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ON THE CONCEPT OF (HOMO)MORPHISM : A KEY NOTION IN 

THE LEARNING OF ABSTRACT ALGEBRA 

Thomas Hausberger 

Université Montpellier 2  

This article is dedicated to the investigation of difficulties involved in the 

understanding of the homomorphism concept. It doesn't restrict to group-theory but 

on the contrary raises the issue of developing teaching strategies aiming at gaining 

access to structuralist thinking. Emphasis is put on epistemological analysis and its 

interaction with didactics in an attempt to make Abstract Algebra more accessible.  

I. INTRODUCTION 

In our context, Abstract Algebra means the discipline devoted to the study of 

algebraic structures, according to the new paradigm established after the publication 

of van der Waerden's textbook Moderne Algebra in 1930: 

This image of the discipline turned the conceptual hierarchy of classical algebra upside-

down. Groups, fields, rings and other related concepts, appeared now at the main focus of 

interest, based on the implicit realization that all these concepts are, in fact, instances of a 

more general, underlying idea: the idea of an algebraic structure. The main task of 

algebra became, under this view, the elucidation of the properties of each of these 

structures, and of the relationships among them. Similar questions were now asked about 

all these concepts, and similar concepts and techniques were used, inasmuch as possible, 

to deal with those questions. The classical main tasks of algebra became now ancillary. 

The system of real numbers, the system of rational numbers, and the system of 

polynomials were studied as particular instances of certain algebraic structures, and what 

algebra has to say about them depended on what is known about the general structures 

they are instances of, rather than the other way round (Leo Cory, History of Algebra, 

Encyclopaedia Britannica Online, 2007). 

Abstract algebra is taught in France at third-year University level. The situation 

reflects the international one and can be summarized by Leron and Dubinsky's (1995, 

p. 1) statement: “The teaching of abstract algebra is a disaster, and this remains true 

almost independently of the quality of the lectures”. If both students and experienced 

instructors generally agree upon this provocative claim, this shouldn't prevent us from 

investigating the nature of the obstacles and proposing alternative or complementary 

approaches (as Leron and Dubinsky did). 

Our approach is based on an epistemological analysis of structuralist thinking 

(Hausberger 2012) with a view to introducing “meta” aspects in the teaching of 

abstract algebra. In other words, the goal is to build reflexive activities that can help 

students to make sense of this particular knowledge. This is justified by the 

identification, on an epistemological point of view, of the concepts involved as FUGS 

(formalizing, unifying, generalizing & simplifying) concepts. Obstacles regarding the 

built-up of teaching strategies, using traditional didactic tools such as Brousseau's 



 

 

 

“théorie des situations” (Brousseau 1986) or Douady's “dialectique outil-objet” 

(Douady 1986), can be analyzed as consequences of their epistemological nature as 

FUGS (Rogalski 1995). This approach has been conducted previously by Dorier, 

Robert, Robinet & Rogalski in the case of linear algebra (Dorier and al. 2000). 

In Hausberger 2012, we underlined the fact that several levels of unification have to 

be distinguished in the context of algebraic structures: at level 1, a general theory 

applies to quite different objects sharing a common feature (for instance group 

theory), at level 2, the axiomatic presentation of structures is conducted in a uniform 

way (leading to structural questions and methods) and puts forward bridges between 

structures, at level 3, what has been previously a form (structures) is fully taken and 

studied as object in a superior level of organization (this is category theory or any 

other mathematical meta-theory
1
 of structures). 

We made the assumption that meta activities of level 2 were worth being introduced 

to facilitate the access to modern structuralist expositions of algebraic structures. In 

the case of Linear Algebra, Dorier introduced only meta of level 1. This is justified 

by the fact that a single structure is at play and that it is the first abstract structure that 

students encounter and theorize at University. Moreover, unlike the impression 

conveyed by Cory in the previous quote
2
, each structure has its own flavor. Indeed, it 

has its own history of problems, its own “typical objects”. Nevertheless, there 

certainly is a tension in modern mathematics related to the articulation of abstract 

formalism and intuition (requiring a more direct grasp of objects). This tension is 

acknowledged by philosophers and is also visible in manuals
3
. This raises the 

following didactic issues and tasks: 

Find a right balance between formalizing and problem-solving involving more 

concrete objects. 

Think about strategies to gain access to structuralist thinking. This should be 

progressive: in this respect, the goals set in the teaching of group theory should be 

different from those regarding ring theory. We will make this statement more precise 

below.   

In our view, the flavor of Linear Algebra resides in interrelating geometry and 

algebra (enlarging the notion of vector, vector space, or interpreting geometrically 

reduction theory) and its challenge is also to articulate computational and abstract 

theoretical aspects (for instance, matrices and linear applications). In group theory, 

the symmetric group is a paradigmatic example, classifying groups of small order is a 

                                           

1 Although the word “meta” is used here in a different context and a with a slightly different meaning, meta-theories 

and meta-activities meet in so far as they both introduce a reflexive point of view. 

2 It would be interesting to interview algebra instructors on this and report whether they agree or not with the 

statement that group or ring theory is nothing but the study of formal consequences of given systems of axioms.  

3 The preface of Artin 1991 is interesting in this respect and begins with an explicit citation of Hermann Weyl. 



 

 

 

very didactical moment and understanding the notion of isomorphism is fundamental 

to give access to the abstract group concept, thus accomplishing level 1. The 

emphasis on group action is also fundamental to make the concept fully operational. 

Ring theory has quite an arithmetical flavor: extending the unique-prime-factorization 

theorem to rings of algebraic integers has proved to be a motivating force in history 

for the development of an abstract divisibility theory in which the concept of ideal 

plays a major role and the main objects to unify, on an elementary level, are numbers 

and polynomial rings
4
. On the structuralist front, ring theory (being preceded by 

group theory) should be an opportunity to discuss structural aspects shared in the 

modern exposition of both theories: the construction of quotients, the concept of 

homomorphism as structure-preserving function, the isomorphism theorems as tools 

to compare objects, decomposition theorems into simple objects, characterization by 

universal properties, etc. These aspects would certainly benefit from being made 

more explicit through level 2 meta activities. It is nevertheless a real challenge and it 

remains conjectural whether it is feasible or not at third year University level. 

This article will now focus on the (homo)morphism and isomorphism concepts which 

are central in abstract algebra. Students often confess that they lose tracks when 

homomorphisms come in the foreground after the introduction of isomorphism 

theorems. Previous didactic studies also report on this issue, for instance Nardi 

(2000) titles p. 179: “Episode 3: The first isomorphism theorem for groups as a 

container of compressed conceptual difficulties”. We will contribute by deepening 

the epistemological analysis on morphisms, extending the picture to isomorphism 

theorems for other structures and conceptions about morphisms in general. This 

corresponds to our general philosophy of attacking globally the issue of teaching 

abstract algebra through epistemological, didactic, cognitive studies of processes 

involved in structuralist thinking. 

II. A FEW CASE STUDIES 

Previous studies on groups 

According to Leron, Hazzan & Zazkis (1995), “the very concept of isomorphism is 

but a formal expression of many general ideas about similarity and differences, most 

notably, the idea that two things which are different may be viewed as similar under 

an appropriate act of abstraction”. It corresponds to the vague (but crucial and 

intuitive) idea that two isomorphic groups are essentially the same (on the group-

theoretic point of view) and part of the proposed didactic strategy is to help students 

                                           

4 The reader may wonder why the classification of finite commutative ring (up to isomorphism) is not investigated in 

ring theory: there are mathematical reasons which explain why there will never be a complete classification but an 

endless stream of partial results. Among those, it is worth mentioning the “classification of finite rings of order p
2
” 

by Benjamin Fine: the author points out that the elementary techniques involved “grew out of a project given to an 

undergraduate abstract algebra course” (Mathematics Magazine, Vol. 66(4), 1993, pp. 248-252). Interestingly, the 

problem arose from a teaching context and not from the classical background accompanying ring theory.  



 

 

 

make sense of it before getting engaged in the formalization of the isomorphism 

concept. Indeed, such a formalization requires the function concept and reasonable 

understanding of quantification, which adds further difficulties. This contrasts with 

the standard exposition in modern manuals
5
.   

Nardi (2000) carries on the work by analyzing tutoring sessions dedicated to 

retrieving and proving the first isomorphism theorem: 

Let ϕ:G→G' be a group homomorphism. If K=ker ϕ then G/K≃Imϕ. The isomorphism is 

constructed by setting ψ(Kg)=ϕ(g). 

She underlines that “the degree of complexity in a problem which requires a well-

coordinated [linking ψ and ϕ] manipulation of mappings between different sets is 

extremely high” and stresses the numerous “difficulties in the conceptualization of 

properties associated to the notion of mapping (homomorphic property, 1-1, onto, 

well-definedness)” as well as the high degree of abstraction involved in the definition 

of a mapping between the cosets of a subgroup and the elements of the group. 

Finally, she points out the impact of epistemological arguments that the tutor would 

put forward to motivate the newly introduced concepts. This certainly brings water to 

our mill.  

Comparing objects through homomorphisms 

Context. The following questions were asked to third year undergraduates as part of a 

mid-term examination for a second course in abstract algebra devoted to ring and 

field theory. The student is supposed to retrieve the statement and proof of a classical 

generalization of the first isomorphism theorem (in the ring context), which has been 

presented during the lectures as a tool for constructing homomorphisms from 

quotient rings (i.e. of type A/I→ B): 

Let f:A→B be a ring homomorphism, I an ideal of A and π:A→A/I. Then f “factorizes 

through A/I” (i.e. there exists a homomorphism f such that  =    ∘ π) if and only if I⊂ker f. 

The theorem is illustrated by the following commutative diagram: 

 

 
Homomorphisms have been introduced as structure-preserving functions, 

emphasizing the condition f(1)=1
6
. To facilitate the retrieval, the ring data has been 

denoted (A,+,∙,1). The general idea has been developed that homomorphisms aim 

at “comparing” rings: if f:A→ B is bijective then A and B are “essentially the 

                                           

5 but matches van der Waerden's who didactically took great care in motivating the introduction of new concepts 

compared with later manuals in which structuralist conceptions have been naturalized. Isomorphisms derive 

formally from homomorphisms but isomorphisms come first epistemologically. 

6  which isn't automatic since A
*
 is not in general a group for the multiplicative law 



 

 

 

same” and can be identified. If it is only injective (1-1), then A can be identified 

with a subring of B and the kernel measures the defect of injectivity, if it is 

surjective (onto), then B can be identified with a quotient of A through the first 

isomorphism theorem. As an application of the generalized theorem, named 

explicitly “factorization theorem for ring homomorphisms”: Z→ Z/2Z factors 

through Z/4Z and induces an isomorphism (Z/4Z)/( ̅)≃Z/2Z. The lecture then 

carried on with the third isomorphism theorem which generalizes such 

isomorphisms and is named “simplification theorem for quotients of quotients”. To 

summarize the didactic intent, the tool-object dialectic (Douady 1986) is at play 

and epistemological insight was given to connect the formalism with cognitive 

processes of comparison and identification. 

Here are the questions: 

1.Recall the factorization theorem for ring homomorphisms and give a proof. 

2.Can Z/4Z be identified with a subgroup of Z/8Z (in other words, does Z/8Z contain a 

subgroup isomorphic to Z/4Z)? Can Z/4Z be identified with a subring of Z/8Z (in other 

words, does it exist an injective homomorphism Z/4Z→ Z/8Z)? Can you construct a 

ring-homomorphism connecting Z/4Z and Z/8Z? Can Z/4Z be identified with a quotient 

ring of Z/8Z? 

Results. Out of the 13 students who took the test, only 5 managed to retrieve 

successfully the statement of the theorem (question 1). The diagram was often 

reproduced, indicating that it played some role in the memorization process. 5 

students didn't answer question 1 and among the others, common mistakes concerned 

the omission of the condition on the ideal, or an inversion of the inclusion. Indeed, 

the student can have control on this only if he has understood that elements of I are 

mapped to 0 because the diagram commutes. Yet, only 4 students gave an attempt to 

retrieve the proof: 2 of them successfully demonstrated that the condition is necessary 

but couldn't carry on so that a single student gave a complete proof. This is a bit 

surprising since it was emphasized during the lectures that the proof can be worked-

out exactly as in the group context. Moreover, the difficulty of articulating ψ and ϕ 

identified by Nardi (2000) is greatly taken in charge didactically by the formulation: 

“f factorizes through the quotient and induces   ”. Even after completion of a first 

course in abstract algebra, the task of elucidating the properties that need to be 

checked (well-definedness, homomorphic property, 1-1, onto), thus reducing the 

problem to elementary tasks, is regarded as very complex by students. 

A single student gave elements to answer question 2. He began by making the groups 

more explicit: Z/8Z={ ̅  ̅,...,  ̅}, Z/4Z={ ̅,  ̅,  ̅,  ̅} and argues that 

G={ ̅,  ̅,  ̅,  ̅} is a subgroup of Z/8Z of order 4, therefore isomorphic to Z/4Z. The map 

ϕ: Z/4Z→ Z/8Z,  ̅↦ ̅,  ̅↦ ̅,  ̅↦ ̅,  ̅↦ ̅ is an injective morphism of groups but not of 

rings since ϕ( ̅) ≠ ̅. 



 

 

 

Although the student uses the same notation for elements of both quotients, he doesn't 

mix them and has the right intuition on how to construct the 1-1 group-

homomorphism. The teacher would expect a more abstract reasoning: to find a 

subgroup isomorphic to Z/4Z amounts to finding an element of order 4 in Z/8Z. The 

student doesn't justify that G is a group nor that it is cyclic because every subgroup of 

a cyclic group is also cyclic. It would be interesting to check him on isomorphism 

classes of groups of order 4. Finally, quantifiers are again handled with too little care: 

if ϕ is not a ring homomorphism, this doesn't imply such a homomorphism doesn't 

exist. For instance, the student could have argued that Z/8Z has a unique subgroup of 

order 4 or used the fact that the ϕ(1)=1 property completely determines ϕ (which then 

isn't a homomorphism). The last part of the question remains unanswered and 

indicates that finding a map between two quotient rings is a conceptually hard task 

(and a bit tricky one since the arrow is reversed: Z/4Z←Z/8Z), even if it consists in 

reproducing the reasoning made during the course on a very close example. 

In fact, the two questions were asked before heavy use of the factorization theorem 

for rings was made during the tutoring sessions. The experiment shows that the test 

was premature even if the course was epistemologically-oriented and the students 

could rely on previously acquired conceptual knowledge (which remains very 

fragile). We will engage in further investigations of the difficulties in 2013 by asking 

the same questions during tutoring work. Nevertheless, this experiment already 

confirms that the homomorphism concept is much of an obstacle, even after the 

completion of a first course in abstract algebra devoted to group theory. 

III. MORE EPISTEMOLOGICAL INSIGHT 

By the way, what is a structure ? 

Abstract Algebra teachers often speak about structures... but they never 

mathematically define any concept of structure! Let us explain this a priori abnormal 

phenomenon by giving a few details concerning the didactic transposition 

(Chevallard, see Bosch and Gascón 2006) of the notion of structure. 

In his attempt to give an historical account, Cory makes the distinction between 

“body of knowledge” and “image of knowledge”
7
. Interestingly, the notion of 

structure takes its origin in the latter: 

This textbook [Moderne Algebra] put forward a new image of the discipline that implied 

in itself a striking innovation: the structural image of algebra. In the forthcoming account, 

                                           
7
 “The body of knowledge includes statements that are answers to questions related to the subject matter of the 

discipline. The image of knowledge, on the other hand, includes claims which express knowledge about the 

discipline qua discipline [or meta-questions]” (Cory 1996, p.3). The terminology originates from the work of Elkana 

who “aimed at an anthropological characterization of scientific knowledge as a cultural system” (ibid. p. 4 footnote 

4). 



 

 

 

it is this specific, historically conditioned image of mathematical knowledge that will be 

considered as implicitly defining the idea of a mathematical structure (Cory 1996, p.8). 

We won't comment on historical methodology, but it is certainly the combination of 

Noether's mathematical ideas (see below) and a didactic intent to expose the recent 

advances in algebra in a systematic and clear fashion, in an organized and integrated 

whole, that lead to the idea of structure. It remained implicit in so far as van der 

Waerden didn't give any comment, formal or non-formal, on what he meant by a 

'structure'. Bourbaki, on the contrary, gave a formal-axiomatic elucidation of the 

concept of mathematical structure in the first book of his treatise 'Elements de 

mathématiques' dedicated to set theory and published in the 1950s. In parallel, he 

promoted the structural image of mathematics within the noosphere
8
 (Bourbaki 

1948). Yet, Bourbaki's definition did hardly play any role in the exposition: it only 

provided a general framework which in fact didn’t prove to be mathematically 

functional (Cory 1996, p. 324, see also Mac Lane 1996), unlike category theory 

which is very advanced and a too hovering viewpoint for the present purpose. 

Therefore no definition at all is given in more recent manuals. 

As a consequence, students are supposed to learn by themselves and by the examples 

what is meant by a structure whereas sentences like “a homomorphism is a structure-

preserving function” is supposed to help them make sense of a homormorphism. Is 

that possible without any clarification on the notion of structure? The students 

certainly understand that when we talk about structures we refer to sets of axioms and 

we say that a mathematical object has a particular structure when these are fulfilled. 

This reflects the fact that the notion of structure is an outgrowth of the widespread 

use of the axiomatic method
9
. In our view, meta-discourse on axiomatics together 

with activities devoted to building axiomatics and “playing” with the axioms would 

help students to make sense of them and memorize them. It is not straightforward to 

comprehend that axiomatics encode properties of mathematical objects which are 

analyzed abstractly as being made of elements connected by relations (therefore 

primitive terms of axiomatics are sets equipped with extra data encoding the relations 

such as laws of composition or binary relations). The abstract formalism (axioms and 

the language of set theory) is much of an obstacle and hides the simple ideas. Too 

little emphasis is made on the idea of relations: structure-preserving is synonymous 

                                           
8
 Chevallard (see Bosch and Gascón 2006). 

9 Historically, this method was initially deployed by Hilbert to remedy to the imperfections of Euclid's axioms for 

geometry. The aim is to give rigorous descriptions of mathematical objects and the first axiomatics considered were 

categorical (or closed), characterizing objects up to isomorphism (this is the case for euclidean plane geometry and 

natural numbers). Logical use of the method is about questioning consistency, mutual independence, completeness 

of the set of axioms in order to give foundations to the theory. This is different from the immanent use which gives 

implicit definitions of concepts concerning objects, the nature of which is unspecified. These concepts encode 

properties of large classes of mathematical objects: it is the structural point of view. 



 

 

 

with operation-preserving in contemporary manuals
10

 which is epistemologically 

different. The idea of relation is also useful to understand quotients: making a 

quotient is equivalent to introducing more relations. For instance, would students 

recognize the decimals behind the quotient Z[X]/(10X-1)? We will need of course to 

engage in further didactical studies in order to support our conjectural claims 

regarding conceptions and teaching strategies. 

Coming back to the epistemological investigation, the word 'structure' is used in fact 

in two more contexts with a different meaning, which may induce some confusion: 

we also want to identify the different isomorphism classes for a given structure and 

we say for instance that the abstract group-structure of Z/3Z is that of a cyclic group 

of order 3. Finally, we call 'structure-theorem' a result describing the way an object 

can be reconstructed from simpler objects of the same type.  

Noether's set-theoretic foundation of Algebra 

We have already distinguished the concept of isomorphism as an equivalence 

relation
11

 from that of a function (with properties) which relies on the notion of 

homomorphism. The latter is the heritage of Noether who developed  

[…] what she called her set-theoretic foundations for algebra. This was not what we now 

call set theory. […] Rather, her project was to get abstract algebra away from thinking 

about operations on elements, such as addition or multiplication of elements in groups or 

rings. Her algebra would describe structures in terms of selected subsets (such as 

normal subgroups of groups) and homomorphisms (MacLarty, 2006, p. 188).  

We pretend that Noether's new conceptual approach (characterized in the last 

sentence of the quote) is a major epistemological difficulty in the learning of 

abstract algebra. It is also the key to level-2 structuralism (referring to the 

introduction): this indeed allows a unified treatment of structures. It proved in history 

to be a major breakthrough leading to a complete rewriting of algebra (in terms of 

newly-forged concepts that emerged from the new methodology: noetherian rings, 

principle-ideal domains,...). 

Dedekind's theory of ideals in which divisibility relation between (algebraic) integers 

were replaced by inclusion of ideals certainly contributed to the transition from an 

arithmetical conception of algebra to the set-theoretic conception. But Noether's chief 

tools were isomorphism theorems and she made it obvious that this applied for 

different kinds of structures. She considered only onto homomorphisms, denoted 

                                           

10 This isn't the case in van der Waerden (1949): examples are given of non-algebraic structures such as ordered sets 

when introducing the homomorphic property, defined as preserving relations.  

11 This is a crucial concept with regard to the process of abstraction which often amounts to selecting common 

characteristics of objects which are then taken as equivalent. A classification is a description of the corresponding 

partition. 



 

 

 

M∼  12
, and correlated them to distinguished classes of subsets through the first 

isomorphism theorem. As an illustration of the generality of the principle: 

Ideals bear the same relation to ring homomorphisms as do normal subgroups to group 

homomorphisms. Let us start from the notion of homomorphism (van der Waerden, 1949, 

p. 51). 

Homomorphisms or morphisms? 

On forums
13

 are taking place interesting discussions on the differences to be made 

between homomorphisms and morphisms. Some people argue that homomorphism is 

the old terminology and the shorter word should be adopted for pragmatic reasons. 

Others mention that morphisms come from category theory (which remains obscure 

to them). Finally, one of them argues that the difference between homomorphism and 

homeomorphism is clear, but not between homomorphism and morphism. This leads 

to a confrontation of two different definitions of a morphism in the context of 

topological spaces: open maps (preserving open sets) versus continuous maps. But 

this didn't allow to make the point underneath the morphism concept which derives 

from category theory and thus the difference to be made. 

Indeed, the morphism concept is a relativization of the homomorphism concept as a 

structure-preserving function (which doesn't apply to morphisms in topology since 

they preserve open sets by inverse image): in a category, one is free to decide which 

maps are morphisms, these define the category together with a given type of objects. 

If morphisms tend to replace homomorphisms, beyond the pragmatic argument, it 

might be that algebra practitioners are implicitly assuming that they are working in a 

category.  

IV. CONCLUDING REMARKS 

This study certainly contributes to break the illusion of transparency concerning the 

concept of homomorphism and the idea of a mathematical structure. It aims at 

reestablishing the rationale of this particular knowledge through the epistemological 

investigation of the concept and the engineering of epistemologically-oriented 

activities. In this spirit, a simple didactical situation has been given in part II. 

Unfortunately, it needs to be re-experimented in order to reveal its full potential. Our 

analysis also connects the transition problem that occurs at third year university level 

in relation to abstract algebra with the epistemological transition from thinking about 

operations on elements to thinking in terms of selected subsets and homomorphisms. 
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