Long-time averaging for integrable Hamiltonian dynamics - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2005

Long-time averaging for integrable Hamiltonian dynamics

Résumé

Given a Hamiltonian dynamics, we address the question of computing the space-average (referred as the ensemble average in the field of molecular simulation) of an observable through the limit of its time-average. For a completely integrable system, it is known that ergodicity can be characterized by a diophantine condition on its frequencies and that the two averages then coincide. In this paper, we show that we can improve the rate of convergence upon using a filter function in the time-averages. We then show that this convergence persists when a numerical symplectic scheme is applied to the system, up to the order of the integrator.
Fichier principal
Vignette du fichier
numer_math_arc.pdf (310.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00798337 , version 1 (11-03-2013)

Identifiants

Citer

Eric Cancès, François Castella, Philippe Chartier, Erwan Faou, Frédéric Legoll, et al.. Long-time averaging for integrable Hamiltonian dynamics. Numerische Mathematik, 2005, 100 (2), pp.211--232. ⟨10.1007/s00211-005-0599-0⟩. ⟨hal-00798337⟩
341 Consultations
231 Téléchargements

Altmetric

Partager

More