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Pointwise and directional regularity of

nonharmonic Fourier series

S. Jaffard a,

aUniversité Paris Est Créteil

Abstract

We investigate how the regularity of nonharmonic Fourier series is related to the
spacing of their frequencies. This is obtained by using a transform which simultane-
ously captures the advantages of the Gabor and Wavelet transforms. Applications
to the everywhere irregularity of solutions of some PDEs are given. We extend these
results to the anisotropic setting in order to derive directional irregularity criteria.
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This paper is dedicated to the memory of Jean Morlet, who made me vividly
aware of the importance of cross-fertilizations between mathematics and signal
processing.

Jean Morlet always advocated the importance of comparing the possibilities
of two key tools in signal processing: The wavelet transform and the Gabor
transform. One purpose of the present paper is to show on a explicit problem
that these tools should not be opposed, but can be combined in order to yield
optimal results in the study of the regularity of nonharmonic Fourier series.

Let (λn)n∈IN be a sequence of points in IRd ; a function which can be written

f(x) =
�

n∈IN

ane
iλn·x, (1)

(where (an)n∈IN is a sequence of complex numbers) is called a nonharmonic
Fourier series; note that the word “nonharmonic” points to the fact that we
do not make the assumption that the frequencies λn are a subset of a discrete
subgroup of IRd; see [18] for for a comprehensive study of the properties of
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nonharmonic Fourier series. Our purpose is to study the relationship between
the regularity of such series and the spacing of their frequencies.

The first example of a Fourier series displaying large gaps between its frequen-
cies was the function

R(t) =
∞
�

n=1

sin(n2t)

n2
, (2)

which Riemann expected to be a possible example of a continuous nowhere
differentiable function, see [10,14]. The relationship between the spacings of
the frequencies of a Fourier series and its everywhere irregularity has been the
subject of many investigations, starting with the famous example of the Weier-
strass functions; in Section 1, we review these results and show how they can all
be derived from a simple property of the Gabor-Wavelet transform: Theorem
7 yields general irregularity results for multidimensional nonharmonic Fourier
series. In Section 2, we show that, surprisingly, this simple result is optimal
only for Hölder exponents less than 1, and Theorem 11 shows how it can be
improved for larger Hölder exponents. Extensions are worked out in Section 3,
and applications to everywhere irregularity of solutions of PDEs are derived
in Section 4. In Section 5, the notion of directional irregularity is discussed,
and a new definition is proposed; the techniques of Section 1 are adapted in
a non-isotropic framework, and we derive directional irregularity results for
Fourier series whose frequencies have lacunarities in certain directions.

1 Pointwise T p
u irregularity of lacunary Fourier series

The notion of pointwise regularity most commonly used in statements con-
cerning lacunary Fourier series is the pointwise Hölder regularity. The natural
setting for this notion is supplied by functions with slow growth, i.e. locally
bounded functions f which satisfy

∃C, A > 0, ∀R, sup
B(0,R)

|f(x)| ≤ C(1 + R)A,

where B(x, R) denote the open ball centered at x and of radius R.

Definition 1 Let f : IRd → C be a function with slow growth and let α ≥ 0;
f ∈ Cα(x0) if there exist R > 0, C > 0, and a polynomial P of degree less
than α such that, for R small enough,

if |x − x0| ≤ R, then |f(x) − P (x − x0)| ≤ C|x − x0|
α. (3)
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The Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

This notion is only pertinent when applied to locally bounded functions; in-
deed, (3) implies that f is bounded in a neighbourhood of x0. We will derive
pointwise irregularity results for solutions of PDEs where the natural function
space setting is Lp or a Sobolev space which includes unbounded functions. In
such cases, one has to use an extension of pointwise smoothness, which was
introduced by Calderón and Zygmund in 1961, see [3]. Let B(x0, R) denote
the open ball centered at x0 and of radius R. We first define the global setting
fitted to this notion.

Definition 2 Let f :→ C be a function which locally belongs to Lp(IRd). The
function f has slow growth in Lp if

∃A, C > 0, ∀R,
�

B(0,R)

|f(x)|pdx ≤ C(1 + R)A. (4)

Definition 3 Let p ∈ [1, +∞) and α > −d/p. Let f be a function with slow
growth in Lp. We say that f belongs to T p

α(x0) if there exist C > 0 and a
polynomial P of degree less than α such that, for r small enough,







1

rd

�

B(x0,r)

|f(x) − P (x − x0)|
pdx







1/p

≤ Crα. (5)

The p-exponent of f at x0 is hp
f (x0) = sup{α : f ∈ T p

α(x0)}.

Note that h∞
f (x0) = hf (x0) and, if p ≥ q, then hp

f (x0) ≤ hq
f (x0), see [3].

1.1 A pointwise irregularity criterium

We start by establishing a general pointwise irregularity criterium based on the
Gabor-wavelet transform (referred to in the following as the GW transform).
We will use the following notations: If λ, x ∈ IRd, λ ·x denotes the usual scalar
product of λ and x; if Ω is a rotation in IRd (i.e. belongs to SOd), then

φΩ(x) = φ(Ω(x)).

Definition 4 Let φ : IRd −→ IR be a function in the Schwartz class such
that φ̂(ξ) is supported in the unit ball centered at 0. The GW transform of a
function or a tempered distribution f defined on IRd is defined by

d(a, b, λ, Ω) =
1

ad

�

IRd

f(x)e−iλ·xφΩ

�

x − b

a

�

dx. (6)
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The following pointwise irregularity criterium is a variant of the usual wavelet
criterium, either for Hölder regularity, see [9], or for T p

α regularity, see [11,12].

Proposition 5 Let p ∈ (1, +∞] and α > −d/p. Let f be a function with slow
growth in Lp; if f belongs to T p

α(x0), then there exists C > 0 such that

∀a ∈ (0, 1], ∀b : |x0 − b| ≤ 1, ∀Ω ∈ SOd, ∀λ : |λ| ≥ 1/a,

|d(a, b, λ, Ω)| ≤ Caα

�

1 +
|x0 − b|

a

�α+d/p

. (7)

Remark: If we pick λ of the form λ = u/a, where u is a fixed vector satis-
fying � u �≥ 1, then (7) boils down to the usual the two-microlocal condition
f ∈ Cα,−α−d/p(x0); indeed, ψ(x) = e−iuxφ(x) has vanishing moments of all
orders so that restricting to constants λ of this form in the GW transform
amounts to consider the usual continuous wavelet transform of f . This two-
microlocal condition essentially means that a fractional primitive of f of order
d/p belongs to Cα+d/p(x0), see [9,13] for precise statements and results, and
[11] for sharper results in the case of the wavelet transform.

Proof of Proposition 5: If ωa,λ,Ω(x) = a−de−iλ·xφΩ(x/a), then

�ωa,λ,Ω(ξ) = φ̂(a Ω∗(ξ + λ)),

so that, as soon as |λ| > 1/a, then �ωa,λ,Ω and all its derivatives vanishe at 0.
It follows that, if P is the polynomial given by (5), then

d(a, b, λ, Ω) =
1

ad

�

IRd

(f(x) − P (x − x0))e
iλ·xφΩ

�

x − b

a

�

dx.

For n ≥ 0, let Bn = B(b, 2na), ∆n = Bn+1 − Bn and ∆0 = B0. We split
d(a, b, λ, Ω) as a sum of integrals In over ∆n. Let q denote the conjugate
exponent of p; by Hölder’s inequality,

∀n ≥ 0, |In| ≤
1

ad
� f(x) − P (x − x0) �Lp(Bn+1)

�

�

�

�

�

�

�

�

�

�

φΩ

�

x − b

a

��

�

�

�

�

�

�

�

�

�

Lq(∆n)

.

Note that, because of the global slow growth assumption, the precise value of
r in (5) is irrelevant, and we can pick r = 2.

Let N be such that

2Na ≤ 1 < 2N+1a.
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If n ≤ N , then all integrals bear on domains included in B(x0, 2). In that
case, since Bn+1 ⊂ B(x0, |x0 − b| + 2n+1a), and since φ has fast decay, for all
D large enough,

|In| ≤
CC �(D)

ad
(|x0 − b| + 2n+1a)α+d/pad/q(2−Dn)1/q.

If n > N , we use the slow growth assumption on f , which yields that

|In| ≤ C(2na)Aad/q(2−Dn)1/q,

where A is given, but D can be picked aribitrarily large (because of the fast
decay of φ).

Summing up on all values of n, we obtain that |d(a, b, λ, Ω)| is bounded by

Ca−d/p
N

�

n=0

(|x0 − b| + 2n+1a)α+d/p2−Dnq +
∞
�

N+1

C(2na)Aad/q(2−Dn)1/q

≤ C
�

|x0 − b|α+d/pa−d/p + aα
�

.

Hence Proposition 5 holds.

1.2 A first application to nonharmonic Fourier series

Let (λn)n∈IN be a sequence of points in IRd. We will consider series of the form
given by (1). Of course, we can (and will) assume that the λn are distinct;
note that we do not assume the λn to be integers. One refers to such series
as nonharmonic Fourier series, see [18]. In order to perform a GW analysis
of f , we need this series to converge in the space of tempered distributions. A
straightforward sufficient condition for convergence in S � of (1) is

∃N ∈ IN :
�

n∈IN

|an|

(1 + |λn|)N
< ∞. (8)

Definition 6 Let (λn) be a sequence in IRd. The gap sequence associated with
(λn) is the sequence (θn) defined by

θn = inf
m�=n

|λn − λm|

(θn is the distance between λn and its closest neighbour).
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We say that the sequence (λn) is separated if

inf
n

θn > 0.

Note that (8) is not a necessary condition for the convergence of (1) in S �;
however, if the sequence (λn) is a finite union of separated sequences (which
will always be the case in the applications that we will consider), then one
easily checks that (8) is indeed a necessary and sufficient condition of conver-
gence in S �. Therefore, we will always assume in the following that (8) holds.
The following statement includes, and slightly improves the previous results
concerning everywhere irregularity of (nonharmonic) Fourier series.

Theorem 7 Let f be given by (1), where we assume that the sequences (λn)n∈IN

and (an)n∈IN satisfy (8). Let x0 be a given point of IRd, p > 1, α > −d/p and
assume that f has slow growth in Lp. If f ∈ T p

α(x0), then there exists C such
that, for all n,

if |λn| ≥ θn, then |an| ≤
C

(θn)α
. (9)

Thus, if

H = sup{α : (9) holds},

then, for any x0 ∈ IRd, hp
f (x0) ≤ H (hence hf (x0) ≤ H).

Note that previous results anticipating Theorem 7 only dealt with point-
wise Hölder regularity. The following definition supplies a strong lacunarity
condition, often considered in the past.

Definition 8 Let (λn)n∈IN ∈ IRd; it is a Hadamard sequence if it is separated
and satisfies

∃C > 0 such that ∀n, θn ≥ C|λn|. (10)

Many papers have dealt with irregularity properties of lacunary Fourier series.
We only mention a few landmarks that anticipated Theorem 7.

• In 1962, G. Freud considered one-dimensional Hadamard sequences of in-
teger in dimension 1, see [5]. He showed that, if f ∈ L1(T ), then hf is
constant.

• In 1965, M. Izumi, S.-I. Izumi and J.-P. Kahane obtained Theorem 7 in the
following case: d = 1, λn ∈ ZZ, f is continuous and f ∈ Cα(x0), see [8].
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• The first multidimensional result was obtained by J. Pesek in 1977, who
considered periodic multiple Fourier series, i.e. when λn ∈ ZZd, see [17] (and
also [14] for related results). Assume that f ∈ L1(T d), f ∈ Cα(x0) and let
ω ∈ (0, 1); J. Pesek showed that, if

∀n, θn ≥ C|λn|
ω, (11)

then an = O
�

|λn|
−ωα

�

; note that the assumptions of Theorem 7 actually do
not require the lacunarity condition to hold uniformly for all the λn: in order
to recover an irregularity result, one only needs the lacunarity condition to
hold on a subsequence.

• In 2006, J. Dixmier, J.-P. Kahane and J.-L. Nicolas proved Theorem 7 when
the λn form a Hadamard sequence, see [4].

Proof of Theorem 7: It is a direct consequence of Proposition 5: We estimate
the GW transform of f at particular points, and for a function φ such that
φ̂(ξ) is radial, supported in the unit ball centered at 0, and such that φ̂(0) = 1.
Taking Ω = Id, we consider

Dm = d
�

1

θm

, x0, λm, Id
�

. (12)

On one hand,

Dm = (θm)d
�

�

�

n

ane
i(λn−λm)·xφ(θm(x − x0))

�

dx

=
�

n

anφ̂

�

λm − λn

θn

�

ei(λn−λm)·x0 ; (13)

since φ̂ vanishes outside of B(0, 1), the definition of θn implies that
φ̂ ((λm − λn)/θn) = δn,m, so that Dm = am. On the other hand, if f ∈ T p

α(x0),
then Proposition 5 implies that, for any m such that |λm| ≥ θm, |Dm| ≤ Cθ−α

m ;
Theorem 7 follows.

2 The Optimality of Theorem 7

J. Pesek showed that, for a given sequence of frequencies λn ∈ ZZd, and for
given α ∈ (0, 1], and ω ∈ (0, 1], if (11) does not hold, then there exists a

sequence (an) such that an �= O
�

|λn|
−ωα

�

, though f ∈ L1(T d) and f ∈ Cα(x0).
We now extend Pesek’s optimality theorem in the following direction: the
condition λn ∈ ZZd is not required (which means that its proof does not
require the use of explicit trigonometric polynomials).
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Proposition 9 Let λn be a sequence taking values in IRd. Let α ∈ (0, 1) and
ω ∈ (0, 1]. Assume that there exists a subsequence λn(m) such that (11) does

not hold; then there exists a sequence (an) such that an �= O
�

|λn|
−ωα

�

, but

f ∈ L1
loc and f ∈ Cα(x0).

Proof of Proposition 9: It is clearly sufficient to construct a one-dimensional
example, and one can restrict to the case x0 = 0. After perhaps extracting
a subsequence, we can assume that λn has a subsequence composed of two
sets of frequencies µn and νn which both increase at least exponentially, and
satisfy

|µn − νn| ≤ εn|µn|
ω

where (εn) tends to 0. Let γn be a sequence satisfying

• γn is decreasing and tends to 0
• γn ≥ εn

• γn+1/γn → 1.

Let

f(x) =
�

n

1

γα
n |µn|ωα

�

eiµnx − eiνnx
�

. (14)

Note that an �= O
�

|λn|
−ωα

�

. Proposition 9 will be proved if we can show that

f ∈ Cα(x0).

The assumptions on γn and the exponential growth of µn imply that the
sequence 1/(γn|µn|

ω) is decreasing for n large enough and tends to 0. Let N
be such that

1

γN+1|µN+1|ω
< |x| ≤

1

γN |µN |ω
.

Then

|f(x)| ≤
N

�

n=1

1

γα
n |µn|ωα

|µn − νn||x| + 2
∞
�

n=N+1

1

γα
n |µn|ωα

≤
N

�

n=1

γ1−α
n |µn|

ω(1−α)|x| + 2
∞
�

n=N+1

1

γα
n |µn|ωα

.

Once again, the assumptions on γn and the exponential growth of µn imply
that the sequence γ1−α

n |µn|
ω(1−α) (respectively γ−α

n |µn|
−ωα) increases (respec-
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tively decreases) geometrically; therefore

|f(x)| ≤ Cγ1−α
N |µN |

ω(1−α)|x| + C
1

γα
N |µN |ωα

,

which, using the definition of N is bounded by C|x|α.

J. Pesek expected his optimality result to be true without the limitation α < 1
(and he actually claimed that, in dimension 1, his proof extends to larger values
of α). Surprisingly, we will now show that, despite this natural expectation,
Theorem 7 is not optimal when α is larger than 1.

Definition 10 Let (λn) be a sequence in IRd, with gap sequence (θn). The
second order gap sequence (ωn)n∈IN associated with (λn) is the distance between
λn and its second closest neighbour; it can be formally defined as follows: Let

An = {m : |λn − λm| = θn}.

If An has only one element l(n), then ωn = inf
m/∈{n,l(n)}

|λn − λm|; else ωn = θn.

Note that θn ≤ ωn. The following result improves theorem 7 when θn = o(ωn)
and α > 1; therefore it shows that, in such cases, Theorem 7 is not optimal.

Theorem 11 Let f be given by (1), where we assume that the sequences
(λn)n∈IN and (an)n∈IN satisfy (8). Let x0 be a given point of IRd, p > 1, and as-
sume that f belongs to Lp in a neighbourhood of x0. Let α ≥ 1; if f ∈ T p

α(x0),
then there exists C such that, for all n,

if |λn| ≥ ωn, then |an| ≤
C

(ωn)α−1θn

. (15)

Proof of Theorem 11: First, note that, if θn is not a o(ωn), then Theorem
11 boils down to Theorem 7; so, we can assume that θn = o(ωn).

We apply again Proposition 5, but instead of the previous function φ, we use φ1

defined by φ̂1(ξ) = φ̂(ξ)ξ1, where ξ1 denotes the first component of ξ and φ̂(ξ)
is radial, supported in the unit ball centered at 0, and such that φ̂(ξ) = 1 in a
neighbourhood of 0. Denote by Ωm a rotation which maps the first canonical
vector e1 to the unit vector in the direction of λm − λl(m), and let

Em = d
�

1

ωm

, x0, λm, Ωm

�

.
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A similar computation to the one which led to (13) now yields
Dm = am|λl(m) − λm|/ωm; Proposition 5 implies that |Dm| ≤ Cω−α

m ; since
|λl(m) − λm| = θm, Theorem 7 follows.

One can easily prove the optimality of Theorem 11 when 1 ≤ α ≤ 2, using
a function f similar to (14), but which involves differences of order two of
complex exponentials. Note also that one could push the argument further
and obtain more complicated criteria that would be optimal for larger and
larger values of α.

An unexplored open problem is to understand the optimality of these criteria
when both the sequence λn and the order of magnitude of the an are given.
Let us give a simple example: Let (an) be a sequence of coefficients satisfying

∃C, C � > 0 such that ∀n ≥ 1,
C

n2
≤ |an| ≤

C �

n2
, (16)

and let

f(t) =
∞
�

n=1

ansin(n2t). (17)

Proposition 9 or Theorem 11 yield that the Hölder exponent of f is everywhere
smaller than 2. In the case where an = 1/n2, the function f considered is (2),
and its largest Hölder exponent is 3/2, see [10]; however, it is not known if
this is best possible; i.e. does there exist a sequence (an) satisfying (16) and
such that the Hölder exponent of f at some points is larger than 3/2? Can it
be as large as 2? (This is expected if Theorem 11 is optimal in that case.)

3 Applications and extensions of Theorems 7 and 11

3.1 Hölder range of (q, δ) lacunary nonharmonic Fourier series

We first apply Theorems 7 and 11 to a class of lacunary nonharmonic Fourier
series whose frequencies grow polynomially, as in (2).

Definition 12 Let f be given by (1), and let δ be defined by

δ = lim inf

�

− log |an|

log |λn|

�

.
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Assume that δ is finite and that, for some q > 1,

∀n, θn ≥ C|λn|
(q−1)/q, (18)

then f is called a (q, δ)-series.

The series (2) is an example of (2, 1)-series. Typical examples of (q, δ)-series
are supplied by

�

R(n)ei(Q(n)x),

where R and Q are rational fractions, and q = deg(Q), δ = −deg(R)/deg(Q)
(R and Q can also be rational functions of n, log n, log log n, . . . in which
case, only the degrees in the variable n play a role).

Definition 13 Let f ∈ L∞
loc(IR

d). The Hölder range of f is

HR(f) = {H : ∃x0 ∈ IRd : hf (x0) = H}.

A function f is a monohölder function if its Hölder range is reduced to one
point, i.e. if its Hölder exponent is constant.

Results on the Hölder range will make use of the following uniform regularity
criteria.

Lemma 14 Let f be an L1
loc function given by (1) with λn ∈ IRd.

Let

θ = sup{ω : an|λn|
ω ∈ l1}.

Then, for all ω < θ, the function f belongs to Cω(IRd).

If there exist a, b > 0 such that

N
�

n=1

|anλn| = O(Na) and
∞
�

n=N

|an| = O
�

1

N b

�

, (19)

then f belongs to Cb/(a+b)(IRd).

Proof of Lemma 14: Assume that θ ≤ 1. Let ω < θ; then |eiλn.x − eiλn.y| is
obviously bounded by 2, and (using the mean value theorem) by |λn||x − y|,
hence by 2|x − y|ω|λn|

ω; therefore

|f(x) − f(y)| ≤ 2|x − y|ω
�

|an||λn|
ω ≤ C|x − y|ω.

11



The case θ > 1 follows by taking partial derivatives of the series (1) up to the
order [θ]. The proof of the second part is similar: Let x, y ∈ IRd and N be
defined by

1

Na+b
≤ |x − y| <

1

(N − 1)a+b
.

In the estimate of |f(x)−f(y)|, one bounds the increment |eiλn.x−eiλn.y| either
by |λn||x − y| if n ≤ N or by 2 else.

Note that the second part of Lemma 14 also extends to regularity exponents
larger than 1 by derivating the series.

The following corollary gives a quantitative content to the intuitive rule that
the more lacunary the Fourier series, the smaller its Hölder range.

Corollary 15 Let f be given by (1).

• If there exists a subsequence nk such that |ank
| ≥ C|λnk

|−δ and θnk
≥

C|λnk
|(q−1)/q, then

∀x ∈ IRd, hf (x) ≤ δq/(q − 1).

• If f is a (q, δ)-series with δ > d/q, its Hölder range is contained in the

interval
�

δ − d
q
, δq

q−1

�

.

Remark: When q = +∞ (i.e. if the sequence (λn) has fast growth), this result
boils down to a classical monohölder property of such Fourier series (hence
also valid for Hadamard series):

Let δ = lim inf

�

− log(an)

log(λn)

�

; if δ > 0, then ∀x hf (x) = δ.

Proof of Corollary 15: The first statement follows from Theorem 7. Denote
by Λj the shell

Λj = {ξ : 2j ≤ |ξ| < 2.2j}.

If (λn) satisfies (18), then the number of frequencies λn in Λj is bounded by

Nj = C.
2dj

(2j)d(q−1)/q
= C.2dj/q.

In order to use Lemma 14, we split the series
�

|an|||λn|
ω into sums over each

shell. The sum for λn ∈ Λj is bounded by 2dj/q2−δj2−ωj, and therefore, the
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whole series converges if ω < δ − d/q. Hence the lower bound for the Hölder
exponent holds.

A last implication concerns chirp exponents of lacunary Fourier series. We
start by recalling the definition of a chirp, see [13]. Let f be a tempered
distribution; fractional primitives of f can be defined as follows: Let F denote
the Fourier transform; Is is the operator satisfying

F(Is(f))(ξ) = (1 + |ξ|2)−s/2F(f)(ξ).

Definition 16 Let f be a locally bounded function with slow growth; f is a
chirp of type (h, γ) at x0 if

∀s ≥ 0, Is(f) ∈ Ch+s(γ+1)(x0). (20)

The chirp exponent of f at x0 is

βf (x0) = sup{γ : (20) holds for h = 0}.

Remark: It is sufficient to check that (20) holds for s = 0 and for a sequence
sn which tends to +∞, see [13].

Typical examples of chirps (in dimension d = 1) are supplied by the functions

fα,β(x) = |x|α sin

�

1

|x|β

�

,

whose Hölder exponent at 0 is α and chirp exponent is β, see [13].

Note that (Id−∆2)eiλ·x = (1+|λ|2)eiλ·x. It follows that, if f is a (q, δ) lacunary
Fourier series, then, it can be written as a fractional derivative of order 2 of a
(q, δ+2) lacunary Fourier series, and therefore (using the remark which follows
Definition 16) the Hölder exponent of its fractional primitive of order 2 will
be at most (δ + 1)q/(q − 1). Using this argument for primitives of arbitary
order, one obtains the following conclusion.

Corollary 17 The chirp exponent of a (q, δ) lacunary Fourier series is at
most 1/(q − 1).

Two historical examples show that this result is sharp: (2) has a chirp of
exponent 1, see [13], and D. Boichu proved that

�

n−3 sin(n3t) has chirps of
exponent 1/2, see [2].
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3.2 Additional irregularity criteria

We will now show the flexibility of the method used in the proof of Theorem
7 by obtaining additional irregularity criteria which depend either on non-
cancellation properties of the coefficients an or on particular spacings of the
frequencies. We start by defining the gap sequences of arbitrary order associ-
ated with a sequence λn.

Definition 18 Let λn ∈ IRd, and let k be a positive integer. The gap sequence
of order k asociated with λn is the sequence θk

n such that θk
n is the distance

between λn and its k-th closest neighbour (counted with multiplicity).

The set Ak
n is composed of the k-closest neighbours of λn (including λn), and

Bk
n = Ak

n − {λn}.

Remarks: The sets Ak
n and Bk

n are not well defined if several frequencies are
at the same distance with λn; however, in that case, we can make an arbitary
choice among these frequencies; it will not have any incidence on the following
results. Note that θ1

n = θn and θ2
n = ωn.

Proposition 19 Let f be given by (1), where the sequences (λn)n∈IN and
(an)n∈IN satisfy (8). Let ω < 1 be given, and assume that n and k are such that
θk−1

n ≤ ωθk
n. Let x0 be a given point of IRd, p > 1 and R > 0; if f ∈ T p

α(x0),
then

∃C > 0, ∀b ∈ B

�

x0,
R

θk
n

�

,

�

�

�

�

�

�

�

l∈Ak
n

ale
iλl·b

�

�

�

�

�

�

≤
C(1 + R)α+d/p

(θk
n)α

. (21)

If furthermore there exists A > 0 such that

|an| ≥ (1 + A)

�

�

�

�

�

�

�

l∈Bk
n

ale
iλl·b

�

�

�

�

�

�

, then |an| ≤
C

(θk
n)α

.

Proof of Proposition 19: The proof is similar to the proof of Theorem 7,
but requires a function φ which satisfies the stronger requirement

supp(φ̂) ⊂ B(0, 1) and ∀ξ such that |ξ| ≤ ω, |φ̂(ξ)| = 1. (22)
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Let Dn = d

�

1

θk
n

, b, λn, Id

�

. On one hand, since φ̂ satisfies (22), the same

argument that led to (13) now yields

Dn =
�

l

alφ̂

�

λl − λn

θk
n

�

ei(λl−λn)·b =
�

l∈Ank

ale
i(λl−λn)b. (23)

On the other hand, if f ∈ T p
α(x0), then Proposition 5 implies that |Dn| ≤

C(1 + R)α+d/p(θk
n)−α; the second part of Proposition 19 follows.

The third part follows immediately, since

�

�

�

�

�

�

�

l∈Ak
n

ale
iλl·b

�

�

�

�

�

�

≥ |an| −

�

�

�

�

�

�

�

l∈Bk
n

ale
iλl·b

�

�

�

�

�

�

≥
A

A + 1
|an|.

The second part of Proposition 19 yields the same conclusion as Theorem 7 in
settings where no separation condition between the frequencies holds. Unlike
Theorems 7 and 11, the first part can give a different upper bound of the
Hölder exponent at different points.

In order to illustrate the different ranges of applications of Theorem 7, Theo-
rem 11 and Proposition 19 we compare them on the toy-example supplied by
the series

fα(x) =
1

2

∞
�

j=0

2−αj
�

cos((2j − 1)x) − cos((2j + 1)x)
�

= sin x
∞
�

j=0

2−αj sin(2jx),

where α ∈ (0, 1). Indeed, in that case, the local exponents can be computed
by hand and one immediately checks that hfα

(kπ) = α + 1, and everywhere
else: hfα

(x) = α. As a test of the respective efficiencies of the previous results,
let us check what they yield in this situation.

The frequencies of this series are a union of two Hadamard series. Since forall
n, one has θn = 2, Theorem 7 does not yield any irregularity result. Since
ωn = 2j−1 − 2, Theorem 11 allows to capture the largest regularity index: It
states that fα is nowhere Cα+1. Finally, Proposition 19 allows to discriminate
between behaviors at different points: Taking R = 0 in (21) yields that, if
fα ∈ Cβ(x0), then 2−αj|ei(2j−1)x0 −ei(2j+1)x0| ≤ C2−βj; which implies the sharp
upper bound for the Hölder exponent at every point.

15



4 Everywhere irregularity of solutions of PDEs

As a consequence of the previous results, we will show that the solutions of
some PDEs display a remarkable property of everywhere irregularity if the
initial condition is not smooth. Our purpose is not to obtain results in their
most general form but, through some toy-examples, to point out unexpected
applications of Theorem 7 in the field of PDEs.

4.1 Schrödinger’s equation in one dimension

Consider the one-dimensional Schrödinger equation without potential

i
∂ψ

∂t
= −

∂2ψ

∂x2
, for (x, t) ∈ IR × IR (24)

with initial condition: ψ(x, 0) = ψ0(x) =
�

n∈ZZ

ane
inx. (25)

We first assume that ψ0 is a periodic distribution, i.e. that the sequence an

increases at most polynomially. Let us make precise the way by which its
initial value can be defined. If u(x) and φ(t) are two functions, (u ⊗ φ)(x, t)
denotes the function u(x)φ(t).

Definition 20 Let t0 ∈ IR; let φ ∈ D(IR) be such that
�

φ(x)dx = 1. Let

φλ(t) =
1

λ
φ

�

t − t0
λ

�

; the trace of a two-variables distribution ω at time t0 (if

it exists) is the distribution ωt0 such that

∀u ∈ D(IR) �ωt0|u� = lim
λ→0

�ω|u ⊗ φλ�.

The general solution of (24) can be written

ψ(x, t) =
�

n∈ZZ

ane
inxe−in2t, (26)

which means that (26) has the following properties:

• It is indeed a solution of (24) in the sense of distributions.
• It has a trace ψt0 at any time t0 ∈ IR, in the sense of Definition 20, and at

time t0 = 0, its value is given by (25).
• The trace ψt0 is a continuous function of t0, i.e. t0 → ψt0 belongs to C(IR,D�);

furthermore, if ψ0 ∈ Hs, for an s ∈ IR, then t0 → ψt0 belongs to C(IR, Hs).
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Note that (26) is of the form
�

n∈ZZ

ane
iλn·X where λn = (n,−n2), and X = (x, t),

so that the gap sequence θn associated with λn satisfies

∀n ∈ ZZ, θn ≥ |n| + 1. (27)

Let p > 1 and α ≥ −2/p. It follows from Theorem 7 that

if ψ ∈ T p
α(x0, t0), then ∀n, |an| ≤

C

(|n| + 1)α
. (28)

But, if |an| ≤ C(|n| + 1)−α, then ψ0(x) belongs to the periodic Sobolev space
Hs, as soon as s < α − 1/2. (Note that Theorem 11 does not yield any
improvement in this case.)

One can also consider the trace ψ̃x0
of ψ at a given point x0, as a function

of t, i.e. formally, ψ̃x0
(t) = ψ(x0, t). It is again well defined in the sense of

Definition 20, and the solution is still a one-dimensional lacunary Fourier
series with λn = n2. we obtain that, if ψ̃x0

(t) ∈ T 1
α(t0), then |an| ≤ C/nα.

Hence the following corollary holds.

Corollary 21 Let s > −5/2, let ψ(x, t) be a solution of (24), and assume
that ψ0 /∈ Hs. Then

∀α > s + 1/2, ∀(x0, t0), ∀p > 1, ψ /∈ T p
α(x0, t0).

Furthermore, as regards irregularity in the time direction,

∀α > s + 1/2, ∀(x0, t0), ∀p > 1, ψx0
/∈ T p

α(t0).

In particular, when (24) has a bounded solution, then ∀α > s + 1/2,∀(x0, t0),
ψx0

/∈ Cα(t0).

Remarks: This is an irregularity result either in all directions or in the time
direction. The solutions can of course be smooth for a given t0 in the x di-
rection. For example, assume that the initial condition is piecewise smooth;
the solution at time t = 2π reproduces the initial condition, and is therefore
piecewise smooth in the x direction.

The everywhere irregularity of solutions of the Schrödinger equation somehow
means that their graph is a “fractal”; such properties for the graph of the
fundamental solution of (24) have been investigated by K. Oskolkov, see [16]
and references therein.
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4.2 Simply supported beams

A closely related equation is supplied by the vibrations of simply supported
beams:

if (x, t) ∈ [0, π] × IR+,
∂2u

∂t2
+

∂4u

∂x4
= 0, (29)

if x ∈ [0, π], u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = u1(x), (30)

if x = 0, and x = π, u(0, t) = u(π, t) = 0. (31)

The general solution can formally be written

u(x, t) =
∞
�

n=1

(an cos(n2t) + bn sin(n2t)) sin(nx),

where the an and bn are defined by: u0(x) =
�

an sin(nx), and u1(x) =
�

n2bn sin(nx). The solution is of the same type as (26), except that we have
to add the frequencies µn = (n, n2); however, the associated gap sequence θn

is the same. Denote by ux0
the solution at time t0; since the beam equation

makes sense only if the solution is continuous, we assume that u0 ∈ H1/2 and
u1 ∈ H−3/2. The same arguments developped for the Schrödinger equation
yield the following result.

Corollary 22 Let s > 1/2, let u(x, t) be a solution of (29), and assume that
either u0 /∈ Hs or u1 /∈ Hs−2. Then

∀α > s + 1/2, ∀(x0, t0), ∀p > 1, u /∈ T p
α(x0, t0), and ux0

/∈ T p
α(t0).

4.3 Schrödinger’s equation in two dimensions and vibrating plates

In the previous cases, all frequencies satisfy the uniform separation condition
(27); therefore, if the solution is irregular at one point, then all coefficients an

have to be large. We will now consider cases where the separation condition
only holds for subsequences of frequencies. In that case, smoothness at one
point only implies that the the corresponding subsequence of the an is small,
and one cannot infer everywhere irregularity results for all possible irregular
initial condition, as in Corollaries 21 and 22. However, some initial conditions
must be smooth, and therefore, by contraposition some initial conditions gen-
erate everywhere irregular solutions. Though we won’t investigate this topic
which leads to intricate problems related with number theory, we just work
out two simple two-dimensional examples.
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Consider the two-dimensional periodic Schrödinger equation


































i
∂ψ

∂t
= −∆ψ,

ψ(x, y, 0) = ψ0(x, y) =
�

(n,m)∈ZZ2

an,mei(nx
A

+my

B
).

(32)

We consider distribution solutions in the same sense as in Section 4.1. The
general solution is

ψ(x, y, t) =
�

an,mei(nx
A

+my

B
)e−i( n2

A2
+m2

B2
)t =

�

an,meiλn,m·X ,

where λn,m = ( n
A
, m

B
,− n2

A2 − m2

B2 ), and X = (x, y, t). After an affine transfor-
mation, this sequence of frequencies is of the form (n, m, an2 + bm2), with
a, b > 0. The following lemma gives a lower bound for the corresponding gap
sequence.

Lemma 23 Let λn,m = (n, m, an2 + bm2), with a, b > 0, and (n, m) ∈ ZZ2.
For m = n2,

∃C, ∀n, θn,n2 ≥ C � λn,n2 �1/4 (33)

Proof of Lemma 23: For couples (n,m) satisfying m = n2, let us estimate

∆ = (an2 + bm2) − a(n + p)2 − b(m + q)2, where (p, q) �= (0, 0).

In order to prove (33), we will check that there exists C > 0 such that either
|p|, |q| or |∆| is larger than C|n|; indeed, this will imply that

if (p, q) �= (0, 0), then � λn,n2 − λp,q �≥ C|n|;

since � λn,n2 � is of the order of magnitude of n4, (33) will follow.

Note that

∆ = −2anp − 2bn2q − ap2 − bq2,

where p and q are integers and do not vanish simultaneously.

First assume that q = 0. Then, since p �= 0,

|∆| = |ap(2n + p)| ≥ |a(2n + p)|
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so that, either |p| ≥ |n| or |∆| ≥ |an|, and (33) holds since � λn,n4 �∼ n4.

Now, assume that q �= 0. It is sufficient to prove that

|∆| + ap2 + bq2 ≥ cn2. (34)

If |p| ≥ | bn
2a
|, the result holds. Else, the left hand side of (34) is larger than

|b|n2/2.

It follows from Theorem 7 that, if f ∈ T p
α(x0, t0), then an,n2 = O(n|−α). The

following corollary thus follows.

Corollary 24 let ψ be a solution of (32), where the sequence an,n2 is not a
O(n|−α). Then

∀(x0, t0), ∀p > 1, ∀α > −d/p, ψ /∈ T p
α(x0, t0).

Now, we consider the two-dimensional supported plate equation, in a rectan-
gular domain Ω = [0, A] × [0, B].































∂2u

∂t2
+ ∆2u = 0,

u = ∆u = 0 on ∂Ω,

u(x, y, 0) = u0(x, y) and
∂u

∂t
(x, y, 0) = u1(x, y).

(35)

The general solution can formally be written

u(x, y, t) =

�

sin
�

nx

A

�

sin
�

my

B

�

�

an,m cos

��

n2

A2
+

m2

B2

�

t

�

+ bn,m sin

��

n2

A2
+

m2

B2

�

t

��

=
�

cle
iλl·X ,

where the λl take all values of the form ( n
A
, m

B
,±( n2

A2 + m2

B2 )), and X = (x, y, t).
This is almost the same set of frequencies as in the Schrödinger case, and
one immediately checks that it satisfies the same gap condition. The following
result follows.

Corollary 25 Let u(x, y, t) be a solution of (35) with initial conditions

u(x, y, 0) =
�

an,m sin
�

nx

A

�

sin
�

my

B

�

,
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∂u

∂t
(x, y, 0) =

�

bn,m

�

n2

A2
+

m2

B2

�

sin
�

nx

A

�

sin
�

my

B

�

.

If the sequence an,n2 is not a o(|n|−α) or if the sequence bn,n2 is not a o(|n|−α),
then

∀(x0, t0), ∀p > 1, ∀α > −
d

p
, ψ /∈ T p

α(x0, t0).

Remark: Clearly, many other subsequences than (n, n2) would lead to the
same conclusion. We picked it as an illustration, but it may be changed de-
pending on the particular initial conditions considered.

5 Directional irregularity of lacunary Fourier series

We will now extend Theorem 7 in a non-isotropic setting in order to obtain
directional irregularity results for multidimensional lacunary Fourier series.
We start by defining and motivating the notion of directional regularity that
will be used.

5.1 Directional regularity

Let f : IRd −→ C be a locally bounded function. The definition of pointwise
regularity supplied by Definition 1 is uniform in all directions; in order to take
into account directional behaviors, it is natural to define the Hölder regularity
at x0 in a direction u ∈ IRd − {0} as the Hölder regularity at 0 of the one
variable function t → f(x0 + tu). This definition has several drawbacks which
are the consequence of the fact that, actually, it is defined as the trace of f
on a line, which is a set of vanishing measure. Indeed, one ultimately wants to
deduce this directional smoothness from the coefficients of f on some partic-
ular sets of functions (ridgelets or curvelets for instance). These functions will
have a support of non-empty interior, and therefore will take into account the
values of f around the line considered. Therefore the definition of directional
smoothness should include such information. However, in the asymptotic of
small scales, the values taken into account should be localized more and more
sharply around this line. These considerations motivate Definition 27 below.
We start by extending the definition of the degree of a polynomial in an
anisotropic setting.

Definition 26 Let α = (α1, · · ·αd) be d-uple of positive real numbers. A poly-
nomial P has degree less than α if each monomial component of P of the form
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Cα · ta1

1 · · · tad

d satisfies

� ai

αi

< 1.

In the isotropic case where all the αi are equal, this definition boils down to
the usual definition of the degree. Let U = (u1, · · · , ud) be an orthonormal
basis of IRd; we denote by (t1, · · · , td) the coordinates of x − x0 on the basis
U , i.e.

x − x0 =
d

�

i=1

tiui. (36)

We now give the definition of anisotropic smoothness, which was already in-
troduced by M. Ben Slimane in [1] in the case where U is the canonical basis
of IRd.

Definition 27 Let f : IRd → IR be a locally bounded function with slow
growth. Let α = (α1, · · ·αd) be a d-uple of nonnegative real numbers satisfying
α1 ≥ α2 ≥ · · · ≥ αd. We say that the function f belongs to Cα(x0,U) if there
exists C > 0 and a polynomial P of degre lesss than α such that the coordinates
t = (t1, · · · , td) ∈ IRd of x − x0 on U satisfy

∃R > 0 such that, if |t| ≤ R, then |f(t) − P (t)| ≤ C
d

�

i=1

|ti|
αi . (37)

The degree condition imposed on P implies uniqueness, as a consequence of
the following lemma.

Lemma 28 Let α = (α1, · · ·αd) be d-uple of positive real numbers. If a poly-
nomial P has degree less than α and satisfies

|P (x)| ≤ C
d

�

i=1

|xi|
αi , (38)

for x small enough, then P = 0.

Proof: We write P (x) =
�

Cax
a. We consider P in the cone defined by: ∀i,

xi > 0, where we perform the changes of variable ti = xai

i .

Let ωi(a) = ai/αi and

f(t) =
�

a

Ca

�

i

t
ωi(a)
i ;
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then (38) becomes |f(t)| ≤ C|t|, Writing t in polar coordinates, we get

f(t) =
�

ωa

rω(a)gω(a)(t),

where ω(a) =
�

ωi(a) and the gω(a) are homogeneous of degree 0. Ordering the
ω(a) by increasing order, one obtains by induction that each gω(a) vanishes,
which implies that each term

�

Cax
a vanishes (where the sum is taken on the

indices a such that ω(a) is given). Since the cone considered has a nonempty
interior, this implies that the corresponding polynomial vanishes, and there-
fore that, forall a, Ca = 0.

Let α = (α1, · · ·αd) is a d-uple of nonnegative real numbers. We define the
average regularity α̃ as the harmonic mean of the αi, i.e.

1

α̃
=

1

d

d
�

j=1

1

αj

.

The anisotropy indices νi are the νi = α̃/αi. Therefore,
�

νi = d; note that,
in the anisotropic case, ∀i, νi = 1. The anisotropic pointwise regularity can
also be interpreted as a uniform condition inside some elongated ellipsöıds.

Definition 29 The ε-neighbourhood of x0 of directions U and exponent α,
denoted by N ε

U , is the set of points x whose coordinates on the basis U satisfy

d
�

i=1

�

ti
ενi

�2

≤ 1.

One easily checks that f belongs to Cα(x0,U) if and only if, for ε small enough,

∃C > 0,∃P : deg(P ) < α and sup
x∈N ε

U,α

|f(x) − P (x − x0)| ≤ Cεα̃. (39)

Remarks:

• The usual pointwise Hölder condition corresponds to the case
α1 = · · · = αd = α.

• If (37) holds, then the one dimensional function t → f(x0 + tui) belongs
to Cαi(0) so that, in each direction ui, f has Hölder regularity αi; thus
Definition 27 recaptures the intuitive notion we started with.

• In Definition 27, one could start with a nonorthonormal basis U ; however,
one easily checks that it would not lead to a more general definition of
directional smoothness. Indeed, it would be equivalent to the definition we
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gave, the corresponding orthonormal basis being obtained from the non-
orthonormal one through a Gram-Schmidt orthonormalization procedure,
starting with the direction of highest regularity and going down through
the vectors attached to smaller and smaller regularity indices.

The definition of directional smoothness supplied by (39) has the additional
advantage of supplying a starting point for the definition of the directional
smoothness of measures and also for an extension of the T p

α(x0) regularity
criterium to an anisotropic setting.

• A measure µ belongs to Mα(x0,U) if and only if, for ε small enough,

∃C > 0, such that µ(N ε
U ,α) ≤ Cεα̃. (40)

• A function f belongs to T p
α(x0,U) if f has slow growth in Lp and if there

exist C > 0 and a polynomial P of degree less than α such that

∀r ≤ R,







1

εd

�

N ε
U

|f(x) − P (x − x0)|
pdx







1/p

≤ Cεα̃. (41)

Let us now check on a simple example what this notion yields. Let Γ be a
smooth curve in IR2. We consider the function

fα(x) = (dist(x, Γ))α .

It is intutively clear that, at a point of Γ, fα has a singularity of order α in the
direction orthogonal to Γ, and is smoother in the tangent direction. Indeed,
using these directions as basis, one immediately obtains that, at a generic
point where the curvature does not vanish,

dist(x, Γ)α ≤ C(t2α
1 + tα2 )

(where t1 and t2 are respectively the coordinates on the tangent and normal
vectors) and this result is optimal. Therefore, at a generic point of Γ, f has
Hölder regularity (2α, α). In this case, the ε-neighbouhoods have parabolic
scaling, which gives an additional explanation for the special role played by
parabolic scalings, as in the FBI transform, the Hart-Smith transform, or
curvelets. Note however that, at inflexion points, f has Hölder regularity
(3α, α), and it may even display higher anisotropy, depending on the order
of tangency between Γ and its tangent.

The notion of Hölder regularity supplied by Definition 27 does not allow to
define directly an Hölder exponent as the “best possible” d-uple (α1, · · ·αd)
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such that f belongs to Cα(x0,U). Indeed this regularity notion does not in-
duce a total order on d-uples, as shown by the example f(x, y) = |xy| whose
pointwise (anisotropic) smoothness at 0 is C2(0). Clearly,

∀β > 0, f ∈ C(1,β)(0, E),

and f belongs to C(β,1)(0, E), where E is the canonical basis of IR2, and the
anisotropic smoothness implies that f belongs to C(2,2)(0, E). However these
results clearly do not imply an optimal directional smoothness statement en-
capsulated in one two-variables exponent. The “compatibility relationships”
which hold in general between directional regularity conditions are summa-
rized by a partial ordering property:

If α1 ≤ β1, · · · , αd ≤ βd, then f ∈ Cβ(x0,U) =⇒ f ∈ Cα(x0,U).

One can define directional regularity exponents in the following way, which is
more coherent with our initial motivation.

Definition 30 Let u ∈ IRd − {0}. The Hölder exponent of f in the direction
u at x0 is

hf (x0, u) = sup{α : ∃ε > 0 f ∈ C(α,ε,···,ε)(x0,U)},

where U is an orthonormal basis starting with the vector u.

Using this definition, the function |xy| we already considered has Hölder ex-
ponent +∞ along the two coordinate axes, which is natural to expect.

5.2 A criterium of pointwise directional irregularity

We establish a sufficient directional pointwise irregularity condition based on
the anisotropic Gabor-Wavelet transform (which we will shorten in aniset
transfom). If U is an orthonormal basis of IRd, we denote by ΩU the linear
mapping that maps the canical basis of IRd to U . Let ν = (ν1, · · · , νd) be a
d-uple satisfying

∀i, νi > 0 and
�

νi = d. (42)

We define

φa,ν(t) =
1

ad
φ

�

t1
aν1

, · · · ,
td
aνd

�

.
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Definition 31 Let f be a locally bounded function with slow growth. Let φ :
IRd −→ IR be a function in the Schwartz class such that φ̂(0) = 1 and φ̂ is
supported in the unit ball centered at 0. The aniset transform of f of direction
U and excentricity ν is

d(a, b,U , ν, λ) =
�

IRd

f(x)e−iλ·xφa,ν (ΩU(x − b)) dx. (43)

The anisotropic wavelets φa,ν (ΩU(x − b)) are called “anisets”. The following
irregularity criterium extends Proposition 5 in the anisotropic setting.

Theorem 32 Let f be a locally bounded function with slow growth. If f ∈
Cα(x0,U), then there exists C > 0 such that, if

d
�

i=1

(aνi|λi|)
2 ≥ 1, (44)

and if a ≤ 1 and |b − x0| ≤ 1, then

then |d(a, b,U , ν, λ)| ≤ C

�

aα̃ +
d

�

i=1

|(x0)i − bi|
αi

�

. (45)

Proof of Theorem 32: After performing on f a translation of x0 and
applying the isometry ΩU , we can assume that x0 = 0 and that U is the
canonical basis of IRd. The Fourier transform of φa,α is φ̂ (ξ1a

ν1 , · · · , ξda
νd),

therefore, it vanishes in a neighbourhood of λ if (44) holds. Thus, in that case,

d(a, b,U , ν, λ) =
�

IRd

(f(x) − P (x))e−iλ·xφa,ν (x − b) dx.

We split the integral in two terms. The first one corresponds to the ball |b −
x0| ≤ 1, where we can use (37) (because, since f has slow growth, the constant
R in (37) can be chosen arbitraily); it follows that the corresponding integral
is bounded by

C
�

�

�

|ti|
αi

�

�

�

�

�

�

φ

�

t1 − b1

aν1
, · · ·

td − bd

aνd

��

�

�

�

�

dt.

making the change of variable ui = (ti − bi)/a
νi , we get

|d(a, b,U , ν, λ)| ≤ C
�

�

�

aνiαi|ui|
αi + |bi|

αi

�

|φ(u1, · · ·ud)|dt

≤ CC �
�

aα̃ +
�

|bi|
αi

�

.
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The second integral is bounded using the fast decay of φ, and the slow growth
of f , as in the proof of Proposition 5.

In order to obtain an extension of Theorem 7 in the anisotropic setting, we
have to define directional gap sequences.

Definition 33 Let (λn) be a sequence in IRd, let U be an orthonormal basis
of IRd, and let ν be a d-uple satisfying (42). The directional gap θn of direction
U and excentricity ν is

θn = sup
�

θ :
�

λn + N θ
U

�

�

{λm}m�=n = ∅
�

.

Theorem 34 Let f be given by (1), where we assume that the sequences
(λn)n∈IN and (an)n∈IN satisfy (8), and let x0 ∈ IRd. If f belongs to Cα(x0,U),
then

∃C > 0, ∀n ∈ IN if λn /∈ N θn

U then |an| ≤
C

(θn)α̃
. (46)

Proof of Theorem 34: It is a direct consequence of Theorem 32: We estimate
the aniset transform of f at particular points; consider

Dm = d
�

1

θm

, x0,U , ν, λm

�

. (47)

On one hand,

Dm = (θm)d
�

�

�

n

ane
i(λn−λm)·xφ1/θm,ν (ΩU(x − x0))

�

dx

=
�

n

anφ̂

�

(λm)1 − (λn)1

(θm)ν1
· · ·

(λm)d − (λn)d

(θm)νd

�

eiΩU (λn−λm)·x0 , (48)

where (λm)i is the i-th component of λm on the basis U . Since φ̂ vanishes
outside of B(0, 1), the definition of θn implies that

φ̂

�

(λm)1 − (λn)1

(θm)ν1
· · ·

(λm)d − (λn)d

(θm)νd

�

= δn,m,

so that Dm = am. On the other hand, if f ∈ Cα(x0,U), then Theorem 32 im-
plies that, for any m such that λn /∈ N θn

U , |Dm| ≤ Cθ−α̃
m ; Theorem 34 follows.
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