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Abstract

In this paper we focus on the N -link swimmer, a generalization of the classical
Purcell swimmer [18] that was introduced in [1]. We use the simplification of the
Resistive Force Theory to derive the equation of motion for the swimmer in a fluid
with a low Reynolds number, see for instance [12]. We prove that the swimmer
is controllable in the whole plane when it is composed by more than 3 sticks and
for almost every set of stick lengths. As a direct result, we show that there exists
an optimal swimming strategy which leads to minimize the time to reach a desired
configuration. Numerical experiments on the case of N = 3 (Purcell swimmer)
suggest that the optimal strategy is periodic, i.e. composed of a sequence of identical
strokes. Our results indicate that this candidate for an optimal stroke indeed gives
abetter speed than the classical Purcell stroke.
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1 Introduction

1.1 Locomotion at low Reynolds Number

Swimming at a micro scale is a subject of growing interest. A better understanding of the
swimmer motion can lead to many useful applications in several fields such as medicine
or micro and nano technology. The world of low Reynolds Number is inhabited by the
majority of the micro organisms, for this reason the study of their swimming strategy
is attracting increasing attention in the recent literature (see for instance [14] for an
extensive list of references). One of the pioneering works is probably the one by Taylor
in 1951 (see [20]) who introduces a model of swimmer as an infinite sheet in the form of
a sinusoidal traveling wave. In this paper, Taylor presents a mathematical setting for
the problem of self-propulsion of this thin undulating filament. Later in 1977, Purcell
proved in [18] that the swimming strategies must change the shape of the swimmer in
a non-reciprocal way, in order to permit a displacement through the fluid. In the same
paper, he introduced a 3-link swimmer model, known as the "Purcell swimmer", along
with a stroke that allows it to move. More recently, several works have studied in more
detail the physical characteristic of the Purcell swimmer as a toy model, see for instance
[19], [6], [1], [17]. Another crucial development for our analysis is the recent emergence of
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the connection between swimming and Control Theory (see for instance [16], [3], [4], [8],
[15], [2]). One of the difficulties is the study of the swimmer-fluid coupling which leads
to derive the dynamics of the swimmer. At a micro scale, the non local hydrodynamic
forces exerted by the fluid on the swimmer can be approximated with local drag forces
depending linearly on the velocity of each point (see [12], [10]). This technique called
Resistive Force Theory provides a simplified dynamics of the micro swimmer, that gives
results in good agreement with those obtained by the full hydrodynamic, see [1], [10].
We use here the same approach than [1] to derive the dynamics of the N -link swimmer.

1.2 Contribution

In this paper, we present a controllability result for the N -link swimmer, and a new
optimal stroke for displacement in minimum time. First, we prove by geometric control
techniques that for N > 3 sticks, the N -link swimmer is capable to reach any configura-
tion in the plane. More precisely, we show that for almost any swimmer (i.e. for almost
every set of stick lengths) and for any initial configuration, the swimmer can reach any
shape and position. The global controllability result proved here shows the existence of
a suitable shape deformation which steers the swimmer to the desired final state. As a
direct consequence, we show that the optimal swimming problem, that is to minimize
the time to reach a given configuration, is well posed. Therefore, there exists an optimal
strategy which leads to the final position and configuration in minimum time. Finally,
we perform some numerical simulations for the Purcell swimmer (N = 3), without any
assumptions on the structure of the optimal strategy. Our results suggest that the op-
timal swimming motion is indeed periodic, and we show that the stroke we obtain gives
a better speed than the Purcell one.

2 Setting of the problem

In this section, we recall the N -link swimmer introduced in [1], and present its dynamics
as a system of three ODEs. The system is linear with respect to the rate of deformation,
and has no drift.

2.1 The N-link swimmer

The swimmer consists of N ∈ N rigid links with joints at their ends, see Fig. 1.
Movement is expressed in the laboratory-frame, defined by the vectors (ex, ey). We set
ez := ex × ey. The i-th link is the segment with end points xi and xi+1. We note its
length Li > 0 and θi its angle with the horizontal x-axis. We define by xi := (xi, yi)
(i = 1, · · · , N) the coordinates of the first end of each link. Note that, for i ∈ {2 · · · N},
the coordinates xi can be expressed as a function of x1, θk and Lk, with k ∈ {1 · · · i − 1}:

xi := x1 +
i−1
∑

k=1

Lk

(

cos(θk)
sin(θk)

)

. (1)

The swimmer is described by two sets of variables:
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• the state variables which specify the position and the orientation of the first link,
associated with the triplet (x1 = (x1, y1), θ1).

• the shape variables which describe the relative orientations between successive
links. For each link with i ∈ [2, · · · , N ], we note αi = θi − θi−1 the angle relative
to the preceding one. In the following, the vector (α2, . . . , αN ) represents the
shape of the swimmer.

•

•

•

•
•

θ1

α1

x1

xN

αN

Figure 1: Coordinates for the N-link swimmer.

2.2 Dynamics

The dynamics for this swimmer was already described in [1]. We recall in this section
the main steps to obtain the equations of motion.

The dynamics of the swimmer stems from Newton laws, in which inertia is neglected.
These read

{

F = 0 ,

ez · Tx1
= 0 ,

(2)

where F is the total force exerted on the swimmer by the fluid and Tx1
is the corre-

sponding total torque computed with respect to the point x1.

To couple the fluid and the swimmer, we use the local drag approximation of Resis-
tive Force Theory. We denote by s the arc length coordinate on the i-th link (0 ≤ s ≤ Li)
and by vi(s) the velocity of the corresponding point. We also introduce the unit vectors
in the directions parallel and perpendicular to the i-th link

ei =

(

cos(θi)
sin(θi)

)

and e⊥
i =

(

− sin(θi)
cos(θi)

)
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and write xi(s) = xi + sei. By differentiation, we obtain,

vi(s) = ẋi + sθ̇ie
⊥
i . (3)

The density of the force fi acting on the i-th segment is assumed to depend linearly on
the velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(

vi(s) · e⊥
i

)

e⊥
i , (4)

where ξ and η are respectively the drag coefficients in the directions of ei and e⊥
i . We

thus obtain


































F =
N
∑

i=1

∫ Li

0
fi(s) ds ,

ez · Tx1
= ez ·

N
∑

i=1

∫ Li

0
(xi(s) − x1) × fi(s) ds .

(5)

Using (3) and (4) into (5), the total force F can be expressed as

−
N
∑

i=1

Liξ(ẋi · ei) ei +

(

Liη(ẋi · e⊥
i ) +

L2
i

2
ηθ̇i

)

e⊥
i , (6)

and and torque ez · Tx1
as

−
N
∑

i=1

Liη
(

ẋi · e⊥
i

)

(xi − x1) × e⊥
i +

Liξ (ẋi · ei) (xi − x1) × ei +
L2

i

2 ηθ̇i (xi − x1) × e⊥
i +

L2

i

2 η
(

ẋi · e⊥
i

)

+ L3

i

3 η θ̇i .

(7)

Moreover, differentiating (1) gives

ẋi = ẋ1 +
i−1
∑

k=1

Lkθ̇ke⊥
k , (8)

which is linear in ẋ1 and (θ̇k)1≤k≤N .

The angles (α̇k)2≤k≤N are a linear combinaison of (θ̇k)2≤k≤N , thus formulas (6) and
(7) are linear in ẋ1, θ̇1 and (α̇k)2≤k≤N .
Writing the system 5 in a matricial form we obtain

A (θ1, α2, · · · , αN ) ·







x1

y1

θ1






− B (θ1, α2, · · · , αN ) ·







α2
...

αN






= 0 (9)
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where the matrix A (θ1, α2, · · · , αN ) is known as "Grand Resistance Matrix", and B (θ1, α2, · · · , αN )
is the linear map associated to the coefficients describing the shape of the swimmer [1].

By inverting A, we get the existence of the family of vector fields {g̃i (θ1, α2, · · · , αN )}i=1,··· ,N−1

defined on [0, 2π]N by g̃i := A−1B. Then the dynamics of the swimmer reads
















α̇2
...

α̇N

ẋ1

θ̇1

















=
N−1
∑

i=1

(

bi

g̃i (θ1, α2, · · · , αN )

)

α̇i+1 . (10)

where bi is the i−th vector of the canonical basis of RN−1.

3 Controllability

This Section is devoted to the controllability result of the N -link swimmer. Namely, we
prove that there exist control functions which allow the swimmer to move everywhere
in the plane.

Theorem 3.1 Consider the N -link swimmer described in Section 2 evolving in the
space R2. Then for almost every lengths of the sticks (Li)i=1,··· ,N and for any initial
configuration
(xi

1, θi
1, αi

2, · · · , αi
N ) ∈ R2×[0, 2π]N , any final configuration (xf

1 , θ
f
1 , α

f
2 , · · · , α

f
N ) and any

final time T > 0, there exists a shape function (α2, · · · , αN ) ∈ W1,∞([0, T ]), satisfying
(α2, · · · , αN )(0) = (αi

2, · · · , αi
N ) and (α2, · · · , αN )(T ) = (αf

2 , · · · , α
f
N ) and such that if

the self-propelled swimmer starts in position (xi
1, θi

1) with the shape (αi
2, · · · , αi

N ) at time
t = 0, it ends at position (xf

1 , θ
f
1 ) and shape (αf

2 , · · · , α
f
N ) at time t = T by changing its

shape along (α2, · · · , αN )(t).

Proof: The proof of the theorem is divided into three steps. First, we deal with the
analyticity of the dynamics vector fields. Then, we prove the controllability of the
Purcell 3-link swimmer, exploiting the Chow theorem and the Orbit theorem. Finally,
we generalize the result to the N -link swimmer. We start by recalling some classical
results used in the proof.

3.1 Classical results in geometric control

Theorem 3.2 (Chow (see [9])) Let m,n ∈ N and let (fi)i=1,n be C∞ vector fields on
Rn. Consider the control system, of state trajectory q,

q̇ =
m
∑

i=1

uifi(q), (11)
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with input function u = (ui)i=1,m ∈ L∞ ([0, +∞[, BRn(0, r)) for some r > 0.
Let O an open and connected set of Rn and assume that

Lieq (f1, ...fm) = Rn q ∈ O .

Then the system (11) is controllable, i.e., for every q0, q1 in O and for every T > 0
exists u ∈ L∞((0, T ), BRn(0, r)) such that q(0) = q0 and q(T ) = q1 and q(t) ∈ O for
every t ∈ [0, T ].

If the vector fields are analytic, we can apply the Orbit Theorem to extend the dimen-
sion property of the Lie algebra defined by the dynamics vector fields on the whole orbit.

Theorem 3.3 (Orbit (see [13]) Let M be an analytic manifold, and F a family of
analytic vector fields on M. Then

a) each orbit of F is an analytic submanifold of M, and

b) if N is an orbit of F , then the tangent space of N at x is given by Liex(F). In
particular the dimension of Liex(F) is constant as x varies on N .

In our case, the manifold in which the state and the shape of the swimmer evolve is
defined by M := [0, 2π]N−1 ×R2 × [0, 2π] The vector fields of the dynamics are denoted
by

gi (θ1, α2, · · · , αN ) :=

(

bi

g̃i (θ1, α2, · · · , αN )

)

.

We say that the Lie algebra of the family of vector fields {gi}i=1,··· ,N−1 is fully
generated at the point q = (α2, · · · , αN , x1, y1, θ1) ∈ M if the tangent space of the
manifold, TqM, is equal to the Lie algebra Lie((gi))i=1,··· ,N−1)(q).

3.2 Regularity

The first step is to prove that the vector fields of the motion equation of the swimmer
are analytic on M.

As a direct consequence of (6) and (7), the linear maps A and B belong to the
set of matrices whose entries are analytic functions on [0, 2π]N . The family of vector
(g̃i(θ1, α2, · · · , αN ))i=1,··· ,N−1 is obtained by the multiplication of A−1 by B. Since
the coefficients of A−1 are obtained by multiplication and division of those of A, and
because the determinant of A is never null, the entries of inverse matrix A−1 remain
analytic functions on [0, 2π]N . Thus, the family of vector fields (g̃i)i=1,··· ,N are analytic
on [0, 2π]N .
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3.3 Controllability of the Purcell Swimmer (N=3)

Now we prove the controllability of the Purcell’s swimmer. By replacing N = 3 in (10),
the Purcell’s dynamics reads















α̇2

α̇3

ẋ1

ẏ1

θ̇1















= g1(θ1, α2, α3)α̇2 + g2(θ1, α2, α3)α̇3 . (12)

We now express the Lie algebra of the vector fields g1 and g2 for any θ1 ∈ [0, 2π] at
the point (α2, α3) = (0, 0), for a swimmer whose sticks have the length L1 = L3 = L

and L2 = 2L where L > 0.

The two vectors g1(θ1, 0, 0) and g2(θ1, 0, 0) are

g1(θ1, 0, 0) =

























1
0

9L sin(θ1)
64

−9L cos(θ1)
64

27
32

























, g2(θ1, 0, 0) =

























0
1

−7L sin(θ1)
64

7L cos(θ1)
64

− 5
32

























.

Then, the iterated Lie brackets are equals to

[g1, g2](θ1, 0, 0) =



























0
0

7L(η−ξ) cos(θ1)
128ξ

7L(η−ξ) sin(θ1)
128ξ

0



























,
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[g1, [g1, g2]](θ1, 0, 0) =































0
0

−
L(126η2+31ξη−76ξ2) sin(θ1)

4096ηξ

L(126η2+31ξη−76ξ2) cos(θ1)

4096ηξ

−
3(9η2−4ξη+4ξ2)

2048ηξ































,

[g2, [g1, g2]](θ1, 0, 0) =































0
0

L(36η2−103ξη+148ξ2) sin(θ1)

4096ηξ

−
L(36η2−103ξη+148ξ2) cos(θ1)

4096ηξ

3(9η2−4ξη+4ξ2)
2048ηξ































.

The determinant of the matrix whose columns are the previous vector fields is equal
to

∣

∣

∣

(

g1 g2 [g1, g2] [g1, [g1, g2]] [g2, [g1, g2]]
)

(θ1, 0, 0)
∣

∣

∣

=
21L2(η−ξ)2(45η+112ξ)(9η2−4ηξ+4ξ2)

536870912η2ξ3 .
(13)

Since the two drag coefficients ξ and η, are supposed positive, this determinant is never
null exept for isotropic coefficients (ξ = η). If we assume the drag coefficients to be
equal, physically means that the sticks are subjected to the same drag force in both
paralel and orthogonal dirctions, so they would not be sticks but spheres. Thus tthis
case is not physically acceptable.

Thus for any θ1 ∈ [0, 2π], the Lie algebra of the vector fields g1 and g2 is fully
generated at the point (θ1, α2, α3) = (θ1, 0, 0). Remark that any point (α2, α3, x1, θ1) ∈
[0, 2π]2 × R2 × [0, 2π] belongs to the orbit of the point (0, 0, x1, θ1). Since the vector
fields are analytic, Orbit Theorem 3.3 guarantees that the Lie algebra of g1 and g2 is
fully generated everywhere in the manifold [0, 2π]2 × R2 × [0, 2π].

To conclude, by Chow Theorem 3.2 we get the controllability of the Purcell’s swim-
mer whose sticks have same length.

3.4 Controllability of the N-link swimmer

The third step is to generalize the previous controllability result to the N-link swimmer.
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The dynamics of this swimmer is described by the ODE (10). By construction, the
family of vector fields gi generates the tangent space of the manifolds [0, 2π]N−1,

Span(g1, · · · , gN−1) = RN−1 . (14)

The two vector fields g1 and g2 are related to the Purcell’s one defined in (12): we
add N − 2 rows of zeroes, take sticks of null length Li = 0 for 4 ≤ i ≤ N − 1, while
keeping the three sticks L1 = L3 = L and L2 = 2L unchanged.

In this case, for any (x1, θ1) ∈ R2 × [0, 2π] Subsection 3.3 shows that the vec-
tors g1(θ1, 0, · · · 0), g2(θ1, 0, · · · 0) and their iterated Lie brackets [g1, g2](θ1, 0, · · · 0),
[g1, [g1, g2]](θ1, 0, · · · 0), and [g2, [g1, g2]](θ1, 0, · · · 0) are linearly independent.

Therefore, the Lie algebra of the family (gi)i=1,··· ,N−1 at the point (θ1, 0, · · · , 0) is
equal to the tangent space T(0,··· ,0,x1,θ1)M.

Then, by analyticity of the vector fields gi, Orbit Theorem 3.3 states that the Lie
algebra is fully generated everywhere for a swimmer whose the length of sticks verify
L1 = L3 = L, L2 = 2L and Li = 0, for 4 ≤ i ≤ N − 1.

Notice that the vector fields of the motion equation depend analytically also on the
sticks length Li, i = 1, · · · , N . We define by D(0,··· ,0), the function which associates to
the N−uplet of the stick lengths the determinant of the vectors g1(0, · · · , 0), · · · , gN−1(0, · · · , 0)
and their iterated Lie brakets at (0, · · · , 0).

Since the dependance on Li of vector fields gi is analytic, we get the analyticity of the
function D(0,··· ,0). Thus for any L > 0, the value of D(0,··· ,0) at the point (L, 2L, L, 0 · · · 0)
is not null. Then, by analyticity it remains non null almost everywhere in RN . There-
fore, we obtain that the Lie algebra of a full rank for almost every swimmer.

Finally, by using Chow Theorem 3.2, we get the controllability stated in the Theorem
3.1.

4 Minimum time optimal problem for the N-link swimmer

This Section describes the minimum time optimal control problem for the N -link swim-
mer. The problem is defined in 4.1, and is well defined, from the controllability result
proven in 3. Then in 4.2 we present the optimization strategy we used to find a solution
to this optimal control problem.

4.1 Optimal Time Control Problem Statement

For any time t > 0, let us denote the state of the swimmer by z(t) := (α2, · · · , αN , x1, θ1)(t)T ,
the control function by u(t) := (α̇2, · · · , α̇N )(t) and the dynamics by f(z(t), u(t)) =
∑N−1

i=1 gi(z(t)) α̇i+1(t).
In the following we assume that the swimmer starts at the initial configuration zi and
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we set a final state zf . We want to find an optimal swimming strategy which minimizes
the time to reach the final configuration, i.e.,

(OCP )



























inf T ,

ż(t) = f(z(t), u(t)) , ∀t ∈ [0, T ] ,

u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ] ,

z(0) = zi ,

z(T ) = zf .

By rescaling the dynamics (10), from the controllability result 3.1 the following
statement holds.

Corollary 4.1 Consider the N -link swimmer described in Section 2 evolving in R2.
Then for almost all lengths (Li)i=1,··· ,N and for any initial configuration (xi

1, θi
1, αi

2, · · · , αi
N ),

any final configuration (xf
1 , θ

f
1 , α

f
2 , · · · , α

f
N ) and any final time T > 0, there exists a func-

tion (α2, · · · , αN ) ∈ W1,∞([0, T ]) such that (α̇2, · · · , α̇N ) ∈ U, satisfying (α2, · · · , αN )(0) =
(αi

2, · · · , αi
N ) and (α2, · · · , αN )(T ) = (αf

2 , · · · , α
f
N ) and such that if the self-propelled

swimmer starts in position xi
1, θi

1 with the shape αi
2, · · · , αi

N at time t = 0, it ends
at position (xf

1 , θ
f
1 ) and shape α

f
2 , · · · , α

f
N at time t = T by changing its shape along

(α2, · · · , αN )(t).

This corollary means that the displacement of the swimmer does not depend of the
speed of the shape changes of the swimmer. By applying Filippov-Cesary Theorem (as
stated in [21]), there exist a minimal time such that the constraints are satisfied, and
the optimal problem reads

(OCP )



























min T ,

ż(t) = f(z(t), u(t)) , ∀t ∈ [0, T ] ,

u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ] ,

z(0) = zi ,

z(T ) = zf .

(15)

4.2 Optimization Strategy

In order to solve this optimal control problem, we use a so-called direct approach. The
direct approach transforms the infinite dimensional optimal control problem (OCP )
into a finite dimensional optimization problem (NLP ). This is done by a discretization
in time applied to the state and control variables, as well as the dynamics equation.
These methods are usually less precise than indirect methods based on Pontryagin’s
Maximum Principle, but more robust with respect to the initialization. Also, they are
more straightforward to apply, hence they are widely used in industrial applications.
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Summary of the time discretization:

t ∈ [0, T ] → {t0 = 0, . . . , tN = T}
z(·), u(·) → X = {z0, . . . , zN , u0, . . . , uN−1, T}
Criterion → min T

Dynamics → (ex : Euler) zi+i = zi + hf(zi, ui)
Adm. Cont. → −1 6 ui 6 1
Bnd. Cond. → Φ(z0, zN ) = 0

We therefore obtain a nonlinear programming problem on the discretized state and
control variables

(NLP )

{

min F (z) = T

LB 6 C(z) 6 UB

All tests were run using the software Bocop1 ([7]). The discretized nonlinear opti-
mization problem is solved by the well-known solver Ipopt [22] with Mumps [5], while
the derivatives are computed by sparse automatic differentiation with Adol-C [23] and
ColPack [11]. In the numerical experiments, we used a Midpoint (implicit 2nd order)
discretization with 1000 time steps. Execution times on a Xeon 3.2GHz CPU were a
few minutes.

5 Numerical simulation for the Purcell’s swimmer (N= 3)

In this Section, we present the numerical simulations associated with the problem (15)
in the case of N = 3 sticks (Purcell’s swimmer). We observe that while we did not make
any assumptions on the structure of the optimal trajectory, the solution given by the
direct solver Bocop shows a periodic structure. We extract a stroke from these solutions,
and check that we obtain a better displacement better than the one of Purcell ([18], [6]).

In the rest of the paper, we reformulate the system in order to match the state
variables used in the literature for the Purcell swimmer [6]. Following [6], we take the
sticks lengths L1 = L3 = 1 and L2 = 2. From now on, the state of the swimmer (see
Fig 2) is described by

• the position (x2, y2) of the center of the second stick, and θ2 := θ1 − α2 the angle
between the x-axis and the second stick

• the shape of the swimmer, defined by the two angles β1 := −α2 and β3 := α3.

The time derivative of the new variables which describe the swimmer are linear in
the previous ones,











β̇1

β̇3

ẋ2

θ̇2











= M (θ2, β1)











α̇2

α̇3

ẋ1

θ̇1











,

1http://bocop.org
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•
x2β1

β3

θ2

ex

ey

Figure 2: Purcell’s 3-link swimmer.

where the matrix M (θ2, β1) is defined by,

M (θ2, β1) =















−1 0 0 0 0
0 1 0 0 0

sin(θ2) + cos(β1) 0 1 0 − sin(θ2)
− cos(β1) − cos(θ2) 0 0 1 cos(θ2)

−1 0 0 0 1















.

As a result, the dynamics (10) reads in this case










β̇1

β̇3

ẋ2

θ̇2











= f̃1 (θ2, β2, β3) β̇1 + f̃2 (θ2, β2, β3) β̇3 (16)

where for i = 1, 2

f̃i (θ2, β1, β3) = M (θ2, β1, ) g̃i (θ1, α2, α3) . (17)

Since the variables which describe the swimmer are the image of the previous one
by a one-to-one mapping, it is clear that the controllability result proved in Section 3.3
holds for the ODE (16).

5.1 The classical Purcell stroke

The stroke presented by Purcell in [18] is used in the rest to compare the optimal
strategy given by our numerical results. Let us denote by ∆θ, the angular excursion of
β1 and β3. It means that during the stroke β1 and β3 belong to the interval [−∆θ

2 , ∆θ
2 ].

Calling T the interval of time in which the swimmer performs the stroke, the Purcell
stroke is defined by the following periodic cycle of deformation,

β1(t) =











































4∆θ

T
t −

∆θ

2
if 0 ≤ t ≤ T

4

∆θ

2
if T

4 ≤ t ≤ T
2

−
4∆θ

T
t +

5∆θ

2
if T

2 ≤ t ≤ 3T
4

−
∆θ

2
if 3T

4 ≤ t ≤ T

,
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and

β3(t) =











































∆θ

2
if 0 ≤ t ≤ T

4

−
4∆θ

T
t +

3∆θ

2
if T

4 ≤ t ≤ T
2

−
∆θ

2
if T

2 ≤ t ≤ 3T
4

4∆θ

T
t −

7∆θ

2
if 3T

4 ≤ t ≤ T

.

In the following, we call the “classical” Purcell stroke the one corresponding to ∆θ = π
3

and T = 4∆θ. The time period T is chosen for satisfying the constraints on the speed
of deformation fixed by the optimal problem (15) (i.e., β̇i(t) ∈ [−1, 1], i = 1, 3, for all
time t ∈ [0, T ]).

5.2 Comparison of the optimal stroke with the classical Purcell stroke

For the comparison, we take the initial position x2 = (0, 0) and θ2 = 0 and the final
position x2 = (−0.25, 0) and θ2 = 0. We also constrain the angles β1(t) and β3(t) to
vary between −π

6 and π
6 for all time t > 0. Solving the minimum time problem with the

direct method gives us a periodic solution from which we extract a candidate for the
time optimal stroke. We describe this stroke in more details, and show its displacement
versus the Purcell one.

Solving the optimal problem (15) we observe that the solution is periodic, as show
the graphs on Fig. 3 for the angles functions β1, β3 and the x-displacement.
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Figure 3: Angles and x-displacement for a whole periodic trajectory.

From the plots above it is evident that the optimal controls have a periodic structure
and perform more than one period in the optimal interval of time. In order to compare
the results for the displacement with the Purcell’s ones, we need to select only one
period (i.e. one stroke). We show on Fig. 4 the angles functions β1 and β3, as well as
the phase portrait for both the classical Purcell stroke and our selected optimal stroke.
Notice that for satisfying the constraints on the speed of deformation u ∈ [−1, 1], the
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time performed by the swimmer to do the Purcell Stroke is greater than the time to do
the optimal one.
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PURCELL STROKE

Figure 4: Angles and phase portrait - Purcell stroke and optimal stroke.

We show now the shape changes in the (X,Y) plane for the Purcell and optimal
stroke. Figure 5 shows the Purcell swimmer in four different times during the classical
Purcell stroke, and Fig. 6 shows the swimmer performing the selected optimal stroke.
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Figure 5: Shape changes for the Purcell’s stroke.
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Figure 6: Shape changes for the optimal stroke.

We draw on Fig. 7 the x−displacement of the swimmer when it uses the classical
Purcell stroke represented by the red curve and the optimal stroke depicted by the bleu
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curve. The interval of time [0, 15.3252] is the one given by the numeric simulation, it
leads the swimmer to reach x2 = (−0.25 , 0) with the optimal strategy, instead by the
Purcell strategy the swimmer reaches only (≈ −0.18, 0). We observe that our optimal
stroke allows the swimmer to move further in the x-direction. More precisely, the
optimal stroke leads a x−displacement close to one given by the Purcell stroke. But,
the cycle of deformation of the optimal stroke is performed in less time than the Purcell
one. So, for a time fixed, the optimal stroke steers the swimmer to have a greater
x−displacement. In Fig. 7, we discern that almost 3.5 Purcell strokes are performed
during the time [0, 15.3252], whereas there are six optimal strokes in the same time.

Remark 5.1 We see that the gap between the two curves grows with time, which con-
firms that the optimal stroke is better, regardless of the small difference in the initial
shape of the swimmer.

Notice that the final displacement after one Purcell strokes matches the results of [6].
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Figure 7: x and y displacement for one Purcell and one optimal stroke.

We study now for both strokes the x-displacement for a stroke with respect to the
angular excursion, as shown on Fig. 8. In both cases, we see that a larger interval of
angular excursion gives a greater displacement. Here again, it is obvious that the strokes
given by our optimization strategy produce a greater speed (x-displacement over stroke
period) than the Purcell one for any range of angular excursion.
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Figure 8: x displacement, noted ∆x, over the time period to perform a stroke, denoted
by T , wrt angular excursion, Purcell (in red) and optimal stroke (in bleu).

6 Conclusions

In this paper we study the N -link swimmer, and use the Resistive Force Theory to
derive its dynamics, as was done in [1]. In this context, we prove that for N greater
than 3 and for almost any N -uplet of sticks lengths, the swimmer is globally control-
lable in the whole plane. Then, we focus on finding a swimming strategy that leads
the N -link swimmer from an fixed initial position to a given final position, in minimum
time. As a consequence of the controllability result, we show that there exists a shape
change function which allows to reach the final state in a minimal time. We formulate
this optimal control problem and solve it with a direct approach (Bocop) for the case
N = 3 (Purcell swimmer). Without any assumption on the structure of the trajectory,
we obtain a periodic solution, from which we identify an optimal stroke. Comparing this
optimal stroke with the Purcell one confirms that it is better, actually giving a greater
displacement speed. More precisely, the difference is due to the fact that optimal stroke
is executed in less time than the Purcell one.

Current and still ongoing works include solving the optimal control problem for more
complex displacements (along the y axis, rotations) and/or for different cost functions
(such as energy-type). Also, noticing that the N -link swimmer was introduced in [1]
in the perspective of approximating the motion of several living micro-organisms, an
interesting extension of this model is to generalize the simulations to greater values of
N . Of course, comparing the candidate for the optimal motion strategy with the one
used by real micro-organisms could be a more tricky issue. On the other hand, another
interesting direction is to study formally the existence of the periodic solution for the
optimal problem.
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