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Abstract

A connectivity analysis of controlled quantum systems assesses the feasibility of a field existing

that can transfer at least some amplitude between any specified pair of states. Although Hamil-

tonians with special structure or symmetry may not produce full connectivity, it is argued and

demonstrated that virtually any Hamiltonian is expected to be connected. The connectivity of any

particular system is generally revealed in the quantum evolution over a single or at most a few

time steps. A connectivity analysis is inexpensive to perform and it can also identify statistically

significant intermediate states linking a specified initial and final state. These points are illustrated

with several simple systems. The likelihood of an arbitrary system being connected implies that

at least some product yield can be expected in the laboratory for virtually all systems subjected

to a suitable control.
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I. INTRODUCTION

Quantum control studies generally utilize a laser field for manipulating the system dy-
namics to achieve a desired physical objective, often consisting of maximizing the probability
of transition between specified states of the system [1-4]. Many quantum optimal control
simulations have produced excellent results, and increasing numbers of successful closed-
loop learning control laboratory realizations are being reported [5-12]. Recent theoretical
analysis [14, 15] revealed that the origin of these positive findings lies in there being no false
sub-optimal search outcomes, provided that the system is controllable such that some field
exists which may drive the amplitude from the initial to the final state. Underlying the
concept of controllability is connectivity, which aims to establish that at least some pathway
exists to connect the initial and final states. This paper presents the means to determine
connectivity and then argues that virtually all quantum systems are expected to be con-
nected. It will also be shown that a connectivity analysis can identify the intermediate states
that are statistically likely to be more important in the dynamics. Section II defines the
notion of quantum system connectivity and presents a very simple algorithm to test for its
presence. Section III presents several simple illustrations, and some conclusions are drawn

in Section IV.

II. CONNECTIVITY ANALYSIS

The quantum system under control is described by the Schrodinger equation:

_dly(2))
ih o

where |1(t)) is the time-dependent state of the system, Hy is the field-free Hamiltonian, u

= [Ho — E(B)pl[v (1)), (1)

is the dipole moment, and £(¢) is the laser control electric field. The quantum system is
represented in terms of N basis states {|1;)},{ = 1,2,..., N, implying that |1(t)) is a vector
of length N and correspondingly Hy and p are N x N matrices. The basis is conventionally
chosen as the eigenstates of Hy, although any other basis may just as well be employed
in the connectivity analysis. The connectivity analysis is in reference to the chosen basis.
Section IV will generalize the analysis to other considerations of connectivity in controlled

dynamics, including descriptions best formulated in coordinate space.



Two basis states |1;) and |1);) are said to be connected if some control field £(¢),0 < ¢ < T
exists creating a non-zero amplitude U;; = (¢;|U(T,0)|¢;) relating the two states. Here
U(T, 0) is the time evolution operator driven by the Hamiltonian Hq— & (). The solution of
the Schrodinger equation may be built up from a sequence of short time evolution operators
U(t,t — Ab),

At

eyt~ At) & eap(~ 20 [Hy — £t — 20 (2)

for At being sufficiently small such that £(t) is nearly constant over [t — At,¢]. Thus, the

total propagation over the interval 0 < ¢ < T may be carried out as follows [13]:

W(T)) = U(T,0)|v;) = U(T, T — At) x U(t — At,t — 2At) x ... x U(AL,0)[1h;) . (3)

Two states |1;) and |1);) are connected if |Uj;| # 0, and the ultimate control goal is taken to
be the maximization of |Uj;|>. The maximum value of |Uy;|* generally builds up incrementally
over the long sequence of the time evolution operations in Eq.(3). Yet, each incremental
operator U(t,t — At) contains similar physical coupling information with the only difference
being the value £(7) involved. Except for the special case of £(7) = 0, it is reasonable to
expect that the basic assessment of connectivity resides in whether |(y;|U(t,t— At)|1;)| # 0
for a value of £(1) # 0 and At # 0. For numerical reasons, it is often prudent when
performing a connectivity analysis with the operator in Eq.(2) to choose £(7) sufficiently
large to assure that ||[Hy|| ~ ||p|| - |[E(7)| and also have At larger than normally required
in the time integration steps of Eq.(3). The algorithm below for assessing connectivity also
allows for the prospect that a product of two or more propagation steps may be needed to
properly assess connectivity in cases when H, and p have special structure or symmetry,
but the numerical results from large ensembles of randomly chosen Hamiltonians supports
the point that U(t,t — At) alone usually reveals the system connectivity. The connectivity
information is collected into a real symmetric matrix C' whose elements C}; are either 0 or
1, corresponding to whether state [¢;) and [¢);) are connected (i.e., C;; = 1, if |¢;) and
|4h;) are connected) by some non-zero amplitude. In some applications the connectivity of a
particular pairs of states |¢/;) and |¢;) is the focus, while in other cases the goal is to assess

if Cji = 1, for all] < 1.



It is important to distinguish a connectivity analysis from performing a fully engaged
optimal control calculation. The criterion C'j;; = 1 is necessary for optimization, but Cj; =1
does not guarantee that |(1;|U(T,0)[¢;)| = 1. This point will be evident in the simulations
and the discussion in Section III. It is also important to distinguish a connectivity anal-
ysis from a controllability analysis, which aims to answer whether the control goal can be
exactly met. Controllability is a strong requirement, while connectivity only asks if a non-
zero amplitude exists between a pair of states. Thus, controllability implies connectivity,
but connectivity does not guarantee controllability. Quantum controllability of U may be
assessed using Lie Algebra techniques [16], which may be difficult to apply for systems of
large dimension N. The strict assessment of 100% yield in the target state is often overly
demanding for many applications where less than perfect control would still be acceptable.
The connectivity analysis proposed in this paper is both conceptually and computationally
simple while providing practically useful information.

The connectivity analysis is carried out with the following four algorithmic steps.

(i) Initialize the integer connectivity index K by setting K = 1.

(ii) Choose random constant field values &, over a physically acceptable domain, —& <
Ex < € and choose a set of random times ¢, > 0, sampled on the interval 0 < t, < T,

k=1,.., K.

(iii) Compute U = [[,_, exp[—i(Ho —Erp)ty/h] and derive the K-th level connectivity map
C¥ by enumerating the non-zero elements of U: Cf = 1if Y| # 0 and Cf; = 0

otherwise.

(iv) If all the elements of C are 1, then full connectivity is assured and one may exit
the algorithm. If Cj; = 1 for a specified pairs of states for assessment, then again
connectivity is assured between these two states and one may exit. If the portion
of CK of interest is not connected, then a further test may be performed by setting

K — K + 1 and returning to step (ii).

This algorithm builds on representation results of the dynamical Lie group of the system.
This group, that determines all controllability properties, is shown [17] to be generated by
all products in (iii) with arbitrary K.



For most cases, simply operating at K = 1 is sufficient to reliably assess connectivity.

Considering K = 1, one may further expand U as follows:

exp[—%(Ho — &t =1+ (Hy— &u)(—%tl) + %(H0 - 51u)2(—%t1)2 +... (4

As & and t; are random, we may conclude that C’}i = 1 as soon as at least one of the
matrices (Hy — & p)!, 1 =1,2,..., has an (j,4) matrix element whose magnitude is non-zero.
By virtue of the Caley-Hamilton theorem [18], it suffices to check the matrices (Hy — &;p)!
for | = 1,2,...,(N — 1). Finding connectivity by checking the matrices (Hy — & p)t, [ =
1,2,...,(IN — 1) for matrix elements of non-zero magnitude reveals the lowest order of [
at which a connection between two states is first established. Furthermore, the statistics
can be established for all intermediate states involved in the connected pathways at this
level, which gives kinematic insight into the mechanism of the control. The statistical role
of the intermediate states based on Eq.(4) may also be readily extended to K > 1, if
necessary. In practice, the connectivity analysis is most conveniently carried out via the
simple algorithmic steps (i)-(iv) above, and the further term-for-term assessment in Eq.(4)

is only used if additional detailed kinematic coupling insight is sought.

III. ILLUSTRATIONS

In this section, the information revealed by a connectivity analysis and its ability to
provide kinematic mechanism insights will be illustrated through three simple examples. The
first example will make clear the distinction between connectivity and controllability. The
second example will test connectivity for a large ensemble of randomly chosen Hamiltonians
and examine the appropriateness of using just K =1 in the analysis steps (i)-(iv). Finally,
the last example will show that the connectivity analysis tools may be extended to multi-
polarization fields and this case will also illustrate the extraction of kinematic mechanism

information from Eq.(4).

A. Connectivity and controllability

Consider the four-level system as in Fig.1 where states 3 and 4 are degenerate. The

field-free Hamiltonian Hj of this system is assumed to have the diagonal form:



state 3 state 4

state 2

state 1

FIG. 1: The system used in example A.
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and the dipole matrix y is chosen to be:

00]
11
10
01

(6)

—_ = =

[ 1
1
0

0

The connectivity analysis in steps (i)-(iv) was complete at index K = 1, producing the

connectivity matrix:

(1111
1111
C= (7)
1111

(111 1]

The fact that all four states are mutually connected is immediately evident from a simple
examination of Fig.1. However, this example was specifically chosen for illustration as the
system is not fully controllable [16, 20]. The reason for this behavior is easily understood,
as states 3 and 4 are degenerate and they are linked to state 2 by a transition dipole element
of the same value. For example, if initially the population is in state 1, then no more than

50% of the population can be transferred to either state 3 or 4. However, if the symmetry is

6



broken by the slightest amount such that |uss| # |p42|, then the system remains connected

and is now fully controllable.

B. Connectivity with arbitrary Hamiltonians and those with special structure

This section addresses the nature of connectivity likely to be found for arbitrary Hamil-
tonians as well as connectivity arising with Hamiltonians of special structure. In addition,
the convergence of the algorithm in steps (i)-(iv) with respect to the index K will be demon-
strated. First, a set of more than 10* random Hamiltonians Hy, 4 of dimensions N up to
30 were examined by the algorithm. It was invariably found that the algorithm converged
to a final matrix C at index K = 1, and furthermore all the cases were fully connected
(i.e., Cji =1 for Vj, 7). These results demonstrate that the connectivity information is fully
contained in an arbitrary incremental propagation step U(¢,t — At) for a random field value
€ # 0. Indeed, to find exceptions to this general behavior requires the creation of special
cases. One special category occurs when Hj, and p are increasingly sparse. Naturally, this
circumstance can lead to some particular states being disconnected. But, in no case was
K > 1 required to assess this matter when Hy and p are randomly chosen while containing
some degree of imposed sparseness. Finally, the presence of special symmetries or extreme
sparseness in Hy and p can lead to requiring K > 1 to achieve convergence. Specially engi-
neered examples were found that required K = 2 to reveal the true converged connectivity
matrix C'. The need for K > 1 arises as the lack of commutation between H; = Hy — &1
and Hy = Hy — Ep with £ # &, introduces the possibility of new linkages occurring for
the case (v;|exp[—i(Hy — &1 p) At/ Rlexp|—i(Hy — Eop) At/R)|1p;) which does not show up in
either (y;|exp[—i(Hy—E1p) At/ R)|1;) or (;|exp[—i(Ho—E2p) At/R][1);). A similar argument
would apply to the potential need for even higher K values.

The general conclusions from analyzing a large ensemble of random Hamiltonians are
that (a) connectivity is easy to assess and (b) under most circumstances the connectivity
is likely to be full, implying that at least some amplitude can be expected in the target
state with a suitable field. Regarding the latter point, it was found that when considering
sparse Hamiltonians, those of higher dimensions were generally more likely to exhibit full
connectivity. These findings are illustrated by Fig.2, where the average fraction of connected

states for Hamiltonians of different dimension NV is plotted versus the probability p of any
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FIG. 2: The average fraction of connected pairs of states versus the probability p of any element

of Hy or 4 being zero for Hamiltonian matrices of different dimension N.

element of the Hamiltonian matrices Hy or y being zero. For Hamiltonians of each dimension,
the fraction of connected states is calculated by averaging the results from 20,000 runs, where
the fraction at each run is the number of connected matrix elements in the upper triangular
part of C divided by the total number of pairs of states (N? — N)/2. It can be seen from the
figure that for increasing Hamiltonian sparseness (i.e., as the probability of any element of
Hj or p1 being zero increases), the fraction of connected pairs of states initially is unaffected
but eventually decreases. The clear trend shows that as the dimension N of the Hamiltonian
matrices increases, the drop in the fraction of connected states is significantly delayed. A
larger fraction of states on the average are connected for Hamiltonians of higher dimension,
given the same degree of sparseness. This behavior evidently arises as the added states

present with Hamiltonians of increasing dimension typically opens up new couplings that
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FIG. 3: The distribution of outcomes from 43,500 runs versus the fraction of connected pairs of
states for a Hamiltonian of dimension N = 30 and probability p = 0.94 of any element of Hy or u

being zero.

can overcome those that might be restricted in lower dimensional cases. Realistic physical
systems typically have very large dimensions, and thus are expected to be fully connected
in most cases. This latter point is also supported by a mathematical theorem in random
graph theory [26]. In a random graph of N vertices the presence of an edge between any
two vertices is assigned a probability p’. The random graph in turn can be represented
by random matrices where the probability p' of the (i,j) matrix element being non-zero

corresponds to the likelihood of there being an edge between vertex 7 and vertex j. The

_ InN

theorem states that there exists a threshold function p'(NV) = %5

such that a random graph
is almost always[28] connected when p’ > 5. The Hamiltonian Hy — £(t)p studied in

this section is a linear combination of two independent Hermitian random matrices: Hy and



system as a graph is p’

0/10 1/10 2/10

O C—o0 | O
3/10 4/10 6/10
10/10

induce more connections and transform the picture into “6/10”.

10

FIG. 4: All 7 possible connectivity pictures of a random graph with N = 5. Note that vertices
1 and k will be connected if vertex ¢ connects to vertex j and vertex j connects to vertex k. For

example, adding an edge at the position shown by the dashed line in the picture “2/10” would

p. The algorithm in steps (i)-(iv) operating at K = 1 (i.e., the expansion in Eq.(4) can
be carried out) is equivalent to analyzing the connectivity of a graph represented by the
matrix Hy — £(t)u, i.e., the resultant connectivity information of this graph is stored in
the matrix C. Let p’ be the probability of any matrix element of Hy or u being non-zero,
p' = 1—p. The corresponding threshold function for the full connectivity of this Hamiltonian

(N) = —”]‘\‘,N Expressed in terms of p(/V), the threshold function is:



p(N)=1-— ‘/%V For N = 30, p ~ 0.94. That is, a connected system at N = 30 can tolerate
approximately 94% zeroes in the matrices Hy and p. Larger N leads to better tolerance.
Realistic physical systems typically have large dimension N and thus are expected to be fully
connected. Figure 3 shows the statistical distribution of the connectivity outcomes from a
simulation of 43,500 random Hamiltonians at N = 30 and p = 0.94. A majority of the
Hamiltonians produce full connectivity, confirming the above graph theoretical prediction.
The distribution is evidently discrete[29], and it was further observed that as the dimension
N of the Hamiltonian increases, this discretization pattern becomes even sharper. This
behavior implies that the connectivity of a physical system is ‘quantized’, which may be
attributed to the inherent properties of random graphs. To understand this, consider a
random graph with NV = 5. The graph has a total of 10 pairs of vertices. Thus, there are 11
possible values for the fraction of connected pairs of vertices: 0/10, 1/10, ..., 9/10, 10/10.
However, only 7 values among them are actually admissible: 0/10, 1/10, 2/10, 3/10, 4/10,
6/10 and 10/10, as shown in Fig.4. These are also all the possible outcomes of C' computed
by the algorithm in steps (i)-(iv) with random Hamiltonians of dimension N = 5. The
discretization occurs in the range of high values of the fraction (i.e., the missing values are:
5/10, 7/10, 8/10 and 9/10). Intuitively, as the number of connected pairs rises, the graph
becomes so intertwined that isolating unconnected pairs gradually becomes impossible; this
point is illustrated in Fig.4 with the case of 2/10 where the addition of one particular
connection led to 6/10. As N rises, it is expected that the graph will become even more
entangled, and that an even wider range of values of the fraction will vanish, resulting in a
highly discretized distribution pattern.

Although full connectivity does not assure full controllability, again it would take spe-
cial structure or accidental values of the Hamiltonian matrix elements to forbid this from
happening. In conclusion, it is expected that a null measured set of Hamiltonians will be
either disconnected or uncontrollable. Those that violate this “rule” are likely to have spe-
cial structure or symmetry, and a case related to this point is given in Section III C. The
physical consequences of full connectivity and controllability likely being the rule will be

discussed in Section IV.
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C. Connectivity with multi-polarization fields

There is much interest in utilizing multi-polarization control fields to manipulate the
dynamics of molecules containing special symmetries (e.g., the control of optical enan-
tiomers [22-24]). As an illustration of the role of multi-polarization fields, consider the
simple model system [25] of a three dimensional harmonic oscillator having a cubic coupling
term (with k; =5 x 1079),

2 2.2

b; w=g;
H, = - ! k 8
0 i_E123( 5 + 7 )+ k1q19203 , (8)

where the ¢;’s are the coordinates and p;’s the corresponding momenta, with the frequency
w = 0.02. All variables are in atomic units. The coupling term models the presence of
anharmonicity. We assume that the system is oriented such that the dipole moment com-
ponents coincide with the polarization directions of the laser field. A simple model is also

assumed with each dipole component p; varying linearly in ¢;, such that

- E(t) = kol - E1() + @2 - E2(t) + g3 - E3(2)] 9)

where ks = 1.0 x 1072.

The Hamiltonian is represented in the first 84 harmonic oscillator eigenstates of

2:1-21,2,3(%’2 + w22qi2 ). There can be three different types of 1-D control pulses, each of which
corresponds to one of the three polarization components & (t), £2(t) and E;(t). For control
with 2-D pulses, there can also be three different types of pulses, where each corresponds to
a different combination of two polarization components. Together with the case of control
using a full 3-D pulse, there are seven cases. The goal is to assess connectivity between the
pair of states |0,0,0) and |1,2,3). This situation has component Hamiltonian matrices Hy
and 1, i, pu3 corresponding to the three dipole components. The constant fields £, &, and
&3, were randomly chosen and a K = 1 level analysis gave a converged connectivity assess-
ment. The connectivity results found from the algorithm are listed in Table I. For control
with 1-D polarization fields, the selected target state is only accessible from the initial state
(i.e., they are connected) by the second polarization component £ (t). This case with the
single fields & (t) or £3(t) alone is an example of where the special symmetry in the Hamilto-

nian and the choice of initial and final states for assessment leads to disconnected situations.

However, for controls with 2-D and 3-D polarization fields in this example, the target state

12



Case Control |0,0,0) and |1,2,3) connected?

1 £1(t) No
2 Ex(t) Yes
3 & (%) No
AORA0) Yes
5 &(t),&() Yes
6 &), &) Yes
T E1(t),Ea(t), E5(2) Yes

TABLE I: Connectivity results for the model in Example C

is always accessible, including with combined fields £ and &3 where acting alone they did
not connect the specified initial and final states. These results were also confirmed [25] with
analogous optimal control calculations.

Based on the connectivity analysis using Eq.(4), a statistical count was also made on the
number of times a particular intermediate state is involved in the shortest pathway connect-
ing the initial state |0, 0, 0) to the target state |1,2,3) for simulation case 2 and cases 4 to 7
in Table I. The shortest connectivity linkage showed up with four intermediate states, and
the statistical analysis is applied at this level. For cases 4 to 7, even at the level of four
intermediate states, there were 189 kinematic pathways linking |0,0,0) to |1,2,3). A few
intermediate states showed up consistently as playing central roles. Most important is state
|1,1,1) which appeared twice as frequently as the next most visited states |0,1,2),|1,2,1)
and |2,1,2). The plethora of potential control pathways offers rich opportunities for achiev-
ing excellent control outcomes, as confirmed by optimal control calculations [25]. A full
mechanistic pathways analysis [21] would be required to reveal the actual amplitude associ-

ated with any possible connected pathway between the initial and final states.

IV. CONCLUSIONS

This paper presented a very simple algorithm for readily testing the connectivity of con-
trolled quantum systems having a discrete set of IV states. Some applications are inherently
discretely represented (e.g., coupled spin systems), while others become so upon practical

treatment. An example of the latter case was the coupled oscillator system in Eqgs.(8) and
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(9) which was naturally represented in a harmonic oscillator basis. However, this latter ap-
plication and others could just well be represented in coordinate space which is discretized
on some suitable grid. The connectivity analysis algorithm in steps (i)-(iv) could also be ap-
plied in this case. As noted in Section II, the connectivity analysis is performed in reference
to a chosen basis, and special considerations arise regarding the basis used to assess connec-
tivity in this situation. In the case of the coordinate space representation one perspective
would correspond to the fine grained view of assessing if some arbitrary points r; and r; in
the space are connected by the dynamics. However, this level of fine detail is likely more
than required for many applications, and a reasonable assessment would consist of asking if
any of the points in a local volume V; are connected to any of the points in the local volume
Vj. Here V; and Vj; could, for example, correspond to the configuration space volumes that
contain the main portions of the initial wave packet and the target one, respectively. An
associated reduced dimensional connectivity matrix C' may be defined to focus on the con-
nectivity of V; and V; or simultaneously with other sub-volumes in the configuration space.
An analogous reduced dimensional connectivity matrix C' concept could also be established
for problems defined in terms of an eigenbasis, such as from Hj,. Connectivity between
one subset of states {¢;} and another subset of states {1;} is natural to assess in many
circumstances. For example, in some cases the control interest may lie in transfer from one
electronic state to another, regardless of the underlying ro-vibrational states involved; here
{1;} and {v;} would be the associated sets of two ro-vibrational states. The assessment of
such reduced connectivity issues would operate with the same algorithmic steps (i)-(iv) pre-
sented in Section II, and a compression of the information into a reduced matrix C' follows
as an easy final step.

There is much interest in the mechanisms by which control fields achieve their action in
any particular application. Recent work [21] has defined the control mechanism in terms of
quantitatively identifying the significant multi-state pathway amplitudes linking the initial
and final states |1/;) and |¢;). The contribution of any particular pathway can draw on
delicate features of the control field. Nevertheless, connectivity is the basic criterion for
any particular pathway playing a role. The connectivity analysis provides a simple way of
identifying these kinematically allowed pathways. Importantly, those intermediate states
that appear to have a key role can be easily found by a simple statistical analysis of their

frequency of appearance in the family of pathways up to some specified order in Eq.(4). The
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detailed dynamics driven by a particular optimal field will finally weigh in to determine the
actual contributing pathways [21], but the simplicity of performing a connectivity assessment
provides an easy way to attain an initial glimpse of what is taking place.

Finally a significant finding in this paper is the observation that virtually all Hamilto-
nians are expected to have fully connected dynamics. As commented earlier, establishing
connectivity is a necessary criterion for a system to be controllable. Although full control-
lability may not be concluded from full connectivity, it is reasonable to expect that at least
a high degree of controllability, if not full controllability, will exist in cases showing full
connectivity. Furthermore, increasing system complexity in terms of many coupled states
being present likely aids rather than hinders this situation. These points are especially
relevant as a recent work [14] has shown that all controllable quantum systems only have
perfect solutions for state-to-state population transfer under optimal control (i.e., there are
no sub-optimal extrema).

One attraction of performing a connectivity analysis is the ease of its execution relative
to the information that can be gained. Connectivity as a powerful tool is not confined to
theoretical studies, and is playing into the laboratory control experiments. For example, an
experiment reported a design for a quantum AND gate which was elegantly tested utiliz-
ing the connectivity of graphs [27]. It is anticipated that further insights will follow from

applying connectivity assessments in additional quantum control circumstances.
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Given a sequence of probability spaces, let ¢, be the probability that property @ holds in
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the nth space. Probability @) almost always holds if lim,_ g, = 1. Here, the nth space is
a probability distribution over n-vertex graphs. D. B. West, Introduction to Graph Theory,
Prentice Hall, p. 430, 2001.

For N = 30, there are 435 pairs of states. Thus, the possible values for the fraction of con-
nected pairs of states are 0/435,1/435,2/435,3/435, ... ,434/435 and 435/435. However, the
discretization level shown in Fig.3 evidently is even more sparse than this inherent discrete-

ness.
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