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CHARACTERIZATIONS OF PERIODS OF MULTIDIMENSIONAL

SHIFTS

EMMANUEL JEANDEL AND PASCAL VANIER

Abstract. We show that the sets of periods of multidimensional shifts of

finite type (SFTs) are exactly the sets of integers of the complexity class NE.
We also show that the functions counting their number are the functions of #E.

We also give characterizations of some other notions of periodicity. We finish

the paper by giving some characterizations for sofic and effective subshifts.

1. Introduction

A multidimensional shift of finite type (SFT) is a set of colorings of Z2 given by
local rules. SFTs are one of the most fundamental objects in symbolic dynamics
[LM95]. One important question is to determine whether two SFTs are conjugate.
One approach to solve the problem is by the study of invariants, i.e. quantities
related to subshifts that stay invariant under conjugacy. The most significant in-
variants for SFTs are the entropy, that measures the growth of the number of valid
patterns, and the set of periodic points.

These two invariants are relatively well known in the one-dimensional case: The
entropy of an SFT is the logarithm of the spectral radius of some matrix related
to the SFT, and the set of periodic points relates to the cycles of the multi-graph
represented by the matrix. As a consequence, the set of integers n so that there
exists a periodic point of period n is a semi-linear set.

The situation becomes more complex for multi-dimensional SFTs. This is linked
to the fact that the emptiness problem for SFTs becomes undecidable [Ber66;
Rob71], in part due to the existence of nonempty SFTs with no periodic points.
While the theory of one-dimensional SFTs indeed relates to the theory of finite
automata of computer science, many properties of multidimensional SFTs are to
be understood using computability theory.

The case of the entropy was recently solved by Hochman and Meyerovitch[HM10]:
A real λ ≥ 0 is the entropy of a multidimensional SFT if and only if it is right ap-
proximable, that is if we can compute a sequence of rational numbers converging
to λ from above. This was one of the first articles in a series linking dynamical
properties of multidimensional SFTs and computability theory [Sim09; AS09].

In this article, we give a characterization of the sets of periods of multidi-
mensional SFTs using complexity theory. For a given point x in an SFT, let
Γx =

{
v ∈ Z2 | ∀z ∈ Z2, x(z + v) = x(z)

}
be the lattice of periods of x.

We will study different notions of periodic points:

• c is strongly periodic of period n > 0 if Γc = nZ2

• c is 1-periodic of period v ∈ Z× N \ {(0, 0)} if Γc = vZ
• c is horizontally periodic of period n > 0 if n is the least positive integer so

that nZ× {0} ⊆ Γc
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All these notions can readily be generalized for any dimension d > 2. For a given
subshift X, let PX (resp. P1

X ,P
h
X) denote the set of strong periods (resp. 1-

periods, horizontal periods) of X. The third notion seems a bit more peculiar. It
is introduced in this paper as a first, somewhat easier, result on which all other
results will be built.

To give a characterization of these sets in terms of complexity classes, we will
have to see these sets as languages. If L ⊆ N, denote by un(L) = {an|n ∈ L}. If
L ⊆ Z× N, denote un(L) = {apbq|(p, q) ∈ L} ∪ {apcq|(−p, q) ∈ L}.

We will prove:

Theorem 1.1. For any L ⊆ N, there exists an SFT X such that L = PX if and
only if un(L) ∈ NP.

Theorem 1.2. For any L ⊆ Z × N, there exists a two dimensional SFT X such
that L = P1

X if and only if un(L) ∈ NSPACE(n).

Theorem 1.3. For any L ⊆ N, there exists a two dimensional SFT X such that
L = Ph

X if and only if un(L) ∈ NSPACE(n).

Here NP denotes as usual the class of languages computable by a nondeterminis-
tic Turing Machine in polynomial time. NSPACE(n) denotes the class of languages
computable by a nondeterministic Turing Machine in linear space.

Please note the slight difference between theorem 1.1 and the others: the two
other theorems are valid for a fixed dimension d = 2. Theorem 1.1 needs however to
be formulated for all dimensions at once: given a language L ∈ NP the dimension
of the SFT for which L is a set of strong periods depends on L. It is in fact
hard to provide a statement valid exactly in dimension d = 2. Intuitively, the
reason is that SFTs can be seen as a model of computation. For most models of
computation, the space complexity of a problem L is generally the same. However
the time complexity of a problem depends on the exact definition of the model: the
problem to decide if a word is a palindrome is provably quadratic in a model of a
Turing Machine with one tape, but becomes linear if the Turing Machine has two
tapes. The two-dimensional SFTs being assimilated as a new model of computation,
there is no reason for it to behave like a specific, already known, model of Turing
Machine. That’s why we have to use a more robust class, NP, which coincides for
all reasonable models of computation (See e.g. the Invariance Thesis [EB]). The
problem does not appear for space classes, as they are already robust.

Rather than the set of periodic points, another interesting quantity is the number
of periodic points. This quantity makes only sense for strongly periodic points. If
X is an SFT, denote by NX the map from {a}? to N that maps an to the number
of points of strong period n. Then we will prove:

Theorem 1.4. Let f : {a}? → N, there exists an SFT X such that = NX if and
only if f ∈ #P

Here #P denotes as usual the class of functions corresponding to the number
of accepting paths of a nondeterministic Turing Machine working in polynomial
time. This theorem gives a first insight on the behavior of the Zeta function of a
multidimensional SFT [Lin96].

These characterizations in terms of complexity classes lead to some closure prop-
erties on the set of periods. NP and NSPACE(n) are closed under intersection and
union, so the sets of periods are also closed under intersection and union. The
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closure by union could of course be proven directly, by taking the disjoint union of
the two SFTs. Note that the closure by intersection is not trivial, as the classical
construction by Cartesian product does not work as usefully as it would seem: It
is not true that the set of strong periods of X × Y is the intersection of the sets
of strong periods of X and Y : If {2} (resp. {3}) is the set of strong periods of
X (resp. Y ), then the set of strong periods of X × Y will be {6} and not ∅ as
intended. Note in particular that due to the peculiar form of theorem 1.1, the SFT
that realizes the intersection of the strong periods of X and Y can be of higher
dimension than X and Y . Finally, since nondeterministic space is closed under
complementation [Imm88; BDG88b], 1-periods are closed under complementation.
The question whether the sets of strong periods are closed under complementation
is of course related to the P vs NP problem (More accurately, it is related to the
question NE = coNE, and to Asser’s Problem [JS74; DJMM]).

This paper is organized as follows: The first section gives the necessary back-
ground both in multidimensional symbolic dynamics and complexity theory. We
then proceed to prove all four theorems. We first prove Theorem 1.3 on horizontal
periods. The techniques used for this proof are the core of this article. The other
three theorems then build on this first proof, adding more and more complex struc-
tures in the various constructions. We end this paper with a discussion on similar
results for multidimensional sofic and effective shifts rather than SFTs.

Some of the results of this paper were announced at the DLT conference in the
extended abstract [JV10].

2. Preliminaries

2.1. Symbolic Dynamics. We give here a primer on Multidimensional Symbolic
Dynamics. See [LM95; Lin04] for more information.

2.1.1. Subshifts. Let Σ be a finite alphabet and d > 0 an integer. A configuration

over Σ is a coloring of Zd by Σ, that is a map : Zd → Σ. We denote by ΣZd

the set

of all configurations over Σ, ΣZd

is also called the full shift on Σ. A pattern P is a
coloring of a subset D ⊂ Zd. D is the support of the pattern. A pattern is finite if
D is finite.

A pattern P of support D appears in a pattern P ′ of support D′ if there exists
a position v ∈ D′ so that v +D ⊆ D′ and P (v + z) = P ′(z) for all z ∈ D. We will
write P ∈ P ′ to say that P appears in P ′.

Let F be a set of finite patterns. A pattern is admissible for F if it contains no
patterns of F . The subshift XF defined by F is the set of all configurations where
no pattern of F appears:

XF = {c ∈ ΣZd

|∀P ∈ F , P 6∈ c}

A set X is a subshift if there exists a set F so that X = XF . Subshifts can also be
characterized by a topological property, but we will not need it here.

A subshift of finite type (or shortly SFT) is a subshift XF where F is finite. In
this case, we can assume that all patterns of F are over the same finite support D.
In this setting, a configuration c is a valid if all patterns of support D appearing in
c are not in F , such a configuration is called a point of X. The radius of D is the
smallest r so that D ⊆ [−r, r]d. The radius of XF is the radius of D.

An effective subshift is a subshift XF where F is recursively enumerable.
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Let X and Y be two d-dimensional subshifts, a block code is a map F : X → Y
such that there exists a map f : ΣV

X → ΣY , with V = {v1, . . . ,vk} a finite subset
of Z2 such that for any z ∈ Z:

F (x)z = f(xz+v1 , . . . , xz+vk
)

A map F : X → Y is a factor map if it is surjective block code, Y is then called a
factor of X. A subshift is called sofic if it is a factor of some SFT.

2.1.2. Periodic points. Let c ∈ ΣZd

be a configuration. A vector v ∈ Zd is a vector
of periodicity for c if c(z) = c(z + v) for all z ∈ Zd. We write Γc = {v ∈ Zd|∀z ∈
Zd, c(z) = c(z+v)} for the set of vectors of periodicity of c. Γc is of course a lattice
(i.e. a (discrete) subgroup of Zd). There are three cases for Γc:

• Γc = {0}: c has no vector of periodicity.
• Γc has rank d, then c is periodic. This corresponds to the notion of peri-

odicity in dimension 1: a finite orbit. In particular, in this case, one can
prove that there exists n such that nZd ⊆ Γc. If nZd = Γc we will say that
c is strongly periodic of strong period n.
• Γc has an intermediate rank 1 ≤ k < d. We will say that c is k-periodic.

If c is 1-periodic, then γc = vZ for a unique vector v (upto opposite direction)
which is called the 1-period of c.

Sm,n

Sm,n + (0, 4r)

Sm,n − (0, 4r)

Figure 1. Representation of Sm,n for m = 5, n = 2 and r = 1.
Note that for every point x in Sm,n, the square of size 2r and
of bottom right corner x is entirely contained in Sm,n ∪ (Sm,n +
(0, 4r)) = Dm,n.

A configuration which is 1-periodic in a subshift of dimension d can be seen as
a configuration in a subshift of dimension d − 1. To make this statement exact,
we need some definitions. Let X be an SFT of radius r. Let (m,n) be integers
with m ≥ n ≥ 0. Consider Sm,n = {(x, y) ∈ Z2 |0 ≤ −nx + my < 4mr}. and
Dm,n = {(x, y) ∈ Z2 |0 ≤ −nx+my < 8mr} = Sm,n ∪ (Sm,n + (0, 4r)) represented
in figure 1.

Now the number of patterns of support Sm,n that are (m,n)-periodic is finite,
as any such pattern is entirely determined by S ∩ ((0,m− 1)× Z) which contains
at most 4rm points. So there are at most |Σ|4rm such patterns.

Now consider the following directed graph Gm,n(X):
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• The vertices of Gm,n(X) are all patterns of support Sm,n that are (m,n)
periodic.
• There is a edge from P to P ′ if the pattern P 	P ′ of support Dm,n defined

by P 	P ′(z) = P (z) if z ∈ Sm,n and P 	P ′(z) = P ′(z− (0, 4r)) otherwise
is valid for X.

Now it is clear that there exists a bijection between configurations of X with (m,n)
as a period and bi-infinite paths in Gm,n(X). It is due to the fact that Z2 =
]i(Sm,n + (0, 4r)i) and that any square of size 2r whose bottom right corner is in
Sm,n is in Dm,n (this is where the hypothesis m ≥ n is used) so that any square of
size 2r in Z2 is contained in Dm,n + (0, 4r)i for some i.

Thus the entire information is contained in this graph. It is then easy to obtain
the following consequences:

Lemma 2.1. Let X be a two-dimensional SFT of radius r.

• If X contains a configuration which is periodic of period (m,n), then it
contains a configuration which is fully periodic. (If the finite graph Gm,n(X)
contains an infinite path, it contains a cycle)
• More precisely, if X contains a configuration with (m,n) as a period, m ≥ n > 0,

then it contains a fully periodic configuration with (m,n) and (0, p) as pe-
riods, for some 0 < p ≤ |Σ|4rm.

We could also obtain a characterization of 1-periods with the graph:

Lemma 2.2. X admits (m,n) as a 1-period if and only if the graph Gm,n(X)
contains a path u0 . . . uk so that

• ui = u0 for some i < k.
• ui+1 6= u1
• uj = uk for some i ≤ j < k
• For each (m′, n′) so that ∃d ∈ N, (m,n) = d · (m′, n′), there exists some

pattern ul which is not (m′, n′) periodic.

We can of course choose k ≤ 3m|Σ|4rm. The first three conditions ensure that
there exists a configuration c which is 1-periodic and admits (m,n) as a period.
The last condition ensures that (m,n) is indeed the least period of c.

2.2. Aperiodic SFTs and determinism. Let X be a Zd SFT, X is aperiodic
when no point of X admits a periodicity vector. There are several well known such
SFTs for Z2, most of them come from the study of tilings, see e.g. Berger [Ber66;
Ber64], Robinson [Rob71], Kari [Kar96; Kar92]. We will need two dimensional ape-
riodic SFTs with a particular property in this paper : determinism. A two dimen-
sional SFT is north-west deterministic if for any two symbols a, b at positions (i, j)
and (i+1, j+1) there is at most one symbol c allowed at position (i+1, j). Such an
SFT was constructed by Kari [Kar92], his particular SFT will be used in section 5.
East-determinism can be determined in the same way: for any two symbols a, b
at positions (i, j) and (i, j + 1) there is at most one symbol c allowed at position
(i+ 1, j).

2.3. Computational Complexity. In this section we provide some background
on computational complexity and its links with subshifts of finite type. More
information about computational complexity and computability can be found in
[BDG88a; AB09; Rog87].
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Usually to model computation, Turing machines are used. Despite its power,
this model is quite simple to describe : shortly, a Turing machine is a device with
finite memory but that can read/write on an infinite tape at the position of its
“head”. Formally, it is a tuple (Q,Γ, B,Σ, δ, q0, H) where:

• Q is a finite set of states,
• Γ is the tape alphabet, the finite set of symbols that can appear on the

tape,
• B ∈ Γ is the “Blank” symbol,
• Σ ⊆ Γ \ {B} is the input alphabet,
• q0 is the initial state,
• H is the set of halting states,
• δ : Q \ F × Γ→ Q× Γ× {←, ·,→} is the transition function. The symbols
→,← and · stand for moving the head to the right, left and to let it where
it is respectively.

If a problem can be answered by a Turing machine, then it is called decidable
and otherwise undecidable. The most famous undecidable problem is the Halting
Problem: deciding whether a given Turing machine halts with itself as an input.
Another well known undecidable problem is the Domino Problem: given a set of
Wang tiles, does it tile the plane?

A problem is called recursively enumerable (r.e.) if there exists a Turing ma-
chine enumerating its elements and co-recursively enumerable (co-r.e.) when its
complement is r.e.

A complexity class is a class of problems decidable by a Turing machine such
that some resource is bounded. The usual restrictions of the resources are on time
or space :

• the classes TIME(f(n)) are the classes of problems decidable in time f(n),
where n is the size of the input and f a fonction from N to N.
• the classes SPACE(f(n)) are the classes of problems decidable in space f(n).

Turing machines may be nondeterministic, which means that the transition func-
tion is multivalued. In this case, the input is accepted if there exists a sequence of
transitions leading to an accepting state. Time and space complexity classes are
also defined in the case of nondeterministic Turing machines :

• the classes NTIME(f(n)) are the classes of problems nondeterministically
decidable in time f(n), where n is the size of the input and f a fonction
from N to N.

• the classes NSPACE(f(n)) are the classes of problems nondeterministically
decidable in space f(n)

As said earlier, tilings and recursivity are intimately linked. In fact, it is quite
easy to encode Turing machines in tilings. Such encodings can be found e.g. in
[Kar94; Cha08]. Given a Turing machine M , we can build a tiling system τM in
figure 2. The tiling system is given by Wang tiles, i.e., we can only glue two tiles
together if they coincide on their common edge. This tiling system τM has the
following property: there is an accepting path for the word u in time (less than) t
using space (less than) w if and only if we can tile a rectangle of size (w+2)×t with
white borders, the first row containing the input. Note that this method works for
both deterministic and nondeterministic machines.
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Figure 2. A tiling system, given by Wang tiles, simulating a
Turing machine. The meaning of the labels are the following:

– label s0 represents the initial state of the Turing machine.
– The top-left tile corresponds to the case where the Turing

machine, given the state s and the letter a on the tape,
writes a′, moves the head to the left and to change from
state s to s′. The two other tiles are similar.

– h represents a halting state. Note that the only states
that can appear in the last step of a computation (before
a border appears) are halting states.
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3. Horizontal periodicity in SFTs of dimension 2 and space
complexity

In this section, we give a proof for theorem 1.3. We first prove that the unary
language corresponding to horizontal periods can be recognized in linear space by a
nondeterministic Turing machine (lemma 3.1) and then the reciprocal (lemma 3.2).

Lemma 3.1. Let L ⊆ N∗ be the set of horizontal periods of a two-dimensional SFT
X, then un(L) ∈ NSPACE(n).

Proof. Let X = XF be a 2-dimensional SFT on the alphabet Σ. We will construct
a nondeterministic Turing machine accepting 1n if and only if n+ 1 is a horizontal
period of X. The machine has to work in space O(n), the input being given in
unary.

Let r be the radius of X, a point is in X if and only if all its r × r blocks have
no sub-pattern contained in F .

Furthermore, we can prove that if there exists a point of horizontal period n,
then there also exists such a point, with vertical period at most |Σ|rn. Here is an
algorithm, starting from n as an input that checks whether n is a horizontal period
of some point of X:

• Initialize an array P of size n so that P [i] = 1 for all i.
• First choose nondeterministically p ≤ |Σ|rn
• Choose r bi-infinite rows (ci)0≤i≤r−1 of period n (that is, choose r × n

symbols).
• For each r + 1 ≤ i ≤ p, choose a bi-infinite row ci of period n (that is,

choose n symbols), and verify that all r× r blocks in the rows ci . . . ci−r+1

do not contain a forbidden pattern. At each time, keep only the last r rows
in memory (we never forget the r first rows though).
• (Verification of the least period) If at any of the previous steps, the row ci

is not periodic of period k < n, then P [k]← 0
• For i ≤ r, verify that all r × r blocks in the rows cp−i . . . cpc0 . . . ci−r−1 do

not contain a forbidden pattern.
• If there is some k such that P [k] = 1, reject. Otherwise accept.

This algorithm needs to keep in memory only 2r rows and the array P at each time,
hence is in space O(n). �

Lemma 3.2. Let L ⊆ N be a language such that un(L) ∈ NSPACE(n), then there
exists a two-dimensional SFT X such that n ∈ L if and only if there exists a point
c ∈ X with horizontal period n.

Proof. Take a nondeterministic Turing machine M accepting un(L) in linear space.
Using traditional tricks from complexity theory, we can suppose that on input 1n

the Turing machine uses exactly n + 1 cells of the tape (i.e. the input, with one
additional cell on the right) and works in time exactly cn for some constant c
(depending only on the Turing machine M).

We are going to construct an SFT X ′ such that 1n ∈ L if and only if n + 4 is
a horizontal period of some point of X ′. The modification to obtain n + 1 rather
than n+ 4, and thus prove the lemma, is left to the reader (basically “fatten” the
vertical lines of presented in lemma 3.3 below so that they absorb 3 adjacent tiles),
and serves no interest other than technical.

The proof may basically be split into two parts:
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• First produce an SFT Yc such that every point of horizontal period n looks
like a grid of rectangles of size n by cn delimited by horizontal and vertical
markers (see fig. 3b) and whose horizontal periods are N\{0, 1}. Lemma 3.3
shows how to construct such an SFT.
• The Turing machine M is then encoded inside these rectangles on a layer C:

the nondeterministic transitions are synchronized on every line to ensure
the computations inside the rectangles are the same.

The main difficulty lies in the first part, while the second part is straightforward
and does not need further explanation.

Now we prove that 1n ∈ L if and only if n + 4 is a horizontal period of the the
SFT X ′.

• For the component C to be valid, the input 1p−4 (4 = 1 ( symbol of Yc)
+ 1 (left border for the TM) + 1 (right border for the TM) + 1 (blank
marker on the end of the tape)) must be accepted by the Turing machine,
hence 1p−4 ∈ L
• Finally, due to the synchronization of the nondeterministic transitions, the
C component is also p-periodic. As a consequence, our tiling is p-periodic,
hence n = p− 4. Therefore 1n+4 ∈ L

Conversely, suppose 1n ∈ L. Consider the coloring of period n + 4 obtained as
follows (only a period is described):

• The component A consists of n+ 3 correctly tiled columns of our aperiodic
East-deterministic SFT, with an additional column of . Note that aperiodic
points exist.
• The component C corresponds to a successful computation path of the

Turing machine on the input 1n, that exists by hypothesis. As the com-
putation lasts less than cn steps, the computation fits exactly inside the
n× cn rectangle.
• We then add all other layers according to the rules to obtain a valid con-

figuration, thus obtaining a point of X ′ of period exactly n+ 4.

�

Lemma 3.3. There exists an SFT Yk such that for any point y ∈ Yk of horizontal
period p, y is composed of rectangles of size p × kp−1 with marked boundaries.
Furthermore, all integers n ≥ 2 are horizontal periods.

We will construct the SFT by superimposing several components (or layers) each
of them addressing a specific issue Yk = A× Ck × T :

• A will allow us to force periodic tilings to have columns separated by vertical
lines,
• Ck will make the horizontal lines and and at the same time force the regu-

larity of the vertical ones,
• T will force that within a horizontal period, only one vertical line can

appear.

The components and their rules are as follows:
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Proof.

Figure 3. The shape of the base SFT Yk: whenever a point of Yk
is periodic, it must have the above shape where the width of the
rectangles is exactly the period p and their height kp−1.

w0,0 w1,0 w2,0 w3,0 w4,0 w5,0 w6,0 w7,0 w8,0 w9,0w10,0w11,0

w0,1 w1,1 w2,1 w3,1 w4,1 w5,1 w6,1 w7,1 w8,1 w9,1w10,1w11,1

w0,2 w1,2 w2,2 w3,2 w4,2 w5,2 w6,2 w7,2 w8,2 w9,2w10,2w11,2

w0,3 w1,3 w2,3 w3,3 w4,3 w5,3 w6,3 w7,3 w8,3 w9,3w10,3w11,3

w0,4 w1,4 w2,4 w3,4 w4,4 w5,4 w6,4 w7,4 w8,4 w9,4w10,4w11,4

w0,5 w1,5 w2,5 w3,5 w4,5 w5,5 w6,5 w7,5 w8,5 w9,5w10,5w11,5

w0,6 w1,6 w2,6 w3,6 w4,6 w5,6 w6,6 w7,6 w8,6 w9,6w10,6w11,6

w0,7 w1,7 w2,7 w3,7 w4,7 w5,7 w6,7 w7,7 w8,7 w9,7w10,7w11,7

w0,8 w1,8 w2,8 w3,8 w4,8 w5,8 w6,8 w7,8 w8,8 w9,8w10,8w11,8

w0,9 w1,9 w2,9 w3,9 w4,9 w5,9 w6,9 w7,9 w8,9 w9,9w10,9w11,9

w0,0 w1,0 w2,0 w3,0 w4,0 w5,0 w6,0 w7,0 w8,0 w9,0w10,0w11,0

w0,1 w1,1 w2,1 w3,1 w4,1 w5,1 w6,1 w7,1 w8,1 w9,1w10,1w11,1

w0,2 w1,2 w2,2 w3,2 w4,2 w5,2 w6,2 w7,2 w8,2 w9,2w10,2w11,2

w0,3 w1,3 w2,3 w3,3 w4,3 w5,3 w6,3 w7,3 w8,3 w9,3w10,3w11,3

w0,4 w1,4 w2,4 w3,4 w4,4 w5,4 w6,4 w7,4 w8,4 w9,4w10,4w11,4

w0,5 w1,5 w2,5 w3,5 w4,5 w5,5 w6,5 w7,5 w8,5 w9,5w10,5w11,5

w0,6 w1,6 w2,6 w3,6 w4,6 w5,6 w6,6 w7,6 w8,6 w9,6w10,6w11,6

w0,7 w1,7 w2,7 w3,7 w4,7 w5,7 w6,7 w7,7 w8,7 w9,7w10,7w11,7

w0,8 w1,8 w2,8 w3,8 w4,8 w5,8 w6,8 w7,8 w8,8 w9,8w10,8w11,8

w0,9 w1,9 w2,9 w3,9 w4,9 w5,9 w6,9 w7,9 w8,9 w9,9w10,9w11,9

Figure 4. A periodic point of A. Here wi,j are symbols of the
alphabet of W .

• The first componentA is partly composed of an aperiodic East-deterministic
SFT W , whose symbols will be called white symbols. We can take the one
from J. Kari [Kar92]1.

To obtain A from W , we add to the alphabet a new symbol . With the
additional forbidden patterns:

– no white symbol shall be above or below a ,
– two cannot appear next to each other horizontally.
With this construction, a periodic point of A of period p must have

columns of white symbols separated by vertical lines of . This is due to the
fact that W forms an aperiodic SFT.

For the moment nothing forbids more than one gray column to appear
inside a period. Figure 4 shows a possible form of a periodic point at this
stage.

1Note that in the paper the SFT is described by Wang tilings and that it is NW-deterministic.
However, it is straightforward to modify the rules in order to get an East-deterministic aperiodic

SFT. This exact SFT will be studied later on in section 5
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a)

0 1

1|1

0|0

0|1

1|0

P ′2 = {10, 01, 01, 11}

b) 1
0

1
0

0
1

1
0

1
0

1
0

0
1

0
1

0
1

c)

Figure 5. a) The transducer corresponding to k = 2 and the
symbols of the corresponding SFT. A valid pattern for C2 is given
in b) and c): the breaker symbol in b) is from the A layer and
corresponds always to the 1 symbol of C2.

• The second layer of symbols Ck = Pk×{ , } will produce horizontal lines
so that points of period np will consist of rectangles of size p×kp, delimited
by the symbols and .

The idea is as follows: suppose each horizontal segment between two
vertical lines is a word over the alphabet P ′k = {{0, . . . k − 1} × {0, 1}},
that is, represents a number a between 0 and kp−1 − 1 written in base k.
It is then easy with local constraints to ensure that the word on the next
line is a + 1 mod kp−1. The {0, 1} component represents the carry. The
alphabet Pk is composed of P ′k and of a carry 1 that will be superimposed
to the symbol only. See figure 5 for a transducer in the case k = 2 and its
realization as an SFT.

With the { , } subcomponent, we mark the lines corresponding to the
number 0, so that one line out of kp−1 is marked. This line is the only one
where a 01 is transformed into a 10 on the right of a vertical line of .

A is forbidden to appear on the right or left of a : this forces each
column to have counters that are resetted at the exact same moment, and
thus to have the exact same size. Figure 6a shows some typical tiling at
this stage: the period of a tiling is not necessarily the same as the distance
between the rectangles, it may be larger. Indeed, the white symbols in two
consecutive rectangles may be different.
• Component T is formed of the same alphabet as W of component A, recall

that W is an East-deterministic SFT. The forbidden patterns are that two
different symbols cannot be horizontal neighbors. In addition to that, we
forbid of elements of component T on the right of a to be different to the
ones of component W . That means that the symbols of the first column to
the right of a vertical line of are exactly the same for each vertical line of
.

The SFT W being East-deterministic, this means that the symbols of
the columns between vertical lines of are exactly the same for each column
, these are the boundaries of the rectangles.

At this stage, a periodic point necessarily has regular rectangles on all
the plane, whose width correspond to the period, as shown in figure 6b.
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b)

Figure 6. a) An example of a valid periodic point with C2, the
distance between two consecutive vertical lines is now constant.
However the period is not necessarily the width of the rectangles.
b) Once we add component T , the width of the rectangles is now
exactly the period. Note that we only show here the component A
and the subcomponent { , } of C2.

Now we prove that if y ∈ Yk is periodic of period n, then it necessarily is formed
of vertical lines of at distance n of each other and of horizontal lines of at
distance kn−1 of each other.

Consider a point of Yk of period n:

• Due to component A, a vertical line of must appear. The period is a
succession of vertical lines of and white columns.
• Due to component Ck, the vertical lines of are spaced by a distance of p,

where p | n. Furthermore, there are horizontal lines of at distance kp−1

of each other.
• Due to component T , the tiling we obtain is horizontally periodic of period
p, thus p = n.

�
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4. Strong periodicity in SFTs and time complexity

In this section we prove theorem 1.1 on strong periods.
In a square n×n one can only embed computations ending in time inferior to n.

However, given a n×n square of symbols, one cannot check that it has no forbidden
patterns in less than n2 time steps with a Turing machine.

The analogue for higher dimensions holds: any 2d-dimensional cube of n2d sym-
bols can embed computations in time nd, and checking such a cube needs n2d time
steps. Thus the class NTIME1(nd) for unary inputs2

can be captured by 2d-dimensional cubes and only d-dimensional cubes are check-
able in time nd

The gap here is not surprising: while space complexity classes are usually model
independent, this is not the case for time complexity, where the exact definition of
the computational model matters. An exact characterization of strongly periodic
SFTs for d = 2 would in fact be possible, but messy: it would involve Turing
machines working in space O(n) with O(n) reversals, see e.g [CM06].

Here the solution comes from the fact that periodic SFTs of all dimensions would
be captured by the time complexity class NP1 =

⋃
d∈N NTIME1(nd), the gap being

filled by the infinite union. This is theorem 1.1, whose proof below will be, as
before, divided in three parts :

• We first show that one can check whether a d dimensional SFT is strongly
periodic of period p in time pd and thus that the problem is in NTIME1(nd)
(lemma 4.1).

• For the converse, we first construct a base SFT with marked cubes (lemma 4.2)
in a similar way as for horizontal periods,

• All that is left to prove then is how the Turing machines are encoded inside
these cubes (lemma 4.3).

It is interesting to note that the complexity class NP1 also characterizes spectra
of first order formula, see [JS74].

Lemma 4.1. For any d dimensional SFT X, un(PX) ∈ NP: there exists a Turing
machine M ∈ NP1 that given p as an input, determines whether p is a strong period
of X.

Proof. It suffices to take a Turing machine that nondeterministically guesses a pd

cube and then checks whether it contains any forbidden patterns and whether p is
the strong period of X : for this last part, it has to check that for all k < n, k is
not a period. �

Lemma 4.2. There exists a d-dimensional SFT Yd such that :

• Any periodic point is strongly periodic.
• Any strongly periodic point y ∈ Yd of period p is constituted of adjacent
d-cubes pd with marked borders.

• Every integer p ≥ 2 is a strong period of Yd.

Proof. As before, the construction will be based on some aperiodic SFT, with some
added symbols to break the aperiodicity and force a regular structure. The SFT
Yd is made of three layers A× S × T :

2Note that the class NTIME1(nd) for unary inputs corresponds to the class NTIME2(2dn) for
binary inputs and that complexity classes are usually defined on binary inputs. So NP1 is not the

famous NP class, although NP = P would imply NP = P.
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• layer A will force strongly periodic points to have marked lines,
• layer S will force strongly periodic points to have marked d-cubes,
• and finally, layer T will force the strongly periodic points to be composed

of d-cubes of side p, the strong period.

We will now detail each component and the strongly periodic points thus ob-
tained.

• Let W be a 2-dimensional NW-deterministic aperiodic SFT3, we define a
2-dimensional SFT A′:

– the alphabet of A′ is composed of the alphabet of W with the addi-
tional symbols , , ,

– the forbidden patterns of W are kept and the following are added:
∗ above and bellow a may only appear a or a ,
∗ on the left and right of a may only appear a or a ,
∗ on the left and right of a there may only be a ,
∗ above and below a , there may only be a .

The (strongly) periodic points of A′ have necessarily one of the new symbols
, , . That is to say they are necessarily formed of either an infinity of
lines of , either an infinity of lines of , or by an infinity of squares with
sides marked by and and corners by .

The d-dimensional SFT A is obtained from the 2-dimensional SFT A′

by keeping the alphabet, keeping the rules for the first two dimensions, and
then force the symbols next to each other along all other directions to be
equal. In the sequel, we will call A′ the plane with the rules of A′.
• The second layer S will force the A′ plane of periodic points to be formed

of squares and will mark the frontiers of the d-cubes. For 2 ≤ i ≤ d,
we define d − 1 SFTs Si with the same alphabet formed by the symbols
, , , , , :
– The adjacency rules for Si on the plane defined by e1, ei are that two

symbols can be next to each other iff their borders match: left/right
matchings correspond to ±ei and above/below to ±e1.

– The rules applying to the other dimensions are that if there is a symbol
a at x ∈ Zd, then there must also be a symbol a at x± ek, for k 6= 1, i.

We superimpose the Si’s in order to obtain S: at each position, the
symbols on all Si components must all be taken from only one of the sets
{ , } and { , , , }.

See figure 7 for an example of how Si and Sj can be superimposed.
Then to obtain A × S we add superimposition rules only with the S2

subcomponent of S, which has its rules on the A′ plane and forms squares
on it. The rules are that can only be superimposed to , (resp. )
can only be superimposed to (resp. ) and the other symbols can only be
superimposed to white symbols. As a consequence, the symbols , , on the
A′ plane must form squares on the strongly periodic points. Figure 8 shows
how the A′ planes of component S2 and component A are superimposed.

The strongly periodic points of the resulting SFT are points that have
d-cubes whose corners are marked by ( , . . . , ). The boundaries of the
d-cubes are marked by the and symbols: if the side of the d-cubes

3For this lemma we can take any such SFT, however we will use Kari’s [Kar92] tileset later to

further the construction.
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ei

e1

ej

Figure 7. How Si and Sj are superimposed.

e1

ei

Figure 8. The A′ planes of components S2 (left) and A (right)
and how they are superimposed: layer S2 forces the symbols ,
and of component A to form squares.

is n, and there is a corner at p = (p1, . . . , pd) ∈ Zd, then for any point
q = (q1, . . . , qd) ∈ Zd, a or on component Sk is equivalent to pk ≡ qk
mod n and a or is equivalent to p1 ≡ q1 mod n.
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w0,3

w0,4

w0,0

w0,1

w0,2

w0,3

w0,4

w0,0

w0,1

w0,2

w0,3

w0,4

a)

w0,4 w1,4 w2,4 w3,4 w4,4 w0,4 w1,4 w2,4 w3,4 w4,4

w0,4 w1,4 w2,4 w3,4 w4,4 w0,4 w1,4 w2,4 w3,4 w4,4

b)

Figure 9. In a), the way Lright and Ldiag synchronise the first
column of the aperiodic background for all squares. In b), the way
Uup and Udiag synchronise the top line of the aperiodic background
for all squares.

However, the squares formed on the A′ plane of A may not have the
same aperiodic background, and thus there could be more than one square
in a period. Thus the period is a multiple of the size of the d-cubes. We
want now to prevent this from happening and force the strong period to be
exactly the size of the d-cubes.
• Component T = Lright × Ldiag × Uup × Udiag is here to address this last

problem: by synchronizing the aperiodic background between squares on
A′ it will force the least distance between two ( , . . . , ) to be the strong
period. To do this, since W is NW-deterministic, we only need to transmit
to the neighboring squares the upper line of symbols and the leftmost one,
see figure 9. Each subcomponent’s alphabet is a copy of the alphabet of W
and the rules are as follows:

– On Lright, the symbols at z are the same as the symbols at z ± e2.
The only superimposition rule is that a symbol on the right of a on
A′ must be the same as on Lright. This component synchronises the
leftmost column of symbols of all horizontally aligned squares.

– On Ldiag, the symbols at z are the same as the symbols at z±(e1+e2).
The only superimposition rule is that a symbol on the right of a on
A′ must be the same as on Ldiag. This component synchronises the
leftmost column of symbols of all diagonally aligned squares.

– On Uup, the symbols at z are the same as the symbols at z± e1. The
only superimposition rule is that a symbol above a on A′ must be
the same as on Uup.

– On Udiag, the symbols at z are the same as the symbols at z±(e1+e2).
The only superimposition rule is that a symbol a on A′ must be the
same as on Udiag.

The construction is now finished. Now take a strongly periodic point of Yd with
strong period p. By construction, it necessarily is constituted of identical adjacent
hypercubes of side p. The boundaries of the hypercubes being marked by symbols
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( , . . . , ) and ( , . . . , ) and the corners by ( , . . . , ). It is straightforward to
see that any p ≥ 2 is a strong period of the constructed subshift. �

Lemma 4.3. Let L ⊆ N be a language such that un(L) ∈ NTIME(nd), there exists
a 2d-dimensional SFT X such that L = PX and such that all periodic points are
strongly periodic.

Proof. Let M be a Turing machine recognizing L in nondeterministic time nd. We
need to construct an SFT XM whose strong periods are exactly the accepted inputs
of M . We Using lemma 4.2, all that is left to prove is how to restrict the periods
to the integers accepted by M . In order to do this, we will encode computations
of M inside the 2d-cubes of Y2d: on a unary input, M takes at most nd time
steps to accept or reject, so a 2d-cube of side n has exactly the right amount of
space to encode such a computation. The idea is to fold the space-time diagram
of the Turing machine so that it fits into the cube while still preserving the local
constraints. Such a folding has already been described by Borchert [Bor08] and
can also be deduced from Jones/Selman [JS74]. We then have to make sure that
the nondeterministic transitions are identical in all 2d-cubes of a point. Let us now
describe this in more details.

In a space-time diagram of M with input n, tape cells have coordinates (t, s)
with t ≤ nd, s ≤ nd, where t is the time step and s the position in space. We now
have to transform each cell (t, s) into a cell of the 2d-cube of size n, so that two
consecutive (in time or space) cells of the space-time diagram remain adjacent cells
of the cube. So we transform s and t into elements of J0, n − 1Kd with a reflected
n-ary code (also called reflected Gray-codes), see [Flo56; Knu05], this corresponds
exactly to folding the time/space.

The vector (t0, . . . , td−1) ∈ J0, n−1Kd will represent the integer t =
∑
ain

i where

ai =

{
ti when

∑
j>i tj is even

(n− 1)− ti otherwise

see [Knu05, Formula (51)]. The next positition is given by the parity of the sum of
the stronger weighed digits. In order to tranform this in local constraints, it will
suffice to encode parities of positions in the cube with some layers P t and P s for
time and space respectively.

Layer P t is made of several sublayers Pi = {0, 1}, one for each direction ei,
2 ≤ i ≤ d. We now give the rules, recall that the boundaries of the cube are
marked. Without loss of generality, we may suppose that there is a corner in
position 0. This corner has 0 on all layers Pi. The rules are the following : if there
the symbol p at position z ∈ J0, n − 1Kd on sublayer Pi, then there must be p + 1
mod 2 at position z + ei and p at positions z + ej, with j 6= i. These rules do not
apply when the next position is at the boundary of the 2d-cube. The layer P s is
similar, except it is on dimensions d+ 1 to 2d. An example for a three dimensional
folding can be seen on figure 10.

Now that we have encoded the Turing machines inside the 2d-cubes, their size
can only be one of its accepted inputs. However, recall that the Turing machines
encoded are nondeterministic, therefore we have to synchronize the transitions be-
tween the different hypercubes, otherwise the periods may be multiples of accepted
inputs. In order to do that, we add a new component N , which is constituted of
the following sublayers, whose alphabets are each a copy of the possible transitions
of M :
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1

0

Figure 10. Folding of a three dimensional cube, the red on the
parity layer stands for 0 and the white for 1. The direction where
to look for the next cell is given by the sum of the parities.

• The first sublayer, k, will propagate the transition of a time-step to all cells
of the same time-step, that is to say the rest of the tape. A cell where a
transition happens imposes the symbol on k to be the transition happening.
The symbol propagates along space: if there is a symbol l on k at position
z ∈ Zd, then there must be exactly the same symbol at position z± ei, for
d+ 1 ≤ i ≤ 2d.
• We also have a set of sublayers ii, one for each time dimension, 1 ≤ i ≤ d.

Component ii has the following rules : the symbol on ii at position z
is identical to the one at position z + (ei + ed+1). When the cell is on a
border of the 2d-cube on dimension 1, the symbols on ii and k have to be
identical. For the construction of lemma 4.2, this means that Si contains a

or a . Figure 11 shows how this synchronisation is done.

As in lemma 3.2, n + 4 is a (strong) period if and only if n is accepted by M .
Again, to obtain exactly n it suffices to fatten the symbols on the borders.

�

5. Counting the number of periodic points in SFTs

In theorem 1.1 we have seen that the sets of strong periods of SFTs are exactly
the sets of integers recognized nondeterministic polynomial time: we can go one
step further and give a characterization of the sequences pn(X)n∈N∗ where pn(X)
corresponds to the number of points in X with period n.

In the previous construction this number was related to the number of accepting
paths of the Turing machine : the number of possible aperiodic backgrounds possi-
ble for each square of A′ makes it hard to characterize. The following theorem is a
consequence of forcing the aperiodic background of squares of the same size to be
unique:

Theorem 5.1. For any SFT X, let NX : a∗ → N be the function defined by
NX(an) = pn(X)/nd where d is the dimension of X. We have then the following:

{NX | X an SFT} = #P

Note that the function pn(X) has been normalized by nd, this is due to the fact
that there are exactly nd shifted versions of a same strongly periodic point of period
n.
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ed+1

ei
ej

Figure 11. The Synchronization of nondeterministic transitions
between the 2d-cubes : here is the projection in 3 dimensions
ed+1, ei, ej, with 1 ≤ i, j ≤ d. k is represented in blue and ij

is represented in red. On the top, we represented component Sj of
the construction of lemma 4.2. Layers k et ij synchronise together
when we are on the side of a square on Sj .

Proof. To prove that #P ⊆ {NX | X an SFT} we have to fix the aperiodic back-
ground for the squares of our previous construction: the number of strongly periodic
points of period n with a corner at 0 will then be exactly the number of accepting
paths of the Turing machine M ran on n.

In order to do that, instead of taking any NW-deterministic aperiodic SFT W ,
we will take Kari’s SFT [Kar92] and show that it is easy to fix the top and leftmost
borders of the squares: this will determine the rest of the square.

Kari’s set of tiles is exactly the same as Robinson’s [Rob71], see figure 12, except
that it has one supplementary layer with diagonal arrows, see figure 13. A valid
tiling with this tileset can be seen on figure 14, the top and left borders determine
the whole square. These borders are almost trivial and can be extended to any
length, still forcing an admissible pattern.

Conversely {NX | X an SFT} ⊆ #P: checking whether n ∈ PX is NP1. The
number of accepting paths of the Turing machine of the proof of lemma 4.1 is
exactly the number of periodic points of period n. In order to normalize by nd, we
also force this machine to only keep the guessed “fillings” of the nd cube that are
the smallest among their translates for the lexicographic order. �



20 EMMANUEL JEANDEL AND PASCAL VANIER

(a) (b)

Figure 12. Robinson’s aperiodic tileset : a) a cross and b) arms.
The tileset also includes the rotates of these tiles. If the main arrow
of an arm is horizontal (resp. vertical) we will call it a horizontal
(resp. vertical) arm. Two tiles can be neighbors if and only if
outgoing arrows match incoming ones.

(a)
Hor

Ver

(b)
Ver

Hor

(c)
Ver

Ver

Hor

Hor

Figure 13. Kari’s addition to make it NW-deterministic : a new
layer with diagonal arrows that have to match at their extremi-
ties. On horizontal arms only, we superimpose the tile (a) and on
vertical ones only, the tile (b). The tiles (c) are superimposed on
crosses only.
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Figure 14. A valid tiling by Kari’s NW-deterministic tileset. The
top and left borders determine the whole square. The diagonal
arrows are not represented but can be easily deduced.
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6. 1-periodic points in SFTs of dimension 2

We now go back to bidimensional SFTs, and focus on 1-periodicity. Recall
that a point is 1-periodic when it only has colinear vectors of periodicity. We
prove theorem 1.2: the sets of 1-periods of SFTs are exactly the sets of vectors of
N× Z \ {0} that are in NSPACE1(n).

Lemma 6.1. Let X be an SFT of dimension 2, then un(P1
X) ∈ NSPACE(n).

Proof. We have to construct a Turing machine M which on input v = (m,n) ∈
N×Z \ {0} decides in space |v| if v is a 1-period. We have seen in subsection 2.1.2
how to construct the graph Gv(X) and that v is a 1-period iff this graph contains
two mutually accessible cycles. This graph does not fit, however, in space |v|. The
algorithm that we will use is similar to the one introduced in lemma 3.1, it will
just need to check the existence of two different completions that can be “glued”
together. We suppose without loss of generality that m ≥ |n| and that r is the
radius of the SFT X.

• Initialize an array P of size max(m,n) such that P [i] = 1 for all i’s and a
boolean D to false.
• Nondeterministically sizes t1, t2 ≤ 3m|Σ|4rm, the sizes of the two cycles.
• Parallely choose 2×2r horizontal lines (li)0≤i≤r−1 and (l′i)0≤i≤r−1 of length
m, each sequence of lines forms a rectangle of 2r ×m symbols of Σ.
• We now do these steps in parallel:

– For all 2r < i ≤ t1, nondeterministically choose a line l1 of length m
and check that there is no forbidden pattern in the lines li, . . . , li−2r−n.
For this step, it suffices to keep the 2r last lines li, . . . , li−2r and 2r
symbols on each of the preceeding n lines.

– We also nondeterministically choose lines l′j for 2r < j < t2 at the
same time and check if they form an invalid pattern. It is important
to choose line li at the same time as line l′j until min(t1, t2) is reached:
whenever li is different from l′i, assign true to D.

– At each of these steps, check if there is a periodicity vector (m′, n′)
such that (m′, n′) · k = (m,n), if it is not the case then P [k]← 0.

– Once the last lines lt1 and l′t2 have been guessed, chck that there is no
forbidden pattern on the patterns formed by the symbols remembered
on lines:
∗ lt1−2r−n, . . . , lt1 , l0, . . . , l2r
∗ l′t2−2r−n, . . . , l

′
t2 , l
′
0, . . . , l

′
2r

∗ lt1−2r−n, . . . , lt1 , l′0, . . . , l′2r
∗ l′t2−2r−n, . . . , l

′
t2 , l0, . . . , l2r

This checks that the two cycles found are mutually accessible.
• If any of the steps before failed or if there exists k,m′, n′ < m such that
k · (m′, n′) = (m,n) and P [k] = 1, or if D is false then reject. Accept
otherwise.

This algorithm only needs to keep 4rm+ 2rn symbols of Σ, as well as P and D in
memory. �

Lemma 6.2. For any constant k ∈ N∗, there exists a 2-dimensional SFT Yk such
that any one periodic point of period (m,n) is formed of m× km−1 rectangles with
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marked borders, as in figure 15. Furthermore, Yk admits as 1-periods any (m,n)
such that 0 < n < m.

Figure 15. The marked rectangles of the 1-periodic configurations.

Proof. As in the preceeding proofs, the construction will be done in successive steps,
by superimposition of several layers A,Cc, R, S :

• Again, the first component A is based on an aperiodic East-deterministic
SFT W . The alphabet of A is ΣA = (ΣW × {·, }) ∪ { , , , }, we call
the symbols of ΣW the white symbols. Again, the other symbols allow to
break periodicity, the rules are the following:

– The rules between the symbols of ΣW remain unchanged.
– White symbols may have a or another white symbol above, but two

may not be above/below each other.
– The constraints on whites “are transmitted over the symbols: re-

moving a line of and gluing the white symbols above and below must
not produce any forbidden pattern.

– The rules between the symbols { , , , , } are Wang rules.
– Only the white sides of symbols { , , , , } may touch a white

symbol.
At this stage, the configurations with a periodicity vector necessarily

have an infinity of vertical lines. Vertical lines may eventually be met by
extremities of finite horizontal lines, see figure 16. An infinity of horizontal
lines leads to an aperiodic configuration.

(a) (b)

Figure 16. There are several possibilities for 1-periodic points
of A: an infinity of vertical lines (b), or an infinity of vertical lines
separated by finite horizontal lines (a).
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• Component Ck is a k-ary counter, exactly as in lemma 3.3. Now that this
counter has been added, the points having a periodicity vector necessarily
contain an infinity of vertical lines, necessarily joined by horizontal lines at
distance kn−1 when they are distant by n.
• In points with a periodicity vector, component R forces columns formed by

the nearest vertical lines to all be of the same width, and the offset between
horizontal lines of two neighboring columns to always be the same. The
first is done by first projecting each horizontal line to the left and to the
right until it reaches the next vertical line. Between projections on the
same side, we again put a a counter Ck, this forces the sizes of the two
columns to be identical.

To make the offset between horizontal lines constant for all columns, we
project two signals of slope 1 on both the left and the right of the horizontal
lines. These signals propagate normally on white symbols and cannot touch
a vertical line directly: they have to first pass on a horizontal line. As they
do this, their direction changes and their slope becomes −1. They must
then touch the next vertical line at the exact same time as the projection
from two columns to the left/right, at which time the signal stops, see
figure 17.

Right alignment signal

Left alignment signal

Right projection

Left projection

Figure 17. How component R operates. Each horizontal line
sends a projection to the next vertical line on each side. On each
side, between projections, there is a counter Ck. Another signal is
send diagonally, with slope 1, it can only touch a horizontal line, at
which point it changes its direction and needs to rereach the same
vertical line at the same time as the projection from two columns
to the left/right.

At this stage, the points with a periodicity vector are necessarily consti-
tuted of rectangles of identical size, “translated” by a vector (m′, n′) from
one column to another. (m′, n′) is not necessarily a periodicity vector,
however there must exist k such that k(m′, n′) is.
• We now arrange for the width m of the rectangles and their offset n to form

the periodicity vector: we set the aperiodic background in the columns to be
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identical. In order to do that, since W is east-deterministic, we synchronize
the first vertical line of white symbols of a column with the first vertical
line of white symbols of the next column, shifting it by the offset. This
is what the last component S does. S is constituted of two sublayers W ′

whose alphabet is the same as W ’s and a second one S′ which allows to
know which neighboring symbols of W ′ have to be equal, figure 18 explains
S′ in sufficient detail to infer the rules. As before, the symbols on W ′ and
A to the right of a vertical line need to be identical on both layers.

Figure 18. The symbols are superimposed only to the left
alignment signals, and on the bottom line, . The rules for W ′ are
determined by the arrows : a symbol on W ′ must be equal the
symbol on W ′ to which the arrow points on S′.

• The last step now forces the existence of 1-periodic points, all points with
a vector of periodicity at the end of the previous step were also periodic.
To do this, it suffices to add two colors, yellow and blue, to the rectangles
formed by the vertical lines and horizontal lines. The color of a rectangle
is transmitted to its (m,n) translate, where m is the width of the rectangle
and n the offset between columns.

Let us now check that the 1-periodic points are necessarily of the expected shape.
Let x be a 1-periodic point of 1-period (m,n) with 0 < n < m. Then x necessarily
has an infinity of vertical lines due to A. Thanks to Ck, two nearest vertical lines
at distance m′ are joined by horizontal lines at distance km

′−1. R forces all nearest
lines to always be spaced by the same distance m′. It also forces the offset between
horizontal lines of any two neighboring columns to be some n′. Furthermore, S
forces the aperiodic background of each column to be identical, up to the offset n′.
So x is periodic along (m′, n′), which is the smallest vector of periodicity, and since
x is 1-periodic (m′, n′) = (m,n).

Conversely, given (m,n) it is easy to exhibit a point with 1-period (m,n): a
well formed configuration of rectangles of size m × km−1 where only one of the
alignments of rectangles of direction (m,n) is blue and all others are yellow. �

Lemma 6.3. Let L ∈ N × Z be a language such that un(L) ∈ NSPACE(n), then
there exists an SFT X such that L = P1

X .

Proof. Let M be a Turing machine recognizing L in time cn for some constant c, n
being the size of the input. With lemma 6.2, it suffices to encode M in the rectangles
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of Yc while taking care of synchronizing the nondeterministic transitions between
the shifted rectangles, as usual: this allows to realize the subset of L of vectors
(m,n) with 0 < n,m. Almost identical constructions allow to do the remaining
cases: 0 < m < n, m = 0, n = 0, n = m and n < 0 < m (there are then two
subcases |n| < |m| and |m| < |n|). The disjoint union of all these SFTs form the
end SFT realizing L as its 1-periods. �

There are two ways to generalize theorem 1.2 to higher dimensions, since in
dimension 2 1-periodicity is both “(d−1)-periodicity” and 1-periodicity. To obtain
a similar characterization, one would have to consider (d− 1)-periodicity in higher
dimensions because it would again come to the problem of whether some graph has
two mutually accessible cycles. 1-periodicity on the other hand would this time
not admit a characterization in terms of some complexity class but rather some
computability class, as it would be undecidable to decide whether some vector is a
1-period or even a periodicity vector.

7. Periodicity in sofic and effective subshifts

For periodic and sofic subshifts it is not decidable anymore whether some pattern
is admissible, this means in particular that it is not decidable anymore whether some
n is a period/strong period.

The first thing that we may see however is the following lemma:

Lemma 7.1. Given an effective/sofic subshift X of dimension d and d vectors
v1, . . . ,vd it is co-recursively enumerable to decide whether there exists x ∈ X such
that Γx = v1Z⊕ · · · ⊕ vdZ.

Proof. It suffices to guess all fillings of the volume defined by the vectors v1, . . . ,vd,
we need then to check if the generated configurations contain some forbidden pat-
tern. For this, we enumerate the forbidden patterns and check whether they appear
in every guessed filling (eventually repeated). The machine stops iff all fillings gen-
erate a point containing a forbidden pattern. �

The realization counterpart of this lemma for effective subshifts is quite straight-
forward:

Lemma 7.2. Let L be a co-recursively enumerable set of rank d sublattices of Zd,
then there exists an effective subshift X such that L = {Γx | x ∈ X}.

Proof. It is easy to construct such an SFT with the same methods as before: taking
an aperiodic SFT and breaking it with new symbols. The forbidden patterns are
all volumes generated by the d-uples of vectors of L, they also make sure that all
such volumes have the same aperiodic background. �

For sofic subshifts we did not manage to obtain a construction allowing us to
realize all co-r.e. sets of rank d lattices. But we managed to realize certain types
of lattices, the “rectangular” lattices, that is to say the lattices of the form Γ =
n1Z × · · · × ndZ with n1, . . . , nd ∈ N∗. We will note Pr

X the sets of d-uples such
that there exists x ∈ X with Γx = n1Z× · · · × ndZ.

Lemma 7.3. Let L ⊆ N∗d be a co-recursively enumerable set, there exists a d-
dimensional sofic subshift X such that Pr

X = L.

In order to prove the lemma, we will need the following result:
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Theorem 7.1 (Aubrun and Sablik [AS10]; Durand, Romashchenko, and Shen
[DRS10]). Let X be a d dimensional subshift, and X ′ be the d+1 dimension subshift
obtained by adding a dimension to X and keeping symbols identical on it. X is an
effective subshift if and only if X ′ is sofic.

This result will be used to generate some sofic subshift by only giving the lower
dimensional effective subshift corresponding to it.

Proof of lemma 7.3. We give the proof for dimension 2, one can easily generalize
it for higher dimensions. We have a co-r.e. language L ⊆ N∗2 and we want to
construct a sofic subshift X such that Pr

X = L. We now detail the construction
realizing the subset {(n1, n2) | (n1, n2) ∈ L and n1 > n2} of L. The construction
will once again use an aperiodic base that will be broken by new symbols, except
this time the shape will be determined by layers that we put on top and that will
not be projected to obtain the sofic subshift.

We describe now the SFT that will be projected:

• The first component A consists of an aperiodic NW-deterministic SFT W ,
the white symbols, to which we add three symbols , and .

The rules are almost the same as for A′ of component A of lemma 4.2:
above a or a there may only be a or a . On the left of a or a ,
there may only be a or a . For this layer to be periodic, a point needs
to have an infinity of lines of , or . If there is an infinity of lines of

and , then they cross with the symbols and do not necessarily form
rectangles of the same size.
• The second component P will give the information on the dimensions that

the rectangles can have and force their width to be identical. To do this,
we use theorem 7.1 in order to obtain identical lines composed of concate-
nations of words bman−m, with n > m and (n,m) ∈ L:

. . . bman−mbman−mbman−m . . .

These lines can be generated by an effective subshift of dimension 1,
which by compactness will contain the uniform lines · · · aaa · · · and · · · bbb · · · .
So using theorem 7.1 we have an SFT that projects onto the shift with iden-
tical lines, we may assume that it has a component equal to these lines.

We now give the superimposition rules of the symbols: a b appearing
after an a needs to be superimposed to a or a , and conversely.

At this stage, component A can only be periodic in two cases: either
component P is uniform and contains only a’s or b’s and it has an infinity
of horizontal lines of , or it contains an infinity of vertical lines of distant
by n, with n such that there is some m < n with (n,m) ∈ L.
• Component R forces the vertical lines of to appear whenever there is an

infinity of vertical lines of . R will be formed of the following Wang tiles:
{ , , , , , , , , }. The superimposition rules are the following:

– can only be superimposed to .
– can only be superimposed to .
– and can only be superimposed to an a on the right of a b.
– can only be superimposed to .
– , , can only be superimposed to b.
– can only be superimposed to a.
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Figure 19. How components A, P and R are superimposed:
component P is on the top, component R is below and on the
bottom sits component A. The vertical lines of are superimposed
to the first symbols b appearing after an a. Component R allows
to adjust the height of the rectangles according to the number of
b’s.

Figure 19 shows how component R is superimposed to the first compo-
nents and shapes the rectangles.

The possible cases now when component A is periodic are the following:
there are rectangles, all of the same size n×m, with n > m and (n,m) ∈ L,
or there is an infinity of horizontal lines of . In the case when it is formed
of rectangles, the vectors (n, 0) and (0,m) do not necessarily generate Γx,
as the aperiodic background of the rectangles are not necessarily the same.
• Component V forces the first column of white symbols of the rectangles on

component A to be identical. The one-dimensional subshift on the alphabet
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ΣW ∪ {#} whose points are of the form:

· · ·#w1 . . . wk#w1 . . . wk#w1 . . . wk# · · ·
that is to say the periodic points formed by the repetition of some word on
ΣW where each occurence is separated by a #. Again, using theorem 7.1
we may use the subshift formed of these lines vertically. Now, # can only
be superimposed to a or a and no other symbol can be superimposed
to them. We also force the symbols of W exactly on the right of a to be
identical to the ones on V .
• H is the last component, and is similar to V . Consider the effective subshift

formed by the following points:

· · ·#(w1, t1) . . . (wk, tk)#(w1, t1) . . . (wk, tk)#(w1, t1) . . . (wk, tk)# · · ·
Where the wi’s are symbols of ΣW and the ti’s are symbols of some aperiodic
effective subshift M of dimension 1: for example the subshift where we
forbid the words awawa with a a letter and w a word, which is aperiodic
and non-empty, see Thue [Thu12]; Morse [Mor21]. We keep the rules of M
for the words t1 . . . tk that are not cut by some #. So if no # appears in a
point, then the point cannot be periodic. We can now use theorem 7.1 and
use the subshift formed of these lines horizontally.

We force the # symbols to be superimposed to ’s or ’s only and the
symbols of component A appearing on just below a to be identical as the
ones on H.

At this point, if we look the possible periodic points for the restriction
to component A, we have the following:

– The points x formed of n×m rectangles with n > m and (n,m) ∈ L,
they are periodic and Γx = nZ×mZ

– The points formed by an infinity of horizontal lines of , without any
vertical line of .

The end subshift is obtained by projecting component A and H only: projecting
H allows to get rid of the second class of points, as they not have any periodicity
vector of the form (0,m), because of the aperiodic one-dimensional subshift. �

So we have the following characterizations for sofic and effective subshifts:

Theorem 7.2. The sets of rank d periodicity lattices of effective subshifts of di-
mension d are exactly the co-r.e. sets of sublattices of Zd.

Theorem 7.3. For any L ⊆ N∗d, there exists a d-dimensional sofic subshift X
such that Pr

X = L if and only if L is co-r.e.
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