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Abstract

We study irregularity properties of generic Peano functions; we apply these results
to the determination of the pointwise smoothness of a Peano function introduced by
Lebesgue and of some related functions, showing that they are either monohölder
or multifractal functions. We test on these examples several numerical variants of
the multifractal formalism, and we show how a change of topology on IR can affect
the Hölder regularity of such functions.

Key words: Hölder regularity, space-filling functions, multifractal formalisms
PACS: 26A16, 26A27, 26A30, 65K05, 90C59

1 Introduction

A space-filling function is a function F (t) = (f(t), g(t)), defined on [0, 1],
whose range fills a surface of the plane. It is called a Peano function if, in ad-
dition, it is continuous. These constructions were initially motivated by their
paradoxical aspect. The interest in Peano functions has been periodically re-
newed, as unexpected connexions with several parts of mathematical analysis
were discovered: They have been used as a tool that allowed to put into light
nonmeasurability properties, and in connexion with the Hahn-Mazurkiewicz
theorem, see [43]. In 1936, H. Steinhaus showed that space-filling functions
can be obtained if their coordinates f(t), g(t) are stochastically independent
functions, see [48]. In 1945, R. Salem and A. Zygmund discovered analytic
functions in the unit disc, that have a continuous extension on the unit circle
C, and are such that the image of the unit circle is also space filling; the exam-
ples they provided were lacunary Taylor series, satisfying a strong lacunarity
condition, see [44] and also [7] for later extensions. The historical developments
of Peano functions, in connexion with other parts of analysis are detailed in
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the book of H. Sagan [43]. Another utility of Peano curves appeared at the be-
ginning of the years 2000, in the fields of “Data Mining” and “Intelligent Data
Analysis”, motivated by the extensive use of large multidimensional arrays:
One needs indexings of such arrays (i.e. constructing curves that go through
all the points of the array) which satisfy proximity requirements: Data that
are close should be indexed by close indices; this leads naturally to the use of
Peano functions that satisfy some Hölder regularity conditions, see for instance
[26,38]. This property of preserving the spacial relationship of 2D-patterns is
also exploited in the area of digital image processing, where Peano curves are
used as a scanning technique, see for instance [8,41].

Peano functions have also been popular because they supply simple geometric
constructions of continuous nowhere differentiable functions. This last motiva-
tion was considerably sharpened in the last 15 years with the introduction of
“multifractal analysis”, where the rather imprecise motivation of nondifferen-
tiability was replaced by the sharper requirement of determining everywhere
the exact pointwise Hölder regularity. Let us recall the definitions associated
with the notion of pointwise smoothness.

Definition 1 Let f : IR → IR, be a locally bounded function, let x0 ∈ IR and
α ≥ 0; f ∈ Cα(x0) if there exist R > 0, C > 0, and a polynomial P of degree
less than α such that

if |x − x0| ≤ R then |f(x) − P (x − x0)| ≤ C|x − x0|
α. (1)

The Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

Space-filling functions can exhibit a large variety of smoothness characteristics:
We will see that some of them, as shown by the initial examples supplied by
Peano [39] and Hilbert [16], have everywhere the same Hölder exponent (such
functions are called monohölder functions). But the Hölder exponent of others
can present an extremely wild behavior: For example, in the case of Polya’s
function it is known to be everywhere discontinuous, see [22,29]. The next step
in such cases is to perform a ”multifractal analysis”, i.e. to determine their
spectrum of singularities which is defined as follows.

Definition 2 Let f be a locally bounded function; its isohölder sets are the
sets

EH = {x0 : hf (x0) = H}.

The spectrum of singularities of f is the function df : IR+ → IR+ ∪ {−∞}
defined by

df (H) = dim(EH);
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where dim denotes the Hausdorff dimension (using the standard convention
dim(∅) = −∞).

The investigation of the multifractal properties of space-filling functions goes
back to [22,29], and was reactivated recently in [35]. The purpose of this paper
is to derive general irregularity properties of such functions and to illustrate
the variety of their smoothness behaviors by focusing on three “historical”
space-filling functions, which are slight variants of each other, but present
strong discrepancies from the point of view of multifractal analysis. The first
one, L1, was introduced by H. Lebesgue in his famous monograph “Leçons
sur l’intégration et la recherche de fonctions primitives”, in 1904 (see [27] pp.
44–45). We will show that it is a “monofractal function”, i.e. a function which
is C∞ except on a fractal set (the triadic Cantor set K), where its Hölder
exponent takes a finite constant value. The second function, L2, was intro-
duced by Schoenberg in 1938, see [45]: It coincides with Lebesgue’s function
on K, but it is extended outside of K in such a way that it turns out to be a
monohölder function. The third example is derived form L1 by performing a
discontinuous change of time which maps the Cantor set onto the whole inter-
val [0, 1]. The “Lebesgue-Davenport” function L3(t) thus obtained has a dense
set of discontinuities, and is a simple example of “Davenport series”, see (18).
If the nowhere differentiability of these functions has been repeatedly consid-
ered (see [43] and references therein), nonetheless, the determination of their
exact pointwise regularity, and therefore their multifractal analysis is new.

Section 2 is devoted to some general remarks on the smoothness of Peano
functions. In particular, we prove there that most historical examples are
monohölder functions.

Sections 3 to 5 are devoted to recall the definitions and main properties of the
initial Lebesgue function and its two variants, and to determine their exact
pointwise smoothness. In the case of L3, it will be the consequence of a new
general result on the pointwise smoothness of Davenport series.

The spectrum of singularities of signals obtained through the registering of
real-life data cannot be estimated in the case of multifractal signals; indeed
the determination of their Hölder exponent is not numerically stable because
it usually jumps at every point; on top of that, the obtention of the spectrum
would require the determination of an infinite number of Hausdorff dimensions,
each of them defined by considering an uncountable number of coverings with
unspecified sets. Therefore, formulas, reffered to as “multifractal formalisms”,
have been introduced in order to derive the spectrum of singularities of a signal
from numerically computable quantities. All of them are variants of a seminal
derivation which was proposed by G. Parisi and U. Frisch in [37]. Though
they are based on the same thermodynamic arguments, their numerical per-
formances can vary a lot. A key step in the numerical improvements was per-
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formed by A. Arneodo and his collaborators, when they introduced formulas
based on wavelet analysis, see [3]. There exists now two well established forms
of multifractal formalisms, allowing to obtain the whole spectrum of singular-
ities: The wavelet transform maxima method (WTMM) see [2] and references
therein, and the wavelet leaders method (WLM) developed in [1,20,25]. The
purpose of Section 7 is to compare their numerical performances on the par-
ticular case-studies supplied by the Lebesgue functions; indeed, L1,L2, and L3

supply a competitive benchmark for that purpose: For instance, L1 is linear on
intervals of all possible scales (their lengths are the (3−j)j≥1), which is a stan-
dard pitfall for the numerical performances of multifractal formalisms, and L3

has a dense set of discontinuities, a border-line situation where wavelet-based
techniques are no longer backed by theoretical results, see [20].

Section 6 was initially motivated by the following problem: The notion of
pointwise smoothness clearly depends on the metric used on the real line:
Another distance d(x, y) would induce a new definition of Cα(x0), where (1)
is replaced by:

If |x − x0| ≤ R then |f(x) − P (x − x0)| ≤ Cd(x, x0)
α. (2)

Alternative distances introduced up to now in this context were obtained
through a continuous time-change; they only induced mild modifications of
the usual distance on IR, since they are topologically equivalent: Let θ be a
continuous increasing one-to-one mapping [0, 1] → [0, 1]; the distance associ-
ated with θ is

dθ(x, y) = |θ(y) − θ(x)|. (3)

Such a time-change θ can strongly simplify the multifractal nature of f , see
for instance [29] where it transforms the Polya function into a monohölder
function. An intriguing problem, which remains largely open, is to under-
stand when such a simplifying time-change exists, see [46] for partial results.
Functions with a dense set of discontinuities, such as L3 cannot be thus trans-
formed through a continuous time-change. We will show that, using ultramet-
ric distances on [0, 1], L3 (and more generally p-adic Davenport series) indeed
becomes monohölder.

Note that the converse idea has also been used in order to generate new
multifractal stochastic processes: B. Mandelbrot proposed to “complexify” a
monohölder process (typically a Fractional Brownian Motion) through a multi-
fractal time-change; these constructions were motivated by financial modeling,
see [28].
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2 Space-filling functions

In this section, we consider some geometric properties of space-filling func-
tions that are commonly satisfied, and we investigate their implications in
terms of pointwise smoothness. A straightforward consequence of these con-
siderations will be the determination of the exact pointwise smoothness of
several historical Peano functions. It may be useful to give precise definitions
at this point: Let measd denote the d-dimensional Lebesgue measure. A func-
tion f : [0, 1] → IRd is space-filling if measd(f([0, 1])) > 0. It is a Peano
function if, additionally, it is continuous.

Uniform Hölder regularity of Peano functions f(t) = (x(t), y(t)) was first
considered by Salem and Zygmund [44] who remarked that, if x(t) ∈ Cα([0, 1])
and y(t) ∈ Cβ([0, 1]), then α + β ≤ 1. As regards pointwise smoothness,
M. Morayne proved that there is no space-filling everywhere differentiable
function (see [34], Theorem 3 p 131).

The famous theorem of Netto states that there exists no bijective continuous
function f : [0, 1] → [0, 1]2; thus continuous onto functions necessarily have
multiple points. However most of these functions have a “small” set of multiple
points, and therefore satisfy the following requirement.

Definition 3 Let Mult(f) denote the set of points of IRd that have multiple
antecedents by f . A function f : [0, 1] → IRd is almost one to one if

measd(Mult(f)) = 0.

Assume now that f : [0, 1] → IRd is a continuous, almost one-to one space
filing function. A measure µf , supported by [0, 1], naturally attached to f is
defined by

µf (A) = measd(f(A)). (4)

If the range of f fills a finite volume, then µf is a probability measure (up to
a multiplicative constant).

Let Ih(t0) = [t0 − h, t0 + h]; the pointwise Hölder exponent of a measure µ is
defined by

hµ(t0) = lim inf
h→0

(

log(µ(Ih(t0))

log(h)

)

.

Lemma 4 Let f : [0, 1] → IRd be an almost one-to-one space filling function.
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Let t0 ∈ [0, 1]; if hf (t0) < 1, then

hµf (t0) ≥ d hf (t0). (5)

Proof of Lemma 4: If f ∈ Cα(t0) for an α ∈ (0, 1), then f(Ih(t0)) ⊂
B(f(t0), Chα) so that

µf (Ih(t0)) = measd(f(Ih(t0))) ≤ Chdα;

one concludes by taking a log and a lim inf on both sides.

Many usual space-filling functions present a remarkable extra feature: The
range of f covers equal volumes (or areas in dimension 2) in equal times, i.e.

for any interval I, meas1(I) = measd(f(I)). (6)

Functions displaying this feature include the initial Peano, and the modifica-
tion proposed by Wunderlich [49], the initial Hilbert function, and the variant
of Moore [33], the Sierpinski function [47] and the Polya function in multi-
fractal time, as presented in [29]; indeed this property is a straightforward
consequence of Hypothesis (H) which is of geometric nature and, by construc-
tion, is obviously satisfied by these functions; (6) means that the measure µ
is exactly the Lebesgue measure (up to a constant), and in that case, the con-
clusion of Lemma 4 is that the Hölder exponent of f is everywhere smaller
than 1/2. A stronger result of uniform irregularity holds.

Definition 5 Let α ∈ (0, 1). A function f : IRd → IRm belongs to Iα(x0) if

∃C > 0, ∃R > 0, ∀r ≤ R, sup
x,y∈B(x0,r)

|f(x) − f(y)| ≥ Crα; (7)

f belongs to Iα(IRd) if

∃C > 0, ∃R > 0, ∀r ≤ R, ∀x, sup
y∈B(x,r)

|f(x) − f(y)| ≥ Crα. (8)

Note that these types of statements are stronger than just negating Hölder
regularity; indeed such negations only yield the existence of subsequences rn

for which the oscillation sup
x,y∈B(x0,rn)

|f(x) − f(y)| is large, whereas (7) or (8)

require the oscillation to be large at all (small enough) scales (see [10] for a
comprehensive study of this notion).

Lemma 6 Let f be a continuous function satisfying (6); then f belongs to
I1/d[0, 1]).
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Proof of Lemma 6: Let 0 ≤ x < y ≤ 1; then

sup
s,t∈[x,y]

|f(x) − f(y)| = diam(f([x, y]))≥C (measd(f([x, y])))1/d

= C|x − y|1/d.

Note that the conclusion of Lemma 6 would still hold if (6) was replaced by
the less restrictive condition

∃C > 0 : for any interval I, meas1(I) ≤ Cmeasd(f(I)). (9)

Definition 7 Let α ∈ (0, 1); A function f : IRd → IRm is strongly monohölder
of exponent α (f ∈ SMα) if f ∈ Cα(IRd)∩ Iα(IRd), i.e. if ∃C, C ′ > 0, ∃R > 0,
∀r ≤ R, ∀x,

Crα ≤ sup
y∈B(x,r)

|f(x) − f(y)| ≤ C ′rα. (10)

In general, equality needs not hold in (5) because, in the neighborhood of
t0, f may be very oscillating in one direction for instance, in which case its
range will cover a very small area, though f can be very irregular. However
the specific functions we mention satisfy an additional geometric requirement:

(H)

There exists an integer p ≥ 2 such that the image of a pd-adic interval
Ik,j =

[

k
pdj ,

k+1
pdj

]

is a subset of volume Cp−dj and of diameter C ′p−j;

furthermore, for each j ≥ 0 given, at scale j, all the f(Ik,j) have disjoint
interiors.

Proposition 8 Let f be a Peano function satisfying (9) and (H). Then f
belongs to SM1/d.

In particular, for d = 2, this conclusion holds for the functions of Peano,
Wunderlich, Hilbert, Moore, Sierpinski and the time-changed Polya function
mentioned above. In particular, they are monohölder with Hölder exponents
everywhere equal to 1/2.

Proof of Proposition 8 : We only have to prove the uniform regularity
estimate. Let 0 ≤ x < y ≤ 1, and let j be defined by

p−dj−2 ≤ y − x < p−dj.

Either x and y belong to the same pd-adic interval of generation j or to two
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adjacent ones. In the first case,

|f(x) − f(y)| ≤ diam(f(Ik,j)) = C ′p−j ≤ C ′|x − y|1/d.

In the second case, since f is continuous, the images of these two intervals
share one point; but (H) implies that

|f(x) − f(y)| ≤ 2diamf((Ik,j)) = C ′p−j.

3 The Lebesgue function L1

Let p > 1 be an integer. If (ti)i∈IN is a sequence of integers satisfying 0 ≤ ti ≤
p − 1, then

(0; t1, t2, . . . , tn, . . .)p

will denote the real number

t =
∞
∑

i=1

ti
pi

;

if the ti are not all equal to p−1 for i large enough, it is the proper expansion
of t in base p.

Definition 9 The triadic Cantor set K is the set of real numbers t that can
be written

t = (0; 2t1, 2t2, . . . , 2tn, . . .)3 where ti ∈ {0, 1}, ∀i. (11)

If t ∈ K, then the ti are unique (but do not necessarily constitute the proper
expansion of t in base 3). Let K∗ be the subset of K defined by

K∗ = {t ∈ K : (11) is the proper expansion of t}

(K∗ is obtained from K as follows: In the construction of K as a limsup of
triadic intervals, the right-end points of each interval are eliminated).
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Fig. 1. The components x1(t) and y1(t) of the Lebesgue function
L1(t) = (x1(t), y1(t)).

The function L1 is first defined on K as follows. For any t ∈ K written as in
(11), L1(t) = (x1(t), y1(t)) where











x1(t) = (0; t1, t3, t5, . . .)2

y1(t) = (0; t2, t4, t6, . . .)2

(12)

H. Lebesgue proved that the restriction of L1 to K is an onto function onto
the square [0, 1]2, see [27] pp. 44–45. We will need a slightly stronger assertion.

Lemma 10 The restriction of L1 to K∗ is an onto function onto [0, 1]2 −
{(1, 1)}.

Proof of Lemma 10: Let (x, y) ∈ [0, 1]2 − {(1, 1)}. Then either x or y has
a proper expansion starting with a 0. We use this expansion in (12), which
defines a sequence ti, hence, by (11), a point t ∈ K such that L1(t) = (x, y).
Since either x or y has a proper expansion, it follows that t is also written
with a proper expansion, and therefore t ∈ K∗. Note that this point is not
necessarily unique since, if x or y is dyadic, then it can be written in the bi-
nary system in two different ways; thus points such that at least one of their
coordinates are dyadic have at least two pre-images in K by L1. Note that
Lebesgue’s result follows since L1(1) = (1, 1).

H. Lebesgue proved that L1 has a continuous extension outside of K which
is simply obtained by taking a linear extension on each interval which is a
connex component of the complement of K, thus showing that L1 was a new
example of Peano function. The following proposition sharpens this result and
yields the uniform regularity of L1 and its exact pointwise regularity at every
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Fig. 2. The partial sums of the curve (x1(t), y1(t)) summed up to j = 26 and j = 210

respectively.

point.

Proposition 11 Let α = log 2
2 log 3

. The function L1 belongs to Cα([0, 1]). If x0 /∈

K, then L1 is C∞ at x0. If x0 ∈ K, then L1 belongs to Iα([0, 1]). It is therefore
a monofractal function.

Though this proposition can be proved directly, we prefer to postpone its proof
to Section 4 where it will be a consequence of the corresponding result for the
Schoenberg function.

4 The Schoenberg function L2

Let p(t) be the 2-periodic even function which satisfies on [0, 1]



























p(t) = 0 if t ∈ [0, 1/3]

p(t) = 3t − 1 if t ∈ [1/3, 2/3]

p(t) = 1 if t ∈ [2/3, 1].

Note that p is a continuous, piecewise linear function, hence it is a Lipschitz
function. The Schoenberg function L2 is defined by L2(t) = (x2(t), y2(t)) where

x2(t) =
1

2

∞
∑

n=0

p(32nt)

2n
and y2(t) =

1

2

∞
∑

n=0

p(32n+1t)

2n
. (13)
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Fig. 3. The components x2(t) and y2(t) of the Schoenberg function
L2(t) = (x2(t), y2(t)).

Fig. 4. The curve (x2(t), y2(t)) approximated at resolution levels j = 27 and 29

respectively.

The relationship between L2 and L1 was established by I. Schoenberg in 1938,
see [45]:

Proposition 12 The Schoenberg function L2 coincides with the Lebesgue func-
tion L1 on the triadic Cantor set.

Proof of Proposition 12: Let us first check that, if t ∈ K is written as in
(11), then

p(3nt) = tn+1. (14)
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Indeed, let t ∈ K; it follows from (11) that we can write 3nt as a sum of three
terms

3nt = (2t13
n−1 + · · · + 2tn) +

2tn+1

3
+

(

2tn+2

9
+ · · ·

)

.

The first term of this sum is an even integer, and the third one is positive and
bounded by 1/3; thus (14) immediately follows from the definition of p(t).

It follows from (14) that

x2(t) =
1

2

∞
∑

n=0

p(32nt)

2n
=

1

2

∞
∑

n=0

t2n+1

2n
= (0; t1, t3, t5, . . .)2;

and similarly

y2(t) =
1

2

∞
∑

n=0

p(32n+1t)

2n
=

1

2

∞
∑

n=0

t2n+2

2n
= (0; t2, t4, t6, . . .)2;

hence Proposition 12 holds.

Lemma 10 and Proposition 12 put together imply that the Schoenberg function
is also onto [0, 1]2. In 1981, J. Alsina [5] proved that L2 is nowhere differen-
tiable (see also [17,43] for additional properties of this function). The following
proposition yields its exact pointwise smoothness everywhere.

Proposition 13 Let α = log 2
2 log 3

. The Schoenberg function L2 belongs to SMα.

We will derive this proposition as a consequence of two general results: Lemma
14 yields a uniform regularity criterium and Proposition 15 yields a uniform
irregularity criterium. Note that the irregularity is a consequence of results
valid either for selfsimilar functions, see [18] or for Weierstrass type functions,
see [9]. However, we prefer to follow an alternative approach, which will em-
phasize another specificity of L3 and yields a more straightforward proof.

Lemma 14 Let (fn)n∈IN be a sequence of bounded and Lipschitz functions on
IR satisfying

∃C > 0 : ‖ fn ‖∞ + ‖ f ′
n ‖∞≤ C.

Let

f(t) =
∞
∑

n=0

fn(bnt)

an

,

12



and assume that

∃C, a > 0 such that b > a > 1 and ∀n, an ≥ C an.

Then f ∈ Cβ(IR) with β = log a
log b

.

Proof of Lemma 14: The assumptions on fn imply that |fn(s) − fn(t)| can
either be bounded by C or by C|s−t|. Let s and t be two distinct real numbers,
and let n0 be defined by b−n0+1 < |s − t| ≤ b−n0 ; then

|f(s) − f(t)| ≤C
n0
∑

n=0

|bns − bnt|

an
+

∞
∑

n0

C

an

≤C|s − t|

(

b

a

)n0

+
C

an0
≤ C|s − t|β.

The uniform regularity of L2 follows from Lemma 14.

Proposition 15 Let fn : IR → IR be 1-periodic Lipschitz functions, of Lips-
chitz constants

Cn = sup
x (=y

|fn(x) − fn(y)|

|x − y|
.

Let

f(t) =
∞
∑

n=0

fn(bnt)

an

where b is an integer satisfying b ≥ 2, and the an satisfy

∃a ∈ (1, b), ∃E1, E2 > 0 such that E1a
n ≤ |an| ≤ E2a

n.

Let l ∈ {−b − 1, . . . , b − 1}, Dn = fn

(

l

b

)

− fn(0), and let β =
log a

log b
. Let C

and D be such that, for n large enough,

|Dn| ≥ D > 0 and |Cn| ≤ C. (15)

If
Cl

E1b
(

b
a
− 1

) <
|D|

E2

, then f ∈ Iβ(IR).
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Proof of Proposition 15: First, note that the triangular inequality implies
that it is sufficient to prove that the relation (8) is satisfied for couples (x, y)
of the form

x =
k

bn0
and y =

k + l/b

bn0
, ∀(k, n0) ∈ ZZ × IN.

In that case,

f(y) − f(x) =
n0−1
∑

n=0

fn(bny) − fn(bnx)

an

+
Dn

an0

(indeed, since g is 1-periodic, the increments for n > n0 vanish). Since the
result clearly does not depend on the first fn, we can assume that (15) is
satisfied for all n. But

∣

∣

∣

∣

∣

n0−1
∑

n=0

fn(bny) − fn(bnx)

an

∣

∣

∣

∣

∣

≤
n0−1
∑

n=0

Cn

E1

|x − y|
bn

an

≤
C

E1

|x − y|

(

b

a

)n0 1
b
a
− 1

≤
Cl

E1an0b( b
a
− 1)

.

Since

∣

∣

∣

∣

∣

Dn

an0

∣

∣

∣

∣

∣

≥
D

E2 · an0
, it follows that,

if
Cl

E1b
(

b
a
− 1

) <
|D|

E2

, then |f(y) − f(x)| ≥
C ′

an0
;

hence Proposition 15 holds.

Note that this result applies to x2(t) which is a 1-periodic function, since, in
this case, fn(t) = p(2t), Cn = C = 6, l = 3, Dn = D = 1, b = 9, a = 2 and
E1 = E2 = 1.

Let us now check how to derive Proposition 11 from Lemma 14 and Proposition
15. The regularity result is a particular case of a general regularity result for
interpolating functions.

Definition 16 Let f be a continuous function on IR. Let In = (an, bn) be a
sequence of two by two disjoint open intervals. The linear interpolation of f
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on the (In)n∈IN is the continuous function g defined by

• If x /∈
⋃

In, then g(x) = f(x);
• g is linear on each interval [an, bn].

Proposition 17 Let α ∈ (0, 1) and f ∈ Cα(IR). Its linear interpolation on
the (In)n∈IN also belongs to Cα(IR).

Proof of Proposition 17: Let A denote the complement of
⋃

In. In order to
estimate g(x) − g(y), we separate different cases:

• If x and y both belong to A, the estimate follows from the result for f .
• If x and y both belong to the same interval In, then, by linear interpolation,

|g(x) − g(y)| =
|x − y|

|bn − an|
|f(bn) − f(an)| ≤C

|x − y|

|bn − an|
|bn − an|

α

≤C|x − y|α.

• Let us finally assume that either x or y belongs to A, or that they belong
to different intervals In. We can suppose that x < y, x ∈ [an, bn] and
y ∈ [am, bm], with the convention that an = bn if x (for instance) does not
belong to one of the In. Then

|g(x) − g(y)| ≤ |g(x) − g(bn)| + |g(bn) − g(am)| + |g(am) − g(y)|;

each of these three terms has already been taken care of above. Thus

|g(x) − g(y)| ≤ C(|x − bn|
α + |bn − am|

α + |am − y|α) ≤ 3C|x − y|α.

Let us now deduce the pointwise irregularity of L1 from Proposition 15.

Corollary 18 For any x ∈ K, L1 ∈ Iβ(x).

Proof of Corollary 18: First, note that the proof of Proposition 15 applied
to L2 implies that, if x and y are two endpoints of one of the triadic intervals
of generation 2n that come up in the construction of K, then

∃C > 0 : |L2(x) − L2(y)| ≥
C

2n
.

If z ∈ K, then it belongs to one such interval for each n, so that, by the
triangular inequality, either

|L2(x) − L2(z)| ≥
C

2n+1
, or |L2(z) − L2(y)| ≥

C

2n+1
.

Since L1 and L2 coincide on K, this implies that L1 ∈ Iβ(x).

15
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Fig. 5. The components x3(t) and y3(t) of the Lebesgue-Davenport function
L3(t) = (x3(t), y3(t)).

5 The function L3 and p-adic Davenport series

The two functions we considered can be interpreted as one space filling func-
tion defined on K which is extrapolated outside of K in two different ways.
The third function we will consider can be interpreted as follows: Instead of
“filing the gaps” outside of K, K is “dilated” by mapping it to the whole
interval [0, 1], using a famous singular function: The “devil’s staircase”. One
thus obtains the Lebesgue-Davenport function L3 which is considered in [15]
(Example 5 of Chap. 10), and can be directly defined in a very simple way as
follows: Let t ∈ [0, 1) and

t = (0; t1, t2, . . . , tn, . . .)2 (16)

be its proper expansion in the binary system. Then L3(t) = (x3(t), y3(t)) where











x3(t) = (0; t1, t3, t5, . . .)2

y3(t) = (0; t2, t4, t6, . . .)2.
(17)

One extends L3 to t = 1 by picking L3(1) = (1, 1).

Let us first state precisely the relationship that we already mentioned between
L3 and L1 or L2. Recall that the restriction of the Devil’s staircase to K is
defined as follows:

If t = (0; 2t1, 2t2, . . . , 2tn, . . .)3, then D(t) = (0; t1, t2, t3, . . .)2.
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Note that this restriction is onto [0, 1] but is not one to one. It follows imme-
diately from (12) and (17) that

∀t ∈ K∗, L1(t) = L3 ◦ D(t);

As a consequence of this formula and of Lemma 10, it follows that L3 is onto
[0, 1]2.

The first step in order to study its properties is to rewrite it as a Davenport
series. Let us start by recalling the definition of such series. They are odd
1-periodic functions of a particular type. Let {x} be the “sawtooth function”

{x} = x − [x] −
1

2
.

Davenport series are of the form

∞
∑

n=1

an{nx}; (18)

in order to cover the case of space-filling functions, we will assume that
an ∈ IRd. We will only consider the case where (an) ∈ l1, so that the series
is normally convergent. Such series already occurred in the famous “Habilita-
tionschrift” of Riemann, see [24,42], as an example of a Riemann-integrable
function which is not Cauchy-integrable. Under their general form, they were
first studied in 1936 by H. Davenport, see [13,14]; recent results on Davenport
series can be found in [7,21].

Proposition 19 The Lebesgue-Davenport function L3 has the following ex-
pansion



































x3(t) =
1

2
+

∞
∑

n=0

an{2
nt} where a2l = 2−l and a2l+1 = −2−l−1

y3(t) =
1

2
+

∞
∑

n=1

an{2
nt} where a2l = −2−l and a2l+1 = 2−l.

(19)

Proof of Proposition 19: Let ω(t) be the one periodic function such that











ω(t) = 0 if t ∈ [0, 1
2
)

ω(t) = 1 if t ∈ [1
2
, 1).

17



If tn (= tn(t)) is defined by (16), then

tn(t) = ω(2n−1t);

thus

x3(t) =
∞
∑

n=0

ω(22nt)

2n+1
and y3(t) =

∞
∑

n=0

ω(22n+1t)

2n+1
.

Since

ω(t) = 2{t} − {2t} +
1

2
,

Proposition 19 follows immediately.

Recall that p-adic Davenport series are series of the form

f(t) =
∞
∑

j=1

aj{p
jt}, (20)

where p is an integer larger than 2. Thus the coordinates of L3 are examples
of dyadic Davenport series.

The following result is a particular case of Proposition 12 of [21], which yields
the spectrum of singularities of p-adic Davenport series.

Proposition 20 The spectrum of singularities of the Lebesgue-Davenport func-
tion L3 is given by

d3(H) =











2H if 0 ≤ H ≤ 1/2

−∞ else.
(21)

This result was not obtained through the everywhere determination of the
Hölder exponent of such Davenport series, but as a consequence of general
upper and lower bounds of their spectra; we will now sharpen this study by
determining the exact pointwise regularity at every point of normally conver-
gent p-adic Davenport series.

18



5.1 Pointwise regularity of p-adic Davenport series

We will assume in the following that (aj) ∈ l1; then the function f defined by
(20) is the sum of a normally convergent series; it follows that it is continuous
at every non p-adic real number, and has a right and a left limit at every
p-adic rational kp−l (where k ∧ p = 1), with a jump of amplitude

bl = al + al+1 + · · · .

A sequence (bl)l∈IN is called regular if

∃C > 0 : ∀l |bl| ≥ C sup
m≥l

|bm|. (22)

Theorem 21 Let f be given by (20), with aj ∈ l1, and assume that its se-
quence of jumps is regular. Let t0 ∈ IR; if t0 is not a p-adic rational, let
∆j(t0) = dist(t0, p

−jZZ), then

hf (t0) = lim inf
j→∞

(

log(|bj|)

log(∆j(t0))

)

.

Assume now that t0 = kp−l with k ∧ p = 1. If bl 1= 0 then hf (t0) = 0, else

hf (t0) = lim inf
j→∞

(

log(|bj|)

log(p−j)

)

.

Theorem 21 yields the pointwise Hölder exponent of L3 at every point; indeed,
the sequence of its triadic coefficients given by (19) obviously satisfies (22).

We will use the following lemma (Lemma 1 of [19]) which yields an upper
bound for the Hölder exponent of any function having a dense set of discon-
tinuities.

Lemma 22 Let f be a locally bounded function; let t0 ∈ IR and let rn be a
sequence converging to t0 such that, at each point rn, f has a right and a left
limit; then

hf (x0) ≤ lim inf

(

log |f(r+
n ) − f(r−n )|

log |rn − t0|

)

.

We will also need the following lemma.
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Lemma 23 Let ω > 0. There exists C > 0 such that

∀t0, ∀L ∈ IN,
∞
∑

j=L

(∆j(t0))
ω ≤ C(∆L(t0))

ω| log(∆L(t0))|.

Proof of Lemma 23 : Let M be such that:

p−M−1 < ∆L(t0) ≤ p−M .

Then M ≥ L and, if j ≥ M , since ∆j(t0) ≤ p−j,

∑

j>M

∆j(t0)
ω ≤

∑

j>M

p−jω ≤ Cp−Mω ≤ C∆L(t0)
ω.

If L ≤ j ≤ M , since ∆j(t0) is decreasing,

M
∑

j=L

∆j(t0)
ω ≤ M ∆L(t0)

ω ≤ C(∆L(t0))
ω| log(∆L(t0))|.

Proof of Theorem 21 : We first consider the case where t0 is not p-adic.
The discontinuity of f at a point k/pl where k ∧ p = 1 has an amplitude bl;
we pick for rn the sequence of dyadic points k/pl that are closest to t0. Either
k ∧ p = 1 and the jump at that point has amplitude bl, or k ∧ p 1= 1 and the
jump has an amplitude bm for an m < l, which, using (22), is larger than Cbl.
It follows from Lemma 22 that

hf (t0) ≤ lim inf
l→∞

(

log(|bl|)

log(∆l(t0))

)

.

Let h > 0 be given and Ih = [x0 − h, x0 + h]. Let l be the integer defined by
the conditions

∆l(t0) ≤ h < ∆l−1(t0). (23)

The function {pjt} has no jump on Ih if j < l, so that

l−1
∑

j=0

aj

(

{pjt0} − {pj(t0 + h)}
)

= h
l−1
∑

j=0

ajp
j. (24)

Let m denote the integer such that

p−m−1 < h ≤ p−m. (25)
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It follows from the definition of ∆l that m > l. If l ≤ j < m, then {pjt} has
exactly one jump on Ih, so that

m−1
∑

j=l

aj

(

{pjt0} − {pj(t0 + h)}
)

= h
m−1
∑

j=l

ajp
j −

m−1
∑

j=l

aj = h
m−1
∑

j=l

ajp
j − bl +

∞
∑

j=m

aj. (26)

Finally, since {pjt} ≤ 1/2, it follows that

∣

∣

∣

∣

∣

∣

∞
∑

j=m

aj

(

{pjt0} − {pj(t0 + h)}
)

∣

∣

∣

∣

∣

∣

≤
∞
∑

j=m

|aj|. (27)

It follows from (24), (26) and (27) that

f(t0) − f(t0 + h) =
∞
∑

j=0

aj

(

{pjt0} − {pj(t0 + h)}
)

= h
m−1
∑

j=0

ajp
j − bl + O





∞
∑

j=m

|aj|



 . (28)

Let A = lim inf
j→∞

log(|bj|)

log(∆j(t0))
and let ω < A, which can be arbitrarily close to A.

In order to prove Theorem 21, we will bound each term of (28) by hω| log(ω)|.
By definition of A, for j large enough, |bj| ≤ ∆j(t0)

ω. In particular,

|bl| ≤ ∆l(t0)
ω ≤ hω.

Since aj = bj−bj+1, it follows that |aj| ≤ 2∆j(t0)
ω, and it follows from Lemma

23 that

∞
∑

j=m

|aj| ≤ 2
∞
∑

j=m

|bj| ≤
∞
∑

j=m

∆m(t0)
ω ≤C(∆m(t0))

ω| log(∆m(t0))|

≤Cmp−mω,

which, by (25) is bounded by hω| log(ω)|.

Let us now estimate the first term in the right hand-side of (28).

• If A ≤ 1, then we can pick ω < 1, and
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m−1
∑

j=0

|aj|p
j ≤ 2

m−1
∑

j=0

|bj|p
j ≤ 2

m−1
∑

j=0

(∆j(t0))
ωpj ≤ 2

m−1
∑

j=0

p(1−ω)j ≤Cp(1−ω)m

≤Chω−1.

• If A > 1, then we can pick ω > 1. We first notice that the series
∑

ajp
j

is absolutely convergent since the same estimate as above yields that its
general term is bounded by p(1−ω)j. Therefore, we can write

h
m−1
∑

j=0

ajp
j = h





∞
∑

j=0

ajp
j



 − h
∞
∑

j=m

ajp
j.

The first term is a linear function of h , and the second one is bounded as
above by

h
∞
∑

j=m

p(1−ω)j ≤ Chp(1−ω)m ≤ Chω.

We still have to consider the case of p-adic points. let t0 = k
pl with k ∧ p = 1.

If bl 1= 0, then f has a jump at t0 and the Hölder exponent of f vanishes at
t0. The case of a rational p-adic point where the jump vanishes is similar to
the general case above, so that we omit its proof.

6 Multifractal analysis based on ultrametric topologies

We will now show that, using an ultrametric distance on [0, 1], L3, and more
generally p-adic Davenport series become monohölder functions. We get back
to the setting supplied by (2), and we will use for distance the p-adic distance
on [0, 1], which is the most natural in the setting of p-adic Davenport series.

Definition 24 Let s, t ∈ [0, 1), with the proper expansions in base p

s = (0; s1, s2, . . . , sn, . . .)p, t = (0; t1, t2, . . . , tn, . . .)p

respectively and δp(s, t) = inf{k : sk 1= tk} − 1 . The p-adic distance between
s and t is dp(s, t) = p−δp(s,t).

We first remark that the p-adic distance is an increasing right-continuous
ultrametric distance, i.e. is an ultrametric distance satisfying the additional
requirements











if x ≤ y ≤ z then d(x, z) = max(d(x, y), d(y, z)),

∀x, lim
h→0+

d(x, x + h) = 0.
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These two requirements can be interpreted as follows: Among ultrametric
distances, these one are “as close as possible” to the usual distance on IR.
In the following of this section, functions are considered as mappings f :
(IR, dp) −→ (IR, d), where dp is the p-adic ultrametric distance, whereas d
is the usual distance. Recall that the finite differences of arbitrary order are
defined as follows.

(∆1
hf)(x) = f(x + h) − f(x), (∆n+1

h f)(x) = (∆n
hf)(x + h) − (∆n

hf)(x).

Regularity criteria in this setting are defined as follows.

Definition 25 Let α > 0. A function f : [0, 1] → IR belongs to Cα
p (x0) if

there exist C > 0 and a polynomial P of degree less than α such that

∀x ∈ [0, 1], |f(x) − P (x − x0)| ≤ C(dp(x, x0))
α. (29)

The p-adic Hölder exponent of f at x0 is hp
f (x0) = sup{α : f ∈ Cα

p (x0)}.

A function f belongs to Cα
p ([0, 1]) if there exists C > 0 such that, ∀x0 ∈ [0, 1],

(29) holds.

In the p-adic setting, one can also define a notion of uniform irregularity, which
is similar to the one defined in Definition 5, except that in (8), the condition
y ∈ B(x, r) is replaced by y ∈ Bp(x, r), where Bp(x, r) denotes the p-adic ball
of center x and radius r.

Definition 26 Let α > 0. A function f : [0, 1] → IR belongs to Iα
p ([0, 1]) if

there exists C > 0 such that, for any ball B = B(x, r), and for n = [α],

sup
y,y+nh∈B

|(∆n
hf)(y)| ≥ Crα. (30)

Proposition 27 Let f be given by (20), with aj ∈ l1 and let α ∈ (0, 1).

• If there exists C > 0 such that |al| ≤ Cp−αl, then f ∈ Cα
p ([0, 1]).

• If there exists C > 0 such that for l large enough |bl| ≥ Cp−αl, then f ∈
Iα
p ([0, 1]).

Proposition 19 implies that L3, considered as a function defined on [0, 1] en-
dowed with the p-adic distance, is a monohölder function of exponent 1/2. In
order to prove Proposition 27, we will need the following lemma.

Lemma 28 The mapping x → {pnx} is Lipschitz, with Lipschitz constant
bounded by 2pn.
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Proof: Let x, y ∈ [0, 1] and let l be such that dp(x, y) = p−l; then x and y are
in the same p-adic interval of length p−l so that |x − y| ≤ p−l; therefore

∀x, y : |x − y| ≤ dp(x, y). (31)

If l ≤ n, then

|{pnx} − {pny}| ≤ 2 ≤ 2pndp(x, y).

If l > n, then 2nx and 2ny are in the same p-adic interval of length pn−l and
{pnx} is linear on this interval, so that

|{pnx} − {pny}| ≤ pn|x − y| ≤ 2pndp(x, y).

Proof of Proposition 27: The function f is the sum of a normally conver-
gent series of continuous functions (for the p-adic distance) and is therefore
continuous. If |al| ≤

C
pαl and if dp(x, y) = p−l, then

|f(x) − f(y)| ≤
l

∑

n=0

|an|p
ndp(x, y) + 2

∞
∑

l+1

|an|

≤ C
l

∑

n=0

p−αnpndp(x, y) + C
∞
∑

n=l+1

p−αn ≤ Cp−αl ≤ Cdp(x, y)α.

We now prove the second part of the proposition. Consider an open p-adic
interval Ik,l−1 of length p−l+1. At each p-adic rational kp−l inside this interval,
the jump of f is bl, and therefore there exist points x, y arbitrary close to kp−l

and which lie on on each side of it and such that |f(x) − f(y)| ≥ |bl|/2. The
second part of the proposition follows.

7 Numerical results concerning the multifractal formalisms

The numerical determination of the spectrum of singularities of a signal is
derived through the application of a multifractal formalism; in such formulas,
the spectrum is obtained through a Legendre transform of a “scaling” function
which is computable on real life data. The variants depend on the use of
different scaling functions, so that the accuracy of the method depends on
two conditions: A theoretical one, the validity of the multifractal formalism
used, and a practical one, the properties of the scaling function used, and
the way it is discretized. Its estimation relies on parameters (e.g. the number
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of points used to sample the signal, the error in the measurements) that are
often hard to handle. A natural way to determine whether or not a method
is an effective one is to test it on a collection of mathematical functions or
stochastic processes whose multifractal spectra are theoretically known. In
the following, we recall the two most reliable numerical methods which have
been implemented in order to estimate the entire spectrum and we test their
accuracy on the functions introduced above.

7.1 Definition of the WTMM and the WLM

The two formalisms we will review here are inspired by the one of Parisi and
Frish [37]; its principium is to estimate the spectrum of singularities from
global quantities, easily computable: the Lq-norms of the increments. The
main drawback of this method is that it is meaningless for negative values
of q and, as a consequence, can only lead, at best, to the increasing part of
the spectrum. Some attempts were made to fix this problem, but none really
succeeded (see [6,31]).

To overcome the difficulties raised by the negative values of q, Arneodo et al.
proposed a wavelet-based method: the Wavelet Transform Maxima Method
(WTMM), see [3]. The idea is to replace the increments with a wavelet and to
get rid of null or small values by only retaining the maxima of the continuous
wavelet transform. We will suppose that the function ψ ∈ L1 ∩ L∞(IR) is
either even or odd. Such a “wavelet” is r-smooth if ψ ∈ Cr(IR), if its r first
moments vanish, and if the ∂sψ have fast decay (s ≤ r). The continuous
wavelet transform of a function f ∈ L2(IR) is defined as follow,

Wf (b, a) =
1

a

∫

f(x)ψ

(

x − b

a

)

dx.

The WTMM is computed using the notion of line of maxima. For some a ∈
[a′, a′′], we write la = |W (b0, a)| if b0 is a local maximum of the function
b 2→ |W (b, a)|. These local maxima are tracked and linked through the scales
to yield lines of maxima la which are replaced by the quantity

ma = sup
a′≤a

la′ .

The partition function associated with the lines of maxima is

Sτ (a, q) =
∑

l

mq
a,
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where the sum is taken over all the lines of maxima reaching the scale a. We
then set

τ(q) = lim inf
a→0

log Sτ (a, q)

log a
(32)

to obtain the spectrum of singularities from the following relation,

dτ (h) = inf
q
{hq − τ(q)}.

Using the maxima for the computation of Sτ prevents the presence of null
values in the wavelet transform.

More recently, a similar approach based on the discrete wavelet transform
was introduced: the Wavelet Leaders Method (WLM), see [20]. Let us recall
some definitions (see [1,20]). From now on, we will denote by λ the dyadic
interval λ = λ(j, k) = [ k

2j ,
k+1
2j ]. One uses r-smooth wavelets ψ such that

{2j/2ψ(2jx − k)} : j, k ∈ ZZ} is an orthonormal basis of L2(IR). Therefore,
any function f ∈ L2(IR) can be written

f(x) =
∑

j,k∈ZZ

cλψ(2jx − k),

where cλ = 2j
∫

f(x)ψ(2jx−k)dx. The wavelet leader associated to the dyadic
interval λ is the quantity

dλ = sup
λ′⊂3λ

|cλ′|.

We then define the partition function associated to the WLM

Sω(j, q) = 2−j
∑

λ∈Λj

∗
dq

λ, (33)

where
∑∗ means that the sum is restricted to the intervals λ such that

sup
λ′⊂λ

|cλ′| 1= 0. This restriction is made in order to avoid, as much as possi-

ble, the presence of small, numerically instable, coefficients. The sum is taken
over all intervals λ belonging to Λj = {λ : diam(λ) = 2−j}. From this, we set

ω(q) = lim inf
j→∞

log Sω(j, q)

log 2−j
(34)
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to obtain the spectrum of singularities as

dω(h) = inf
q
{hq − ω(q)}. (35)

The heuristic argument from which the preceeding methods are derived is
the following (we describe it for the WLM, but it can be transposed to the
WTMM). Equality (34) means

∑∗ dq
λ ∼ 2−ω(q)j. The contribution of the dyadic

intervals λ ∈ Λj containing a point whose Hölder exponent is h to the sum
∑∗ dq

λ can be estimated as follow. If λj(x) ∈ Λj is the interval at scale j
containing x, the Hölder exponent h(x) of f at x is given by

h(x) = lim inf
j→∞

λ′⊂3λj(x)

log dλ′

log 2−j
, (36)

(see [20]). Therefore, one has dλ ∼ 2−hj. Moreover, the number of these dyadic
intervals λ should be about 2dω(h)j, where dω is the multifractal spectrum of
the function. Hence, the contribution is

2(dω(h)−hq)j. (37)

The dominating contribution is the one corresponding to a value of h asso-
ciated with the biggest exponent in (37); thus, one can expect the following
relation

−ω(q) = sup
h
{dω(h) − hq}.

As −ω is a convex function, if dω is concave, then −ω and −dω are convex
conjugate functions, so that (35) holds. Let us remark that the preceeding
argument is far from being a mathematical proof. The only result valid in the
general case is the following inequality, see [20],

dω(h) ≤ inf
q

(hq − ω(q)). (38)

These two formalisms are the only ones that can lead to the entire spectrum
of singularities (i.e. that allow to obtain the decreasing part of the spectrum).
The main advantage of the WLM is its theoretical background. In particular,
relation (36), used in the derivation of the multifractal formalism, does not
hold in general for wavelet maxima. The WLM could also be more efficient
in the caracterization of the regularity of signals with oscillating singularities,
a domain where the WTMM never suceeded. Moreover the WLM is faster
than the WTMM, since the complexity of the WLM is linear, while the order
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of complexity of the WTMM is at least N log N (indeed, the computational
speed of the two-dimensional WTMM can be a real problem). However, the
WTMM has been succesfully applied to numerous applications, going from
DNA sequences to stock market data analysis (see e.g. [2]). It is translation
invariant, a property that the WLM does not have. Moreover, the use of a
starred sum in (33) can induce an important loss of coefficients in the definition
of Sω. This can lead to unsatisfactory results when applied to functions such
as the devil staircaise.

7.2 Multifractal formalisms applied to L1, L2 and L3

We show here that the WLM applied to highly irregular functions gives at least
the same positive results, but in a much faster way. However, some problems
can arise if too many wavelet leaders vanish.

To test and compare the efficiency of the two methods, we have computed the
functions L1, L2 and L3 with sample sizes ranging from S = 214 to S = 222.
We have limited the study of the functions τ and ω within the range −3 ≤
q ≤ 5 (as we will see, there is no need to extend the study for larger range
when considering these specific Lebesgue-type functions). For both methods,
wavelets with exactly two vanishing moments were used: the second order
derivative of the Gaussian function for the WTMM and the second order
Daubechies wavelet for the WLM (let us recall that the Daubechies wavelets
are compactly supported, see [12]). The results remain unchanged if wavelets
with a higher number of vanishing moments are chosen. For a fixed q, τ(q)
and ω(q) are obtained through a linear regression, following (32) and (34)
respectively.

The function L2 is a monohölder function. The associated multifractal spec-
trum is thus the simplest spectrum we have obtained, since it is reduced to a
single point:

d2(h) =















1 if h =
log 2

2 log 3
= 0.31546 · · ·

−∞ else
.

As shown in Fig. 6 for sample size S = 214, both the functions τ and ω display
a remarkable linear behavior, which is the mark of a monohölder function. The
Hölder exponent h is then obtained through a linear regression. The WTMM
gives hτ ≈ 0.311±0.024 and the WLM gives hω ≈ 0.319±0.024. In both case,
the error is close to 4.1 10−3. Fig. 7 shows the spectra of singularities obtained
from τ and ω respectively, through a Legendre transform.
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Fig. 6. (a) The estimated function τ associated to the Schoenberg function L2. (b)
The estimated function ω.
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Fig. 7. (a) The spectrum of singularities of L2 estimated through the function τ (see
Fig. 6). (b) The spectrum obtained using ω. The dashed lines intersect at ( log 2

2 log 3 , 1).

The function L1 is monofractal but not monohölder:

d1(h) =



























log 2

log 3
if h =

log 2

2 log 3

1 if h = ∞

−∞ else

.

However, if a compactly supported wavelet with more than one vanishing mo-
ment is used to perform the wavelet transform, the coefficients corresponding
to the C∞ component, i.e. the linear parts of L1, are equal to zero. Since
the lines of maxima are made of maxima of the modulus of the continuous
wavelet transform, such coefficients are not taken into account in the WTMM.
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Fig. 8. The estimated function τ associated to the Lebesgue function L1. (b) The
estimated function ω.

For the WLM, vanishing coefficients have to be dropped to compute the parti-
tion function . This operation must be done carefully. The best method seems
to be using the starred sum in the formula (33), after having set to zero the
coefficients beyond a fixed threshold, which should correspond to a numerical
accuracy. In the case of L1, this threshold is naturally obtained by checking
the values of the coefficients at the lowest scale corresponding to the interval
]1
3
, 2

3
[. Since, these coefficients should vanish, the threshold must be larger than

their numerical value, which is a computational artifact. The main disadvan-
tage of this “starred sum method” is that, in some special situations, many
coefficients can be lost, as it is the case with L1. Although this algorithm is
satisfactory when applied to the functions studied here, it could be interesting
to define the threshold as a function of the scale.

Since vanishing coefficients are not taken into account, both the WTMM and
the WLM are only performed on the function L1 restricted to the Cantor set
K, which is a monohölder function. The so-obtained spectrum of singularities
is thus reduced to one single point. If the wavelet has only one vanishing
moment, one can show that the multifractal formalism will lead to a wrong
spectrum.

Both τ and ω display the expected linear behavior when working with the
sample size S = 220, as showed in Fig. 8. One gets hτ ≈ 0.339 ± 0.03 and
hω ≈ 0.335 ± 0.02. When working with a smaller sample size (S = 214), the
corresponding τ still display a linear behavior with an overestimated exponent
(hτ ≈ 0.4 ± 0.015), while no such linear behavior is observed for ω.

The Lebesgue-Davenport function L3 is neither monohölder nor monofrac-
tal; the associated spectrum of singularities is given by Proposition 20. Both
τ and ω display a satisfactory shape when working with the smallest sample
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Fig. 9. (a) The spectrum of singularities of L1 estimated through the function τ

(see Fig. 8). (b) The spectrum obtained using ω. The dashed lines intersect at
( log 2
2 log 3 , log 2

log 3).
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Fig. 10. (a) The estimated function τ associated to the Lebesgue-Davenport function
L3. (b) The estimated function ω.

size S = 214, but a sample size of S = 220 is needed to estimate the maximum
Hölder exponent with a precision of 2% (the maximum Hölder exponent is
simply obtained from τ or ω through a linear regression over the negative val-
ues of q, see Fig. 10). As showed in Fig. 11, both formalisms lead to a strictly
concave spectrum whose shape is close to the exact linear spectrum. Recall
that d3 has a dense set of discontinuities, so that the upper bound (38) is no
more valid. In short, there is no theoretical backgroung for multifractal func-
tions. Under such condition, it is quite remarkable that the numerical results
obtained are not too far from the theoretical spectrum.

In conclusion, we can say that the WTMM and the WLM give the same,
correct, results on the tested functions, but some problems can arise with
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Fig. 11. (a) The spectrum of singularities of L3 estimated through the function τ

(see Fig. 10). (b) The spectrum obtained using ω. The real spectrum d3 is plotted
with dashed lines
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Fig. 12. The relative computational speeds of the WTMM and the WLM tested on
the function L3 with sample sizes S = 215, 216, . . . , 222.

the WLM when the discrete wavelet transform contains too many vanishing
coefficients. The main pitfall of the WTMM, beside the lack of theoretical
foundation, is its computational speed and the quantity of memory needed.
As showed in Fig. 12, when applied to the function L3 with a sample size
equal to S = 222, the WTMM is about six times slower than the WLM.
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