the assumption that the system to be
controlled can be characterized by its state function (¢). This is a proper
representation for isolated systems starting in a pure state; the complementary
case arises, for example, in collisional or condensed regimes, when a density
operator p(t) must be introduced to describe the statistical mixture of states
making up the system. The density operator formulation will be discussed
where relevant.

Consider a quantum system that evolves from the initial state ¥ (t = 0) = 1.
The objective of quantum control can generally be expressed as the desire for
the expectation value

(O(t)) = () [O]¥(1)) (4.1)
of some predefined observable operator O to be within a prescribed target set
at the final time ¢ = T. More general quantum control problem formulations

may deal with several observable operators Os,...,0 (kK > 1) and additional
intermediary times 0 < t; <7T (j =1,2,...).

In the absence of any external control influence, evolution of the state function
¥ (t) under the Schrédinger equation is determined by the free Hamiltonian Hy,
which by assumption does not yield dynamics producing the desired expec-
tation values. Quantum control theory considers the addition of a laboratory
accessible control law term C(t) to the Hamiltonian in order to achieve these
objectives, which makes H = Hy + C(t) the new Hamiltonian of the system

and

L 0Y(t

zh% = [Ho + C()]u(t) (4.2)
the equation of motion. Appropriate regularity assumptions on the control law
must be enforced so that the evolution of ¢(¢) is well defined. For example, a

common control law for lasers has the form
C(t) = —pe(t), e = (a)i, a(t) € L’[0,T), i=1,2,3

where p is the electric dipole operator, €(t) is the applied electric field, and
the index ¢ refers to spatial orientation.

Remark 1 Depending on the problem, one may go beyond the first-order,
bilinear term in Eqn. (4.2) when describing the interaction between the laser
and the system, cf. Dion et al. (1999a,b).

Additional admissibility conditions may ensure that €(t) obeys laboratory limi-
tations on the range of achievable laser frequencies, intensities, energy, or other



criteria. In some applications, additional possibilities for C(t) arise. These in-
clude

e the use of magnetic fields, in which case the control law becomes —p,, B(t),
where p,, is the magnetic dipole operator and B(t) is the magnetic field,
and

e the use of materials whose design specifications themselves take the form
of a control law, such as for quantum electron transport in semiconductors
with variable material composition considered as the control.

Here, however, we will confine the discussion to time-dependent controls based
on an external electric field €(t) coupled to the system through a dipole p.

In some cases, it may be possible to obtain an adequate control description
by replacing the Schrodinger equation with a classical representation of the
system dynamics (see Section 9). This is especially true for interatomic phe-
nomena, because the de Broglie wavelength associated with atoms is often
short relative to interatomic length scales. While the relationships between
classical and quantum models of molecular evolution have been extensively
investigated, e.g. Davis and Heller (1984); Kulander and Orel (1981); Lefor-
estier (1986); Dardi and Gray (1982), the implications of these relationships
for control are not completely understood and will be addressed later in the
context of the quantum character of the control problem.

Assuming knowledge of Hy and a well-defined control law C(t), Eqn. (4.2) or
its classical equivalent represents a complete model of the system of interest.
If C(t) is given a priori, the solution of Eqn. (4.2) is a standard numerical
problem in time-dependent quantum mechanics. However, the essence of the
control problem is to find C(t) such that the objectives in Eqn. (4.1) are met,
and since at least one of the control objectives lies in the future, this task
presents some additional challenges. In particular, the Hamiltonian depends on
the future state of the system through the control objectives, as can be formally
represented by the expression C(t) = C (¢(s) : s € [t,T]). This non-causality
introduces an entirely new set of mathematical issues which are not present
in standard quantum or classical dynamics but are inherent to the theory and
practice of temporal control in engineering and mathematical systems theory
(cf. Sontag (1998); Brockett (1970); Kailath (1980); Khalil (1996); Nijmeiher
and van der Schaft (1990)). Their implications for the quantum regime are
central issues. The formulation above is summarized in the following definition:

Definition 2 The quantum control problem consists of determining a control
law C(t) that causes the system to optimally achieve the desired expectation
values while possibly also satisfying auziliary conditions. Quantum control the-
ory encompasses methods of determining these control laws, their general prop-
erties, and their relationship to the underlying physical system and evolving



quanitum states.

5 Optimal control

Several approaches for determining control laws C(t) will be discussed in this
chapter. The present section introduces the concept of optimal control theory
for this purpose; a more detailed algorithmic analysis will be given in Chap-
ter 4. An extensive literature on optimal control theory can be found in clas-
sical engineering and mathematical systems theory (e.g., Sontag (1998); Lu-
enberger (1979); Mohler (1983)) and increasingly in quantum mechanics (e.g.
Peirce et al. (1988); Zhao and Rice (1994), Ch. 6 of Rice and Zhao (2000) and
references therein). Considering control law design as an optimization problem
is quite natural, as attaining the best possible final level of control is always
the goal; further, optimization is essential when there are competing physical
objectives that must simultaneously be met.

The optimal control approach seeks to optimize a cost functional J, which
includes both terms that describe how well the objective has been met and
terms that penalize undesirable effects. One simple example of a cost func-
tional is

J(€) =< ¢(T)|O(T) > -« /OT e (t)dt (5.1)

where o > 0 is a parameter and O is the observable operator (positive semidef-
inite in this case) that specifies the goal. In mathematical terms, the observable
O is a self-adjoint operator that acts on ¥(7); in the case above, the goal is
to achieve a large the value < 9(7T')|O|y(T) >. Note that in general attaining
the maximum possible value of < 1(7T")|O[(T") > comes at the price of a large
laser fluence [y €2(t)dt, so that the optimum evolution will strike a balance
(weighted by «) between laser fluence and operator expectation values.

6 More nonlinear formulations

The quantum control problem becomes more complex when the control law
and the free Hamiltonian cannot be treated independently. An important ex-
ample of this phenomenon is intense-field laser control of molecular motion,
where the electric field can directly alter the dipole operator through its ma-
nipulation of the electronic degrees of freedom:

C(t) = —p(e))e(®). (6.1)



In simple cases, the relation in Eqn. (6.1) may be expanded in terms of a
low order polynomial in €(¢) whose coefficients are the electric moments and
polarizabilities of the system. Of special interest are situations in which the
nonlinear structure may affect the controllability of the system (including the

positive case in which this interaction makes a previously inaccessible target
reachable).

Remark 3 7o date, very few mathematical studies exist to treat the situation
where the control law has a nonlinear dependence on the control field; it is
not clear whether successful approaches will draw upon existing methodology
for proving, for example, quantum controllability (see Chapter 3) or upon new
tools from mathematical systems theory.

The circumstances motivating Remark 3 can also be viewed from the larger
perspective of a controllability analysis simultaneously including electronic
and nuclear motion e.g. as in Cances and Le Bris (1999). In the latter circum-
stance the control field will enter the Hamiltonian linearly, but at the expense
of explicitly including the electronic degrees of freedom. The same comment
also applies to the performance of optimal control designs in the strong-field
regime. The practical importance of investigating the latter domain has re-
cently been demonstrated experimentally (Levis et al. (2001)).

A different formulation is necessary when the back action of the quantum
medium upon the propagating control field is significant. In this case the
medium is called optically dense. This scenario has been examined experimen-
tally for a vapor of sodium (Shen et al. (1993)), and the topic is of practical
importance because the controlled medium will be dense in any application
directed toward collecting large amounts of product. Optically dense media
can interact with the electric field to alter its phase and/or amplitude struc-
ture as it propagates. In order to model this effect, the Schrodinger equation
must be coupled with Maxwell’s equations e.g. Wang and Rabitz (1996).

7 Density matrix formulation

In practical applications the medium will be at a finite temperature; in this
case (and in any situation that concerns a statistical mixture of quantum
states) the density operator formulation is necessary. In this formulation, the
time evolution is given by the quantum Liouville equation (Cohen-Tannoudji
et al. (1997)):

PO = S, (7.1

and expectation values are calculated as

(O(t)) = Tr (p(t) O) .



Upon introducing a cost functional as in Eqn. (5.1), quantum systems de-
scribed by density operators can also be treated by optimal control theory.

8 Special control schemes: pump-dump schemes, STIRAP

In addition to the general approach outlined below, special techniques for con-
trol law design have been developed for cases in which a prior: specification of
control mechanisms is possible. These methods include the weak-field regime,
time-resolved “pump-dump” and simulated Raman adiabatic passage (STI-
RAP) schemes. Under particular quantum dynamics approximations and/or
assumptions, these techniques allow for the derivation of closed form expres-
sions for control laws that optimally accomplish certain control objectives
under their specified conditions. The literature on related theoretical develop-
ments is extensive and will not be presented here (Ch. 3-5 of Rice and Zhao
(2000) and references therein, Brown and Sibley. (1998); Shah and Rice (1999);
Mishima and Yamashita. (1999b); Hoki et al. (1999); de Araujo and Walmsley
(1999); Mishima and Yamashita. (1999a); Cao and Wilson. (1997); Bardeen
et al. (1997¢c,b); Agarwal (1997); Gr¢nager and Henriksen. (1998)) and ex-
perimental (Ch. 3-5 of Rice and Zhao (2000) and references therein, Bardeen
et al. (1997¢,b); Meshulach and Silberberg. (1998); Pastirk et al. (1998)).

9 Classical mechanics formulations

Classical modeling of quantum systems is a common and often successful
technique, and it should have a level of applicability in molecular control.
This section attempts to discuss its applicability, or the quantum character of
molecular scale control. Nonclassical characteristics of dynamical behavior in-
clude tunneling, quantization of energy levels, and interference processes, but
it is not clear which of these characterizations are most relevant to defining
the quantum nature of a control problem. Understanding of this issue could
be used to estimate the loss of reliability (i.e., defined upon comparison to
the analogous quantum system response to the classically designed field) in
resorting to the classical optimal control formulation.

Some aspects of this topic have been addressed in Schwieters and Rabitz
(1993), where quantum C,(t) and classical C.(t) control laws corresponding
to equivalent representations of specific control problems are compared. The
equations of motion analogous to Eqn. (4.2) are:

dgt _0H dp o0H

= = —-_" 1
dt  opt’ dt Ogt’ (8:1)



and expectation values for the classical system are given by

Ne
<OC> = ZFlO(ql, Pl) )

=1
where H is the classical Hamiltonian of the system, ¢ ranges over the particle
coordinates, [ indexes initial conditions ¢*(0), p'(0), and the weights T'; for the
N, initial conditions are chosen to mimic as best as possible the probability
distribution function for the corresponding quantum system. Here, O is a
classical observable corresponding to its quantum analog. It should be noted
that the ordinary differential equations in Eqn. (9.1) for some cases may be
more expensive to solve than their quantum counterpart in Eqn. (4.2). One
motivation for considering classical optimal control design is for the physical
insight possible with classical mechanics.

Optimal control theory has been used e.g. in Schwieters and Rabitz (1993)
to separately design a control field €(¢) that minimizes the difference between
(O) and (O.) and the difference between each of these expectation values
and the control objectives on [0,7]. For the example of a Morse oscillator,
it was found that an optimal control law designed in this fashion produced
very close agreement between (O) and (O,). This result suggests that in some
cases classically-designed controls can also be successful as quantum controls.
In related work Schwieters and Rabitz (unpublished results), a method was
developed for determining potentials under which evolving classical and cor-
responding quantum systems give similar values of classical and quantum ob-
servables; the approach met with considerable success for the control of dis-
sociative flux and displacement. In general it is however not known for what
classes of Hamiltonians and control objectives the quantum control problem
can be adequately addressed using classical equations of motion. Because in-
terference itself is a nonclassical phenomenon, this problem is related to the
considerations of decoherence in the Section 18.

Chapter 3. Controllability of Quantum
Mechanical Systems

Prior to addressing the computation of the control law, it is natural to ask
if the quantum control problem is well-posed such that a control law exists
which will cause the objectives and auxiliary conditions to be (precisely) sat-
isfied. Even if the answer to the latter question is negative, one may still be
satisfied with achieving the control objectives (maybe only partially) through
the techniques of optimal control. The fundamental importance of addressing
controllability has long been recognized in engineering control applications;
the broad literature on the classical aspects of the subject includes many
comprehensive texts which cover linear (Brockett (1970); Kailath (1980)) and
nonlinear (Sontag (1998); Khalil (1996); Nijmeiher and van der Schaft (1990))

10



controllability. In addition, several works have considered various aspects of
quantum controllability (e.g., Rice and Zhao (2000); Huang et al. (1983); Jud-
son et al. (1990); Ramakrishna et al. (1995); Turinici (2000c); Turinici and
Rabitz (2001a,b); Girardeau et al. (1998, 1997)).

Consider a quantum system (isolated from external influences for the mo-
ment) with internal Hamiltonian Hy that is prepared in the initial state ¥g(z)
described here in the coordinate representation; its dynamics obeys the time
dependent Schrodinger equation. Denoting by 1 (z,t) the state at the time ¢
one can write the evolution equations for the free system:

Zh% (iE,t) = How(xat)

9.2)
1[J(I,t = O) = wo(‘r)a ||¢0||L2(R7) =1

In the presence of external interactions that will be taken here as a control field
amplitude €(t) € R, ¢ > 0 coupled to the system through a time-independent
(e.g. dipole) operator pu, the (controlled) dynamical equations read:

Zh%d)e(xv t) = HO"/)e(x: t) - e(t)/“:be($7 t) = H%(% t)

(9.3)
¢6($7t = 0) = 1/)0(%)

Remark 4 For the sake of simplicity we have chosen in this section to treat

situations with only one control law present. Extensions to many control laws

representing coupling via various other operators are also available (especially

for finite dimensional settings); we refer the reader to Ramakrishna et al.

(1995); Albertini and D’Alessandro (2001); Turinici et al. (2002) for details.

The L? norm of 1, is conserved throughout the evolution:

1%e(, D)l z2®v) = IYollz2®y), V>0, (9.4)

so the state (or wave-) function v (t), evolves on the (complex) unit sphere
S = {1/1 € L*(R") : 11l 2y = 1} according to the Schrodinger equation
(9.3) from the initial state 1y to some final state ¥ (7).

The study of the controllability of equation (9.3) is concerned with identifying
the set of final states ¢(T) that can be obtained from a given initial state
o for all admissible controls. To date, very different results are available for
the infinite and finite dimensional settings: while controllability is reasonably
well understood for finite dimensional systems, no positive results have been
obtained for infinite dimensional systems.

11



10 Infinite dimensional controllability

Very few results are available concerning the controllability of the equation
(9.3) in its infinite dimensional form. Generic negative results have been ob-
tained, as is the following (Thm. 1 from Turinici (2000c) ; see also Ball et al.
(1982); Turinici (2000b)):

Theorem 5 Let S be the complex unit sphere of L2(R"). Let p be a bounded
operator from the Sobolev space HZ(RY) to itself and let Hy generate a C°

semigroup of bounded linear operators on H2(R"). Denote by v(z,t) the so-
lution of (9.3). Then the set of attainable states from 1y defined by

AS = Urso{te(, T); e(t) € L*([0,T1)} (10.1)

is contained in a countable union of compact subsets of HX(R"). In particular
its complement with respect to S: N'= S \ AS is everywhere dense on S. The
same holds true for the complement with respect to SN H2(RY).

The theorem implies that for any ¢y € H2(R?)NS, within any open set around
an arbitrary point ¢ € H2(R?) N S there exists a state unreachable from
with L? controls.

Remark 6 The lack of positive controllability results to complement Thm. 5
should be regarded as a failure of available control theory tools to provide insight
into controllability rather than as an actual restriction. It is believed that new
tools and concepts will make positive results possible, especially since such
results are available for the finite dimensional setting (cf. Section 11).

Truncating an infinite-dimensional quantum control problem to a finite-dimen-
sional problem (i.e., so that evolution takes place in a finite dimensional vector
space) changes the nature of both the control and Hamiltonian operators and
the set of states available as candidate members of reachable sets. The concern
is to characterize these effects by asking how a controllability result obtained in
a finite-dimensional space relates to the original infinite dimensional problem
from which it was derived; there are also inherently finite dimensional quantum
systems (as with spins) where the latter consideration does not arise. The
controllability of finite dimensional systems is the subject of the next section.

11 Finite dimensional controllability

Introduction

Let D = {¢;(z);i =1,.., N} be an orthonormal basis for a finite dimensional

12



sub-space of L?>(R") of interest (for instance the vector space spanned by the
first NV eigenstates of the internal Hamiltonian Hy in Eqn. (9.2)). Denote by
M the linear space that D generates, and let A and B be the matrices of the
operators —iHy and —iu respectively, with respect to this basis. In order to
exclude trivial control settings, it is supposed that [A, B] # 0 (the Lie bracket
[-, -] is defined as [U, V] = UV —VU). Note that since Hy and p are Hermitian
operators, the matrices A and B are skew-Hermitian.

Let us denote by c.(t) = (ci ()Y, the coefficients of 1;(z) in the expansion
of the evolving state 9(t,7) = N c.(t)¢i(x); then equation (9.3) reads

%Ce(t) = ACe(t) - e(t)Bce(t)
ce(t =0) = co

co = (Coi)itys Coi =< Yo, i >r2my) (11.2)

(11.1)

(where atomic units are used i.e. we set # = 1). Note as in Eqn. (9.4) that the
system (11.1) evolves on the unit sphere Sy of L?(R”) N M which reads,

N
> lea®))> =1, ¥t > 0. (11.3)
i=1

Note also that the solution c.(t) of Eqn. (11.1) can be written

ce(t) = Ue(t)co (11.4)

where the time evolution operator U,(t) is the solution of the following

4. (t) = AU(t) — e(t) BU(t)
Ue(t = 0) = INxN

(11.5)

The matrix U(t) evolves in the Lie group of unitary matrices U(N), or, if
both the matrices A and B have zero trace, in the Lie group of special unitary
matrices SU(N). Equation (11.5) also prescribes the evolution of the density
matrix operator: if the system starts in the mixture of states represented by
the density operator py then its evolution is given by the formula

p(t) = U(t)poU (1) (11.6)
where for any matrix X we denote by X' its transpose-conjugate.

13



Remark 7 Note that since U(t) is unitary p(t) has the same eigenvalues as
p(0).

We now introduce:

Definition 8 Denote by U the set of all admissible control laws €(t). The
system described by the state c.(t) is called state-controllable if for any c;,c; €
Sn there exists 0 < 7 < 0o and € € U such that c(t = T) = cf, where c(t)
satisfies (9.8) with c.(t = 0) = ¢;.

Within the density matrix formulation the relevant definition of controllability
becomes:

Definition 9 The system described by the evolution of the density operator
p(t) satisfying the Eqns. (11.5)-(11.6) is called density-matriz-controllable if
for any two density operators p; and py compatible in the sense that there
exists an unitary matriz U such that py = Up;UT there exists a control law
€(t) € U such that given the initial condition p(0) = p; then p(t) = ps for
some finite time T.

Remark 10 Because pure states my be represented by density matrices a sys-
tem that is density-matrix-controllable is also state-controllable.

Lie group methods
Let us introduce the following

Definition 11 A subset T of U(N) (or SU(N)) is said to be transitive (to
act transitively) on the sphere Sy if for any c¢;,c; € Sy there exists g € T
such that c; = gc;.

With this definition and considering Eqn. (11.4) it follows that

e state-controllability of the wavefunction as in Definition 8 is equivalent to
requiring that the set of all matrices attainable from identity {U(¢);0 <
t < ooje €U, U verify (11.5)} be transitive on the sphere Sy, while

e density-matrix-controllability is equivalent to requiring that the set of all
matrices attainable from identity be at least SU(N).

Remarkable examples of transitive subgroups of U(N) are U(N) itself, SU(N)
and, when N is even, the symplectic matrices Sp(/N/2). It can be proven (see
Albertini and D’Alessandro (2001)) that, except for some special values of N
and up to an isomorphism, these are the only transitive subgroups arising in
quantum control.

The important result that turns this remark into a powerful tool for studying
the controllability of bilinear systems is that the set of all matrices attainable

14



from the identity via (11.5) is given by the connected Lie subgroup e” of the
Lie algebra L generated by A and B (when this Lie group is compact) (cf.
Ramakrishna et al. (1995); Albertini and D’Alessandro (2001)). The group e”
is called the dynamical Lie group of the system.

Taking U to be the set of all piecewise continuous functions (unconstrained in
magnitude) yields the following result:

Theorem 12 (Ramakrishna et al. (1995)) A sufficient condition for the den-
sity-matriz- (thus state-) controllability of the quantum system in equation (11.1)
is that the Lie algebra L generated by A and B has dimension N? (as a vector
space over the real numbers).

Furthermore, if both A and B are traceless then a sufficient condition for the
density-matriz- (thus state-) controllability of quantum system is that the Lie
algebra L has dimension N? — 1.

A following result builds on Thm. 12 to gives the necessary and sufficient
condition of state controllability:

Theorem 13 (Albertini and D’Alessandro (2001)) The system is state con-
trollable if and only if the Lie algebra L generated by A and B is isomorphic
(conjugate) to sp(§) or to su(N), if the dimension N is even, or to su(N), if
the dimension N is odd (with or without the iI, where I is the identity matriz).

Theorem 12 lends itself to algorithmic (numerical) implementation: as soon
as the matrices A and B that characterize the system are given, one can
compute (numerically for instance) the Lie algebra they generate and obtain
its dimension. However, except for small systems, this test becomes rapidly
very computationally expensive; additional results are therefore required in
order to shed some light on the relationship between controllability and the
structure of the A and B matrices. Two studies in this direction are available:
one, from Schirmer et al. (2001); Fu et al. (2001) is presented in this section and
the second, the “connectivity graph” approach, is described in the next section
(cf. Turinici (2000c); Turinici and Rabitz (2001a,b); Turinici (2000b,a)).

When the basis D = {¢;(x);i = 1,.., N} is composed of eigenstates of the
internal Hamiltonian H, the matrix A is diagonal with purely imaginary el-
ements —iFy, where Ej are the eigenvalues of Hy, £k = 1,...,N. Let 6, =
E,—FEy forn=1,--- ,N—1.

Theorem 14 (Schirmer et al. (2001)) Suppose that the matriz B of the in-
teraction operator —ip with respect to the basis D is such that By, = 0 for

|k —1]#1 and By #0 for |k —1| =1, k,l=1,...,N. Then if either

1/61#0 and 6y # 01 fork=1,..,N —1, or
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2/ 5N—1 75 0 and 5N—1 75 519 fO’I" k= 1, ,N -1

the dynamical Lie group of the system A — €(t)B with A and B as in equa-
tion (11.5) is at least SU(N). If in addition TrA # 0 then the dynamical
Lie group is U(N). In both cases the system is density-matriz- (thus state-)
controllable.

Remark 15 Although the hypothesis of the theorem above are somewhat strong,
it allows for the determination of controllability using only generic properties
of the system under study, i.e. without the need to know ezractly the matri-
ces A and B. We will see later in this section (see Remark 20) other results
concerning the controllability of the wavefunction that do not require precise
evaluation of the A and B matrices.

While the results above hold in the case that the control field amplitudes
are not bounded, an open question suggested in this work is the extension
of the result to stricter (and more realistic) admissibility conditions: can the
Lie algebraic controllability conditions (e.g. Ramakrishna et al. (1995)) be
extended to treat the case where both the amplitude and the frequency of
the control field are bounded from above and below? This issue has practical
significance as it prescribes real laboratory conditions.

Remark 16 Other open problems refer to the controllability within the prod-
uct state space of the coupled Schrodinger-Mazwell equations for optically
dense media. While the Schrodinger-Mazwell system has a product state space
representing both p(t) (the density operator) and €(t), expectation values de-
pend only on p(t), which is the usual focus of controllability studies. This
inspires the question: in what, if any, cases is it possible for the Schrodinger-
Mazwell system to be controllable in the state space of the quantum state but
possibly not controllable in that of the electric field, or vice-versa? The latter
case of controlling the electric field is of importance in the allied subject of
optical field propagation (e.g., Xia et al. (1997)).

Remark 17 7To ease the assessment of controllability using the results of this
section, an automatic tool that allows computation of the dimension of the Lie
algebra generated by several (skew-Hermitian) matrices is available freely on
the Internet (cf. Turinici and Schirmer (2001)).

Controllability analysis via the connectivity graph

This section seeks to address controllability from an analysis of the kinematic
structure of the Hamiltonian. Suppose that the basis D = {i;(z);i =1, .., N}
is composed of eigenstates of the internal Hamiltonian Hy, so that the matrix A
is diagonal with purely imaginary elements —i E}, where Ej are the eigenvalues
of Hy, k =1, ..., N and that the diagonal elements of the matrix B are all zero
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(this is often the case in practice). We obtain the following structure:

El 0 0 b12 e blN
A= EQ : B = _i b>{2 0 bij

Assume moreover that no degenerate transitions are present, i.e.

|EZ_E]| 7& |Ek_El|a Za]akal: L..,n, Z#]a k#la {Zaj} ?é {kal} (117)

The connectivity amongst the states {¢;; i =1,...,n} provided by the ele-
ments b;;, 4,7 = 1, ...,nis central to issues of controllability. The structure in B
can be conveniently expressed graphically by introducing a graph G = (V, E)
(see Christofides (1975) for an introduction to graph theory): let every state
be a vertex (node) of the graph G so that the set of vertices V' = {1, ..., ¥n },
and let there be edges between every pair of nodes v; and v; with b;; # 0 so
that the set of edges E = {(¢4,;);b;; # 0}. Two states ¢; and 1, are said
to be connected by a path if there exists a connected set of edges starting in
; and ending in 1);. The graph G is called connected if there exists a path
between every pair of vertices.

Remark 18 Note that G being connected does not imply that any two states
are necessarily directly connected (i.e. with o direct edge). One such example
is the (connected) graph in Figure 1 associated with the system

1.1 0 0010
2.3 0010

A=—i . B=—i . (11.8)
3.05 1101
0 4.6 0010

These definitions allow formulating the following result:

Theorem 19 Turinici and Rabitz (2001a,b) Suppose that the graph G is con-
nected and that the transitions of the internal Hamiltonian are non-degenerate
in the sense of Eqn. (11.7). Then the system in (11.1) is state-controllable.

Remark 20 The conditions of connectivity and non-degenerate transition fre-
quencies involve only the eigenvalues of Hy and the coefficients of B (which
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Fig. 1. The (connected) graph associated with the B matrix of the system in
Eqn. (11.8). Note that no direct path exits between, e.g. 1 and 1.

depend only upon which elements of B are non-zero, rather than their par-
ticular values) allowing conclusions about the controllability of the system in
Eqn. (11.1) even in the absence of quantitative information about this system.

Remark 21 Controllability generally does not provide an actual control law
that will achieve an objective of the form (4.1), but simply implies that at least
one such control law exists. The proof of controllability in Turinici (2000c)
establishes an algorithm which constructively generates control laws for objec-
tive operators of the form O; = ;) (¢;| in terms of sinusoidal electric fields
of different fixed frequencies. Note that in this situation, the control objectives
: 2
are populations of quantum states (e.g., |{¥| ¥;)|”).

This latter work, along with other work on special cases of constructive quan-
tum control (e.g. Harel and Akulin (1999); Ramakrishna et. al. (2000)), invites
the question: can general constructive control solutions be developed for the
quantum controllability of a broad class of objective expectation values? While
the explicit construction of control solutions is generally an area of active re-
search in control theory (Nijmeiher and van der Schaft (1990); Sepulchre et al.
(1998)), the case of quantum controllability of expectation values reduces this
task to the specific structure of Schrodinger’s equation that may be amenable
to attack.

Remark 22 The analysis of controllability in terms of state functions 1(t)
reaches beyond what is necessary physically, as realistic objectives are expec-
tation values of observable operators (c.f. Eqn. (4.1)). Since these quantities
involve integrals of state functions, their control should generally be less de-
manding than that of the state itself. However, the quadratically nonlinear
nature of the expectation values adds a level of additional complexity to the
problem of determining controllability.

Having seen positive results for finite-dimensional wavefunction controllability
we now investigate what phenomena prevent this controllability. Even if a final
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answer does not yet exist, available evidence suggests that conservation laws
are responsible for the loss of controllability. Let us consider, as in Turinici
and Rabitz (2001a), the following simple 3-level system:

100 010
A=1020]|,B=|(101], (11.9)
003 010

and the corresponding evolution equations

d

Z%Cel(t) = ce1(t) + €(t)cea(t)

i%cez(t) = 2¢ep(t) + €(t)cer (t) + €(t)ces(t)
. d

Z%CeS(t) = 3063(t) + e(t)CGZ(t)

This system has degenerate transitions as Fy — Fy = E3 — Ey. Upon closer
examination, a “hidden symmetry” is found for this system: more precisely it
is easy to prove that for any ¢ > 0 and €(t) € L*([0,1]) :

Cez(t)2 Ce2 (0)2
2 2

Therefore, any 1(t) = 32, ¢¢;(t)w; () that is reachable from 1(0) with ¢(0) =

? | cei(0);(z) must satisfy the constraint (11.10). Let us consider a simple
numerical example: suppose that the initial state is the ground state ¢); and the
target is the first excited state 1)o. We obtain for 1 : |c¢;(0)ce3(0) — ﬁ| =
10— 2| =0 and for ¥, : e (t)ces(t) — #\ =10-0— Y| =1 Since the
two quantities are different, )5 is not reachable from ); and therefore the
system is not controllable, despite the fact that the connectivity assumption
is satisfied.

|Cel(t)ce3(t) | = |cel(0)ce3(0) - | (1110)

The detailed analysis of the case N = 3 and a result that was communicated
to us (cf. Ramakrishna (2000)) suggest the conjecture that for general finite-
dimensional systems, as long as no conservation laws appear (besides L? norm
conservation) the system is controllable. This statement, if true, would have
the merit of giving a result only in terms of the physical properties of the sys-
tem under consideration (and independent of the mathematical transcription
of the precise control situation).

Remark 23 For the density matriz formulation, kinematical constraints on
the controllability of systems in mized states have been established (e.g. Gi-
rardeau et al. (1998, 1997)), based on the eigenvalues of p(0) and those of the
objective operator.
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Independent systems controllability and discrimination issues

This section introduces controllability results for independent quantum sys-
tems. Most of the text draws from Turinici et al. (2002).

Successful control may be expressed as a matter of high quality discrimination,
whereby the control field steers the evolving quantum system dynamics out
the desired channel, while diminishing competitive flux into other undesirable
channels. A potential application of quantum control techniques is to the de-
tection of specific molecules amongst others of similar chemical /physical char-
acteristics. We call this procedure coherent molecular discrimination. Cases of
special interest for discrimination include large polyatomic molecules of similar
chemical nature, whose spectra can often mask each other.

Much work needs to be done to explore and develop the concept of coherent
molecular discrimination, and a basic step in this direction is to establish
the criteria for independently and simultaneously controlling the dynamics
of several molecular species with the same control field. Discrimination of
multiple molecules is a special case of the controllability concept, where the full
system consists of a set of subsystems (i.e., molecules of different type). In the
simplest circumstances, the molecules may be taken as independent and non-
interacting, such that the initial state ¢(0) is a product 1(0) = [T, 1¢(0) of
states 1¢(0) for each of the L > 2 molecular species. Full controllability would
correspond to the ability to simultaneously and arbitrarily steer about each
of initial states 1/,(0) to predefined targets 1,(T) = 1;*"*" under the influence
of a single control laser electric field €(¢), where each molecule evolves under
a separate Schrodinger equation

i1 p(t) = [H — i~ elt)se) (11.11)

Here, Hg and p, respectively, are the free Hamiltonian and interaction oper-
ator (dipole) of the ¢-th molecule. Other milder controllability criteria might
also be specified.

The purpose of this section is to state theoretical criteria for the controllability
of an ensemble of L separate quantum systems in the presence of a single
electric field €(t). The criteria will refer to a finite dimensional setting where,
for each ¢, 1 < £ < L, the Hamiltonian H§ and dipole operator u* are expressed
with respect to an eigenbasis of the internal Hamiltonians, as is often the
case in applications. More precisely, let D = {4¢(z);i = 1,..,N;} be the
set of the first Ny, N, > 3 eigenstates of the possibly infinite dimensional
Hamiltonian H¢, and let A® and B‘ be the matrices of the operators —iH
and —iu’ respectively, with respect to this base. In order to exclude a trivial
loss of controllability, it is supposed that [A¢ Bf] # 0, £ =1, ..., L. From the
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definition of the basis D and the fact that H§ and u‘ are Hermitian operators,
it follows that each A’ is diagonal with purely imaginary elements and each
B is skew-Hermitian. We will suppose moreover that

Forany ¢ =1,...,L: A* has nonzero trace and B* has zero trace. (11.12)

With this notation, the wavefunction of the /-th system can be written as
Yo(t) = SN cb(t)pt. The total eigenfunction [T, 1,(t) will be represented
as a column vector c(t) = (ci(?), ..., ¢y, (t), ..., ' (t), ..., ¢k, (¢))T. Denote N =
>4, Ni, A be the N x N skew-Hermitian block-diagonal matrix obtained from
At ¢ =1,....L and B be the skew-Hermitian block-diagonal matrix obtained
from B, ¢ =1, ..., L:

AV 0 ... 0 B0 ... 0
0 A2... 0 0 B2... 0

A=| |,B=| (11.13)
0 0 ... AL 0 0 ...BL

With the “atomic units” convention = 1, the dynamical equations read:

9 e(t) = Aclt) + (1) Belt), (0) = co. (11.14)

Recalling that each individual wavefunction ,(t) = Y4 cé(t)f is L? nor-
malized to one, we obtain:

Ny
Y@ =1, vt >0, V¢ =1,..,L. (11.15)
i=1

Let Sf~" be the complex unit sphere of C*. Then equation (11.15) gives:

L
ct)yeS=[[S& ", vt >0, (11.16)
=1

Define the admissible control set U as the set of all piecewise continuous
functions €(t). For every € € U Eqn. (11.14) has an (unique) solution for all

t > 0. The system ((A‘, BYHYL,, LI) is said to be controllable if for any ¢;,c; € S

there exists an ¢ty > 0 (possibly depending on ¢;, ¢;) and €(t) € U such that
the solution of (11.14) with initial data ¢(0) = ¢; satisfy ¢(t;) = ¢;. Of course,

in order for the system ((AZ,BK)l?:l,U) to be controllable each component

system (AZ,BZ,Z/I), ¢ =1,...,N taken independently has to be controllable.
However, requiring that all systems be controllable at the same time and
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with the same laser field is a more demanding condition. To illustrate this
statement, we will consider the simple case of two (L = 2) three-level systems
(N =3, Ny = 3) of Turinici et al. (2002):

100 010
At=A>=—i-|lo20|,B'=—i-|102 |, B*=-B" (11.17)
005 020

Each system A!, B! and A2, B? is controllable, as can be checked by the Lie
algebra criterion of Ramakrishna et al. (1995) (the dimension of the Lie algebra
is found to be 9).

However, denoting by (c}, c3, c3) and by (c?, c3, c3) the coefficients of the wave-
function of the first system and of the second system respectively, we obtain
the following dynamical invariant (conservation law):

L(t) = el (t)c3(t) + 5 (t)c2(t) — 3 (t)c2(t) = constant, Ve € U. (11.18)

The presence of this conservation law implies that the system is not control-
lable. For instance, starting with both systems in the ground state

(¢1(0), &3(0), ¢3(0)) = (c£(0), 5(0), ¢3(0)) = (1,0,0)
one cannot steer both to their respective first excited state
(e1(T), e3(T), e5(T)) = (i (T), &5(T), e5(T)) = (0,1,0)

since in the ground states the dynamical invariant takes the value L(0) =
14+0—0 = 1 while in the first excited states the valueis L(T) = 0+0—1 = —1.

Defining the set of attainable states
Alcg, T) = {c(t); c(t) solution of (11.14) ,¢ € [0, T],u € U}, (11.19)

the system is controllable if (and only if) for any ¢y € S the set of points
attainable from cq: Ui>q A(co, t) equals S.

We are now ready to state the following controllability result:

Theorem 24 (Turinici et al. (2002)) If the dimension (computed over the
scalar field R) of the Lie algebra L(A, B) generated by A and B equals 1 +

St (N2 —1) then the system ((Ae, Be)ﬁzl,b{) is controllable. Moreover, when
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a) b)

Fig. 2. Pictorial representation of the truncation problem. In both cases, controlla-
bility is of interest within the shaded subspace as the dimension of the truncated
space H, increases to infinity.

the system s controllable, there exists a time T > 0 such that all targets can
be attained before or at time T, i.e. for any ¢y € S, A(co, T) = S.

We refer to Li et al. (2002); Turinici et al. (2002) for more general results
where the hypotheses of Eqn. (11.12) are not satisfied or when multiple s > 1
external fields are considered (which can be expressed by introducing multiple
dipole moment operators uf, i =1, ..., s).

12 Truncations

Little is known about the relationship between the controllability of the finite
dimensional systems and that of infinite dimensional systems. We will discuss
in this section some of the interesting aspects of this interplay through a list
of open problems and questions.

Consider a quantum system that is controllable when its (truncated) equa-
tions of motion are expressed with respect to a particular n-dimensional basis
which spans a finite dimensional space H,,. According to Theorem 5, for every
initial condition there must emerge a dense set of unreachable states in the
limit n tends to infinity (depicted in Figure 2(a)), assuming that the limiting
process is well defined. In other words, for n — oo the system may become
uncontrollable in the strict sense defined above. This limit suggests the ques-
tion: how does the controllability of a sequence of finite but increasingly higher
dimensional quantum systems relate to the controllability of the correspond-
ing infinite-dimensional quantum system in the limit n — oo (if this limiting
process exists)? How are the sets of unreachable states that emerge in this
limit characterized?

The analysis implied in the above questions can be subtle, as evident from a
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simple illustration involving the emergence or disappearance of unreachable
states under finite increases in the dimensionality of #,. For example, in hy-
drogenic atoms the transitions due to emission or absorption of photons must
satisfy the selection rules Al = +1 and Am = £1 or 0. If the step H,, = H, 11
of the limiting process adds a basis function to which there does not exist a
sequence of allowed transitions from some function v, in H,, the additional
dimension has caused a loss of system controllability. The converse situation
may also arise where the additional basis function provides a “missing path-
way” between states that were mutually unreachable in H,,: in this case, the
step H, — Hn+1 might cause an uncontrollable system to become control-
lable. It is an open question in quantum controllability to understand how
such stepwise processes may be interpreted in the infinite limit.

Now consider the related issue of controllability within a “subspace of inter-
est” Hy that is contained within H,, (as depicted in Figure 2(b)). Let H; be
spanned by the first I elements of the set of basis functions {¢; : i = 1...n}
spanning H,. Definition 8 may be modified to restrict analysis to the subspace
of interest: controllability will be taken to mean that a system is controllable
if the system can be steered between any two states ¥ and ¢f in SN#H;. Con-
trollability may be described as stationary within #; if it remains unchanged
as individual dimensions are added in any order to H, until (if it exists) the

limit lim H, = H, is obtained. It is not known what characteristics of
n—oo,n>1

the Hamiltonian H, , the dipole or other coupling coefficients, and the spaces
Hr C H, C H are required for stationary controllability within H;.

The discussion above does not address the effects on the evolution of states
within the truncated space H, arising from states that lie outside of H,,.
This consideration also has practical consequences. For example, suppose that
controllability is satisfied within H,, or within #; for some H,. A realizable
laboratory control might inadvertently also access states lying outside of H,
which might even lift the controllability in the desired subspace. Techniques
from optimal control theory would be the desirable way to handle the dis-
covery of practical fields best satisfying the assumptions under an associated
controllability analysis. Following upon the latter discussion, a new class of
problems is introduced if a term is added to the Schrodinger equation to rep-
resent the interaction of the remainder states that are not explicitly modeled
lying in H\ #H,. One such term introduced in Beumee and Rabitz (1992), c.f.
also Sontag (1998), is a n-dimensional disturbance vector w:

oy
ot
where ) € H,,. The form and magnitude of the disturbance term w is problem-
dependent and assumed to be given a priori, and generally leads to a nonuni-
tary evolution for (). In min-max optimal control theory (c.f. Section 15), w

[Ho + C()]Y + w,
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is selected to maximize the disruptive effect of the energy-bounded disturbance
(e.g., fluctuations in the laboratory environment and apparatus). In another
general context, w could represent coupling to a bath external to the dynamics
described by Hy+C(t). This type of coupling is important for considerations of
dynamical cooling (see Bartana and Kosloff (1993, 1997); Tannor and Bartana
(1999); Tannor et al. (1999)) in the analogous density matrix formulation. It is
not yet clear what general models of dynamics exterior to H,, C H can cause
controllable systems to become uncontrollable and vice-versa.

Chapter 4. Quantum control algorithms

As analytical solutions to the quantum optimal control equations cannot gen-
erally be found, iterative numerical algorithms must be employed. The time-
dependent Schrodinger equation in multiple spatial variables is computation-
ally very expensive to solve, and, although there appear to be many opportu-
nities to develop special control design approximations, and while some work
has already been done (e.g. Rice and Zhao (2000)), there is room for much
development.

Remark 25 Since the Schridinger equation must be solved at least once (and
generally many times) in most optimal control and Hamiltonian identifica-
tion methods, the numerical evolution of quantum systems with many degrees
of freedom must be approximated in some fashion before control design tech-
niques can be applied. Along these lines, broad classes of quantum dynamics
approximations have been developed, and in principle any of them could be ap-
plied to quantum control design. While attempting to attain designs, it is worth
investigating the effects on controllability of replacing the Schrodinger equation
with its various quantum dynamical approrimations. Significant influence of
a dynamical approximation upon a system’s controllability could have serious
consequences for the reliability of any resultant control designs based on the
approrimation.

A very important feature of quantum control is the intricate relationship
between theory and the laboratory implementations, where an optimization
method, usually an evolutionary (e.g. genetic) algorithm, is used to drive the
experimental work which, in its turn, feeds back the optimization algorithm
with necessary data. Reflecting this connection, both numerical and experi-
mental paradigms are presented in this section, the first in Section 14 (extend-
ing with connected topics through Section 16) and the latter in Section 17.
Common to both, the construction of the cost functionals is the object of the
next section.
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13 Optimal control cost functional formulation

As explained in Section 5, the first step in formulating the general quantum
optimal control problem is to define a “cost functional” whose minimization
represents the balanced achievement of control and possibly other objectives.
This cost functional is given by

J= Zh £):t € [0,7]))

where the goal is to minimize (or maximize, as appropriately) J with respect
to C'(t). While the specific form of the cost functional is flexible and problem-
dependent, a term .J; that addresses the achievement of the Ny optimal control
objectives is always included:

=22

(13.1)
=it (W [(0i() -

No Lj f WIJ [(O( )) — O(t (¢ )] , if Tl- is an interval
O;(r.

)] , if ’T is a discrete time

Here the Wll’j are positive design weights assigned to each of the objectives.
The particular case No = Ly = v = W}, = 1, 7f = T and Oy(T) = 0
has already been seen (cf. Eqn. (5.1)) to give rise to a term of the form

Jr = ((T)|0:[(T)).

For physically realistic control laws, the energy of the laboratory/molecular
interaction must be bounded. This criteria is often included by adding the
term

b:/wmmwﬁ (13.2)

to the cost functional, which effectively limits the total electric field fluence.
Here, W5(t) determines the time-dependent relative importance of minimizing
the fluence. Note that the term J, does not prevent €(¢) from being large in
some small interval of time, although a cost on the local magnitude at any
time could be introduced for this purpose.

Penalty terms may also be included, causing the minimization of the expec-

tation values of Nor “undesirable” operators O} at the corresponding times
1",

Tj.

’
Né L

J 2 WL (O ()P dt, if 7 is an interval
o S [y 00 st

; (13.3)
‘ l (1 e s : :
j=ti=1 | Wy ‘<Oj(7' ])> , if 7'; is a discrete time
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In addition to those explicitly given here, there are many other forms of Jj
that could be incorporated into the cost functional. These terms could repre-
sent, for example, restrictions on the windowed Fourier transform of €(¢) to a
particular frequency band, minimization of sensitivity to small perturbations
in the control law (as will be discussed below), or other characteristics of the
desired optimal control solution.

One property of control law solutions C(t) of practical import is simplicity.
Several measures of simplicity could be used, such as the ability to decompose
the control law into only a small number of spectral components with high
accuracy (see Geremia et al. (2000)). However, the notion of field simplicity is
best associated with the ease of stable and reliable generation in the laboratory,
rather than any preconceived sense of simplicity associated with the presence
of few field components. Design of simple control laws might be accomplished
by introducing a term in the cost functional that favors solutions with suitable
characteristics, or in a very ad hoc fashion by starting an iterative optimiza-
tion algorithm with a simple control field and halting the process while some
of this simplicity is still preserved but likely before complete convergence to
the control objectives has been achieved. The latter suggestion follows from
the observation that the final small fraction of progress toward the control
objectives is often responsible for most of the complexity in the control field
(e.g. see Table 6.1 of Rice and Zhao (2000) or Tersigni et al. (1990)). None of
the above approaches has been subjected to a careful mathematical analysis,
and further efforts to characterize the effects of these modifications on the
optimal control process may be useful.

Thus far the terms in the cost functional have all been introduced to seek a
control field that biases the objective or other goals in some specified direction.
Under favorable circumstances one or more of these costs could be re-expressed
as a hard demand by introducing a Lagrange multiplier. An example would
be a requirement that the laser pulse energy be fixed at a specified labora-
tory accessible value; the reshaping would redistribute that energy as best as
possible over a band of frequency components to meet the physical objective.
Some absolute demands may lead to inconsistencies and resultant numerical
design difficulties if the demand cannot be satisfied for some (often hidden)
dynamical reason.

Once the cost functional has been defined, then the optimal control law is
determined by minimizing the cost functional over the function space of ad-
missible controls. Local or global, deterministic or stochastic optimization al-
gorithms (e.g., gradient descent, genetic algorithms, etc.) may be used to find
the minimum of the cost functional subject to satisfaction of the Schrodinger
equation, possibly under suitable quantum dynamics approximations and as-
sumptions (see Krause and Schafer. (1999); Krause et al. (1998)). The exis-
tence of the minimum itself has been investigated in several works, including
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Peirce et al. (1988); for a different formulation see Cances et al. (2000). Alter-
natively, the Euler-Lagrange approach may be pursued, as explained below.

At the relevant minima of the cost functional, the first order variation with
respect to the control law vanishes:

0J

500 0. (13.4)
Equation (13.4) is subject to the dynamical constraint that 1(¢) satisfies the
Schrodinger equation; this may be assured through the introduction of a La-
grange multiplier function A(t) (cf. Sontag (1998)). The resultant variational
problem produces Euler-Lagrange equations whose solutions define the con-
trols C'(t) operative at each local extrema of J. To demonstrate some of the
characteristics of these equations, consider as an example a quantum optimal
control problem in which there is only one objective operator O whose expec-
tation value is to be optimized at the (single target) time T. The control law is
taken to be C(t) = —ue(t) and the cost functional J = J; 4+ Jy consists of the
terms given in Eqns. (13.1) and (13.2) with weights set such that J is given
by the Eqn. (5.1). The extended cost functional that includes the Lagrange
multiplier A, which will be called from now on the adjoint state, is

J(e, 1, \) =< %(T)|0|(T) > —a /OT €(t)dt
—9Re [ /0 ' </\(t) % i [Hy— ,ue(t)]‘ w(t)> dt] (13.5)

With this definition we obtain first

OTEDA) _ goe(t) — 2mm{ (A(t) e (1) (13.6)

Oe€
The derivative of J with respect to the adjoint state yields (as expected) the
equation of motion for the wavefunction. In order to compute the derivative of
J with respect to 1 (t) one integrates by parts in the last term of J(e, 1, A) and
identifies the resulting terms. The Euler-Lagrange equations then become:

P20 — [Hy — pe(t)])(¢)

(13.7)
$(0) = o
DO _ [F, e
20 = [H, — pe(t)]A(1) )
\(T) = Ou(T)
ac(t) = ~Tm{ (\(®) Jul ¥(2))}- (13.9)
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If the field in Eqn. (13.9) is substituted into Eqns. (13.7) and (13.8), the system
becomes a pair of coupled nonlinear evolution equations.

Remark 26 Under a mild set of assumptions the general quantum optimal
control problem has been shown to possess a countable infinity of solutions, cf.
Demiralp and Rabitz (1993). This result has been obtained for cost functionals
of the form J = Jy + Jo + J3 having one objective operator O at a final time T
and a single penalty operator O' evaluated over the entire control interval. In
this work additional assumptions are that: i) O and O" are bounded operators,
ii) O is either positive- or negative-definite, and iii) pe(t : t € [0,T]) is
bounded (although the proof can be extended for unbounded control terms).

14 Numerical algorithms

This section considers algorithms for determining the optimal controls based
on the constrained variational problem in Eqn. (13.4). Part of the text is drawn
from the recent review Zhu and Rabitz (in press).

We will consider the quantum optimal control problem with the cost func-
tional given in Eqn. (5.1) and critical point equations (13.7-13.9). The observ-
able operator O is assumed to be positive semidefinite Hermitian. Note that
Eqn. (13.9) can also be written as

€(t) = = Re (0(T, {€}) 0] 60(T, {€})/5¢(t))

==~ I (W(T, {e}) [OU (T, 1, {eDul (1, {eh) (14.1)

with U being the evolution operator of the system. The presence of the argu-
ment € on the right hand side of Eqn. (14.1) indicates that this is actually an
implicit relation for determining the control field. To solve for the control field
in Eqn. (13.9) or (14.1), it is evident that some type of iteration algorithm
needs to be employed.

Several numerical algorithms can be used; historically, the gradient-type meth-
ods (see Shi et al. (1988); Combariza et al. (1991)) were the first to be used.
In this approach,

(1) an initial guess €; is set and the iteration count & is initialized to k& = 1;

(2) the wavefunction v (¢) is propagated forward in time with the field ¢, by
the Eqn. (13.7);

(3) the final data for the adjoint state A\,(7T) is derived;
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(4) the wavefunction 1 (t) and the adjoint state A\ (t) are propagated back-
ward in time with the field ¢, and a new electric field €11 = € + 7 - (;l—Jk

is computed ((gi—Jk is given by the Eqn. (13.6)). The constant +y is found by
a linear search to optimize J in the direction of the gradient (;57‘2;

(5) k < k + 1; step 2 is returned to and the cycle is continued until conver-
gence.

Note that in step 4 the propagation of the wavefunction ¢ (t) is required
because the storage of its trajectory (already computed in step 2) is usually
too expensive. We refer the reader to Tersigni et al. (1990) for a conjugated
gradient version of the above algorithm.

Although this algorithm proved useful in some cases, its convergence is not
guaranteed (here the setting is far from the quadratic cost functional that
conjugated gradient type algorithms best optimize) and it may become slow;
the algorithm used by Tannor (see Tannor et al. (1992); Somléi et al. (1993))
based on the Krotov method (Krotov (1973, 1974a,b)) was designed to correct
this feature. The structure of this algorithm is as follows:

1
2

) an initial guess ¢ is set and the iteration count k is initialized to k = 1;

) the wavefunction v (t) is propagated with the field €; by the Eqn. (13.7);

) the final data for the adjoint state A\g(7") is derived;

) the adjoint state Ag(t) is propagated backward in time with the field ¢
to give Ago = Ax(0);

(5) A new field is constructed by the simultaneous resolution of the following

equations:

(
(
(3
(4

i20 ) = [Ho + L pdm{ (e (0) 1] e () Yo (1)

(14.2)
Yr+1(0) = o
0 _ (g _ e
i = [Ho — peg(t)] Ae(2) (14.3)
Ak (0) = Ago
aerr1(t) = —Im{(A\e(t) |l Yes1(8)) }; (14.4)

(6) k < k + 1; step 3 is returned to and the cycle is continued until conver-
gence.

As in step 4 of the gradient descent algorithm, the propagation in Eqn. (14.3)
is motivated by memory storage considerations.

In order to analyze the numerical properties of this algorithm we evaluate

the difference between the value of the cost functional between two succesive
iterations:
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J(€r1) — J (&) = Wr41(T)|Or41(T)) — a/OT ex1(t) dt

— DO +a [ en(e)ds
= (Vk+1(T) — Yu(T) Ok +1(T) — i (T)) + 2Re (Yp41(T) — ¥ (T)|O[4x(T))
+a /0 (epr1 — ) (1)2dt + 20 /0 (65 — es1) () ews (F)dt (14.5)

Since we have also:

2Re (Yr41(T) — Yr(T)|O|9h(T)) = 2Re (11 (T) — m( ); Ov(T))

= 2Re (¢ 41(T) — p(T), A —2R/ < ¢k+1 ¢k()) k(t)>+
<¢k+1(t) — Pi(t), a)\akt(t) > dt =

Re [ (FOEE ) - F g ), M(e))

+ <wk+1<t) — (), ) = 2Re [ e (L0, 00))

=i (0, M (0)) + e (Ve (8) = vr(t), =M (D))

=2 [ e aa — e (L@ 00) - 6 - aces

—ei (00), M) =20 [ i (0) - (ensn = ) (O (14.6)

we obtain thus from (14.5) and (14.6)

J(ex+1) — J(ex) = Wr1(T) — Y (T)|Olthr11(T) — ¢x(T)) +
oz/()T(ek+1 —a)(8)2dt > 0 (14.7)

because the observable O is a positive semidefinite operator. Each step of this
algorithm will therefore result in an increase of the value of the cost functional;
this increase is expected to be important for initial steps where the critical
point equations are not fulfilled and the difference between succesive fields ¢
and €1 will be important.

This algorithm was improved with the introduction of the monotonic quadrat-
ically convergent algorithm in Zhu et al. (1998); Zhu and Rabitz (1998) that
incorporates additional feedback from the adjoint state. The following mate-
rial will present some aspects of the monotonically convergent algorithms and
will analyze their convergence features. In the first step, a trial field ¢ ()
is used to calculate the wave function (¢, {¢®}), then Eqn. (14.1) can be
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directly applied to obtain the first iteration to the control field ¢)(¢) by back-
ward propagation of the evolution operator U(T,t, {¢(V}) from T to 0. In the
second step, the new control field (?)(¢) also can be directly obtained by for-
ward propagation of the wave function (¢, {e®}) from 0 to 7. A series of
control fields can be repeatedly mapped out in this way. The algorithm as an
iteration sequence has the following structure:

) = =~ Im (W(T 4O [OU(T 64Dt (OD)  (148)
€At = ——Im (9T {ON [0Vt APl e, (@) (149)

€ (1) = — = m ($(T, {(<?0)) [OU(T, 1, (e (1, (0}) 14.10)
O (1) — _ é[m (W(T, {e®0}) [OU(T, 1, {eP DY) | (1, {P 2 P 11)

The introduction of the adjoint state A allows for rewriting the above algorithm
in the simplified form

1
2

) an initial guess € is set and the iteration count k is initialized to k = 1;
) the wavefunction vy (t) is propagated with the field ¢; by Eqn. (13.7);

) the final data for the adjoint state \g(7") is derived;

) the adjoint state Ag(t) is propagated backward in time

(
(
(3
(4
i%4 = [Ho + Sulm e (0) ulidr1 (6) 2 (2)
)‘k (T) = O’(/)]c_l (T)

(14.12)

Note: if the trajectory of the wavefunction v;_;(¢) cannot be stored into
memory, it is recomputed from the (stored) corresponding field.

(5) the wavefunction is evolved and a new field is constructed by the solution
of the following equations:

1290 — [Hy + LpTm (N (8) 1] (1)) (8)

(14.13)

Y(0) =t
aepr1(t) = —Im{(Ae(t) [l i (t)) }; (14.14)
As in step 4, if needed, the trajectory of the adjoint state A\ (t) is recom-

puted.
(6) k < k+1;step 3isreturned to and the cycle is contined until convergence.

In order to analyze the convergence features of the above iteration sequence,
we go back to the formulation in Eqns. (14.10) and (14.11) and consider the
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deviation of the objective functional between two neighboring steps (one step is
defined as a pair of backward and forward propagations). Specifically, between
the i-th and (7 4 1)-st steps, the deviation is

Adipri= {<¢(T, {e®H2 1) (O] 4(T, {6(2i+2)})> _ O‘/OT [6(2i+2) (t)]2 dt}
- {<w<T, (@) 01T, 4e®)) = o [ [ o)) dt} (14.15)

Considering the dynamical equations of the wave functions v (¢, {¢%*?}) and
Y(t, {e®}), and utilizing the field expressions in Eqns. (14.10) and (14.11), it
can be derived (see Zhu and Rabitz (1998)) that:

A1 :a/OT< [6(2i—|—2) (t) — 6(2i+1)(t)]2 + [6(21'—0—1) (t) — @ (t)r) dt
+ (Ais1,i(T) O] Atpiyr,i(T)) (14.16)

where At;i1,(t) = (¢, {€@2}) — (¢, {e®}). Since O is a positive semi-
definite operator,

(Atit13(T) |O] Ahisa,4(T)) = 0, (14.17)
then Eqn. (14.16) satisfies

AJisr; >0 (14.18)

where the equal sign occurs only if the initial guess for the control field hap-
pens to be an exact solution of Eqn. (14.1). Equation (14.18) indicates that
regardless of the choice for the initial trial field, the objective functional will
monotonically converge to a local maximum of J for the iterated sequence of
control fields given in Eqns. (14.8-14.11).

It is straightforward to show that the total gain for the objective functional
after IV iteration steps will be

T 2N—1

N—
AJN,O:Z (Ais14(T) O] Ay i (T +a/ Z[Aemz 2dt (14.19)
1=0

where Ae;y14(t) = () — e®(¢). Based on the above analysis, it can be
concluded that a larger change of the field between neighboring steps will lead
to faster convergence. As the initial guessed field usually will be far from the
exact solution, the major contribution to the rapid convergence is expected
to come from the first few iteration steps. An illustration of the monotonic
convergence is shown in Figure 3.
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It is worthwhile to point out that the positive semidefiniteness of the oper-
ator O is not an intrinsic constraint on the monotonically convergent itera-
tion algorithms: other types of monotonically convergent algorithms can lift
this constraint. In the following, we will show one such procedure which is
still monotonically convergent, but without the need to impose the positive
semidefiniteness constraint on the operator. In the revised algorithm, the it-
eration sequence for the control field is slightly different from that shown
in Eqns. (14.8-14.11). First, an initial guess for the field ¢(®(¢) is needed to
forward propagate the wave function (¢, {¢®}). The modification of the algo-
rithm just lies in the backward propagation. Specifically, the iteration sequence
for determining the control field is (Zhu and Rabitz (1999a))

€0(t) = = Im (9(t, 1) U (T 1, (D NOU T, 1, {0 P w(t, (¥ }1)4.20)

D) = — = Im (9t <P} [U1(T, £ AODOU T, 1, (DDt (e 1)a.21)

=R

€ (1) = — ~ I (3 (1, (<P0)) [U1 (T, 1, (<P O)OU(T, 1, {2}

[(t, {e®)})) (14.22)
€ (1) = — ~ I ({1, (2F)) [UH(T, 1, (P ONOUT, 1, {2 )
[(t, {4})) (14.23)

Remark 27 This second algorithm does not lend itself to an implementation
in terms of direct and adjoint state only. The propagation of the wavefunction
¥(t) and of the evolution operator U(T,t,{e}) that is required is more costly
than the propagation of ¥ (t) and A(t) of the previous monotonic convergent
algorithm version because, in discrete form, it involves propagating a matriz
and a vector as opposed to propagating two vectors.

To verify the monotonically convergent feature of the above algorithm, once
again we evaluate the deviation of the objective functional between two neigh-
boring steps as follows:

[6(21'—1—2) (t)]2 dt}
- {<w<T, () 01 9T, {e®)) = o [ [ 1)) dt} (14.24)

A= (UT. () 0] w(T: (2 2) ~a [

0

Considering the dynamical equations of the wave function (¢, {¢®*2}) and
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the operator U(T), t, {¢®*3)}), and utilizing the field expressions in Eqns. (14.22)
and (14.23), it can be proven (e.g. Zhu and Rabitz (1999a)) that:

N/ :a/OT ([6(2i+2) (1) — 6(2i+1)(t)]2 + [6(2i+1)(t) _ @) (t)r) d#(14.25)

Comparing Eqn. (14.25) with Eqn. (14.16), we see that the iteration algorithm
given by Eqns. (14.20-14.23) is still monotonically convergent for the objective
functional, but without the extra constraint on the operator O. The total
monotonic gain of the objective functional after N iteration steps is simply

T2N-1

Adno = a /0 S (A (0] dt. (14.26)
=0

We will not go further here to explore other possible monotonically convergent
algorithms to iteratively solve for optimal controls. It is important to keep in
mind that monotonically convergent iteration algorithms may not exist for
arbitrary objective functionals. However, extended work indicates that there
exist monotonically convergent iteration algorithms for most common types of
the objective functionals considered in the optimal control of quantum systems
Zhu et al. (1998); Schirmer et al. (2000), and that methods similar to those
presented here may be applied to the density matrix formulation (Ohtsuki
et al. (1999)).
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Fig. 3. Convergence of the cost functional to a (locally) optimal value in a numerical
implementation of the quadratically convergent algorithm discussed in Section 14.
The details of the calculation, which designs a minimum-fluence laser field to pro-
mote the [3) — |5) vibrational transition in an O-H bond, are given in Zhu and
Rabitz (in press).

Remark 28 Besides these families of algorithms that aim to solve the critical
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point equations directly, an alternative approach has been proposed in Shen
et al. (1994) that uses a penalization framework. Suppose that the objective
can be expressed as (Y(T)|P|yp(T)) = 1, where P is a projection operator; a
sequence of cost functionals

He) = [ @t + 5| D) Pl - 1) (14.27)

(where (t) is the solution of Eqn. (13.7)) is optimized with respect to € for
v — 0 by an inexact Newton method. The sequence of solutions of these opti-
mization problems converges then to the solution of the initial control problem.

Remark 29 The numerical resolution of the evolution equations as in Eqns.
(18.7), (13.8),(14.2),(14.3),(14.12) or (14.13) requires a propagation scheme.
Often used is the split-operator technique (e.g. Zhu and Rabitz (1998)) which
can be written schematically: suppose that the equation to be solved is

FOX(1) = (K + VO)x() (14.28)

where K is the kinetic energy operator and V(t) is the total potential. Then,
denoting by At the time step, the following recurrence is used:

X(t+ At) — efiKAt/2efiV(t)AtefiKAt/2X(t) (14'29)

which is known to be exact to second order in At. In order to apply the op-
erators e~ "KAY2 gnd e=VIAt g dual real space <+ Fourier(momentum)
representation is used; note that V(t) is diagonal in real space while K is di-
agonal tn momentum space; each operator is thus applied efficiently, with the
transformation from one representation to the other realized by (fast) Fourier
transforms.

15 Robust designs

Due to imperfect knowledge of system Hamiltonians and coupling operators
as well as the limited precision and presence of background fluctuations inher-
ent to any laboratory apparatus, it is impossible to perfectly reproduce either
optimally designed control laws or the exact specifications under which they
were designed. Hence, it is important to study the sensitivity of the control
objective or cost functional to random variations or uncertainties in the op-
erators and initial conditions describing the evolution of the system. There is
extensive work on the general topic of robust optimal control in the engineer-
ing (Dorato (1987); Hosoe (1991); Ackerman (1985)) and quantum control
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literatures (Demiralp and Rabitz (1998); Beumee et al. (1990); Zhang and
Rabitz (1994)).

A general approach to assessing robustness and stability in quantum control
has been considered in Demiralp and Rabitz (1998) based on introducing a
stability operator S, the kernel of which is related to the curvature %E%]t,—)
of the cost functional with respect to the control law. Considering the curva-
ture is necessary as the null value of the first order variation gi([f] = 0 defines
the optimal solution. Conditions for robustness and optimality of the control
solutions can be expressed in terms of the spectrum of S, and this analy-
sis can also reveal qualitative relationships between the various terms in the
cost functional and the robustness/optimality features of the control solutions.
Work is still needed in order to find a general relationship between the domi-
nant characteristics of a system Hamiltonian, coupling operators, and the cost
functional with respect to the eigenvalues of the stability operator S.

The introduction of a penalty term of the form

Jy= [ Wal(@(®) O )l at, (15.1)

where O’ is an arbitrary positive definite operator, was observed (Demiralp
and Rabitz (1998)) to improve the robustness of optimal control solutions.
The presence of J3 can bias the system to satisfy demands tangential to the
true control objectives, causing an effective “drag” along the way to the goal.
Hence, the effect of J3; may be loosely interpreted as analogous to the presence
of viscous drag in stabilizing a classical mechanical system about a weakly
stable point in its phase space. However, the possible stabilization mechanisms
have not been carefully studied or characterized and a complete mechanism
to explain how the introduction of suitable ancillary objectives may stabilize
the solutions to quantum optimal control problems remains to be found.

The robustness effects of penalty operators with more specific forms than that
given by Eqn. (15.1) may be easier to intuit. For example, the term

Jsz/OTdt<5<50€7((g)>>2

(or analogous expressions with higher derivatives) may be used (Kobayashi
(1998)) to reduce the sensitivity of the achieved control objectives at the
target time 7" to uncertainty in control fields. Analogs of this penalty term for
the sensitivity of the target objective to uncertainty in other variables were
found (see Beumee et al. (1990)) to be capable of reducing the sensitivity to
errors in force constants and other model parameters.

Design of robust quantum optimal control solutions can be achieved through
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the min-max procedure, which involves simultaneously maximizing the effects
of an energy-bounded disturbance and minimizing the objective functional.
Solutions to such min-max problems represent the best possible control under
the worst possible energy-bounded disturbances. For linear dynamical sys-
tems the min-max problem becomes H,, control, which has an exact solution
through the Ricatti equations. This procedure is well-developed in engineering
control theory (see e.g. Athans and Falb (1966)), and it has been applied to ro-
bust control designs for selective vibrational excitation in molecular harmonic
oscillators (Beumee and Rabitz (1992)).

Remark 30 In general, the min-max technique tends to give conservative ro-
bust solutions as it works against the worst possible bounded disturbance, and
encountering this worst disturbance in practice is unlikely. This point suggests
that consideration of a less extreme class of disturbances may also give use-
ful solutions. The resulting analysis should give designs that are robust under
more realistic conditions than those modeled in a worst case scenario.

The conclusions of min-max studies (Zhang and Rabitz (1994)) reinforce the
importance of this remark. For a diatomic molecule modeled as a Morse
oscillator, the robustness properties of solutions to the min-max equations
were compared with solutions to the standard Euler-Lagrange equations (c.f.
Eqns. (13.7)-(13.9)) derived without any robustness considerations. While the
min-max controls performed better under the application of the worst-possible
disturbance (for which they were designed), they did not necessarily outper-
form the standard Euler-Lagrange solutions under disturbances other than
the worst case. For example, min-max control fields were demonstrated to be
significantly less-robust than standard Euler-Lagrange control fields to sinu-
soidal perturbations with the same amplitude constraints as the worst-case
disturbance. This underscores the importance of designing control laws that
are robust to the particular class of disturbances most likely to occur.

Even in cases where the robustness properties of two designs are quite distinct,
simulations have shown (see Beumee and Rabitz (1992)) that robust control
designs may differ only slightly from nonrobust designs (i.e., the L? norm of
the difference between the two control laws may be small). This similarity
suggests that robustness properties in some cases may result from very subtle
effects. It has also been noted (Beumee and Rabitz (1992)) that the relation-
ship between the robust field and the standard design (i.e., created without
robustness considerations) can take two forms: the robust field can be either
a scaled, self-similar version of the standard field (which may be described as
achieving robustness by “speaking louder”) or can have a qualitatively dif-
ferent form. At present, no means exists to predict in general when either of
these two cases will occur. It is suggestive that self-similar robust fields will
exist for weak disturbances, but there is presently no proof of this conjecture.
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16 Tracking

As mentioned in Remark 26 of Chapter 4, there generally exist a multiplicity
of solutions to the quantum optimal control equations, suggesting that it may
be possible to predefine a selected path between the initial and final conditions
satisfying the control objectives. The existence of such a path exactly matching
the conditions at both ends assumes that the system is controllable. The path
y(t) can be implicitly defined by the expectation value of a tracking operator
Oy

y(t) = (@) [Onl¥(t)); te[0,T]. (16.1)
The quantum tracking control problem (e.g. Gross et al. (1993b); Lu and Rab-
itz (1995); Ohtsuki et al. (1998); Ong et al. (1984)) may be viewed as a special
case of optimal control theory with the target being the expectation value of
Oy, over the entire time interval. (In some cases it may be physically attractive
to only require that }1_>HT1 Oy (t) = O, where O is the objective operator whose

expectation value is desired at T.) Given the path defined in Eqn. (16.1), the
tracking algorithm for determining the control law may be derived from the
Heisenberg equation of motion

80157“

L0 0] ¥(0)
ot

dt

— (0(t) [, Ou)| 6(0) + <w<t> ‘

w(t)> . (16.2)

With a control law of the form C(t) = —pue(t) and the assumptions that O,
is independent of time along with

[,U'a Ot'r] 7é Oa

Eqn. (16.2) can be rewritten to solve for the electric field:

) = (0% - w0 #0110 /w0 O vy . (163

This equation may be substituted into the Schrodinger equation, which then
can be numerically solved for (t); substituting ¢ (¢) back into Eqn. (16.3)
gives an explicit expression for the required control law. One important feature
of this technique is that it requires only a single numerical solution of the
Schriodinger equation, as opposed to the iterative methods of standard optimal
control.

Given the freedom in the selection of y(t¢), one might unknowingly choose a
track that generates one or more singularities, or events at which the denomi-
nator of the control field in Eqn. (16.3) vanishes. This type of singularity may
be classified as trivial (see Zhu et al. (1999)) if it exists for all ¢ € [0, T']. Trivial
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singularities may be removed by formulating a tracking equation analogous to
Eqn. (16.1) for control of the k-th time-derivatives of y(t). A rank index may
be assigned to each tracking singularity by determining the smallest order £,
for which the corresponding tracking equation has no trivial singularity; if the
rank index is infinite, then the track-system pair is uncontrollable. Otherwise,
any remaining (isolated) singularities may be treated as nontrivial singulari-
ties of some relative order k,; (as in Zhu et al. (1999)). The magnitude of the
disturbance to the trajectory resulting from a nontrivial singularity depends
inversely on the magnitude of the derivatives glt?, t = 1,..., ky; evaluated at
the singularity. This partially explains the effects of singularities on quantum
tracking control and encourages the search for a non-iterative algorithm to
sense the occurrence of a forthcoming singularity and accordingly alter the
path to avoid the momentary singularity while eventually reaching the objec-
tive.

Several extensions of exact inverse tracking which relax demands that could
otherwise produce physically unreasonable fields have been developed in Chen
et al. (1995). The first of these methods is local track generation, in which
the problems associated with an a prior: trajectory design are avoided by
letting the track depend on the evolving quantum state: y(t) = y (¢(¢)). This
approach is especially useful when the control objectives are not specifically
defined by target operator expectation values as in Eqn. (4.1), but rather
can be expressed as the production of some qualitative change in a system. A
second method is asymptotic tracking, in which the operator O,, is modified to
allow an asymptotic approach to possibly singular trajectories. Finally, in the
competitive tracking technique a cost functional is defined whose minimization
produces a solution optimally matching a number of trajectories for different
tracking operators as well as minimizing the field fluence or satisfying other
control objectives.

There is considerable room for further development of the tracking procedure
guided by the attraction of performing only one solution of the Schrodinger
equation to achieve a control design. Moreover, thus far tracking control has
only been applied to the wave function formulation of quantum mechanics. A
significant extension would be to treat mixed states in the density matrix for-
mulation. In this context, the expectation value (O (t)) = Tr (p(¢)Oy,.) would
be followed and the Schrédinger equation would be replaced by Eqn. (7.1),
with the possibility of additionally including decoherence processes.

17 Laboratory achievement of closed loop control

The design of control laws poses interesting theoretical challenges, and the
practical motivation for such a task is to accomplish successful control in
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Fig. 4. A closed-loop process for teaching a laser to control quantum systems. The
loop is entered with either an initial design estimate of even a random field in some
cases. A current laser control field design is created with a pulse shaper and then
applied to the sample. The action of the control is assessed, and the results are fed
to a learning algorithm to suggest an improved field design for repeated excursions
around the loop until the objective is satisfactory achieved. From Rabitz et al.
(2000) with permission from the copyright owner.

the laboratory. This section discusses the conceptual and theoretical aspects
of laboratory operations in which information about the evolving quantum
systems is used to improve or define effective control laws. We will cover the
technique of quantum learning control, which is increasingly proving to be
the most efficient method of practically achieving many control objectives,
especially in complex quantum systems; we will also discuss aspects of feedback
quantum control. Learning and feedback control are closed loop experimental
procedures aimed at achieving control even in the presence of Hamiltonian
uncertainties and laboratory disturbances.

The computational design of a control law to meet a physical objective re-
quires (i) explicit knowledge of the system Hamiltonian and (ii) the ability
to numerically solve the quantum control equations at least once (in the case
of tracking control) or many times for convergence to an optimal solution.
In practice, however, these requirements can rarely be met. If the system to
be controlled is sufficiently complex (e.g., a polyatomic molecule), it is likely
that the Hamiltonian will be only approximately known and the corresponding
quantum design equations can only be solved under serious approximations.

In light of these limitations, a completely different and practical approach to
the control of quantum dynamics phenomena has been developed (see Judson
and Rabitz (1992)). In this quantum learning control technique, the labora-
tory quantum system in itself serves as an analog computer to guide its own
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control as indicated in Figure 4. This approach addresses the requirements of
(i) and (ii) above: a physical quantum system can solve its Schrodinger equa-
tion in real time and with exact knowledge of its own Hamiltonian, all without
computational cost to the user. Hence, the burden of knowing the Hamiltonian
and solving the Schrodinger equation is shifted over to a laboratory effort with
a learning algorithm guiding the control experiments. The number of physi-
cal/chemical systems treated in this way is growing rapidly, and in many cases
it is easier to do the experiments than to perform the designs. However, this
approach can still benefit from even approximate control designs to start the
laboratory learning process, and theory also has an important role to play in
introducing the proper stable and reliable algorithms to make the experiments
successful.

In summarizing the methodology of quantum learning control, we will consider
a simple paradigm where the state of the system is to be optimized at the final
time 7" only. The first step is to prepare the laboratory quantum system in
a convenient initial state 1 (0) = 1o, or a mixed state or a distribution of in-
coherent states specified by p(0). Next, the system is allowed to evolve under
its Hamiltonian and some initial trial control law Cj applied in the labora-
tory. At the time 7', a measurement of the corresponding control objective(s)
is made. The quantum system (perturbed by this measurement) is then dis-
carded, and the control law may be updated to C; based on the information
gained through this measurement. The method and the frequency with which
the control law is updated depends on the specific learning algorithm being
used (e.g., as described below, with a genetic algorithm the control law is
updated after some multiple of N,,, experiments in each time interval). This
updating continues until the learning algorithm has converged to some final
control law C that achieves the objectives within the convergence bounds of
the learning algorithm. The methods most widely used to accomplish the up-
dating of learning control laws are evolutionary and genetic algorithms (GAs)
(e.g. Goldberg (1989)), although other learning algorithms could be used.

A GA involves the evolution of successive generations of control laws from their
parents, in some fashion mimicking biological evolution. Each trial control field
is encoded to form a gene which is part of an overall population evolved in the
laboratory during the search for an optimal control. Specifically, experiments
are performed in which the quantum system evolves under each of the members
of a control law “population”. The “fitness” of the control law is evaluated
based on the degree to which the control objective(s) are achieved, and the
fittest control laws are preserved and/or modified in some prescribed fashion
in the next generation. This procedure is continued until the fittest members
of the control law population achieve the control objectives to the required
extent.

Remark 31 A more general learning control setting may include a discrete
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(yet finite) set of objective times in {t; : i = 1,...,n} or more generally unions
of discrete and continuous time intervals. When more than one target is present
the problem is divided into several independent subproblems solved sequentially
in time. Note that all the experiments carried out thus far (e.g.,Assion et al.
(1998); Bergt et al. (1999); Weinacht et al. (1999); Bardeen et al. (1997,
1998); Hornung et al. (2000); Levis et al. (2001)) have dealt with a single
target goal.

The power of the GA and evolutionary algorithms lies in their ability to glob-
ally search the space of control laws and discover solutions that may be highly
nonintuitive. This directed search takes advantage of the ability to perform
a great number of distinct control experiments in a short period of
laboratory time, and the closed loop technique has been demonstrated for
a wide variety of quantum systems and control objectives. The method has
also been shown to have interesting convergence properties. For example, it
is observed in simulations (as in Judson and Rabitz (1992)) and experiments
(e.g. Assion et al. (1998); Bergt et al. (1999); Weinacht et al. (1999); Bardeen
et al. (1997a, 1998); Levis et al. (2001)) that the GA algorithm can converge
for a set of randomly constructed initial control law populations. It is then
interesting to know to what extent will the convergence properties of these
algorithms be improved by incorporating trial designs into the search space.

Remark 32 The choice of cost functionals (see Section 13) used in the ex-
periments has the same freedom as for computational optimal control theory
except that in laboratory learning control there is no direct access to the wave
functions. At present the erperiments have considered only the final target in
the cost, but other criteria could be included giving rise to a possible enhance-
ment to the procedure. Figure 5 shows an application of the laboratory learning
control concept.

Simulations have considered the effects of laboratory errors (modeled as dis-
tortions, or transformations, of true input and output data) and noise upon
the learning control process (Gross et al. (1993a); Téth et al. (1994)). In Téth
et al. (1994), input errors were modeled by performing various functional trans-
formations on the control laws used in simulated experiments, while output
errors were represented by transforming the expectation values of the control
objectives corresponding to these experiments. In general, if the input errors
are systematic and the output errors are random, they may not significantly
affect the ability of the learning algorithm to find an optimal solution. The
fitness of the final control laws found by the GA are also demonstrated to be
reasonably insensitive to noise in the control fields. These results are based
on very limited studies of simple model systems, and they invite further in-
vestigation. Such an analysis could give insight into how best to operate the
laboratory experiments.
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Fig. 5. An example the laboratory closed-loop control process. The objective, to
maximize the flux of toluene (ions) from the dissociation rearrangement of ace-
tophenone is achieved as the control law evolves over successive generations, see
Levis et al. (2001).

In principle, any optimization algorithm can be applied to quantum learning
control. For example, gradient descent and simulated annealing algorithms
have been explored in simulations (Gross et al. (1993a)), but the GA out-
performed them in several test cases. However, this subject has not received
a thorough examination and there may exist algorithms that converge with
greater efficiency or robustness than the genetic algorithm for certain classes
of quantum mechanical learning control problems. In treating this topic it is
important to consider the ability to perform very large numbers of quantum
control experiments, which may overcome certain algorithmic shortcomings
found under more common conditions. This ability is almost unprecedented
in other applications of learning algorithms.

Another approach to quantum learning control is provided by the use of input
— output mapping techniques as in Phan and Rabitz (1997, 1999); Geremia
et al. (2001). These methods develop an effective map between the inputs
(i.e., the parameters or features defining the control laws) and the outputs
(i.e., the expectation values of objective operators). A map from the control
input space C to the space of possible expectation values may be determined
directly from the laboratory input and output data; a series of these maps
may be needed to cover a sufficiently large portion of C. The control law
that optimally satisfies the objectives can be identified from these maps using
a suitable learning algorithm. A central issue is establishing the efficiency
of mapping techniques as compared with eliminating the maps altogether in
favor of having the learning algorithm directly interfaced with the laboratory
experiments. Beyond issues of efficiency, mapping techniques may offer the
additional benefit of providing physical insight into control mechanisms based
on the observed map structure.
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Chapter 5. Challenges for the future

Previous sections have presented the general framework of quantum control,
the central issue of controllability, the numerical algorithms for designing con-
trol laws and the algorithms for their laboratory discovery. Along the way,
several unresolved questions and topics of current interest were introduced.
The purpose of the current section is to highlight some emerging areas and
unresolved questions that were not a part of this overview. Most of the mate-
rial is drawn from Brown and Rabitz (in press).

18 Coherence and control

The robustness of coherences for controlled quantum systems in mixed states
(i.e. the robustness to decay of the off-diagonal terms in the density operator
(cf. Section 7) is a topic of special interest. The effects associated with this de-
cay are especially important in the quantum information sciences (see Chuang
et al. (1995)), where the development of methods to curtail decoherence in in-
formation processing algorithms is an active area of research (e.g. Shor (1995);
Steane (1998)). A relevant contribution from control might be the combina-
tion of min-max optimal control techniques with the ideas of decoherence-free
subspaces (Lidar et al. (1998, 1999); Bacon et al. (1999)), in which dynamics
are invariant to interference that would otherwise cause coherences to decay
(this is related to the general notion of disturbance decoupling in mathemat-
ical systems theory, see Sontag (1998)). The result would be control solutions
that maximize coherences while simultaneously minimizing an objective cost
functional, which could be of significance in developing a physical understand-
ing of the mechanisms of decoherence and its suppression. We note that other
schemes are also being considered for the dynamic manipulation of decoher-
ence and control in the presence of dissipation, such as Viola and Lloyd (1998);
Vitali and Tombesi (1999); Cao et al. (1997); Duan and Guo (1999).

When the persistence of coherence is not directly important to applications,
it was shown in Bardeen et al. (1999) that coherence may not be operative in
the control mechanism. In an n-dimensional space H,, and in the presence of
rapid dephasing (which implies vanishing of the off-diagonal coherence terms
of the density matrix), Eqn. (7.1) reduces to a set of rate equations for the
population in the n states. A case of special interest in this regard is the
control of condensed phases. Under certain conditions, Bardeen et al. (1999)
demonstrates that successful controls can be designed for quantum systems
whose evolution is determined by these rate equations. This raises the question
of whether quantitative measures of coherence can be developed to assess its
role in any quantum control problem.
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The application of control methods to the cooling of quantum systems is an ac-
tive area of research (Bartana and Kosloff (1993, 1997); Tannor and Bartana
(1999); Tannor et al. (1999)) and there are several means of defining cool-
ing on the molecular scale. One typically utilized criterion (see Bartana and
Kosloff (1997)) aims to minimize the von Neumann entropy o = — zk: Pk log py

corresponding to some observable O (such as the system Hamiltonian); here,
pr is the probability that the system is in the k-th eigenstate of O. Another
system cooling criterion is to increase in the Reyni entropy 77(p?) (as in Bar-
tana and Kosloff (1997)). With both measures, maximal cooling is achieved
when all but one of the py are zero (i.e., achievement of a pure state). Thus,
the ability to completely cool a molecular system is likely to be a challenging
task in the presence of laser noise: for the purposes of molecular cooling, a
laser control with noise fluctuations may be thought of as having an effective
nonzero “temperature.” Lower bounds related to a temperature beyond which
a system cannot be cooled, if they exist, remain to be established.

19 Can noise help attain control ?

In general, noise in C(t) is thought of as harmful in the context of trying to
achieve control objectives. However, hints from the subject of stochastic reso-
nance (Gammaitoni (1998)) suggest that under suitable conditions noise may
possibly have beneficial effects, such as allowing the achievement of a partic-
ular level of control using smaller total field fluence than that required for the
noise-free system. It remains to be demonstrated under what, if any, condi-
tions the presence of noise can assist in the achievement of quantum control
objectives, and to elucidate the possible physical mechanisms behind these
effects. In addition, the process of seeking the optimal control will attempt
to eliminate the deleterious influence of noise while attempting to reach the
objectives.

20 Qualitative behavior of optimal control solutions

A large body of numerical studies provides examples of solutions to the quan-
tum optimal control equations. However, none of this work has illuminated
the general behavior, stability, and classes of solutions to the quantum opti-
mal control equations (here, by classes of solutions we mean the qualitative
notion of groups of solutions with particular properties, such as nondispersiv-
ity, periodicity, etc.). The possibility that unusual behavior can be expected is
evident from one study which showed that the optimal control equations can
be made equivalent to the standard non-linear Schrodinger equation under
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suitable conditions (Demiralp and Rabitz (1997)) (see also in Section 21 the
considerations on the deterministic feedback control).

21 Feedback quantum control

This section deals with the effects of real-time, laboratory measurements of
the quantum system under two distinct experimental schemes, each described
by a different type of feedback Schrodinger equation. The first scheme uses a
sequence of repeated experiments to avoid the disturbance effects of measure-
ment, while the second directly confronts these effects.

Deterministic feedback control

Here we consider the (deterministic) continuous-feedback Schrdodinger equa-

tion
(1)

ih—p,— = [Ho + C((¥(t) [Oc| v ()] ¥ (1), (21.1)

which conceptually follows from a sequence of laboratory experiments measur-
ing some observable O, at an increasing set of measurement times, in the limit
that the intervals between these times are vanishingly small. In this approach,
the probabilistic effect introduced by a measurement at each subsequent time
is avoided by ‘discarding’ the quantum system after each measurement, us-
ing the measurement information to extend the control law over the following
interval, and repeating the experiment up until the next measurement time.

Different choices of C(-) and O¢ may result in Eqn. (21.1) having qualitatively
diverse behavior. An interesting case exists (Demiralp and Rabitz (1997))
under the assumptions (i) that O¢ = 6(x — x’) is the Dirac delta operator,
and (ii) that the control law is C(|1(x,t)[>) = —v|¢(x,t)|* , where 7 is a
positive constant. The resulting equation

%, h?
ih% = %V2+7|w(x,t)|2 Y(x,1) (21.2)

admits dispersion free solutions (i.e., it preserves |i)(x — vt)|> ) and also soli-
tonic solutions under suitable conditions, cf. Lamb Jr. (1980); Drazin and
Johnson (1989). These types of stable solutions may be significant in many
applications of quantum control, including quantum information theory. Equa-
tion (21.2) may also be derived from the quantum optimal control formalism
under the assumptions stated above; thus, dispersion free control solutions are
optimal under these same conditions. The existence of such a control law in-
vites a search for other general classes of control Hamiltonians Hy+C' ((O,(%)))
that exhibit non-dispersive or other distinct types of qualitative behavior of
practical interest.
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Measurement disturbances and feedback control

This section is concerned with the effects of taking real-time measurements
on a single quantum system while it is being controlled (here, “single” implies
that the sequential “measure and discard” approach of the previous section
is abandoned). Feedback may augment learning or optimal control methods
by providing real-time information about the evolving quantum system for
the stabilization of particularly sensitive objectives (e.g., locking a quantum
system around an unstable point on its potential energy surface). This sce-
nario naturally arises in the implementation of a feedback control law where
measurements are taken at a discrete set of times {¢;}: the control law may
be written as

Ct) = C(((t:) O] ¥(t:))) , t: <t (21.3)

There exist well-established procedures for determining feedback control laws
based on measurements of evolving deterministic and stochastic classical sys-
tems in engineering control (e.g., Sontag (1998); Sotine and Li (1991)), and it
is possible that many of these methods may be adapted to quantum mechan-
ical control problems. Extensive consideration has been given to the effects of
measurements on evolving quantum mechanical systems, including analysis in
the contexts of continuous feedback and the control of quantum systems by
homodyne detection (i.e., measurement of a component of the light field) cf.
Carmichael (1999a,b); Wiseman and Milburn (1993b,a); Braginsky and Khalili
(1992); Wiseman (1994, 1993); Hofmann et al. (1998b,a); Carmichael (1996).
These works generally treat the more difficult problem of random measure-
ment times; here, we give only an elementary discussion of ideas relevant to
feedback control with measurements taken at a deterministic, discrete set of
times.

A postulate of quantum mechanics states that a perfectly precise measure-
ment of an operator O, (with nondegenerate spectrum) on a finite-dimensional
Hilbert space must both yield one of the eigenvalues A; of the operator and
result in a disturbance such that 1(t) collapses to the associated eigenstate
;. The measurement process introduces a stochastic element into the evo-
lution of the quantum system, with the probability of collapse into 1; be-
ing |(1;]%(t))|°. Each measurement in feedback quantum control therefore
involves an information tradeoff: the system is perturbed away from the de-
terministic Schrodinger equation, but a measurement is used to update the
control law. These random transitions, and the evolution they determine on
intervals between the ¢; via the control laws (21.3), determine a “stochastic
quantum map” (e.g. Carmichael (1999b)) between states at these times. If the
measurement process does not completely determine the quantum states (or if
mixed states are present for other reasons), a formulation involving a stochas-
tic map between conditioned density operators is required, cf. Carmichael
(1999b).
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Fig. 6. Schematic illustration of a wave packet track evolving on a potential surface
(contours shown). For control a goal may be to find the field €(t) that will steer the
track out of product channel A or B, while for inversion the track is observed in the
laboratory and the goal is to determine the potential in the regions traveled by the
track, cf. Lu and Rabitz (1995).

A crucial unresolved question is what general classes of quantum problems
will be assisted by incorporating feedback measurements. More specifically,
it may be possible to show that taking a certain number of measurements
improves control (with reasonable assumptions about the problem-dependent
frequency and timing of measurements to optimize the feedback quantum con-
trol problem). A related matter is the possibility of making “weak observa-
tions” that give useful information about a quantum system while introducing
only minimal perturbations. The effects of measurements on the feedback con-
trol process for systems satisfactorily described semiclassically also remain to
be characterized, and this domain may be especially amenable to performing
weak measurements.

Closing the loop through machine feedback

The final topic on feedback control is the possibility of closing the control loop
in laboratory hardware through machine feedback. Recent work in acoustics
illustrates the capability of focusing reflected waves back upon their sources
cf. Fink (1999); Fink and Prada (1996) in an iterative fashion in order to en-
hance the intensity in the focal volume. An analogy of this technique relevant
to quantum mechanics might be “reflection” through special measurement de-
vices that could then send modified electromagnetic waves precisely back to an
emitting quantum mechanical source to better achieve the control objectives.
This process may be fully quantum mechanical if carried out in a suitable opti-
cal cavity, but in general the same closed loop observation/disturbance issues
raised in the previous section must be considered here. At this juncture such
a machine is only a gedanken process, but its potential strongly motivates an
analysis of the concept.
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22 Algorithms for the inversion of quantum dynamics data

Knowledge of the potential V' and the dipole p (or other coupling coefficients)
is required for control law design and is of fundamental importance to many
other applications in chemistry and physics. This section concerns dynamical
algorithms that invert time-dependent laboratory data to identify these op-
erators. This problem of determining p(x) or V(x) may be related (Lu and
Rabitz (1995); see also Bargheer et al. (1999) for a different approach) to the
problem of determining the control law C(t) (of the form (6.1)) that will cause
a quantum system to follow a prescribed track (see Figure 6). In particular, if
the expectation values y(t) = (Op(t)) of a time-independent operator O, are
established from a series of observations of an evolving quantum system, the
Schrodinger equation and the Heisenberg equation of motion form the pair of
coupled (forward-inverse) equations

im0 [, — (o) vt (22.1)
L (s 1y — alt), Ou)| (1) (22.2)

The solution of these evolution equations may in principle be attempted for
any two unknowns. As knowledge of 1(t) is not available in any physical prob-
lem, the wave function will always be considered as one of these unknowns;
the other may be chosen from either €(t), u(x), or V(x) with the comple-
mentary pair assumed as known. The first of these possibilities was treated
in Section 16, where the fact that the expectation value on the right hand
side of Eqn. (22.2) involves only spatial integration was exploited to write €(t)
explicitly in the form of Eqn. (16.3). We now turn to the solution for u(x) and
V(x).

Equation (22.2) may be rewritten (cf. Lu and Rabitz (1995)) as a Fredholm
integral equation of the second type, after regularization enforcing the physical
criterion that u(x) and V(x) should decay as x — oo. The structure of this

equation is
[e.e]

/ k(z,z') f(z')dx' + af(z) = h(z), (22.3)
where f(z) is the unknown (u or V'), « is the regularization parameter, and the
kernel x(x,z') and the inhomogeneity h(z) involve the data y(t), the operator
Oy, and the solution ¥ (t) to the Schrédinger equation (22.1). Solution of the
regularized pair of Eqns. (22.1) and (22.3) may be accomplished using the
tracking procedure discussed in Section 16, with the role of €(t) replaced by
w(x) or V(x). The procedure consists of formally solving Eqn. (22.3) for f(z)
and substituting the result into the Schrdédinger equation (22.1) to solve for
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¥(t), which is then used to determine f(z) in a final inversion step.

In the special case that the data being inverted is the probability density
function [¢(x,t)|> (formally, the expectation value of the Dirac delta oper-
ators 6(x — x')) (see Krause et al. (1997)), a direct algorithm has been de-
veloped to identify V(x) without the expensive requirement of numerically
solving the Schrédinger equation cf. Zhu and Rabitz (1999b). The algorithm
relies on Ehrenfest’s relation, and appears to be difficult to generalize to other
measurement operators.

In general, the goal is to solve Eqns. (22.1) and (22.2) with minimum of
distortion introduced by additional criteria; in the example above, the balance
between this objective and stability requirements is set by «, whose optimal
value depends on the details of the particular problem and solution method.
Additionally, the evolution of the quantum system which determines x(z,x")
in (22.3) is in turn governed by the applied field €(¢) in Eqn. (22.1). Hence,
it should be possible to determine a control law which allows inversion with
maximum stability to produce optimal dynamical regularization. Note that
meaningful inversion of Eqns. (22.1) and (22.2) may only be expected if the
control law €(t) steers the wave function to be non-zero in the domain in which
wor V is to be determined; the formulation of Eqns. (22.1) and (22.2) may be
extended to incorporate multiple realizations of the control law €;(t) (see Lu
and Rabitz (1995)) that, taken together, may provide the desired evolution
over the entire spatial domain of interest. However, for dynamical reasons the
kernel k(z,z') may still produce a singular operator in Eqn. (22.3) where it
is significantly non-zero. The additional conditions required to resolve this
problem are not immediately apparent.

A complete laboratory device may be envisioned to function as an optimal dy-
namics inversion machine for the efficient and automatic discovery of y or V for
diverse quantum systems (cf. Rabitz and Shi (1991); Rabitz and Zhu (2000)).
This machine would operate in a closed-loop mode to take advantage of the
ability to perform a very large number of high throughput control-observation
experiments, and would operate through the following steps, sketched in Fig. 7:
(1) Initial approximations for V and u could be used to design an optimal con-
trol field aimed at causing the wave packet to evolve in desired spatial areas
where V' and p are being sought. (2) Laboratory experiments using this con-
trol law would be performed to produce the data trajectory (Op(t)) = y(1).
(3) An inversion would be performed to produce updated potential or dipole
information. (4) If the spatial domain of interest was not completely covered
by the current trajectory or if the inversion quality is not adequate, the proce-
dure would be repeated with the assistance of partial Hamiltonian information
gained from step 3.
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Fig. 7. The optimal dynamics identification machine.

23 Identification of quantum control mechanism and “rules of thumb”

A cornerstone of chemistry is that physically similar molecules tend to exhibit
similar chemical behavior. The emphasis is on “similar” and in the context of
quantum control the criteria for defining similarity is not known. From the rich
behavior and information content in the design, closed loop, and dynamical
inversion aspects of quantum control, one can anticipate using the emerging
results to provide insight or estimates for the control laws for physically re-
lated, but as yet uninvestigated, problems. The body of relationships (as just
yet beginning to be observed) between quantum systems, control objectives,
and control laws may be called quantum control rules of thumb. A specialized
example is the explanation of the timing of the pulses used in the STIRAP
control method (cf. Rice and Zhao (2000)). However, attempts to find general
rules have proved much more difficult than was at first expected. Nevertheless,
the implications of these rules for both the theory of quantum control and its
practical implementation are substantial: resolution of this matter may be the
most important challenge ahead for the field.

A natural strategy for identifying rules of thumb might ensue from a type of
quantum mechanical reverse engineering: solutions {C(t),¥(t), A(¢), (O)} to
the optimal control equations, or C(¢) and (O) from closed loop experiments,
could provide a physical basis for understanding the mechanisms and pathways
leading the quantum system from initial conditions to final control objectives.
However, there exist many examples in the literature in which the structure
of the final control fields and the resulting control pathways are found to be
highly nonintuitive, and judging the relevance of such solutions in terms of
general rules of thumb is difficult in the presence of a possibly large number
of (locally) optimal solutions. Further insight into the structure of these local
minima may be gained by identifying the family of locally optimal control so-
lutions and enumerating them based on their optimality. This problem might
be partially alleviated by incorporating a global search procedure in the op-
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timization algorithm (e.g., a genetic algorithm), both for theoretical design
and laboratory control. If such techniques were developed, the existence of
multiple solutions could possibly be exploited as a large body of data about
control behavior.

In the context of closed-loop laboratory implementation of controls, the pres-
ence of multiple solutions to the quantum optimal control problem opens up
several options (Geremia et al. (2000)). Given that there exist many possi-
ble solutions C(t) from which identification of control mechanisms could be
attempted, it is important to select solutions that contain a minimum of ex-
traneous information that detract from this task. In addition, control rules of
thumb would best be developed based on solutions that are robust to realistic
laboratory noise. Both the suppression of extraneous structural components
in C'(t) and the selection of robust control fields may be accomplished through
the use of appropriate cost functionals (Geremia et al. (2000)). This “cleanup”
of control laws is likely to assist in identifying rules of thumb for the control
of quantum systems.

A first step toward identifying quantum control rules of thumb involves the
effective classification of similarities and differences between molecules in a
context relevant to the controls directing them to certain physical objectives.
This type of classification is fundamental in many fields of chemistry and
physics, in which the vast numbers of molecules are categorized according
to their relevant behaviors or properties. However, presently the standard
measures have not been able to consistently predict the structure of control
fields for particular objectives.

A three-way classification structure will be necessary, relating (i) control laws,
(ii) molecular Hamiltonians and coupling terms, and (iii) and control objec-
tives. Progress toward (i) will likely involve identification of the relevant prop-
erties of control laws C(t). Experience thus far suggests that the most useful
features will include, but extend beyond, description of spectral components
and intensities. Progress may also follow from exploring the relation between
the form of the Hamiltonian and (sets of) control solutions for a fixed particu-
lar control objective, possibly through numerical optimal control calculations
for a series of quantum systems whose Hamiltonians differ by small increments,
but collectively cover a broad sampling of physical systems.

Chapter 6. Conclusion

This article aimed to present an overview of the current state of attempts to
control quantum phenomena. Special emphasis was given to the conceptual,
algorithmic and numerical aspects of the subject. In envisioning further ad-
vances along these lines it is very important to explicitly consider the special
capabilities of performing massive numbers of control experiments over a short
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laboratory time. In many respects the field of control over quantum phenom-
ena is a field which is young with the bulk of its developments lying ahead. It
is hoped that this article provides some stimulus to push the field further.
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