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We study irregularity properties of generic Peano functions; we apply these results to the determination of the pointwise smoothness of a Peano function introduced by Lebesgue and of some related functions, showing that they are either monohölder or multifractal functions. We test on these examples several numerical variants of the multifractal formalism, and we show how a change of topology on IR can affect the Hölder regularity of such functions.

1I n t r o d u c t i o n

A space-filling function is a function F (t)=( f (t),g(t)), defined on [0, 1], whose range fills a surface of the plane. It is called a Peano function if, in addition, it is continuous. These constructions were initially motivated by their paradoxical aspect. The interest in Peano functions has been periodically renewed, as unexpected connexions with several parts of mathematical analysis were discovered: They have been used as a tool that allowed to puti n t ol i g h t nonmeasurability properties, and in connexion with the Hahn-Mazurkiewicz theorem, see [START_REF] Sagan | Space Filling curves[END_REF]. In 1936, H. Steinhaus showed that space-filling functions can be obtained if their coordinates f (t), g(t) are stochastically independent functions, see [START_REF] Steinhaus | La courbe de Peano et les fonctions indépendantes[END_REF]. In 1945, R. Salem and A. Zygmund discovered analytic functions in the unit disc, that have a continuous extension on the unit circle C, and are such that the image of the unit circle is also space filling; the examples they provided were lacunary Taylor series, satisfying a strong lacunarity condition, see [START_REF] Salem | Lacunary power series and Peano curves[END_REF] and also [START_REF] Belov | On the Salem and Zygmund problem with respect to the smoothness of an analytic function that generates a Peano curve[END_REF] for later extensions. The historical developments of Peano functions, in connexion with other parts of analysis are detailed in the book of H. Sagan [START_REF] Sagan | Space Filling curves[END_REF]. Another utility of Peano curves appeared at the beginning of the years 2000, in the fields of "Data Mining" and "Intelligent Data Analysis", motivated by the extensive use of large multidimensional arrays: One needs indexings of such arrays (i.e. constructing curves that go through all the points of the array) which satisfy proximity requirements: Data that are close should be indexed by close indices; this leads naturally to the use of Peano functions that satisfy some Hölder regularity conditions, see for instance [START_REF] Lawder | The application of space-filling curves to the storage and retrieval of multidimensional data[END_REF][START_REF] Patil | Serial data fusion using space-filling curves in wireless sensor networks[END_REF]. This property of preserving the spacial relationship of 2D-patterns is also exploited in the area of digital image processing, where Peano curves are used as a scanning technique, see for instance [START_REF] Biswas | Hilbert scan and image compression[END_REF][START_REF] Quinqueton | a l l ya d a p t a t i v eP e a n os c a n n i n g algorithm[END_REF].

Peano functions have also been popular because they supply simple geometric constructions of continuous nowhere differentiable functions. This last motivation was considerably sharpened in the last 15 years with the introduction of "multifractal analysis", where the rather imprecise motivation of nondifferentiability was replaced by the sharper requirement of determining everywhere the exact pointwise Hölder regularity. Let us recall the definitions associated with the notion of pointwise smoothness.

Definition 1 Let f :I R→ IR ,b eal o c a l l yb o u n d e df u n c t i o n ,l e tx 0 ∈ IR and α ≥ 0; f ∈ C α (x 0 ) if there exist R>0, C>0, and a polynomial P of degree less than α such that

if |x -x 0 |≤R then |f (x) -P (x -x 0 )|≤C|x -x 0 | α . (1) 
The Hölder exponent of f at x 0 is h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.

Space-filling functions can exhibit a large variety of smoothness characteristics:

We will see that some of them, as shown by the initial examples supplied by Peano [START_REF] Peano | Sur une courbe, qui remplit toute une aire plane[END_REF] and Hilbert [START_REF] Hilbert | Über die stetige Abbildung einer linie auf ein Flächenstück[END_REF], have everywhere the same Hölder exponent (such functions are called monohölder functions). But the Hölder exponent of others can present an extremely wild behavior: For example, in the case of Polya's function it is known to be everywhere discontinuous, see [START_REF] Jaffard | Local regularity of nonsmooh wavelet expansions and application to the Polya function[END_REF][START_REF] Mandelbrot | Peano-Pólya motions, when time is intrinsic or binomial (uniform or multifractal)[END_REF]. The next step in such cases is to perform a "multifractal analysis", i.e. to determine their spectrum of singularities which is defined as follows.

Definition 2 Let f be a locally bounded function; its isohölder sets are the sets

E H = {x 0 : h f (x 0 )=H}.
The spectrum of singularities of f is the function d f :I R + → IR + ∪ {-∞} defined by

d f (H)=dim(E H );
where dim denotes the Hausdorff dimension (using the standard convention dim(∅)=-∞).

The investigation of the multifractal properties of space-filling functions goes back to [START_REF] Jaffard | Local regularity of nonsmooh wavelet expansions and application to the Polya function[END_REF][START_REF] Mandelbrot | Peano-Pólya motions, when time is intrinsic or binomial (uniform or multifractal)[END_REF], and was reactivated recently in [START_REF] Nicolay | Analyse de séquences ADN par la transformée en ondelettes: extraction d'informations structurelles, dynamiques et fonctionnelles[END_REF]. The purpose of this paper is to derive general irregularity properties of such functions and to illustrate the variety of their smoothness behaviors by focusing on three "historical" space-filling functions, which are slight variants of each other, but present strong discrepancies from the point of view of multifractal analysis. The first one, L 1 , was introduced by H. Lebesgue in his famous monograph "Leçons sur l'intégration et la recherche de fonctions primitives", in 1904 (see [START_REF] Lebesgue | Leçons sur l'integration et la recherche de fonctions primitives[END_REF] pp. [START_REF] Salem | Lacunary power series and Peano curves[END_REF][START_REF] Schoenberg | The Peano curve of Lebesgue[END_REF]. We will show that it is a "monofractal function", i.e. a function which is C ∞ except on a fractal set (the triadic Cantor set K), where its Hölder exponent takes a finite constant value. The second function, L 2 ,w a si n t r oduced by Schoenberg in 1938, see [START_REF] Schoenberg | The Peano curve of Lebesgue[END_REF]: It coincides with Lebesgue's function on K, but it is extended outside of K in such a way that it turns out to be a monohölder function. The third example is derived form L 1 by performing a discontinuous change of time which maps the Cantor set onto the whole interval [0, 1]. The "Lebesgue-Davenport" function L 3 (t) thus obtained has a dense set of discontinuities, and is a simple example of "Davenport series", see [START_REF] Jaffard | Multifractal formalism for functions part I and II SIAM[END_REF].

If the nowhere differentiability of these functions has been repeatedly considered (see [START_REF] Sagan | Space Filling curves[END_REF] and references therein), nonetheless, the determination of their exact pointwise regularity, and therefore their multifractal analysis is new.

Section 2 is devoted to some general remarks on the smoothness of Peano functions. In particular, we prove there that most historical examples are monohölder functions.

Sections 3 to 5 are devoted to recall the definitions and main properties of the initial Lebesgue function and its two variants, and to determine their exact pointwise smoothness. In the case of L 3 , it will be the consequence of a new general result on the pointwise smoothness of Davenport series.

The spectrum of singularities of signals obtained through the registering of real-life data cannot be estimated in the case of multifractal signals; indeed the determination of their Hölder exponent is not numerically stable because it usually jumps at every point; on top of that, the obtention of the spectrum would require the determination of an infinite number of Hausdorff dimensions, each of them defined by considering an uncountable number of coverings with unspecified sets. Therefore, formulas, reffered to as "multifractal formalisms", have been introduced in order to derive the spectrum of singularities of a signal from numerically computable quantities. All of them are variants of a seminal derivation which was proposed by G. Parisi and U. Frisch in [START_REF] Parisi | On the singularity spectrum of fully developped turbulence[END_REF]. Though they are based on the same thermodynamic arguments, their numerical performances can vary a lot. A key step in the numerical improvements was per-formed by A. Arneodo and his collaborators, when they introducedf o r m u l a s based on wavelet analysis, see [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF]. There exists now two well established forms of multifractal formalisms, allowing to obtain the whole spectrum of singularities: The wavelet transform maxima method (WTMM) see [START_REF] Arneodo | Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data[END_REF] and references therein, and the wavelet leaders method (WLM) developed in [START_REF] Abry | Wavelet leaders in multifractal analysis[END_REF][START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF][START_REF] Lashermes | Jaffard Comprehensive Multifractal Analysis of Turbulent Velocity Using the Wavelet Leaders[END_REF]. The purpose of Section 7 is to compare their numerical performances on the particular case-studies supplied by the Lebesgue functions; indeed, L 1 , L 2 , and L 3 supply a competitive benchmark for that purpose: For instance, L 1 is linear on intervals of all possible scales (their lengths are the (3 -j ) j≥1 ), which is a standard pitfall for the numerical performances of multifractal formalisms, and L 3 has a dense set of discontinuities, a border-line situation where wavelet-based techniques are no longer backed by theoretical results, see [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF].

Section 6 was initially motivated by the following problem: The notion of pointwise smoothness clearly depends on the metric used on the real line: Another distance d(x, y) would induce a new definition of C α (x 0 ), where ( 1) is replaced by:

If |x -x 0 |≤R then |f (x) -P (x -x 0 )|≤Cd(x, x 0 ) α . (2) 
Alternative distances introduced up to now in this context were obtained through a continuous time-change; they only induced mild modifications of the usual distance on IR, since they are topologically equivalent: Let θ be a continuous increasing one-to-one mapping [0, 1] → [0, 1]; the distance associated with θ is

d θ (x, y)=|θ(y) -θ(x)|. (3) 
Such a time-change θ can strongly simplify the multifractal nature of f , see for instance [START_REF] Mandelbrot | Peano-Pólya motions, when time is intrinsic or binomial (uniform or multifractal)[END_REF] where it transforms the Polya function into a monohölder function. An intriguing problem, which remains largely open, is to understand when such a simplifying time-change exists, see [START_REF] Seuret | On multifractality and time subordination for continuous functions[END_REF] for partial results. Functions with a dense set of discontinuities, such as L 3 cannot be thus transformed through a continuous time-change. We will show that, using ultrametric distances on [0, 1], L 3 (and more generally p-adic Davenport series) indeed becomes monohölder.

Note that the converse idea has also been used in order to generate new multifractal stochastic processes: B. Mandelbrot proposed to "complexify" a monohölder process (typically a Fractional Brownian Motion) through a multifractal time-change; these constructions were motivated by financial modeling, see [START_REF] Mandelbrot | Fractals and Scaling in Finance[END_REF].

Space-filling functions

In this section, we consider some geometric properties of space-filling functions that are commonly satisfied, and we investigate their implications in terms of pointwise smoothness. A straightforward consequence of these considerations will be the determination of the exact pointwise smoothness of several historical Peano functions. 

µ f (A) = meas d (f (A)). (4) 
If the range of f fills a finite volume, then µ f is a probability measure (up to a multiplicative constant).

Let I h (t 0 )=[t 0h, t 0 + h]; the pointwise Hölder exponent of a measure µ is defined by

h µ (t 0 )=liminf h→0 log(µ(I h (t 0 )) log(h) .
Lemma 4 Let f :[ 0 , 1] → IR d be an almost one-to-one space filling function.

Let t 0 ∈ [0, 1];i fh f (t 0 ) < 1,t h e n h µ f (t 0 ) ≥ dh f (t 0 ). (5) 
Proof of Lemma 4:

If f ∈ C α (t 0 )f o ra nα ∈ (0, 1), then f (I h (t 0 )) ⊂ B(f (t 0 ),Ch α ) so that µ f (I h (t 0 )) = meas d (f (I h (t 0 ))) ≤ Ch dα ;
one concludes by taking a log and a lim inf on both sides.

Many usual space-filling functions present a remarkable extra feature: The range of f covers equal volumes (or areas in dimension 2) in equal times, i.e.

for any interval I, meas

1 (I) = meas d (f (I)). ( 6 
)
Functions displaying this feature include the initial Peano, and the modification proposed by Wunderlich [49], the initial Hilbert function, and the variant of Moore [START_REF] Moore | On certain crinkly curves[END_REF], the Sierpinski function [START_REF] Sierpiński | Sur une nouvelle courbe continue qui remplit toute une aire plane[END_REF] and the Polya function in multifractal time, as presented in [START_REF] Mandelbrot | Peano-Pólya motions, when time is intrinsic or binomial (uniform or multifractal)[END_REF]; indeed this property is a straightforward consequence of Hypothesis (H) which is of geometric nature and, by construction, is obviously satisfied by these functions; [START_REF] Barabási | Multifractality of self-affine fractals[END_REF] means that the measure µ is exactly the Lebesgue measure (up to a constant), and in that case, the conclusion of Lemma 4 is that the Hölder exponent of f is everywhere smaller than 1/2. A stronger result of uniform irregularity holds.

Definition 5 Let α ∈ (0, 1).Af u n c t i o nf :I R d → IR m belongs to I α (x 0 ) if ∃C>0, ∃R>0, ∀r ≤ R, sup x,y∈B(x 0 ,r) |f (x) -f (y)|≥Cr α ;( 7 ) f belongs to I α (IR d ) if ∃C>0, ∃R>0, ∀r ≤ R, ∀x, sup y∈B(x,r) |f (x) -f (y)|≥Cr α . (8) 
Note that these types of statements are stronger than just negating Hölder regularity; indeed such negations only yield the existence of subsequences r n for which the oscillation sup

x,y∈B(x 0 ,rn)

|f (x)f (y)| is large, whereas [START_REF] Belov | On the Salem and Zygmund problem with respect to the smoothness of an analytic function that generates a Peano curve[END_REF] or [START_REF] Biswas | Hilbert scan and image compression[END_REF] require the oscillation to be large at all (small enough) scales (see [START_REF] Clausel | Notions d'irrégularité uniforme et ponctuelle[END_REF] for a comprehensive study of this notion).

Lemma 6 Let f be a continuous function satisfying [START_REF] Barabási | Multifractality of self-affine fractals[END_REF]; then f belongs to

I 1/d [0, 1]). Proof of Lemma 6: Let 0 ≤ x<y≤ 1; then sup s,t∈[x,y] |f (x) -f (y)| =diam(f ([x, y])) ≥ C (meas d (f ([x, y]))) 1/d = C|x -y| 1/d .
Note that the conclusion of Lemma 6 would still hold if [START_REF] Barabási | Multifractality of self-affine fractals[END_REF] was replaced by the less restrictive condition ∃C>0 : for any interval I, meas 1 (I) ≤ Cmeas d (f (I)). ( 9)

Definition 7 Let α ∈ (0, 1);Afunctionf :I R d → IR m is strongly monohölder of exponent α (f ∈ SM α )i ff ∈ C α (IR d ) ∩ I α (IR d ),i . e .i f∃C, C > 0, ∃R>0, ∀r ≤ R, ∀x, Cr α ≤ sup y∈B(x,r) |f (x) -f (y)|≤C r α . (10) 
In general, equality needs not hold in (5) because, in the neighborhood of t 0 , f may be very oscillating in one direction for instance, in which case its range will cover a very small area, though f can be very irregular. However the specific functions we mention satisfy an additional geometric requirement:

(H)

There exists an integer p ≥ 2 such that the image of a p d -adic interval

I k,j = k p dj , k+1
p dj is a subset of volume Cp -dj and of diameter C p -j ; furthermore, for each j ≥ 0 given, at scale j,allthef (I k,j ) have disjoint interiors.

Proposition 8 Let f be a Peano function satisfying [START_REF] Bousch | Caloric measure on domains bounded by Weierstrass-type graphs[END_REF] and (H). Then f belongs to SM 1/d .

In particular, for d = 2, this conclusion holds for the functions of Peano, Wunderlich, Hilbert, Moore, Sierpinski and the time-changed Polya function mentioned above. In particular, they are monohölder with Hölder exponents everywhere equal to 1/2.

Proof of Proposition 8 :

We only have to prove the uniform regularity estimate. Let 0 ≤ x<y≤ 1, and let j be defined by

p -dj -2 ≤ y -x<p -dj .
Either x and y belong to the same p d -adic interval of generation j or to two adjacent ones. In the first case,

|f (x) -f (y)|≤diam(f (I k,j )) = C p -j ≤ C |x -y| 1/d .
In the second case, since f is continuous, the images of these two intervals share one point; but (H)i m p l i e st h a t

|f (x) -f (y)|≤2diamf ((I k,j )) = C p -j .

3T h e L e b e s g u e f u n c t i o n L 1

Let p>1 be an integer.

If (t i ) i∈IN is a sequence of integers satisfying 0 ≤ t i ≤ p -1, then (0; t 1 ,t 2 ,...,t n ,...) p will denote the real number t = ∞ i=1 t i p i ;
if the t i are not all equal to p -1fori large enough, it is the proper expansion of t in base p.

Definition 9

The triadic Cantor set K is the set of real numbers t that can be written

t =(0;2t 1 , 2t 2 ,...,2t n ,...) 3 where t i ∈{0, 1}, ∀i. (11) 
If t ∈K, then the t i are unique (but do not necessarily constitute the proper expansion of t in base 3). Let K * be the subset of K defined by

K * = {t ∈K: (11)
is the proper expansion of t} (K * is obtained from K as follows: In the construction of K as a limsup of triadic intervals, the right-end points of each interval are eliminated). 

L 1 (t)=(x 1 (t),y 1 (t)).
The function L 1 is first defined on K as follows. For any t ∈Kwritten as in [START_REF] De La Bretèche | Séries trigonométriques à coefficients arithmétiques[END_REF],

L 1 (t)=(x 1 (t),y 1 (t))
where

     x 1 (t)=(0;t 1 ,t 3 ,t 5 ,...) 2 y 1 (t)=(0;t 2 ,t 4 ,t 6 ,...) 2 (12) 
H. Lebesgue proved that the restriction of L 1 to K is an onto function onto the square [0, 1] 2 , see [START_REF] Lebesgue | Leçons sur l'integration et la recherche de fonctions primitives[END_REF] pp. 44-45. We will need a slightly stronger assertion.

Lemma 10

The restriction of

L 1 to K * is an onto function onto [0, 1] 2 - {(1, 1)}.
Proof of Lemma 10: Let (x, y) ∈ [0, 1] 2 -{(1, 1)}. Then either x or y has a proper expansion starting with a 0. We use this expansion in [START_REF] Daubechies | Ten lectures on wavelets[END_REF],w h i c h defines a sequence t i , hence, by [START_REF] De La Bretèche | Séries trigonométriques à coefficients arithmétiques[END_REF], a point t ∈Ksuch that L 1 (t)=( x, y).

Since either x or y has a proper expansion, it follows that t is also written with a proper expansion, and therefore t ∈K * . Note that this point is not necessarily unique since, if x or y is dyadic, then it can be written in the binary system in two different ways; thus points such that at least one of their coordinates are dyadic have at least two pre-images in K by L 1 . Note that Lebesgue's result follows since L 1 (1) = (1, 1).

H. Lebesgue proved that L 1 has a continuous extension outside of K which is simply obtained by taking a linear extension on each intervalw h i c hi sa connex component of the complement of K, thus showing that L 1 was a new example of Peano function. The following proposition sharpens this result and yields the uniform regularity of L 1 and its exact pointwise regularity at every Fig. 2. The partial sums of the curve (x 1 (t),y 1 (t)) summed up to j =2 6 and j =2 10 respectively.

point.

Proposition 11 Let α = log 2 2log3 .T h ef u n c t i o nL 1 belongs to C α ([0, 1]).I fx 0 / ∈ K,t h e nL 1 is C ∞ at x 0 .I fx 0 ∈K,t h e nL 1 belongs to I α ([0, 1

]).I ti st h e r e f o r e am o n o f r a c t a lf u n c t i o n .

Though this proposition can be proved directly, we prefer to postpone its proof to Section 4 where it will be a consequence of the corresponding result for the Schoenberg function.

4T h e S c h o e n b e r g f u n c t i o n L 2

Let p(t) be the 2-periodic even function which satisfies on [0, 1]

             p(t)=0 if t ∈ [0, 1/3] p(t)=3t -1i f t ∈ [1/3, 2/3] p(t)=1 if t ∈ [2/3, 1].
Note that p is a continuous, piecewise linear function, hence it is a Lipschitz function. The Schoenberg function L 2 is defined by L 2 (t)=(x 2 (t),y 2 (t)) where 

x 2 (t)= 1 2 ∞ n=0 p(3 2n t) 2 n and y 2 (t)= 1 2 ∞ n=0 p(3 2n+1 t) 2 n . ( 13 
Indeed, let t ∈K; it follows from (11) that we can write 3 n t as a sum of three terms

3 n t =(2t 1 3 n-1 + •••+2t n )+ 2t n+1 3 + 2t n+2 9 + ••• .
The first term of this sum is an even integer, and the third one is positive and bounded by 1/3; thus [START_REF] Davenport | On some infinite series involving arithmetical functions II[END_REF] immediately follows from the definition of p(t).

It follows from ( 14) that

x 2 (t)= 1 2 ∞ n=0 p(3 2n t) 2 n = 1 2 ∞ n=0 t 2n+1 2 n =(0;t 1 ,t 3 ,t 5 ,...) 2 ;
and similarly

y 2 (t)= 1 2 ∞ n=0 p(3 2n+1 t) 2 n = 1 2 ∞ n=0 t 2n+2 2 n =(0;t 2 ,t 4 ,t 6 ,...) 2 ;
hence Proposition 12 holds.

Lemma 10 and Proposition 12 put together imply that the Schoenberg function is also onto [0, 1] 2 . In 1981, J. Alsina [START_REF] Alsina | The Peano Curve of Schoenberg is nowhere differentiable[END_REF] proved that L 2 is nowhere differentiable (see also [START_REF] Hiriart-Urruti | Une courbe étrange venue d'ailleurs[END_REF][START_REF] Sagan | Space Filling curves[END_REF] for additional properties of this function). The following proposition yields its exact pointwise smoothness everywhere.

Proposition 13 Let α = log 2 2log3 .T h eS c h o e n b e r gf u n c t i o nL 2 belongs to SM α .

We will derive this proposition as a consequence of two general results: Lemma 14 yields a uniform regularity criterium and Proposition 15 yields a uniform irregularity criterium. Note that the irregularity is a consequence of results valid either for selfsimilar functions, see [START_REF] Jaffard | Multifractal formalism for functions part I and II SIAM[END_REF] or for Weierstrass type functions, see [START_REF] Bousch | Caloric measure on domains bounded by Weierstrass-type graphs[END_REF]. However, we prefer to follow an alternative approach, which will emphasize another specificity of L 3 and yields a more straightforward proof.

Lemma 14 Let (f n ) n∈IN be a sequence of bounded and Lipschitz functions on IR satisfying ∃C>0:

f n ∞ + f n ∞ ≤ C. Let f (t)= ∞ n=0 f n (b n t) a n ,
and assume that ∃C, a > 0 such that b>a>1 and ∀n, a n ≥ Ca n .

Then f ∈ C β (IR) with β = log a log b .
Proof of Lemma 14: The assumptions on f n imply that |f n (s)f n (t)| can either be bounded by C or by C|s-t|. Let s and t be two distinct real numbers, and let n 0 be defined by b -n 0 +1 < |s -t|≤b -n 0 ;t h e n

|f (s) -f (t)|≤C n 0 n=0 |b n s -b n t| a n + ∞ n 0 C a n ≤ C|s -t| b a n 0 + C a n 0 ≤ C|s -t| β .
The uniform regularity of L 2 follows from Lemma 14.

Proposition 15 Let f n :I R→ IR be 1-periodic Lipschitz functions, of Lipschitz constants

C n = sup x =y |f n (x) -f n (y)| |x -y| . Let f (t)= ∞ n=0 f n (b n t) a n
where b is an integer satisfying b ≥ 2,a n dt h ea n satisfy

∃a ∈ (1,b), ∃E 1 ,E 2 > 0 such that E 1 a n ≤|a n |≤E 2 a n . Let l ∈{ -b -1,...,b-1}, D n = f n l b -f n (0),a n dl e tβ = log a log b .L e tC
and D be such that, for n large enough,

|D n |≥D>0 and |C n |≤C. ( 15 
) If Cl E 1 b b a -1 < |D| E 2 , then f ∈ I β (IR).
Proof of Proposition 15: First, note that the triangular inequality implies that it is sufficient to prove that the relation ( 8) is satisfied for couples (x, y) of the form

x = k b n 0 and y = k + l/b b n 0 , ∀(k, n 0 ) ∈ ZZ × IN .
In that case,

f (y) -f (x)= n 0 -1 n=0 f n (b n y) -f n (b n x) a n + D n a n 0
(indeed, since g is 1-periodic, the increments for n>n 0 vanish). Since the result clearly does not depend on the first f n , we can assume that ( 15) is satisfied for all n.B u t

n 0 -1 n=0 f n (b n y) -f n (b n x) a n ≤ n 0 -1 n=0 C n E 1 |x -y| b n a n ≤ C E 1 |x -y| b a n 0 1 b a -1 ≤ Cl E 1 a n 0 b( b a -1) 
.

Since D n a n 0 ≥ D E 2 • a n 0 ,i tf o l l o w st h a t , if Cl E 1 b b a -1 < |D| E 2 , then |f (y) -f (x)|≥ C a n 0 ;
hence Proposition 15 holds.

Note that this result applies to x 2 (t) which is a 1-periodic function, since, in this case,

f n (t)=p(2t), C n = C =6 ,l =3 ,D n = D =1 ,b =9 ,a =2a n d E 1 = E 2 =1.
Let us now check how to derive Proposition 11 from Lemma 14 and Proposition 15. The regularity result is a particular case of a general regularity result for interpolating functions. Proof of Proposition 17: Let A denote the complement of I n . In order to estimate g(x)g(y), we separate different cases:

• If x and y both belong to A, the estimate follows from the result for f .

• If x and y both belong to the same interval I n , then, by linear interpolation,

|g(x) -g(y)| = |x -y| |b n -a n | |f (b n ) -f (a n )|≤C |x -y| |b n -a n | |b n -a n | α ≤ C|x -y| α .
• Let us finally assume that either x or y belongs to A, or that they belong to different intervals I n . We can suppose that x<y

, x ∈ [a n ,b n ]a n d y ∈ [a m ,b m ],
with the convention that a n = b n if x (for instance) does not belong to one of the I n . Then

|g(x) -g(y)|≤|g(x) -g(b n )| + |g(b n ) -g(a m )| + |g(a m ) -g(y)|;
each of these three terms has already been taken care of above. Thus

|g(x) -g(y)|≤C(|x -b n | α + |b n -a m | α + |a m -y| α ) ≤ 3C|x -y| α .
Let us now deduce the pointwise irregularity of L 1 from Proposition 15.

Corollary 18 For any x ∈K, L 1 ∈ I β (x).

Proof of Corollary 18: First, note that the proof of Proposition 15 applied to L 2 implies that, if x and y are two endpoints of one of the triadic intervals of generation 2n that come up in the construction of K,t h e n ∃C>0:

|L 2 (x) -L 2 (y)|≥ C 2 n .
If z ∈K , then it belongs to one such interval for each n, so that, by the triangular inequality, either

|L 2 (x) -L 2 (z)|≥ C 2 n+1 , or |L 2 (z) -L 2 (y)|≥ C 2 n+1 .
Since L 1 and L 2 coincide on K,t h i si m p l i e st h a tL 1 ∈ I β (x). 5T h e f u n c t i o n L 3 and p-adic Davenport series

The two functions we considered can be interpreted as one space filling function defined on K which is extrapolated outside of K in two different ways.

The third function we will consider can be interpreted as follows: Instead of "filing the gaps" outside of K, K is "dilated" by mapping it to the whole interval [0, 1], using a famous singular function: The "devil's staircase". One thus obtains the Lebesgue-Davenport function L 3 which is considered in [START_REF] Gelbaum | Counterexamples in analysis[END_REF] (Example 5 of Chap. 10), and can be directly defined in a very simple way as follows: Let t ∈ [0, 1) and t =(0;t 1 ,t 2 ,...,t n ,...) 2 [START_REF] Hilbert | Über die stetige Abbildung einer linie auf ein Flächenstück[END_REF] be its proper expansion in the binary system. Then L 3 (t)=(x 3 (t),y 3 (t)) where

    
x 3 (t)=(0;t 1 ,t 3 ,t 5 ,...) 2 y 3 (t)=(0;t 2 ,t 4 ,t 6 ,...) 2 .

(

) 17 
One extends L 3 to t =1b ypic kingL 3 (1) = (1, 1).

Let us first state precisely the relationship that we already mentioned between L 3 and L 1 or L 2 . Recall that the restriction of the Devil's staircase to K is defined as follows:

If t =(0;2t 1 , 2t 2 ,...,2t n ,...) 3 , then D(t)=(0;t 1 ,t 2 ,t 3 ,...) 2 .

Note that this restriction is onto [0, 1] but is not one to one. It follows immediately from ( 12) and ( 17) that

∀t ∈K * , L 1 (t)=L 3 •D(t);
As a consequence of this formula and of Lemma 10, it follows that

L 3 is onto [0, 1] 2 .
The first step in order to study its properties is to rewrite it as a Davenport series. Let us start by recalling the definition of such series. They are odd 1-periodic functions of a particular type. Let {x} be the "sawtooth function"

{x} = x -[x] - 1 2 .
Davenport series are of the form

∞ n=1 a n {nx}; (18) 
in order to cover the case of space-filling functions, we will assume that a n ∈ IR d . We will only consider the case where (a n ) ∈ l 1 , so that the series is normally convergent. Such series already occurred in the famous "Habilitationschrift" of Riemann, see [START_REF] Kahane | Séries de Fourier et Ondelettes[END_REF][START_REF] Riemann | Uber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe[END_REF], as an example of a Riemann-integrable function which is not Cauchy-integrable. Under their general form, they were first studied in 1936 by H. Davenport, see [START_REF] Davenport | On some infinite series involving arithmetical functions[END_REF][START_REF] Davenport | On some infinite series involving arithmetical functions II[END_REF]; recent results on Davenport series can be found in [START_REF] Belov | On the Salem and Zygmund problem with respect to the smoothness of an analytic function that generates a Peano curve[END_REF][START_REF] Jaffard | On Davenport expansions[END_REF].

Proposition 19

The Lebesgue-Davenport function L 3 has the following expansion

                 x 3 (t)= 1 2 + ∞ n=0 a n {2 n t} where a 2l =2 -l and a 2l+1 = -2 -l-1 y 3 (t)= 1 2 + ∞ n=1 a n {2 n t} where a 2l = -2 -l and a 2l+1 =2 -l . ( 19 
)
Proof of Proposition 19: Let ω(t) be the one periodic function such that

     ω(t)=0 if t ∈ [0, 1 2 ) ω(t)=1 if t ∈ [ 1 2 , 1). If t n (= t n (t)
) is defined by ( 16), then

t n (t)=ω(2 n-1 t); thus x 3 (t)= ∞ n=0 ω(2 2n t) 2 n+1 and y 3 (t)= ∞ n=0 ω(2 2n+1 t) 2 n+1 .
Since

ω(t)=2{t}-{2t} + 1 2 ,
Proposition 19 follows immediately.

Recall that p-adic Davenport series are series of the form

f (t)= ∞ j=1 a j {p j t}, (20) 
where p is an integer larger than 2. Thus the coordinates of L 3 are examples of dyadic Davenport series.

The following result is a particular case of Proposition 12 of [START_REF] Jaffard | On Davenport expansions[END_REF], which yields the spectrum of singularities of p-adic Davenport series.

Proposition 20

The spectrum of singularities of the Lebesgue-Davenport function L 3 is given by

d 3 (H)=      2H if 0 ≤ H ≤ 1/2 -∞ else. (21) 
This result was not obtained through the everywhere determination of the Hölder exponent of such Davenport series, but as a consequence of general upper and lower bounds of their spectra; we will now sharpen this study by determining the exact pointwise regularity at every point of normally convergent p-adic Davenport series.

Pointwise regularity of p-adic Davenport series

We will assume in the following that (a j ) ∈ l 1 ; then the function f defined by [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF] is the sum of a normally convergent series; it follows that it is continuous at every non p-adic real number, and has a right and a left limit at every p-adic rational kp -l (where k ∧ p =1),withajumpofamplitude

b l = a l + a l+1 + •••. A sequence (b l ) l∈IN is called regular if ∃C>0: ∀l |b l |≥C sup m≥l |b m |. ( 22 
)
Theorem 21 Let f be given by ( 20), with a j ∈ l 1 ,a n da s s u m et h a ti t ss equence of jumps is regular. Let t 0 ∈ IR ;i ft 0 is not a p-adic rational, let

∆ j (t 0 )=dist(t 0 ,p -j ZZ ),t h e n h f (t 0 )=liminf j→∞ log(|b j |) log(∆ j (t 0 ))
.

Assume now that t 0 = kp -l with k ∧ p =1.I fb l =0then h f (t 0 )=0,e l s e

h f (t 0 )=liminf j→∞ log(|b j |) log(p -j ) .
Theorem 21 yields the pointwise Hölder exponent of L 3 at every point; indeed, the sequence of its triadic coefficients given by [START_REF] Jaffard | Old friends revisited. The multifractal nature of some classical functions[END_REF] obviously satisfies [START_REF] Jaffard | Local regularity of nonsmooh wavelet expansions and application to the Polya function[END_REF].

We will use the following lemma (Lemma 1 of [START_REF] Jaffard | Old friends revisited. The multifractal nature of some classical functions[END_REF]) which yields an upper bound for the Hölder exponent of any function having a dense set of discontinuities.

Lemma 22 Let f be a locally bounded function; let t 0 ∈ IR and let r n be a sequence converging to t 0 such that, at each point r n , f has a right and a left limit; then

h f (x 0 ) ≤ lim inf log |f (r + n ) -f (r - n )| log |r n -t 0 | .
We will also need the following lemma.

Lemma 23 Let ω>0.T h e r ee x i s t sC>0 such that

∀t 0 , ∀L ∈ IN , ∞ j=L (∆ j (t 0 )) ω ≤ C(∆ L (t 0 )) ω | log(∆ L (t 0 ))|.
Proof of Lemma 23 : Let M be such that:

p -M -1 < ∆ L (t 0 ) ≤ p -M . Then M ≥ L and, if j ≥ M , since ∆ j (t 0 ) ≤ p -j , j>M ∆ j (t 0 ) ω ≤ j>M p -jω ≤ Cp -Mω ≤ C∆ L (t 0 ) ω . If L ≤ j ≤ M , since ∆ j (t 0 ) is decreasing, M j=L ∆ j (t 0 ) ω ≤ M ∆ L (t 0 ) ω ≤ C(∆ L (t 0 )) ω | log(∆ L (t 0 ))|.

Proof of Theorem 21 :

We first consider the case where t 0 is not p-adic.

The discontinuity of f at a point k/p l where k ∧ p =1h a sa na m p l i t u d eb l ; we pick for r n the sequence of dyadic points k/p l that are closest to t 0 . Either k ∧ p =1a n dt h ej u m pa tt h a tpo i n th a sa m p l i t u d eb l ,o rk ∧ p =1a n dt h e jump has an amplitude b m for an m<l, which, using [START_REF] Jaffard | Local regularity of nonsmooh wavelet expansions and application to the Polya function[END_REF], is larger than Cb l . It follows from Lemma 22 that

h f (t 0 ) ≤ lim inf l→∞ log(|b l |) log(∆ l (t 0 )) .
Let h>0 be given and

I h =[ x 0 -h, x 0 + h].
Let l be the integer defined by the conditions

∆ l (t 0 ) ≤ h<∆ l-1 (t 0 ). ( 23 
)
The function {p j t} has no jump on I h if j<l , so that

l-1 j=0 a j {p j t 0 }-{p j (t 0 + h)} = h l-1 j=0 a j p j . ( 24 
)
Let m denote the integer such that

p -m-1 <h≤ p -m . ( 25 
)
It follows from the definition of ∆ l that m>l .I fl ≤ j<m , then {p j t} has exactly one jump on I h , so that

m-1 j=l a j {p j t 0 }-{p j (t 0 + h)} = h m-1 j=l a j p j - m-1 j=l a j = h m-1 j=l a j p j -b l + ∞ j=m a j . (26) 
Finally, since {p j t}≤1/2, it follows that

∞ j=m a j {p j t 0 }-{p j (t 0 + h)} ≤ ∞ j=m |a j |. ( 27 
)
It follows from ( 24), ( 26) and ( 27) that

f (t 0 ) -f (t 0 + h)= ∞ j=0 a j {p j t 0 }-{p j (t 0 + h)} = h m-1 j=0 a j p j -b l + O   ∞ j=m |a j |   . ( 28 
) Let A =liminf j→∞ log(|b j |) log(∆ j (t 0 ))
and let ω<A , which can be arbitrarily close to A.

In order to prove Theorem 21, we will bound each term of ( 28) by h ω | log(ω)|. By definition of A,f o rj large enough, |b j |≤∆ j (t 0 ) ω . In particular,

|b l |≤∆ l (t 0 ) ω ≤ h ω .
Since a j = b j -b j+1 ,itfollowsthat|a j |≤2∆ j (t 0 ) ω , and it follows from Lemma 23 that

∞ j=m |a j |≤2 ∞ j=m |b j |≤ ∞ j=m ∆ m (t 0 ) ω ≤ C(∆ m (t 0 )) ω | log(∆ m (t 0 ))| ≤ Cmp -mω ,
which, by ( 25) is bounded by

h ω | log(ω)|.
Let us now estimate the first term in the right hand-side of (28).

• If A ≤ 1, then we can pick ω<1, and

m-1 j=0 |a j |p j ≤ 2 m-1 j=0 |b j |p j ≤ 2 m-1 j=0 (∆ j (t 0 )) ω p j ≤ 2 m-1 j=0 p (1-ω)j ≤ Cp (1-ω)m ≤ Ch ω-1 .
• If A>1, then we can pick ω>1. We first notice that the series a j p j is absolutely convergent since the same estimate as above yields that its general term is bounded by p (1-ω)j . Therefore, we can write

h m-1 j=0 a j p j = h   ∞ j=0 a j p j   -h ∞ j=m a j p j .
The first term is a linear function of h , and the second one is bounded as above by

h ∞ j=m p (1-ω)j ≤ Chp (1-ω)m ≤ Ch ω .
We still have to consider the case of p-adic points. let t 0 = k p l with k ∧ p =1. If b l = 0, then f has a jump at t 0 and the Hölder exponent of f vanishes at t 0 . The case of a rational p-adic point where the jump vanishes is similar to the general case above, so that we omit its proof.

6M u l t i f r a c t a l a n a l y s i s b a s e d o n u l t r a m e t r i c t o p o l o g i e s

We will now show that, using an ultrametric distance on [0, 1], L 3 ,a n dm o r e generally p-adic Davenport series become monohölder functions. We get back to the setting supplied by (2), and we will use for distance the p-adic distance on [0, 1], which is the most natural in the setting of p-adic Davenport series. Definition 24 Let s, t ∈ [0, 1),w i t ht h ep r o p e re x p a n s i o n si nb a s ep s =(0;s 1 ,s 2 ,...,s n ,...) p ,t =(0;t 1 ,t 2 ,...,t n ,...) p respectively and δ p (s, t)=i n f{k :

s k = t k }-1 .T h ep-adic distance between s and t is d p (s, t)=p -δp(s,t) .
We first remark that the p-adic distance is an increasing right-continuous ultrametric distance, i.e. is an ultrametric distance satisfying the additional requirements

     if x ≤ y ≤ z then d(x, z)=max(d(x, y),d(y, z)), ∀x, lim h→0 + d(x, x + h)=0.
These two requirements can be interpreted as follows: Among ultrametric distances, these one are "as close as possible" to the usual distance onI R .

In the following of this section, functions are considered as mappings f : (IR,d p ) -→ (IR,d), where d p is the p-adic ultrametric distance, whereas d is the usual distance. Recall that the finite differences of arbitrary order are defined as follows.

(

∆ 1 h f )(x)=f (x + h) -f (x), (∆ n+1 h f )(x)=(∆ n h f )(x + h) -(∆ n h f )(x).
Regularity criteria in this setting are defined as follows.

Definition 25 Let α>0.Af u n c t i o nf :[ 0 , 1] → IR belongs to C α p (x 0 ) if there exist C>0 and a polynomial P of degree less than α such that

∀x ∈ [0, 1], |f (x) -P (x -x 0 )|≤C(d p (x, x 0 )) α . ( 29 
)
The p-adic Hölder exponent of f at

x 0 is h p f (x 0 ) = sup{α : f ∈ C α p (x 0 )}. Af u n c t i o nf belongs to C α p ([0, 1]) if there exists C>0 such that, ∀x 0 ∈ [0, 1], (29) holds. 
In the p-adic setting, one can also define a notion of uniform irregularity, which is similar to the one defined in Definition 5, except that in [START_REF] Biswas | Hilbert scan and image compression[END_REF], the condition y ∈ B(x, r) is replaced by y ∈ B p (x, r), where B p (x, r) denotes the p-adic ball of center x and radius r. 

|(∆ n h f )(y)|≥Cr α . (30) 
Proposition 27 Let f be given by [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF], with a j ∈ l 1 and let α ∈ (0, 1).

• If there exists C>0 such that |a l |≤Cp -αl ,t h e nf ∈ C α p ([0, 1]). • If there exists C>0 such that for l large enough |b l |≥Cp -αl ,t h e nf ∈ I α p ([0, 1]).
Proposition 19 implies that L 3 , considered as a function defined on [0, 1] endowed with the p-adic distance, is a monohölder function of exponent 1/2. In order to prove Proposition 27, we will need the following lemma.

Lemma 28

The mapping x →{ p n x} is Lipschitz, with Lipschitz constant bounded by 2p n .

Proof: Let x, y ∈ [0, 1] and let l be such that d p (x, y)=p -l ; then x and y are in the same p-adic interval of length p -l so that |x -y|≤p -l ; therefore ∀x, y : |x -y|≤d p (x, y).

If l ≤ n, then

|{p n x}-{p n y}| ≤ 2 ≤ 2p n d p (x, y).
If l>n , then 2 n x and 2 n y are in the same p-adic interval of length p n-l and {p n x} is linear on this interval, so that 7N u m e r i c a l r e s u l t s c o n c e r n i n g t h e m u l t i f r a c t a l f o r m a l i s m s

|{p n x}-{p n y}| ≤ p n |x -y|≤2p n d p (x,
The numerical determination of the spectrum of singularities of a signal is derived through the application of a multifractal formalism; in such formulas, the spectrum is obtained through a Legendre transform of a "scaling" function which is computable on real life data. The variants depend on the use of different scaling functions, so that the accuracy of the method depends on two conditions: A theoretical one, the validity of the multifractal formalism used, and a practical one, the properties of the scaling function used, and the way it is discretized. Its estimation relies on parameters (e.g. the number of points used to sample the signal, the error in the measurements) that are often hard to handle. A natural way to determine whether or not a method is an effective one is to test it on a collection of mathematical functions or stochastic processes whose multifractal spectra are theoretically known. In the following, we recall the two most reliable numerical methods which have been implemented in order to estimate the entire spectrum and we test their accuracy on the functions introduced above.

Definition of the WTMM and the WLM

The two formalisms we will review here are inspired by the one of Parisi and Frish [START_REF] Parisi | On the singularity spectrum of fully developped turbulence[END_REF]; its principium is to estimate the spectrum of singularities from global quantities, easily computable: the L q -norms of the increments. The main drawback of this method is that it is meaningless for negative values of q and, as a consequence, can only lead, at best, to the increasing part of the spectrum. Some attempts were made to fix this problem, but none really succeeded (see [START_REF] Barabási | Multifractality of self-affine fractals[END_REF][START_REF] Muzy | Multifractal formalism for signals: The structure-function approach versus the wavelet-transform modulus-maxima method[END_REF]).

To overcome the difficulties raised by the negative values of q, Arneodo et al. proposed a wavelet-based method: the Wavelet Transform Maxima Method (WTMM), see [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF]. The idea is to replace the increments with a wavelet and to get rid of null or small values by only retaining the maxima of the continuous wavelet transform. We will suppose that the function ψ ∈ L 1 ∩ L ∞ (IR) is either even or odd. Such a "wavelet" is r-smooth if ψ ∈ C r (IR), if its r first moments vanish, and if the ∂ s ψ have fast decay (s ≤ r). The continuous wavelet transform of a function f ∈ L 2 (IR) is defined as follow,

W f (b, a)= 1 a f (x)ψ x -b a dx.
The WTMM is computed using the notion of line of maxima. For some a ∈ The partition function associated with the lines of maxima is

S τ (a, q)= l m q a ,
where the sum is taken over all the lines of maxima reaching the scale a.W e then set τ (q)=liminf a→0 log S τ (a, q) log a [START_REF] Muzy | Analyse de distributions fractales à partir de leur transformée en ondelettes[END_REF] to obtain the spectrum of singularities from the following relation,

d τ (h)=inf q {hq -τ (q)}.
Using the maxima for the computation of S τ prevents the presence of null values in the wavelet transform.

More recently, a similar approach based on the discrete wavelet transform was introduced: the Wavelet Leaders Method (WLM), see [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF]. Let us recall some definitions (see [START_REF] Abry | Wavelet leaders in multifractal analysis[END_REF][START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF]). From now on, we will denote by λ the dyadic interval

λ = λ(j, k)=[ k 2 j , k+1 2 
j ]. One uses r-smooth wavelets ψ such that {2 j/2 ψ(2 j xk)} : j, k ∈ ZZ } is an orthonormal basis of L 2 (IR). Therefore, any function f ∈ L 2 (IR) can be written

f (x)= j,k∈ZZ c λ ψ(2 j x -k),
where c λ =2 j f (x)ψ(2 j xk)dx. The wavelet leader associated to the dyadic interval λ is the quantity

d λ = sup λ ⊂3λ |c λ |.
We then define the partition function associated to the WLM S ω (j, q)=2 -j

λ∈Λ j * d q λ , (33) 
where * means that the sum is restricted to the intervals λ such that sup λ ⊂λ |c λ | = 0. This restriction is made in order to avoid, as much as possible, the presence of small, numerically instable, coefficients. The sum is taken over all intervals λ belonging to Λ j = {λ :diam(λ)=2 -j }. From this, we set

ω(q)=liminf j→∞ log S ω (j, q) log 2 -j (34) 
to obtain the spectrum of singularities as

d ω (h)=inf q {hq -ω(q)}. (35) 
The heuristic argument from which the preceeding methods are derived is the following (we describe it for the WLM, but it can be transposedt ot h e WTMM). Equality (34) means * d q λ ∼ 2 -ω(q)j . The contribution of the dyadic intervals λ ∈ Λ j containing a point whose Hölder exponent is h to the sum * d q λ can be estimated as follow. If λ j (x) ∈ Λ j is the interval at scale j containing x, the Hölder exponent h(x)o ff at x is given by h

(x)= liminf j→∞ λ ⊂3λ j (x) log d λ log 2 -j , (36) 
(see [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF]). Therefore, one has d λ ∼ 2 -hj . Moreover, the number of these dyadic intervals λ should be about 2 dω(h)j , where d ω is the multifractal spectrum of the function. Hence, the contribution is

2 (dω(h)-hq)j . (37) 
The dominating contribution is the one corresponding to a value of h associated with the biggest exponent in (37); thus, one can expect the following relation

-ω(q) = sup h {d ω (h) -hq}.
As -ω is a convex function, if d ω is concave, then -ω and -d ω are convex conjugate functions, so that (35) holds. Let us remark that the preceeding argument is far from being a mathematical proof. The only result valid in the general case is the following inequality, see [START_REF] Jaffard | Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of[END_REF],

d ω (h) ≤ inf q (hq -ω(q)). (38) 
These two formalisms are the only ones that can lead to the entire spectrum of singularities (i.e. that allow to obtain the decreasing part of the spectrum).

The main advantage of the WLM is its theoretical background. In particular, relation [START_REF] Nicolay | Arneodo Bifractality of human DNA strand-asymmetry profiles results from transcription[END_REF], used in the derivation of the multifractal formalism, does not hold in general for wavelet maxima. The WLM could also be more efficient in the caracterization of the regularity of signals with oscillating singularities, a domain where the WTMM never suceeded. Moreover the WLM is faster than the WTMM, since the complexity of the WLM is linear, while the order of complexity of the WTMM is at least N log N (indeed, the computational speed of the two-dimensional WTMM can be a real problem). However, the WTMM has been succesfully applied to numerous applications, going from DNA sequences to stock market data analysis (see e.g. [START_REF] Arneodo | Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data[END_REF]). It is translation invariant, a property that the WLM does not have. Moreover, the use of a starred sum in [START_REF] Moore | On certain crinkly curves[END_REF] can induce an important loss of coefficients in the definition of S ω . This can lead to unsatisfactory results when applied to functions such as the devil staircaise.

7.2 Multifractal formalisms applied to L 1 , L 2 and L 3

We show here that the WLM applied to highly irregular functions gives at least the same positive results, but in a much faster way. However, some problems can arise if too many wavelet leaders vanish.

To test and compare the efficiency of the two methods, we have computed the functions L 1 , L 2 and L 3 with sample sizes ranging from S =2 14 to S =2 22 .

We have limited the study of the functions τ and ω within the range -3 ≤ q ≤ 5 (as we will see, there is no need to extend the study for larger range when considering these specific Lebesgue-type functions). For both methods, wavelets with exactly two vanishing moments were used: the second order derivative of the Gaussian function for the WTMM and the second order Daubechies wavelet for the WLM (let us recall that the Daubechies wavelets are compactly supported, see [START_REF] Daubechies | Ten lectures on wavelets[END_REF]). The results remain unchanged if wavelets with a higher number of vanishing moments are chosen. For a fixed q, τ (q) and ω(q) are obtained through a linear regression, following [START_REF] Muzy | Analyse de distributions fractales à partir de leur transformée en ondelettes[END_REF] and [START_REF] Morayne | On differentiability of peano-Type functions (I and II)[END_REF] respectively.

The function L 2 is a monohölder function. The associated multifractal spectrum is thus the simplest spectrum we have obtained, since it is reduced to a single point:

d 2 (h)=        1i f h = log 2 2log3 =0.31546 ••• -∞ else .
As shown in Fig. 6 for sample size S =2 14 , both the functions τ and ω display a remarkable linear behavior, which is the mark of a monohölder function. The Hölder exponent h is then obtained through a linear regression. The WTMM gives h τ ≈ 0.311 ± 0.024 and the WLM gives h ω ≈ 0.319 ± 0.024. In both case, the error is close to 4.110 -3 . Fig. 7 shows the spectra of singularities obtained from τ and ω respectively, through a Legendre transform. The function L 1 is monofractal but not monohölder:

d 1 (h)=              log 2 log 3 if h = log 2 2log3 1i f h = ∞ -∞ else .
However, if a compactly supported wavelet with more than one vanishing moment is used to perform the wavelet transform, the coefficients corresponding to the C ∞ component, i.e. the linear parts of L 1 , are equal to zero. Since the lines of maxima are made of maxima of the modulus of the continuous wavelet transform, such coefficients are not taken into account intheWTMM. size S =2 14 , but a sample size of S =2 20 is needed to estimate the maximum Hölder exponent with a precision of 2% (the maximum Hölder exponent is simply obtained from τ or ω through a linear regression over the negative values of q, see Fig. 10). As showed in Fig. 11, both formalisms lead to a strictly concave spectrum whose shape is close to the exact linear spectrum. Recall that d 3 has a dense set of discontinuities, so that the upper bound [START_REF] Patil | Serial data fusion using space-filling curves in wireless sensor networks[END_REF] is no more valid. In short, there is no theoretical backgroung for multifractal functions. Under such condition, it is quite remarkable that the numerical results obtained are not too far from the theoretical spectrum.

In conclusion, we can say that the WTMM and the WLM give the same, correct, results on the tested functions, but some problems can arise with the WLM when the discrete wavelet transform contains too many vanishing coefficients. The main pitfall of the WTMM, beside the lack of theoretical foundation, is its computational speed and the quantity of memory needed. As showed in Fig. 12, when applied to the function L 3 with a sample size equal to S =2 22 , the WTMM is about six times slower than the WLM.
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 1 Fig.1. The components x 1 (t) and y 1 (t) of the Lebesgue function L 1 (t)=(x 1 (t),y 1 (t)).

  Fig. 3. The components x 2 (t) and y 2 (t) of the Schoenberg function L 2 (t)=(x 2 (t),y 2 (t)).

Definition 16

 16 Let f be a continuous function on IR .L e tI n =( a n ,b n ) be a sequence of two by two disjoint open intervals. The linear interpolation of f on the (I n ) n∈IN is the continuous function g defined by • If x/ ∈ I n ,t h e ng(x)=f (x); • g is linear on each interval [a n ,b n ].Proposition 17 Let α ∈ (0, 1) and f ∈ C α (IR). Its linear interpolation on the (I n ) n∈IN also belongs to C α (IR).

Fig. 5 .

 5 Fig. 5. The components x 3 (t) and y 3 (t) of the Lebesgue-Davenport function L 3 (t)=(x 3 (t),y 3 (t)).

Definition 26

 26 Let α>0.Af u n c t i o nf :[ 0 , 1] → IR belongs to I α p ([0, 1]) if there exists C>0 such that, for any ball B = B(x, r),a n df o rn =[α], sup y,y+nh∈B

p

  -αn p n d p (x, y)+C ∞ n=l+1 p -αn ≤ Cp -αl ≤ Cd p (x, y) α .We now prove the second part of the proposition. Consider an open p-adic interval I k,l-1 of length p -l+1 . At each p-adic rational kp -l inside this interval, the jump of f is b l , and therefore there exist points x, y arbitrary close to kp -l and which lie on on each side of it and such that |f (x)f (y)|≥| b l |/2. The second part of the proposition follows.

  [a ,a ], we write l a = |W (b 0 ,a)| if b 0 is a local maximum of the function b → |W (b, a)|. These local maxima are tracked and linked through the scales to yield lines of maxima l a which are replaced by the quantity m a = sup a ≤a l a .
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 67 Fig. 6. (a) The estimated function τ associated to the Schoenberg function L 2 .( b ) The estimated function ω.

Fig. 9 .

 9 Fig. 9. (a) The spectrum of singularities of L 1 estimated through the function τ (see Fig.8). (b) The spectrum obtained using ω. The dashed lines intersect at ( log 2 2log3 , log 2 log 3 ).

Fig. 10 .

 10 Fig. 10. (a) The estimated function τ associated to the Lebesgue-Davenport function L 3 . (b) The estimated function ω.

Fig. 11 .Fig. 12 .

 1112 Fig. 11. (a) The spectrum of singularities of L 3 estimated through the function τ (see Fig. 10). (b) The spectrum obtained using ω. The real spectrum d 3 is plotted with dashed lines

  3. The components x 2 (t) and y 2 (t) of the Schoenberg function L Proposition 12 The Schoenberg function L 2 coincides with the Lebesgue function L 1 on the triadic Cantor set.

	Proof of Proposition 12: Let us first check that, if t ∈Kis written as in
	(11), then
	p(3

2 (t)=(x 2 (t),y 2 (t)). Fig.

4

. The curve (x 2 (t),y 2 (t)) approximated at resolution levels j =2 7 and 2 9 respectively.

The relationship between L 2 and L 1 was established by I. Schoenberg in 1938, see

[START_REF] Schoenberg | The Peano curve of Lebesgue[END_REF]

: n t)=t n+1 .

  y). The function f is the sum of a normally convergent series of continuous functions (for the p-adic distance) and is therefore continuous. If |a l |≤ C p αl and if d p (x, y)=p -l ,t h e n

	Proof of Proposition 27:

|f (x)f (y)|≤
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For the WLM, vanishing coefficients have to be dropped to compute the partition function . This operation must be done carefully. The best method seems to be using the starred sum in the formula [START_REF] Moore | On certain crinkly curves[END_REF], after having set to zero the coefficients beyond a fixed threshold, which should correspond to a numerical accuracy. In the case of L 1 , this threshold is naturally obtained by checking the values of the coefficients at the lowest scale corresponding to the interval ] 1 3 , 2 3 [. Since, these coefficients should vanish, the threshold must be larger than their numerical value, which is a computational artifact. The main disadvantage of this "starred sum method" is that, in some special situations, many coefficients can be lost, as it is the case with L 1 . Although this algorithm is satisfactory when applied to the functions studied here, it could be interesting to define the threshold as a function of the scale.

Since vanishing coefficients are not taken into account, both theW T M Ma n d the WLM are only performed on the function L 1 restricted to the Cantor set K, which is a monohölder function. The so-obtained spectrum of singularities is thus reduced to one single point. If the wavelet has only one vanishing moment, one can show that the multifractal formalism will lead to a wrong spectrum.

Both τ and ω display the expected linear behavior when working with the sample size S =2 20 , as showed in Fig. 8. One gets h τ ≈ 0.339 ± 0.03 and h ω ≈ 0.335 ± 0.02. When working with a smaller sample size (S =2 14 ), the corresponding τ still display a linear behavior with an overestimated exponent (h τ ≈ 0.4 ± 0.015), while no such linear behavior is observed for ω.

The Lebesgue-Davenport function L 3 is neither monohölder nor monofractal; the associated spectrum of singularities is given by Proposition 20. Both τ and ω display a satisfactory shape when working with the smallest sample