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Controllability and Optimal Strokes for N-link Microswimmer*

Laetitia Giraldi1, Pierre Martinon1 and Marta Zoppello2

Abstract— In this paper we focus on the N -link swimmer [1],
a generalization of the classical 3-link Purcell swimmer [18]. We
use the Resistive Force Theory to express the equation of motion
in a fluid with a low Reynolds number, see for instance [12].
We prove that the swimmer is controllable in the whole plane
for N ≥ 3 and for almost every set of stick lengths. As a direct
result, there exists an optimal swimming strategy to reach a
desired configuration in minimum time. Numerical experiments
for N = 3 (Purcell swimmer) suggest that the optimal strategy
is periodic, namely a sequence of identical strokes. Our results
indicate that this candidate for an optimal stroke indeed gives
a better displacement speed than the classical Purcell stroke.

I. INTRODUCTION

A. Locomotion at low Reynolds Number

Swimming at a micro scale is a subject of growing
interest, with potential applications for example in medicine
or micro and nano technology. The swimming strategy of
micro-organisms in low Reynolds number fluids is attracting
increasing attention in the recent literature, see for instance
[14] for an extensive list of references. One of the pioneering
works is probably [20] by Taylor in 1951, presenting a
model of swimmer as an infinite sheet shaped as a sinusoidal
traveling wave, with a mathematical setting for the self-
propulsion of this thin undulating filament. Later in 1977,
Purcell proved in [18] that the swimming strategies must
change the shape of the swimmer in a non-reciprocal way,
in order to permit a displacement through the fluid, and
introduced a 3-link swimmer model along with a stroke that
allows it to move. More recently, several works have studied
in more detail the physical characteristic of this “Purcell
swimmer”, see for instance [19],[6],[1],[17]. Another cru-
cial development for our analysis is the recent emergence
of the connection between swimming and Control Theory
([16],[3],[4],[8],[15],[2]). One of the difficulties is the study
of the swimmer-fluid coupling which gives the dynamics
of the swimmer. At a micro scale, the non local hydrody-
namic forces exerted by the fluid on the swimmer can be
approximated with local drag forces depending linearly on
the velocity of each point (see [12],[10]). This technique
called Resistive Force Theory provides a simplified dynamics
that matches well those obtained by the full hydrodynamic
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model, see [1],[10]. We use here this technique for the N -
link swimmer, as in [1].

B. Contribution

In this paper, we present a controllability result for the
N -link swimmer, and numerical simulations that suggest a
new optimal stroke for displacement in minimum time. First,
we prove by geometric control techniques that for N ≥ 3
sticks, the N -link swimmer can reach any configuration in
the plane. More precisely, we show that for almost any
swimmer (i.e. for almost every set of stick lengths) and for
any initial configuration, the swimmer can reach any shape
and position. This result shows the existence of a suitable
shape deformation which steers the swimmer to the desired
final state. As a direct consequence, we show that the optimal
control problem to reach a configuration in minimum time
is well posed. Therefore, there exists an optimal strategy
leading to the final position and configuration in minimum
time. Finally, we present some numerical simulations for the
Purcell swimmer (N = 3) with a direct method (BOCOP1).
Without making any assumptions on the structure of the
optimal strategy, our results suggest that the optimal swim-
ming motion is indeed periodic, with a sequence of identical
strokes. We observe that the stroke we obtain is different
from the Purcell one, and gives a speed greater by about
15%.

II. SETTING OF THE PROBLEM

We recall the N -link swimmer introduced in [1], and
present its motion as a system of three ODEs. The system is
linear with respect to the deformation rate, and has no drift.

A. The N -link swimmer

The swimmer consists of N ∈ N rigid links with joints at
their ends, see Fig. 1. Motion is expressed in the laboratory-
frame, defined by the vectors (ex, ey). We set ez := ex×ey .
The i-th link is the segment with end points xi and xi+1. We
note Li > 0 its length and θi its angle with the horizontal
x-axis. We define (xi, yi) the coordinates of each point xi
For i ∈ {2 · · ·N}, the coordinates xi can be expressed as:

xi := x1 +
i−1∑
k=1

Lk

(
cos(θk)
sin(θk)

)
. (1)

The swimmer is described by two sets of variables:
• the position and orientation of the first link, associated

with the triplet (x1 = (x1, y1), θ1).
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• the relative orientations between successive links. For
i ∈ [2, · · · , N ], we note αi = θi − θi−1 the angle
between the (i − 1)-th and i-th links. The vector
(α2, . . . , αN ) defines the shape of the swimmer.

•
•

•

••

θ1

α1

x1

xNαN

Fig. 1. Coordinates for the N-link swimmer.

B. Dynamics

We recall in this section the main steps to obtain the
equations of motion using the Resistive Force Theory, as
in [1]. The dynamics of the swimmer stems from Newton
laws, neglecting the inertia:{

F = 0 ,
ez ·Tx1 = 0 , (2)

where F is the total force exerted on the swimmer by the
fluid and Tx1 is the total torque about the point x1.

The Resistive Force Theory uses the local drag approxima-
tion for the coupling between fluid and swimmer. We denote
by s the arc length coordinate on the i-th link (0 ≤ s ≤ Li)
and by vi(s) the velocity of the corresponding point. We
also introduce the local frame (ei, e⊥i ) defined by

ei =
(

cos(θi)
sin(θi)

)
e⊥i =

(
− sin(θi)
cos(θi)

)
and write xi(s) = xi + sei. By differentiation, we obtain,

vi(s) = ẋi + s θ̇i e⊥i . (3)

The force fi acting on the i-th segment is assumed to depend
linearly on the velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (4)

where ξ and η are the drag coefficients along the directions
of ei and e⊥i . We thus obtain

F =
N∑
i=1

∫ Li

0

fi(s) ds ,

ez ·Tx1 = ez ·
N∑
i=1

∫ Li

0

(xi(s)− x1)× fi(s) ds .
(5)

Using (3) and (4) into (5), the total force F is

−
N∑
i=1

Liξ(ẋi · ei) ei +
(
Liη(ẋi · e⊥i ) +

L2
i

2
ηθ̇i

)
e⊥i , (6)

and the total torque ez ·Tx1 is

−
N∑
i=1

Liη
(
ẋi · e⊥i

)
(xi − x1) × e⊥i +

Liξ (ẋi · ei) (xi − x1) × ei +
L2
i

2 ηθ̇i (xi − x1) × e⊥i +
L2
i

2 η
(
ẋi · e⊥i

)
+ L3

i

3 η θ̇i .

(7)

Differentiating (1) gives

ẋi = ẋ1 +
i−1∑
k=1

Lkθ̇ke⊥k , (8)

which is linear in ẋ1 = (ẋ1, ẏ1) and the (θ̇k).

The angles (θk)2≤k≤N are linear combinations of the
(αk)2≤k≤N , thus the expressions (6) and (7) are linear in
ẋ1, θ̇1 and (α̇k)2≤k≤N . As detailed in [1], the system (2)
can therefore be rewritten in a matricial form by eliminating
the (θk)2≤k≤N and separating (ẋ1, θ̇1) from the (α̇k)2≤k≤N ,
leading to

A(θ1, α2, · · · , αN ) ·
(
ẋ1

θ̇1

)
= B(θ1, · · · , αN ) ·

 α̇2

...
α̇N

 (9)

Matrix A is known as the ”Grand Resistance Matrix” and
is invertible (see [1]). We define the family of vector fields
{g̃ (θ1, α2, · · · , αN )} := A−1B. Then the dynamics of the
swimmer is finally expressed as

α̇2

...
α̇N
ẋ1

θ̇1

 =
N−1∑
i=1

(
bi

g̃i (θ1, α2, · · · , αN )

)
α̇i+1 . (10)

where bi is the i−th vector of the canonical basis of RN−1.

III. CONTROLLABILITY
This Section is devoted to the controllability of the N -link

swimmer. We prove that there exist control functions which
allow the swimmer to move everywhere in the plane.

Theorem 3.1: Consider the N -link swimmer described
in Section II evolving in the space R2. Then for almost
every lengths of the sticks (Li)i=1,··· ,N and for any initial
configuration (xi1, θ

i
1, α

i
2, · · · , αiN ) ∈ R2 × [0, 2π]N , any

final configuration (xf1 , θ
f
1 , α

f
2 , · · · , α

f
N ) and any final time

T > 0, there exists a shape function (α2, · · · , αN ) ∈
W1,∞([0, T ]), satisfying (α2, · · · , αN )(0) = (αi2, · · · , αiN )
and (α2, · · · , αN )(T ) = (αf2 , · · · , α

f
N ) and such that if the

self-propelled swimmer starts in position (xi1, θ
i
1) with the

shape (αi2, · · · , αiN ) at time t = 0, it ends at position (xf1 , θ
f
1 )

and shape (αf2 , · · · , α
f
N ) at time t = T by changing its shape

along (α2, · · · , αN )(t).

Proof: The proof of the theorem is divided into three steps.
First, we show the analyticity of the dynamics vector fields.



Then, we prove the controllability of the Purcell swimmer
(3-link), using the Chow theorem and the Orbit theorem.
Finally, we generalize the result to the N -link swimmer.

A. Regularity

We first prove that the vector fields (g̃i) are analytic
on M. From (6) and (7), A and B belong to the set of
matrices whose entries are analytic functions on [0, 2π]N .
Since the coefficients of A−1 are obtained by multiplication
and division of those of A, and because det(A) 6= 0, the
entries of A−1 remain analytic functions on [0, 2π]N . Thus,
the (g̃i)i=1,··· ,N := A−1B are analytic on [0, 2π]N .

B. Controllability of the Purcell Swimmer (N=3)

Taking N = 3 in (10) gives the dynamics
α̇2

α̇3

ẋ1

ẏ1

θ̇1

 = g1(θ1, α2, α3)α̇2 + g2(θ1, α2, α3)α̇3 . (11)

We now express the Lie algebra of the vector fields g1 and
g2 for any θ1 ∈ [0, 2π] at (α2, α3) = (0, 0), for a swimmer
whose sticks have the length L1 = L3 = L and L2 = 2L
where L > 0. First we have

g1 ( θ1,0,0 ) =

0BBBB@
1
0

9L sin(θ1)
64

− 9L cos(θ1)
64

27
32

1CCCCA , g2
`
θ1, 0, 0

´
=

0BBBBBBBB@

0
1

− 7L sin(θ1)
64

7L cos(θ1)
64

− 5
32

1CCCCCCCCA
Then, the iterated Lie brackets are equals to

[g1, g2](θ1, 0, 0) =

„
0, 0,

7L(η − ξ) cos(θ1)

128ξ
,

7L(η − ξ) sin(θ1)

128ξ
, 0

«T
,

[g1, [g1, g2]](θ1, 0, 0) =

0BBBBBBBBBBB@

0
0

−
L
“
126η2+31ξη−76ξ2

”
sin(θ1)

4096ηξ

L
“
126η2+31ξη−76ξ2

”
cos(θ1)

4096ηξ

−
3
“
9η2−4ξη+4ξ2

”
2048ηξ

1CCCCCCCCCCCA
,

[g2, [g1, g2]](θ1, 0, 0) =

0BBBBBBBBBBB@

0
0

L
“
36η2−103ξη+148ξ2

”
sin(θ1)

4096ηξ

−
L
“
36η2−103ξη+148ξ2

”
cos(θ1)

4096ηξ

3
“
9η2−4ξη+4ξ2

”
2048ηξ

1CCCCCCCCCCCA
.

The determinant of the matrix whose columns are the 5
previous vector fields is equal to

21L2(η − ξ)2(45η + 112ξ)
(
9η2 − 4ηξ + 4ξ2

)
536870912η2ξ3

. (12)

Since the drag coefficients ξ and η are positive, this
determinant is null only when ξ = η. This would indicate
an isotropic drag, as we would have for spheres instead of
sticks. Thus in our case the Lie algebra of the vector fields
g1 and g2 is fully generated at the point (θ1, 0, 0), for any
θ1 ∈ [0, 2π].

Remark that any point (α2, α3,x1, θ1) ∈ [0, 2π]2 ×
R2 × [0, 2π] belongs to the orbit of the point (0, 0,x1, θ1).
Since the vector fields are analytic, the Orbit Theorem
([13]) states that the Lie algebra of g1 and g2 is fully
generated everywhere in the manifold [0, 2π]2×R2×[0, 2π].

To conclude, by Chow Theorem ([9]) we get the control-
lability of the Purcell swimmer.

C. Controllability of the N -link swimmer
The third step is to generalize the controllability result to

the N -link swimmer, whose dynamics is described by (10).
By construction, the vector fields gi generate the tangent
space of the manifolds [0, 2π]N−1,

Span(g1, · · · ,gN−1) = RN−1 . (13)

The two vector fields g1 and g2 are related to the
Purcell’s one defined in (11): we add N − 2 rows of zeroes,
take sticks of null length Li = 0 for 4 ≤ i ≤ N − 1, while
keeping the three sticks L1 = L3 = L and L2 = 2L.

In this case, for any (x1, θ1) ∈ R2 × [0, 2π], III-B shows
that g1(θ1, 0, · · · 0), g2(θ1, 0, · · · 0) and their iterated Lie
brackets [g1,g2](θ1, 0, · · · 0), [g1, [g1,g2]](θ1, 0, · · · 0), and
[g2, [g1,g2]](θ1, 0, · · · 0) are linearly independent.

Therefore, the Lie algebra of the family (gi)i=1,··· ,N−1

at the point (θ1, 0, · · · , 0) is equal to the tangent space
T(0,··· ,0,x1,θ1)M. Then, by analyticity of the vector fields
gi, the Orbit Theorem states that the Lie algebra is fully
generated everywhere for a swimmer whose the length of
sticks verify L1 = L3 = L, L2 = 2L and Li≥4 = 0.

We define by D(0,··· ,0), the function that maps
(L1, · · · , LN ) to the determinant of the vectors
g1, · · · ,gN−1 and their iterated Lie brakets at the point
(0, · · · , 0). Since the vector fields gi depend analytically on
the sticks length Li, we get the analyticity of the function
D(0,··· ,0). Thus for any L > 0, the value of D(0,··· ,0) at the
point (L, 2L,L, 0 · · · 0) is not null. By analyticity, it remains
non null almost everywhere in RN . Therefore, we obtain
that the Lie algebra is of full rank for almost every swimmer.

Finally, Chow Theorem gives the controllability in Th 3.1.

IV. MINIMUM TIME OPTIMAL CONTROL
PROBLEM FOR THE N -LINK SWIMMER

We present in IV-A the minimum time optimal control
problem for the N -link swimmer, which is well defined
from the controllability result proven in III. Then in IV-B we
present the numerical method used to solve this problem.



A. Minimum Time Problem

For any time t > 0, we denote the state of the
swimmer by z(t) := (α2, · · · , αN ,x1, θ1)(t), the control
function by u(t) := (α̇2, · · · , α̇N )(t) and the dynamics by
f(z(t),u(t)) =

∑N−1
i=1 gi(z(t)) α̇i+1(t).

We now assume that the swimmer starts at the initial
configuration zi, and we set a final state zf . We want to
find a swimming strategy that minimizes the time to reach
the final configuration, i.e.,

(OCP )


inf tf ,
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, tf ] ,
u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, tf ] ,
z(0) = zi , z(tf ) = zf .

By applying Filippov-Cesary Theorem ([21]), there exists
a minimal time such that the constraints are satisfied i.e., the
infimum can be written as a minimum.

B. Numerical Optimization

In order to solve this optimal control problem, we use a
so-called direct approach. The direct approach transforms
the infinite dimensional optimal control problem (OCP )
into a finite dimensional optimization problem (NLP ). This
is done by a discretization in time applied to the state and
control variables, as well as the dynamics equation. These
methods are usually less precise than indirect methods
based on Pontryagin’s Maximum Principle, but more robust
with respect to the initialization. Also, they are more
straightforward to apply, hence they are widely used in
industrial applications.

Summary of the time discretization:

t ∈ [0, tf ] → {t0 = 0, . . . , tN = tf}
z(·), u(·) → X = {z0, . . . , zN , u0, . . . , uN−1, tf}
Criterion → min tf
Dynamics → (ex : Euler) zi+i = zi + hf(zi, ui)
Controls → −1 ≤ ui ≤ 1
I/F Cond. → Φ(z0, zN ) = 0

We therefore obtain a nonlinear programming problem on
the discretized state and control variables

(NLP )
{

min F (X) = tf
LB ≤ C(X) ≤ UB

All tests were run using the software BOCOP ([7]). The
discretized nonlinear optimization problem is solved by the
well-known solver IPOPT [22] with MUMPS [5], while the
derivatives are computed by sparse automatic differentiation
with ADOL-C [23] and COLPACK [11]. In the numerical
experiments, we used a Midpoint (implicit 2nd order) dis-
cretization with 1000 time steps. Execution times on a Xeon
3.2GHz CPU were a few minutes.

V. NUMERICAL SIMULATIONS FOR THE
PURCELL’S SWIMMER (N= 3)

We present here the numerical simulations for the Purcell
swimmer (3 sticks). Without making any assumptions on
the structure of the optimal trajectory, we obtain a solution
with periodic strokes. We compare this stroke to the one
of Purcell ([18], [6]), and observe that it gives a better
displacement speed.

In the rest of the paper, we match the notations used in
[6], and denote the state of the swimmer (see Fig 2) by
• the position (x2, y2) of the center of the second stick,

and its angle with the x-axis θ2 := θ1 − α2.
• the shape angles β1 := −α2 and β3 := α3.

•x2β1

β3

θ2

Fig. 2. Purcell’s 3-link swimmer.

This reformulation gives the new dynamics
β̇1

β̇3

ẋ2

θ̇2

 = M (θ2, β1)


α̇2

α̇3

ẋ1

θ̇1

 ,

M (θ2, β1) =

 −1 0 0 0 0
0 1 0 0 0

sin(θ2)+cos(β1) 0 1 0 − sin(θ2)
− cos(β1)−cos(θ2) 0 0 1 cos(θ2)

−1 0 0 0 1

 .

As a result, the dynamics (10) reads in this case
β̇1

β̇3

ẋ2

θ̇2

 = f̃1 (θ2, β2, β3) β̇1 + f̃2 (θ2, β2, β3) β̇3 (14)

where for i = 1, 2

f̃i (θ2, β1, β3) = M (θ2, β1, ) g̃i (θ1, α2, α3) . (15)

Since the new state variables are the image of the former
ones by a one-to-one mapping, the controllability result in
Section III-B also holds for (14).

A. The classical Purcell stroke

We recall the stroke presented by Purcell in [18] in order
to compare it to the optimal strategy given by our numerical
results. Let us denote by ∆θ the angular excursion, meaning
that β1 and β3 belong to [−∆θ

2 ,
∆θ
2 ]. The Purcell stroke is

defined by the periodic cycle of deformation over [0, T ]:

( β1(t), β3(t) ) =


( 4∆θ

T t−∆θ
2 , ∆θ

2 ) if 0 ≤ t ≤ T
4

( ∆θ
2 ,− 4∆θ

T t+ 3∆θ
2 ) if T4 ≤ t ≤

T
2

(− 4∆θ
T t+ 5∆θ

2 ,−∆θ
2 ) if T2 ≤ t ≤

3T
4

(−∆θ
2 , 4∆θ

T t− 7∆θ
2 ) if 3T

4 ≤ t ≤ T

.



In the following, we call the “classical” Purcell stroke the
one corresponding to ∆θ = π

3 , with T = 4∆θ chosen to
satisfy the constraints on the speed of deformation stated in
(OCP), i.e., ui(t) := β̇i(t) ∈ [−1, 1].

B. Comparison of the optimal stroke and Purcell stroke
We set the initial position x2, θ2 = (0, 0, 0) and the final

position x2, θ2 = (−0.25, 0, 0). We also constrain the angles
β1 and β3 in [−π6 ,

π
6 ] for all time. Solving the minimum time

problem with the direct method gives us a solution that is
actually periodic, as shown on Fig. 3. We observe that he
x-displacement is not monotonous: during each stroke, the
swimmer alternately swims forward, closer to the target, and
goes partially backward.

0 5 10 15

−0.5

0

0.5

TIME

AN
G

LE
S

COMPLETE TRAJECTORY: ANGLES

 

 

!1
!2

0 5 10 15−0.25

−0.2

−0.15

−0.1

−0.05

0

TIME

X 
AX

IS

COMPLETE TRAJECTORY: X AXIS

Fig. 3. Angles and x-displacement for a whole periodic trajectory.

Now we extract one stroke from this solution, and compare
it with the Purcell stroke. We show on Fig. 4 the angles
functions β1 and β3, as well as the phase portrait. The
scale for the angles is inverted on the optimal stroke for a
better comparison with the Purcell stroke. Note that the time
required to complete our candidate for an optimal stroke is
shorter than for the Purcell one (roughly 2.81 versus 4.19).
We illustrate on Fig. V-B the shape changes in the (X,Y)
plane for the Purcell and optimal stroke.
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Fig. 4. Angles and phase portrait - Purcell stroke and optimal stroke.
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Fig. 5. Purcell and optimal stroke at t = 0, T/4, T/2, 3T/4

Fig. 6 shows the x−displacement of the swimmer with
the classical Purcell stroke (dashed) and the optimal stroke

(solid). Both trajectories were recomputed in Matlab using
the same ODE solver, and the results for the Purcell stroke
match the ones in [6]. The final time tf = 15.3252 is the one
given by the numeric simulation to reach x2 = (−0.25 , 0).
We see that using Purcell strokes, the swimmer only reaches
(≈ −0.18, 0), which confirms that our optimal stroke allows
a greate x-displacement.

More precisely, each optimal stroke gives a
x−displacement close to the Purcell stroke, however
the cycle of deformation is performed in less time.
Therefore, for a given time frame, more optimal strokes can
be performed, leading to an overall greater displacement. In
Fig. 6, almost 3.5 Purcell strokes are performed, while 6
optimal strokes are completed within the same time.
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−0.5
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PURCELL STROKE

OPTIMAL STROKE

Fig. 6. x and y displacement for one Purcell and one optimal stroke.

Remark: The initial shape of the swimmer is not identical
for both strategies, however the increasing gap between
the two curves clearly shows that the optimal stroke is faster.

We study now for both strokes the x-displacement for one
stroke with respect to the angular excursion, as shown on
Fig. 7. In both cases, we see that a larger interval of angular
excursion gives a greater displacement. We also observe on
Tab. I that the optimal stroke consistently gives a speed better
by 15% than the Purcell stroke for angular excursions below
π/3. The increasing gap for greater angular excursions may
be a limitation of the RFT
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Fig. 7. ∆x/T (x-displacement for one stroke divided by stroke period),
wrt angular excursion for Purcell and optimal strokes.



∆θ π/10 π/5 π/3 2π/5 π/2
∆x/T (Purcell) 4.257E-3 8.262E-3 1.281E-2 1.461E-2 1.638E-2
∆x/T (optimal) 4.927E-3 9.563E-3 1.487E-2 1.747E-2 2.114E-2
Speed gain 15.74% 15.74% 16.12% 19.59% 29.09%

TABLE I
GAIN BETWEEN PURCELL AND OPTIMAL STROKES, FOR DIFFERENT

ANGULAR EXCURSIONS.

VI. CONCLUSIONS

In this paper we study the N -link swimmer, and use
the Resistive Force Theory to derive its dynamics, as was
done in [1]. In this context, we prove that for N greater
than 3 and for almost any N -uplet of sticks lengths, the
swimmer is globally controllable in the whole plane. Then,
we focus on finding a swimming strategy that leads the
N -link swimmer from an fixed initial position to a given
final position, in minimum time. As a consequence of the
controllability result, we show that there exists a shape
change function which allows to reach the final state in a
minimal time. We formulate this optimal control problem
and solve it with a direct approach (BOCOP) for the case
N = 3 (Purcell swimmer). Without any assumption on the
structure of the trajectory, we obtain a periodic solution,
from which we identify an optimal stroke. Comparing
this optimal stroke with the Purcell one confirms that it is
better, actually giving a greater displacement speed. More
precisely, the difference is due to the fact that optimal stroke
is executed in less time than the Purcell one.

Current and still ongoing works include solving the opti-
mal control problem for more complex displacements (along
the y axis, rotations) and/or for different cost functions,
such as energy dissipation. Also, noticing that the N -link
swimmer was introduced in [1] in the perspective of ap-
proximating the motion of several living micro-organisms,
an interesting extension of this model is to generalize the
simulations to greater values of N , and try to compare the
results with biological data. Another interesting direction is
to study formally the existence of the periodic solution for
the optimal control problem.
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