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Reliable Real-Time Solution of
Parametrized Partial Differential

Equations: Reduced-Basis Output
Bound Methods

We present a technique for the rapid and reliable prediction of linear-functional
outputs of elliptic (and parabolic) partial differential equations with affine
parameter dependence. The essential components are (i) (provably) rapidly
convergent global reduced-basis approximations—Galerkin projection onto a
space WN spanned by solutions of the gov-erning partial differential equation at
N selected points in parameter space; (ii) a poste-riori error estimation—
relaxations of the error-residual equation that provide inexpensive yet sharp and
rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line
computational procedures methods which decouple the generation and projection
stages of the approximation process. The operation count for the on-line stage in
which, given a new parameter value, we calculate the output of interest and
associated error bound, depends only on N (typically very small) and the
parametric complexity of the problem; the method is thus ideally suited for the
repeated and rapid evaluations required in the context of parameter estimation,
design, optimization, and real-time control.
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1 Introduction analysis (Almroth et al. [7], Noor and Peter$8]), and subse-
The optimization, control, and characterization of an engine uently developed more broa(_ily in the 1980s and 198aimes
ing component or s’ystem réquires the prediction of certain “qua 2], Barrett and Redd'eno]' Fink and Rheinboldl1], Reterson
tities of interest,” or performance metrics, which we shall deno 2], Porsching13], Rheinbold{14]). The reduced-basis method
' ' ecognizes that the field variable is not, in fact, some arbitrary

?euépuéfﬁfgseﬁzgalrznﬁzff;t(; r;S’ﬂcr)nWa:;trggrgrﬁ?;te;igsdr?ix'?h mber of the infinite-dimensional solution space associated with
P ’ ’ ’ gs. ﬁ‘lseepartial differential equation; rather, it resides, or “evolves,” on

output_s are t_yplcally expre_ssed as _func_tlonals_ of field _vanab_l Smuch lower-dimensional manifold induced by the parametric
associated with a parametrized partial differential equation whi endence
describes the physical behavior of the component or system. he reduced-basis approach as earlier articulated is local in

param?ters,_ Wh'ch We shall den(utiputs,.serve tp identify a par- arameter space in both practice and theory. To wit, Lagrangian or
ticular cpnflguratlgq of the. component: these inputs may repr Taylor approximation spaces for the low-dimensional manifold
isnen(t) dﬁ?ggt?ér?egﬁggs\{argﬂﬁa S\lj;n:tﬁgseor:féLy_elgoraet):(tigt%% typically defined relative to a particular parameter point; and
p LoD Lo cluatfle associatea priori convergence theory relies on asymptotic
power—for example in real-time applications; or characterizatio uments in sufficiently small neighborhoo&nk and Rhein-
Va”t‘;ilbles’ \%JCTh as ph_ysma;l prqpe:_t:;[s—tfor tex?mlpltg in hl_nverB Idt[11]). As a result, the computational improvements—relative
problems. YVe thus armve at an Implariput-outputreiationship, conventional(say) finite element approximation—are often
eyaluatlc_)n of Wh.'Ch demands solution of the underlying pam%fuite modestPorschind 13]). Our work differs from these earlier
d'ffoerfm'al Ie?u?ﬁlona velopment of computational method theForts in several important ways: first, we develapsome cases,
ur goal 1s the development of computational metnods Bovably)global approximation spaces; second, we introduce rig-
permit rapld and re_llable evaluatlon_of th.'s partl_al-_dlfferentlal- orousa posteriori error estimatorsand third, we exploibff-line/
equqtlon-lnduged. Input-output relqthnshm the limit of many on-line computational decompositiorisee Balmeg$9] for an ear-
aueric.na i, nhe desin, opimizaton,conrland hare 0TS Sy i e ehced-bass com
. . : . .y qu - \ tainly fe<rpase three ingredients allow us, for the restricted but important
ceived considerable attention: from “fast loads” or multiple rlght-Class of “parameter-affine” problems, to reliably decouple the
harld_ S|detnokt)|otr_1$e.?r.1, Cha; andA\Il(Vahl], tFalrF?::i]t ?(t. al{ﬂ)) EO generation and projection stages of reduced-basis approximation,
matrix perturbation theoriese.g., Akgun €t al[s], vip |- 0 thereby effecting computational economies of several orders of
continuation methodge.g., Allgower and Geor§5], Rheinboldt magnitude
[6D). Our_ pa_rtlcular approach is based on the_ reduced-baS|sm this expository review paper we focus on these new ingredi-
method, first introduced in the late 1970s for nonlinear structur@hs In Section 2 we introduce an abstract problem formulation
and several illustrative instantiations. In Section 3 we describe, for
coercive symmetric problems and “compliant” outputs, the
reduced-basis approximation; and in Section 4 we present the as-
sociateda posteriorierror estimation procedures. In Section 5 we



consider the extension of our approach to noncompliant outputs

a(u(u),v;u)=f(v), VYveX 4)

and nonsymmetric operators; eigenvalue problems; and, more S ] ) ]
briefly, noncoercive operators, parabolic equations, and nonaffifiethe language of the Introductiom, is our partial differential
problems. A description of the system architecture in which the§guation(in weak form), w is our parametery(y) is our field

numerical objects reside may be found in Veroy et &h].

2 Problem Statement

2.1 Abstract Formulation.

XCHY(Q), where HY(Q)={v eL?(Q), Vve(L3Q))%, and
L2(Q) is the space of squabéintegrable functions ovef. The
inner product and norm associated wilare given by (,-)x and
[-Ilx=(-,-)X? respectively. We also define a parameter Bet
eRP, a particular point in which will be denoted. Note that()
doesnot depend on the parameter.

We then introduce a bilinear forex XX XX D—R, and linear
formsf: X—R, /: X—R. We shall assume thatis continuous,
a(w,v;p) < y()wixlvlx<volwlxlvlx, VweD; further-
more, in Sections 3 and 4, we assume thé coercive,

a(w,w; u)

0<ap<a(p)= inf
o= Wiz

weX

, YueD, 1)

and symmetrica(w,v;u)=a(v,w;u); Yw,oe X, VueD. We

also require that our linear fornfsand/” be bounded; in Sections

3 and 4 we additionally assume a “compliant” outputv)
=/(v), VveX.

We consider a suitably regular
domain QCRY, d=1, 2, or 3, and associated function spac

variable, ands(u) is our output. For simplicity of exposition, we
may on occasion suppress the explicit dependencg.on

2.2 Particular Instantiations. We indicate here a few in-

stantiations of the abstract formulation; these will serve to illus-

érate the methodéor coercive, symmetric problemsf Sections
and 4.

2.2.1 A Thermal Fin. In this example, we consider the two-

and three-dimensional thermal fins shown in Fig. 1; these ex-

amples may béinteractively)accessed on our web sit&he fins
consist of a vertical central “post” of conductivit}o and four
horizontal “subfins” of conductivityk’, i =1, . . . ,4. The fingon-
duct heat from a prescribed uniform flux souf@é at the root

I",oot through the post and large-surface-area subfins to the sur-
rounding flowing air; the latter is characterized by a sink tempera-

ture T, and prescribed heat transfer coefficiént The physical
model is simple conduction: the temperature field in the Tin,

satisfies
4
> ffkivnvmﬁ 3 ﬁ(ﬁ—ﬁo)ﬁzﬁ q"7,
i=0 Q; L9 M Troot

V5 e X=HYQ), ()

We shall also make certain assumptions on the parametric de- ~ . o o ~
pendence of, f, and/. In particular, we shall suppose that, for""%ereﬂi is that part of the domain with conductiviy, and /)

some finite(preferably smallintegerQ, a may be expressed as
Q
a(w,o;u)= 2 gl(w)ad(w,v), VwooeXVueD, (2)
gq=1

denotes the boundary 6I.

We now (i) nondimensionalize the weak equatigs$, and(ii)
apply a continuous piecewise-affine transformation frAmo a
fixed (u-independentyreference domairf) (Maday et al.[16]).

The abstract problem statemerd) is then recovered for
for somec® D—R anda® XX X—R, q=1, ... Q. This “sepa- w={k'k%k3k*BiL,t}, D=[0.1,10.0*x[0.01,1.0]x[2.0,3.0]
rability,” or “affine,” assumption on the parameter dependence ix[0.1,0.5], andP=7; herek?, . .. k* are the thermal conductivi-
crucial to computational efficiency; however, certain relaxatiortges of the “subfins”(see Fig. lyrelative to the thermal conduc-
are possible—see Section 5.3.3. For simplicity of exposition, wiity of the fin base; Bi is a nondimensional form of the heat
assume thatand/” do not depend op; in actual practice, affine transfer coefficient; and,, t are the length and thickness of each
dependence is readily admitted. of the “subfins” relative to the length of the fin rodt,yy. It is
Our abstract problem statement is then: for ang D, find readily verified thal is continuous, coercive, and symmetric; and
s(u) € R given by that the “affine” assumption(2) obtains for Q=16 (two-

s(p)=7/(u(u)), @) — o
. . FIN2D: http://augustine.mit.edu/fin2d/fin2d.pdf and IN3D: http://
whereu(u) e X is the solution of augustine.mit.edu/fin3dl/fin3d_1.pdf
- L L)
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Fig. 1 Two- and three-dimensional thermal fins



Fig. 2 A truss structure

dimensional caseand Q= 25 (three-dimensional case). Note thatare bounded linear functionals; hekg is any suitably smooth

the geometric variations are reflected, via the mapping, in theénction in H(Q5) such thaty;i;=1 onT'$ andy;A;=0 onT3,

o). wherefi is the unit normal. Note that'(u) is a compliant output,
For our output of interesg(x), we consider the average tem-whereass?(u) is “noncompliant.”

perature of the root of the fin nondimensionalized relativ§j'to

k°, and the length of the fin root. This output may be expressed

s(n)=7/(u(u)), where/(v)=Jr_v. Itis readily shown that

this output functional is bounded and also “complian?’(v) ) ! ! S 14,V
that a is continuous, coercive, symmetric, and affinejin-see

=f(v), VveX. X !
(2); and that”'(v)=f(v), which we denote “compliance.”

2.2.2 A Truss Structure.We consider a prismatic microtruss ] L o
structure(Evans et al[17], Wicks and Hutchinsofi8]) shownin 3.1 Reduced-Basis Approximation. We first introduce a
Fig. 2; this example may bénteractively)accessed on our web Sample in parameter spac®={u1, ... un}, Whereu;eD, i
site? The truss consists of a frantepper and lower faces, in dark =1, - . ., N; see Section 3.2.2 for a brief discussion of point dis-
gray) and a core(trusses and middle sheet, in light grafhe tribution. We then define our LagrangiatPorsching [13])

structure transmits a force per unit deftruniformly distributed recliuced-Nb?sishapprczxin;ati;o(n_ S?hacewl{ﬁt': Spt%? i)f?EU(Mn),“
. . = =1,... N}, whereu(u,) e X is the solution or u=pp.
over the tip of the middle she&t; through the truss system to the, "o o practicey(u,) is replaced by an appropriate finite ele-

fixed left wallI'y. The physical model is simple plane-str&wo-  ment approximation on a suitably fine truth mesh; we shall discuss
dimensional)linear elasticity: the displacement field, i=1,2, the associated computational implications in Section 3.3. Our
satisfies reduced-basis approximation is then: for gy D, find sy(u)
— | = Uop,
i) )5, 2

=/ (un(w)), whereuy(u) € Wy is the solution of
where() is the truss domairE; is the elasticity tensor, and

3% Reduced-Basis Approach
We recall that in this section, as well as in Section 4, we assume

i Ty

6% Eijk|ﬁl= Vl) ES’(, (6)
]

3.2 A Priori Convergence Theory.

a(uy(w),v,u)=7(v), VYveWy. ©)
Non-Galerkin projections are briefly described in Section 5.3.1.
refers to the set of functions iH(Q) which vanish onl’y. We
assume summation over repeated indices.

We now (i) nondimensionalize the weak equatidB$, and(ii)

3.2.1 Optimality. We consider here the convergence rate of
un(p)—u(u) andsy(u)—s(u) asN—e. To begin, it is stan-
dard to demonstrate optimality ofy(x) in the sense that

apply a continuous piecewise-affine transformation frAnmo a ()

fixed (;L-lndependentreference domaif). The abstract problem u( ) — un(e) = \ AL u(w)—wnllx - (8)
statement4) is then recovered for ={t; ,t; ,H, 6}, D=[0.08,1.0] a(M)WNEWN
x[0.2,2.0]x[4.0,10.0]x[30.0°,60.0°], arR=4. Heret; andt, _ ) .

are the thicknesses of the frame and trugeesmalized relative to (W& note that, in the coercive case, stability of gtgonform-

~ ing”) discrete approximation is not an issue; the noncoercive case

to), respectivelyiH is the total height of the microtruggormal- is decidedly more delicatésee Section 5.3.1)Furthermore, for

ized relative tot.); and @ is the angle between the trusses and thg compliance output o '

faces. The Poisson’s ratio=0.3, and the frame and core Young’s '
S(p)=sn(p) + 7/ (U—uy) =sy(p) +a(u,u—uy;u)

moduli, E;=75 GPa andE.=200 GPa, respectively, are held
=sy(p)Fa(u—uy,u—uy;u) 9)

fixed. It is readily verified thata is continuous, coercive, and
symmetric; and that the “affine” assumptiaf2) obtains forQ
=44. from symmetry and Galerkin orthogonality. It follows the(tu)

Our outputs of interest ar@) the average downward deflection—s(u) converges as the square of the error in the best approxi-
(compliance)at the core tip,I'3, nondimensionalized b¥#/E;; mation and, from coercivity, thasy(«) is a lower bound for
and(ii) the average normal stress across the critigiald) section s(u).
denoted'$ in Fig. 2. These compliance and noncompliance out-
puts can be expressed as'(u)=/"(u(u)) and s*(u)
=/?(u(u)), respectively, where’*(v)=— [ v,, and

1 IXi duy
A== | X 2
(U) tf LF&XJ ijkI (9X|

3.2.2 Best Approximation.It now remains to bound the de-
pendence of the error in the best approximation as a functidh of
At present, the theory is restricted to the case in whiehl, D

=[0,imaxl, and

a(w,v;u)=ag(w,v)+ ua (w,v), (10)

whereay is continuous, coercive, and symmetric, andis con-
tinuous, positive semi-definiteag(w,w)=0, YweX), and sym-

2Truss http://augustine.mit.edu/simpléuss/simple truss.pdf metric. This model problent10) is rather broadly relevant, for



Table 1 Error, error bound (Method 1), and effectivity as a Table 2 Error, error bound (Method Il), and effectivity as a
function of N, at a particular representative point u €D, forthe  function of N, at a particular representative point ~ u €D, for the

two-dimensional thermal fin problem  (compliant output ) truss problem (compliant output )
N [s(u) = sn(m)l/s(w) An(u)/s(p) n(me) N [S(p) = sn(m)1/s(w) An(m)/s(p) ()
10 1.29%10°2 8.60x10 2 2.85 10 3.26x10°2 6.47%10 2 1.98
20 1.29x1073 9.36x10°3 2.76 20 2.56Xx10°* 4.74x10°4 1.85
30 5.37x10°* 4.25x1078 2.68 30 7.31x10°% 1.38x10°4 1.89
40 8.00x10°° 5.30x10*4 2.86 40 1.91x10°° 3.59%x10°° 1.88
50 3.97x10°° 2.97x10°*4 2.72 50 1.09%x10°° 2.08x107° 1.90
60 1.34x107° 1.27x10"* 2.54 60 4.10x10°8 8.19%x10°© 2.00
70 8.10x10°8 7.72x10°% 2.53 70 2.61x10°© 5.22x10°® 2.00
80 2.56x10°° 2.24x10°° 2.59 80 1.19%x10°® 2.39%x10°® 2.00

example to variable orthotropic conductivity, variable rectilineavariate uniform probability density on log]. We observe that, for
geometry, variable piecewise-constant conductivity, and variadieth the thermal finP=7) and truss P=4) problems, the error

Robin boundary conditions. is remarkably small even for very small and that, in both cases,
We now suppose that the,, n=1, ..., N, are logarithmically very rapid convergence obtainslds-c. We do not yet have any
distributed in the sense that theory for P>1. But certainly the Galerkin optimality plays a
n—1 central role, automatically selecting “appropriate” scattered-data
N+ 1) = e~ 1 -1 N 11 subsets 0$N and_ assqmatec_zl “good” weights so as to mitigate Fhe
N(\pnt1) N—-1 N\ mat 1), N=1, N @ curse of dimensionality aB increases; and the log-random point

here N i bound for th . . | f distribution is also important—for example, for the truss problem
WREreA IS an upper bound lor the maximum €igenvalueael ot taple 2, anon-logarithmicuniform random point distribution

relative toay. (Note\ is perforce bounded thanks to our assumixyr s yields errors which are larger by factors of 20 and 10 for
tion of continuity and coercivity; the possibility of a continuousy =30 ang 80, respectively.

spectrum does not, in practice, pose any probleiVe. can then

prove (Maday et al[19]) that, forN>N; ;=€ In(A\pmat1), 3.3 Computatipnal Procedure. The theoretical gnd empiri-
_ cal results of Sections 3.1 and 3.2 suggest hhatay, indeed, be
inf lu(u) —wyllx=(1+ tma)llu(0)]x chosen very small. We now develop off-line/on-line computa-
wneWy tional procedures that exploit this dimension reduction.
~(N—1) We first expressiy(u) as
X ex ], VueD. (12) N

(Nec™ 1) Un()= 3 Ung W)= (Un () E 13)

We observe exponential convergence, uniforfigipbally) for all N j=1 N IOEN B

w© in D, with only very weak(logarithmic) dependence on the
trﬁggpeag[]i(ctSIergg?ier:evffk(lri]g% ((.I\)l:t:e;:(e. c.c)m)stants i1L.2) are for - _ 1,...,N. Inserting these representations (9 yields the de-
) . . . N

The proof exploits a parameter-spaoenpolynomiallinterpo-  Sired algebraic equations fog(u) e K7,
lant as asurrogate for the Galerkin approximation. As a res_ult, the An(m)un(p)=Fy., (14)
bound is not always “sharp:” we observe many cases in which the )
Galerkin projection is considerably better than the associated IR-t€rms of which the output can then be evaluatedsgiu)
terpolant; optimality (8) chooses to “illuminate” only certain =FnUn(x). HereAy(u) e R77 is the SPD matrix with entries
points u,, automatically selecting a best “subapproximationAy ;j(#)=a(g; i), 1<i,j<N, and FyeRN is the “load”

where uy(x) e RN; we then choose for test functions=¢;, i

among all(combinatorially many possibilities. We thus see why (and “output”) vector with entriesy ;=f(¢;), i=1,...,N.
reduced-basistate-spacepproximation ofs(x) via u(u) is pre- We now invoke(2) to write
ferred to simpleparameter-spacenterpolation ofs(u) (“con- 0

necting the dots”via (w,,S(u,)) pairs. We note, however, that

(W =all L) = a )ad( ¢ ¢
the logarithmic point distribution(11) implicated by our An ij(w)=alg; diipm) ORAME (£, &), (15)

; S ; q=1
interpolant-based argumentsrist simply an artifact of the proof:

in numerous numerical tests, the logarithmic distribution perforn¥¥

considerably(and in many cases, provablggtter than other more Q

obvious candidates, in particular for large ranges of the parameter. An(p)= z oI w)AY,
Fortunately, the convergence rate is it sensitive to point se- =1

lection: the theory only requires a log “on the average” distribu- NXN . _ R
tion (Maday et al[19]); and, in practice need not be a sharp v<vhere <the<AﬁeR are given byAy ;;=a%{;.&), i<i.
upper bound. =N, 1\q.\Q. The off-line/on-line decomposition is no(;/v clear.
The result(12) is certainly tied to the particular fortL0) and N the off-line stage, we compute fh,ﬁ({“n) and form theAy and
associated regularity af(). However, we do observe similar En - this r.e'quwesN (expenswe) a” finite element solgtlons and
exponential behavior for more general operators; and, most iR(QN?) finite-element-vector inner products. In the-linestage,
portantly, the exponential convergence rate degrades only vé®j any given newu, we first formAy from (15), then solve14)
slowly with increasing parameter dimensioR, We present in for uy(x), and finally evaluatesy(u)=F{un(x): this requires
Table 1 the errofs(u)—sy(u)|/s(x) as a function ofN, at a O(QN2)+0(2/3 N3) operations an@(QN?) storage.
particular representative point in D, for the two-dimensional  Thus, as required, the incremental, or marginal, cost to evaluate
thermal fin problem of Section 2.2.1; we present similar data sy (x) for any given newu—as proposed in a design, optimiza-
Table 2 for the truss problem of Section 2.2.2. In both cases, sirt@@n, or inverse-problem context—is very small: first, becaNse
tensor-product grids are prohibitively profligateRsicreases, the very small, typically O(10)—thanks to the good convergence
un are chosen “log-randomly” oveD: we sample from a multi- properties ofWy; and second, becaugg4) can be very rapidly



assembled and inverted—thanks to the off-line/on-line decompl-independent a-continuity ang(u)a-coercivity constants de-
sition (see Balmeg9] for an earlier application of this strategyfined earlier. Our two results of this section can thus be summa-
within the reduced-basis context). For the problems discussedriped as
this paper, the resulting computational savings relative to standard

(well-designedYinite-element approaches are significant, at least 1=7(p)=Const, VN, (20)
0(10), typicallyO(100), and ofter©(1000) or more. where

_ An(p) 21
4 A Posteriori Error Estimation: Output Bounds ()= s(u) —sn(p) (21)

From Section 3 we know that, in theory, we can ob®iix) s the effectivity, and Const is a constant independenofVe
very |ne>3<pen5|vely2: the on-line c_omputatlonal effort scale_s &hall denote the leftbounding property)and right (sharpness
O(2/3 N°)+O(QN?); and N can, in theory, be chosen quite hroperty)inequalities of(20) as the lower effectivity and upper
small. Howeverjn practice, we do not knovinowsmallN can be  effectivity inequalities, respectively.
ch?setr(\:)thfisf \{vill dtependd trc:n thet_delsired a;)clcura_cy, thet_selet?ted/ve first prove the lower effectivity inequalitjpounding prop-
output(s)of interest, and the particular problem in question; iRy ). o= () <s(u)<s/ (1), Ve D, for sy(x) ands; (u) de-
some casel=5 may suffice, while in other caseld;=100 may fined in (18). The lower bound property follows directly from

still be insufficient. In the face of this uncertainty, either too man¥ . tion 3.2.1. To prove the upper bound property, we first observe

or too few basis functions will be retained: the former results i e V= .
computational inefficiency; the latter in unacceptabléh(i[)i(s(’z';’_’lﬁ) (3)(9(M3ve UN%%,U”i%usa(er(gva}ﬁéﬂzb\;\megg
uncertainty---particularly egregious in the decision contexts I&(M)é(é(ﬂ) v)ia(e’(,u) vin), Yo e X. We thus obtain
which reduced-basis methods typically serve. We thus aqsuk- ' e ’
teriori error estimators forsy. Surprisingly,a posteriori error  g(uw)a(é,6)=g(un)a(é—e,é—e)+2g(u)a(é,e)—g(un)a(e,e)
estimation has received relatively little attention within the L R R
reduced-basis frame-workNoor and Peterg8]), even though =g(pn)a(é—e,é—e)+(a(e,e;u)—g(p)a(ee))
reduced-basis methods are particularly in need of accuracy assess-
ment: the spaces ar hocand pre-asymptotic, thus admitting
relatively little intuition, “rules of thumb,” or standard approxi- =a(e,e;u) (22)
mation notions. . Al A "
Recall that, in this section, we continue to assume that SiNCe 9(u)a(é(u) —e(u),&(un) —e(n))=0 and a(e(u),e(u);
coercive and symmetric, and thétis “compliant.” m)~9(u)a(en),e(u))=0 from (16). Invoking (9) and (22),
o . Wwe then obtains(u) —sy(u) =a(e(u),e(u);n)<g(n)a(é(w),
4.1 Method I. The approach described in this section is &(u)); and thuss(u) <sn(u) +g(w)a(é(u),é(u))=sy (1), as
particular instance of a general “variational” framework far desired.
posteriori error estimation of outputs of interest. However, the \we next prove the upper effectivity inequalitisharpness
reduced-basis instantiation described here differs significanfyoperty):
from earlier applications to finite element discretization ethda-
day et al.[20], Machiels et al[21]) and iterative solution error An(p) Yo
(Patera and Renqui§2]) both in the choice ofenergy)relax- () = S(i)—sn( ) = a0’ VN.
ation and in the associated computational artifice. h

+a(eeu)

) ) __ To begin, we appeal t@-continuity andg(u)a-coercivity to
4.1.1 Formulation. We assume that we are given a positivebtain

function g(u):D—R, , and a continuous, coercive, symmetric

-independentpilinear froma: XX X—R, such that . . YoO(u) . . A
(windependentp a(6(w), 8w =2 aa(w) ). (@3)
advli=g(waw.v)<a,v;u), YveX\VueD (16) “o

o AP But from the modified error equatiorfl7) we know that
for some positive real constaat;. We then findé X such A A N « .
e P % nie (1) A(8(1) (1)) =a(e(u), ()i ). Invoking the  Cauchy-
Schwartz inequality, we obtain

a(é(uw),v)=R(v;u w), YveX, 17 A R
g(,u).( (m (vsun(m);m) | 17) 9()A(6.6) =a(e.é )
where for a givenwe X, R(v;w;u)=/(v)—a(w,v;u) is the L " 2
weak form of the residual. Our lower and upper output estimators <(a(é,&u))"(ale.e;pn))

are then evaluated as

1/2
Yo Ara a))1/2 . 1/2.
su(w)=sn(w), and sy(w=sn(u)+An(p),  (18) = C_TO) (glp)a(e.e)Hate. e )
respectively, where the desired result then directly follows frofh9) and (9).
A = a(é(u),é 19 We now provide empirical evidence f¢20). In particular, we
_ _ N =8(w)A(E(w). &) (19) present in Table 1 the bound gap and effectivities for the thermal
is the estimator gap. fin example. Clearlyyy(u) is always greater than unity for any

4.1.2 Properties. We shall prove in this section thaf () N, and bounded---indeed, quite close to unity-Aas .

<s(u)<sy(u), and hence thafs(u)—sn(u)|=s(u)—sn(x) 4.1.3. Computational Procedure Finally, we turn to the com-
<Ap(u). Our lower and upper output estimators are thus lowéutational artifice by which we can efficiently computg () in

and upper outpubounds; and our output estimator gap is thus aifie on-line stage of our procedure. We again exploit the affine
outputboundgap—a rigorous bound for the error in the output oparameter dependence, but now in a less transparent fashion. To
interest. It is also critical thak \(u) be a relativelysharpbound begin, we rewrite the “modified” error equatio}7), as

for the true error: a podioverly large)bound will encourage us to Q N

refine an approximation which is, in fact, already adequate—uwith, , . 1 20y q _ a s

a correspondingunnecessaryjncrease in off-line and on-line %(e('“)’v)_ 9() /(v) qzl 121 ol (wuy j(w)a(g.v) |,
computational effort. We shall prove in this section thqf(u)

<(vyo/ag)(s(w)—sn(m)), where y, and g, are the YveX,



where we have appealed to our reduced-basis approxim@d®n  4.2.1. Formulation. To begin, we seM>N, and introduce a

and the affine decompositiof®). It is immediately clear from parameter sampl&y={u1, ....,um} and associated reduced-
linear superposition that we can expré&§s.) as basis approximation space Wy=spad{n=u(pm),m
o N =1, ... M}; for both theoretical and practical reasons we require
R 1 (. ” SyC Sy and thereforeVyC W), . The procedure is very simple:
=500 2o+ 2, 2 oWy ((WF ], (24)  we first find uy(s) e Wy such thata(uy(w),v;w)=f(v), Vo
a=ti=t €Wy ; we then evaluatesy(u)=/(um(u)); and, finally, we
where 2,e X satisfies é(zo,v):/(v)’ Vv eX, and 2;3] eX, j compute our upper and lower output estimators as
=1,... N, g=1,... Q, satisfies&(2,v)=—a%¢,v), Vv Sum()=sn(m), St =sn(w)+Axm(p),  (26)

e X. Inserting (24) into our expression for the upper bound, hereA th timator b q o b
S5 (1) =Sn(1) + 9(1)A(&(1) &), we obain where (1), the estimator bound gap, is given by

N 1
Sn(m) Anm(p)=—(su(p)=sn(p)) (27)
sy(u)+ i cot ZEQ: EN: o9 )y j(M)A,q g)sr somere (0,1). The effectivity of the approximation is defined
g(M) g=1 j=1
An,m(p)
Q Q N ’ = _—NM 28
2, 2 > X owod (wuy (wuy  (w)T U ) s e

=1 1_q j=1 :7r_ .
9= g'=1171 =1 For our purposes here, we shall consites 2N.

(25) 4.2.2. Properties. As for Method I, we would like to prove the

PPN a_ar5 54 99" _ a/5q 59’ effectivity inequality 1= nyn(u)=<Const, VN. However, we
whereco=a(Zp,20), Aj'=a(2,2), andl'y; =&(Z},2’). will only be able to demonstrate an asymptotic form of this in-

The off-line/on-line decomposition should now be clear. In theqyality. Furthermore, the latter shall require, and we shall make,
off-line stage we computg, and2}', j=1,... N, g=1,...Q, the hypothesis that

and then formcy, A9, andT'%9 : this requiresQN+1 (expen- _
. . ) I . S(u) —Son(a)
sive) “ &” finite element solutions, an®(Q?N?) finite-element- enoNp)=—F—"T—"—"F—+—
vector inner products. In then-line stage, for any given new, S(p)—sn(p)
we evaluates;, as expressed if25): this requireD(Q?N?2) op- We note that the assumptig@9) is certainly plausible: if our
erations andd(Q2N?) storage(for ¢y, qu’ anqu.q,'). As for the priori bound of (1_22 ’i\‘n fact reflects asymp_tc;gi% behavior, then
computation ofsy(w), the marginal cost for the computation ofs('“)_s’\‘(m_zzﬁle " S(m)=san(m)~cie 725, and hence
sy(u) for any given newy is quite small—in particular, it is 8N\v,2\}\‘("](’i)~e ’ ?15 ?eswed.ﬁ T i di
independentf the dimension of the truth finite element approxi- N !St prove the ow+er effectivity inequalibounding prop-
mation space. erty): SN,ZN(#)SS(M)_sSN,ZN(/‘L)f asN—o. To demc_;nstrate_ the
There are a variety of ways in which the off-line/on-line delower bound we again appeal {8) and the coercivity of; in-
composition and output error bounds can be exploited. A particl€d this resultstill) obtains forall N. To demonstrate the upper
larly attractive mode incorporates the error bounds into an on-lif@und, we write
adaptive process, in which we successively approximgtg) on . 1 1
a sequence of approximation spatdlg; C Wy, Nj=Ng2l---for  syan(m)=s(u)+ ;-1)(5(/’«)_SN(M))_ ;(S(M)—SzN(M))
example,Wer may contain theNj’ samples points dBy closest to (30)
the new u of interest---untilAy: is less than a specified error

tolerance. This procedure bottjw minimizes the on-line computa- =s(u)+
tional effort and reduces conditioning problems—while simulta- (31)
neously ensuring accuracy and certainty.

The essential advantage of the approach described in this s&t now recall thais(u) —sy(#)=0, and that 0<<l—that is,
tion is the guarantee of rigorous bounds. There are, however, cbt=>1; it then follows from(31) and our hypothesi$29) that
tain disadvantages. The first set of disadvantages relates to tiere exists a finitdN* such that
choice ofg(x) anda. In many cases, simple inspection suffices: . .
for example, in our thermal fin problem of Section 2.29{u) Snon(p) —S(1)=0, VN>N*. 32

=ming_1, o o%w) anda(w,v)=33_;a%w,v) yields the very This concludes the proof: we obtairsymptotichounds.
good effectivities summarized in Table 1. In other cases, howeverwe now prove the upper effectivity inequalitgharpness prop-

there is no self-evidentor readily computed, Maday et dR3]) erty). From the definitions Ofpnan( 1), Anan( ) andey an(a),
good choice: for example, for the truss problem of Section 2.2.@e directly obtain

the existence of almost-pure rotations rendgfs) very small

0, asN—wx, (29)

1
= [1-enan(m)]— 1) (s(u)—sn(p)).

relative toy(u), with corresponding detriment tgy(x). The sec- _ Lson(p) —snp)

ond set of disadvantages relates to the computational expense— NN = s(u)—sn(p)

the O(Q) off-line and theO(Q?) on-line scaling induced b24)

and(25), respectively. Both of these disadvantages are eliminated _ 1 (son(p) —s(p)) — (Sn(m) —S(p)) (33)
in the “Method II” to be discussed in the next section; however T (s(u)—sn(w))

“Method 11" only provides asymptoticbhounds asN—o. The

choice thus depends on the relative importance of absolute cer- = Z (1= pt)) (34)
tainty and computational efficiency. T NN

4.2. Method Il.  As already indicated, Method | has certainlt is readily shown thatyy (1) is bounded from above by 4/
limitations; we discuss here a Method Il which addresses thefee all N: we know from(9) thatey on(w) is strictly non-negative.
limitations, albeit at the loss of complete certainty. It can also readily be shown tha, ,n(u) IS non-negative: since



WyC W,y , it follows from (8) (for (-,-)x=a(-,-;u)) and (9) recall that/(v) is our output functional.
that s(u)=s,n(u)=sn(u), and henceeyn(u)<1. We thus
conclude that & 7y on(u) < 1/7 for all N. Furthermore, from our

hypothesis oy zn(x), (29), we know thatyy x(u) il tendto scribed in Section 3.2, a sample set in parameter spage,

1/7 asN increases. > o
The essential approximation enabler is exponential conveﬁ-{“l’ - - ofinig}, where pieD, i=1,... N/2 (N even). We

. . . ext define an “integrated” Lagrangian reduced-basis approxima-
gence: we obtain bounds even for rather snvtind relatively _ _
large 7. We thus achieve both “near” certaingndgood effectivi- tion spaceWy=spar(u(sn), ¥(1n),n=1, . .. N/2}.

: . e . . For any ue D, our reduced basis approximation is then ob-
ties. We demonstrate this claim in Table 2, in which we presept. - S .
the bound gap and effectivity for our truss example of Sectio{] ined by standard Galerkin projection oM (though for highly

2.2.2; the results tabulated correspond to the cheicé&/2. We oqsymmetric operators minimum residual and P(_atrov-GaIerkin
cIearI’y obtain bounds for alN; and we observe thay (i) projections are attrac.tlve—stabler—alternative'B) wit, for the
does, indeed, rather quickly approach.1/ ’ primal problem, we finduy(u) € Wy such thata(uy(u),vip)
' ' =f(v), YveWy; and for the adjoint problem, we define

4.2.3. Computational ProcedureSince the error bounds are(though, unless otherwise indicated, aot compute) ()
based entirely on evaluation of the output,we can directly adaptWy such that a(v,¥n(u);u)=—7/(v), YveWy. The
the off-line/on-line procedure of Section 3.3. Note that the calcuieduced-basis output approximation is then calculated from
lation of the output approximatiosy(x) and the output bounds Sy(u)=7"(Un(u)).
are now integratedAy(u) and Fy(u) (vielding sy(u)) are a Turning now to thea priori theory, it follows from standard
sub-matrix and sub-vector of,y(u) and Foy(uw) (yielding arguments thaiiy(ux) andy(un) are “optimal” in the sense that

5.1.1. Reduced-Basis Approximatiorto develop the reduced-
basis space, we first choose, randomly or log-randomly as de-

Son(m), Anon(u), and SﬁYZN(M)), respectively. In theoff-line (@)

stage, we compute the(w,) and form theAd, andF,y: this lu(p) —upn()lxs| 1+ —) inf {Ju(u) —wplx,
requires AN (expensive) “a” finite element solutions, and a(p) wneWy

O(4QN?) finite-element-vector inner products. In tlen-line (1)

stage, for any given neyy, we first formAy(u), En andAon(w), () — () Ix=<| 1+ 77’“) inf () —wyllx .
Fon, then solve foruy(x) and u,n(w), and finally evaluate a(p) Wy e Wy

S'ﬁYZN(“): this requiresO(4QN?) +O(16/3 N°) operations and The best approximation analysis is then similar to that presented
O(4QN?) storage. The on-line effort for this Method Il predictor/; pp v P

error estimator procedur@ased orsy(u) andsyy(w)) will thus In Section 3.2. As regards our output, we now have
require eightfold more operations than the “predictor-only” pro-|s(u)—sn(w)|=]7(u(w))— 7 (un(w))]
cedure of Section 3.

Method Il is in some sense very wat we simply replace the =la(u—u,¢;p)]
true outputs(u) with a finer-approximation surrogat®y(u)- — _ BN _ _
(There are more obscure ways to describe the method—in terms [atu=un gr= )| vollu=unlxl = gl
of a reduced-basis approximation for the error—however, there is (36)

little to be gained from these alternative interpretatipiifie €s- from Galerkin orthogonality, the definition of the primal and the
sential computation enabler is again exponential convergenggioint problems, and the Cauchy-Schwartz inequality. We now
which permits us to choose = 2N—hence controlling the addi- ;nderstand why we include the(u,) in Wy: to ensure that
tional computational effort attributable to error estimation—whilﬁlp(,u) — yn(w)llx is small. We thus recover the “square” effect in
simultaneously ensuring tha »n(x) tends rapidly to zero. Ex- the convergence rate of the output, allfaitd unlike the symmet-
ponential convergence also ensures that the cost to compute hth:ase)at the expense of some additional computational effort—
sn(u) and son(u) is “negligible.” In actual practice, since the inclusion of they(u,) in Wy ; typically, even for the very
Say(w) is available, we can of course takgy(u), rather than rapidly convergent reduced-basis approximation, the “fixed error-
sn(w), as our output prediction; this greatly improves not onlyninimum cost” criterion favors the adjoint enrichment.

accuracy, but also certainty—ybn(x) is almost surely a bound  For simplicity of exposition(and to a certain extent, implemen-
for s(u)—s,n(w), albeit an exponentially conservative bound agtion),we present here the “integrated” primal-dual approxima-

N tends to infinity. tion space. However, there are significant computational and con-
ditioning advantages associated with a “nonintegrated” approach,
5. Extensions in which we introduceseparateprimal (u(w,)) and dual {(w,))

) . approximation spaces far(u) and (w), respectively. Note in

5.1. Noncompliant Outputs and Nonsymmetric Operators. the “nonintegrated” case we are obliged to compuitg «), since
In Sections 3 and 4 we formulate the reduced-basis method agd preserve the output error “square effect” we must
associated error estimation procedure for the case of complighgdify our predictor with a residual correctiorf,(y(u))
outputs,/ (v)=f(v), Yv e X. We briefly summarize here the for- —a(uy(w), ¥n(w); ») (Maday et al[23]). Both the “integrated”
mulation and theory for more general linear bounded output fungng “nonintegrated” approaches admit an off-line/on-line decom-
tionals; moreover, the assumption of symmetyt not yet coer- position similar to that described in Section 3.3 for the compliant,
civity) is relaxed, permitting treatment of a wider class o&ymmetric problem; as before, the on-line complexity and storage

problems---a representative example is the convection-diffusige independent of the dimension of the very fitteuth”) finite
equation, in which the presence of the convective term renders §l@ment approximation.

operator nonsymmetric. We first present the reduced-basis ap- o ]

proximation, now involving a dual or adjoint problem; we then 5.1.2. Method | A Posteriori Error Estimators.We extend

formulate the associatedposteriorierror estimators; and we con- here the method developed in Section 4.1.2 to the more general

clude with a few illustrative results. case of noncompliant and nonsymmetric problems. We begin with
As a preliminary, we first generalize the abstract formulation dhe formulation.

Section 2.1. As before, we define the “_primal” problem ag4m, We first find 6 () e X such that

however we of course no longer require symmetry. But we also

introduce an associated adjoint or “dual” problem: for apy g(w)a(é”(u),v)=RP(v;un(u); ), YveX,

eX, find y(u) X such that where RP(v;w; u)=f(v) —a(w,v;u), YveX; and é(u) e X
a(v,(w);u)=—7/(v), VveX (35) such that



QA6 1),0) = R™Mws ()i ), YoeX, We now choosex(u) as

where R™(v;w;u)=-/(v)—a(v,w;n), YveX. We then (&™), 8M(w)) |\
define ) ), )

() =sn(p) — 9(p) AP (w) édU(M)) and 37) so as to minimize the right-hand si§é2); we then obtain
> ) ,

[s(p) —Sn(m)|[<An(p), (43)
g(u)

An(w) == [a(&"(p), & () )1V A(M (), M )]V and hencesy () <s(u)<sy ().
(38) We now turn to the upper effectivity inequalitgsharpness
. property). If the primal and dual errors aweorthogonal, or
Finally, we evaluate our lower and upper estimatorssgéu) become increasingly orthogonal Bsincreases, then the effectiv-
=sy(um) =An(u). Note that, as beforeg(n) anda still satisfy ity will not, in fact, be bounded a?N—c. However, if we
(16); and that, furthermoré16) will only involve the symmetric make the (plausible) hypothesis that |s(u)—sn(u)]

part ofa. We define the effectivity as =C|e”(w)llxlle®u)lx, then it is simple to demonstrate that
An(p) 2
N =T (39) - Yo

Is(1) = sn( )] n(p)< T (44)

note thats(u) —sy(w) now has no definite sign.
We now prove that our error estimators are bou¢tde lower

effectivity inequality: sy (u)<s(u)<sy(u), VN. To begin, we
defineé” (u)=6€"(u)+ 1/k €*(u), and note that, from the co- of 7o

In particular, it is an easy matter to demonstrate thH#(u)
X (8(€” (), € (1)) ?< vo/ 25| €”(w)llx (note we lose a factor
12 relative to the symmetric case similarly, g3(u)

ercivity of , X (8(&™(1),6™())) ¥*< yo/ ag”e™(w)|x. The desired result
then directly follows from the definition oAy(x) and our hy-
c(u)a| = Sa* - Tt pothesis oris(u) ~sy(w)|.
2 2 Finally, turning to computational issues, we note that the off-

R line/fon-line decomposition described in Section 4.1 for compliant
= xg(p)a(e”,e) symmetric problems directly extends to the noncompliant, non-
kg(p) symm_etric case—except t_h_at we must compute the norm of both
+ a(é*,8%)— kg(u)a(é*,e”=0, (40) the primal and dual “modified errors,” with a concomitant dou-
4 bling of computational effort.

_ dugy— -
whereeP(u) =u(u) —un(u), € () =) — (), a[‘?" IS 5.1.3 Method Il A Posteriori Error Estimators.We discuss
a positive real number. From the definition@f(x) andé”(x), here the extension of Method Il of Section 4.2 to noncompliant

6%(u), we can express the “cross-term” as outputs and nonsymmetric operators.
1 To begin, we seM >N, M even, and introduce a parameter
g(w)a(é™,e”) =R (e uy; M)+ RIY( &P iy 1) sample Syp={m1,....umpf and associated “integrated”

reduced-basis approximation spaé&,=spafu(um), ¥(wm),m
1 =1,..., M/2}.  We first find uy(um)eWy such that
=a(e” e u)F—a(e™ e u) a(up(p),o;pu)="F(v), YoeWy; we then evaluatesy(u)
K =/(um(u)); and finally, we compute our upper and lower output
1 estimators as
=a(e” e u) - (s(p)—sn(p),  (41) 1 1
s () =sn(p) + 5= (Sm(p) —sn(p) £5 Ay (), (45
since RP(eP:uy;w) =a(u,e™; u) —a(uy,e™ u)=a(e™, e u), Nm(ps) = on()+ o (Swlpn) = sn(m)) =5 Annlps). - (49)
RY(eP"; g ) = a(e™, g ) —a(e®, gy ;) =a(e” e u), and 1
Z(u)=/(uy)=—a(u—uyn,¥;pu)=—a(u—uy,¢—y;u)  (by A )=—|sm(m) —sn(p)l, 46
Galerkin orthogonality= —a(e™,e™: u). We then substituté41) N se T| (k) = Sw(w)] (46)
into (40) to obtain

*(s(p)—sn(p)=<—K(a(e™,e”;u) - g(n)a(e”,e™) Anmilpe)
RO KO M) = [0 — syl

2 a(é* e—)< 7 a(é+,e"),
We shall again only considev =2N.
since k>0 and a(e”(u),e(u); u) —g(m)a(e™(u),e”(u))=0 As in Section 4.2, we would like to prove thatlyy on(u)
from (16). <Const for sufficiently largeN; and, as in Section 4.2, we must
Expandingé™(u) =é"(u) * 1/x é™(u) then gives again make the hypothegig9). We first consider the lower effec-
+ (s() = S 1) tivity inequality (bounding property and prove that

_ a(w)
T4

for 7€(0,1). The effectivity of the approximation is defined as

(47)

Sﬁ,zN(M)gs(M)gsﬁ,zN(M), as N—oo. (48)
In particular, simple algebraic manipulations yield

A ( APr Apr E'\ Adu aduy — 54 apr adu
xa(6P éP") + — (&% e 24(eM e,
K

or 1
Snan(m) =s(u) — T enm [sn(m) = San( )]

a(p)
= s >—(s( >——a<épf,éd“>))
( FITINETTS 1 Son( ) =S (1)

1 , (49
= Tlaenen. @) oot sam<sw &



Table 3 Error, error bound  (Method II), and effectivity as a Following (Machiels et al.[24]), we present here a reduced-
function of N, at a particular representative point ~ n€D, forthe  pasis predictor and a Method | error estimator for symmetric

truss problem - (noncompliant output ) positive-definite eigenvalue problems; we also briefly describe the
N s -sls(e) Awa(@)is(n)  gua(w)  SiTPIer Method 1 approach.
20 2.35%102 4.67x10 2 1.99 5.2.1 Reduced-Basis ApproximatiorlWe sample, randomly
40 1.74%10-* 3.19%10-4 1.83 or log-randomly, our design spac® to create the parameter
60 559%10°5 1.06X10~4 1.90 sample Syp={m1, . . . .4n2t; We then introduce the reduced-
80 1.44x10°5 2.73%10°5 1.89 basis spacéVy=spafu(u1),Uz(pa), - - - U1(pni), Ua(pni) b
100 7.45%10°8 1.40x10°° 1.88 where we recall that;(x) and u,(u) are the eigenfunctions

associated with the firgemallest)and second eigenvaluas(u)

and \,(u), respectively. Note thatVy has good approximation
properties both for the first and second lowest eigenfunctions, and
hence eigenvalues; this is required by the Method | error estimator
to be presented below. Our reduced-order approximation is then:

1 _ :
SNan() =)+ 7= [sn() ~ San( )| find (uni(u) Mi(w)) e WNXR, i=1,... N, such that

a(uyi(p),v; ) =Ani(w)m(uyi(p),v;p), YveWy,

1
« ;(1—8N,2N)_l SZN(M)ZSN(M). (50) and m(UNi(M):UNi(#);ﬂ):l; (55)
1 Son() <sn(u) the output approximation is thesy(w) =Ayn1(u)-
) . . The formulation admits an on-line/off-line decomposition
The desired result then directly follows from our hypothesis of\achiels et al[24]) very similar to the approach described for

enaon, (29), and the range of. _ equilibrium problems in Section 3.
The proof for the upper effectivity inequalitisharpness prop-

erty) parallels the derivation of Section 4.2.2. In particular, we 5.2.2 Method | A Posteriori Error Estimators.As before, we

write assume that we are given a positive functgfp):D— R, and a
continuous, coercive, symmetric bilinear ford(w,v): XXX
1 1 —R, that satisfy the inequality16). We then findg(«) € X such

—[son—snl  —lson—S+s—sy| that

(w=" d Gy

TIN2N M) = — = _ A/ A
|s= sl |s= sl 9(m)a(&(p),v) =[N M(Ung( )03 ) — AUy () 05 )],
1 YveX, (56)
:;|1_8N,2N|i (52)

in which the right-hand side is the eigenproblem equivalent of the

from our hypothesig29) we may thus conclude thagy () residual. We then evaluate our estimators as

— 1/ asN—oo. Note in the noncompliant, nonsymmetric case we ooy - _

can make no stronger statement. Sn(m)=Ana(m),  sy(m)=Ani(p)—An(p),
We demonstrate our effectivity claims in Table 3, in which we g(w)

present the error, bound gap, and effectivity for the noncompliant An(p)= ﬁé(é(,u),é(,u)),

output (s’(u), average stresf the truss example of Section T

2.2.2; the results tabulated correspond to the cheie&/2. We whered(u)=1—Nyi(u)/An2(1) and7e(0,1). The effectivity is

clearly obtain bounds for al; and the effectivity rather quickly defined asyy(u)=An(w)/(Ani(ge) =M1 (w)).

approaches ¥/(for N=120, 7y on(x) remains fixed at 7=2.0). We now consider the lower and upper effectivity inequalities.
5.2 Eigenvalue Problems. We next consider the extensionAS regards the lower effectivity inequalihounding property

of our approach to symmetric positive definite eigenvalue prolj® ©f course obtairsy (1) =X\1(x), VN. The difficult result is
lems. The eigenvalues of appropriately defined partial-differentid€ lower bound: it can be provéMachiels et al[24]) that there
equation eigenproblems convey critical information about a phy§Xists anN*(Sy,,u) such thatsy(u)<\i(x), VN>N*. In
cal system: in linear elasticity, the critical buckling load; irpractice,N*=1, due to the goodtheoretically motivatetchoice
dynamic analysis of structures, the resonant modes; in conductfen (w); there is thus very little uncertainty in ogasymptotic)
heat transfer, the equilibrium timescales. Solution of large-scadounds. We also prove in Machiels et §24] a result related
eigenvalue problems is computationally intensive: the reduce@ the upper effectivity inequalitysharpness property); in, prac-

basis method is thus very attractive. tice, very good effectivities are obtained. To demonstrate these
The abstract statement of our eigenvalue problem is: firaims we consider the eigenvalue problem associated (tith
(ui(w) \i(w)) e XXR, i=1,...,such that homogeneous versiomf our two-dimensional thermal fin ex-

ample of Section 2.2.1. We present in Table 4 the error, error
a(ui(p) ;) =N(p)m(ui(p),vp), VYoeX,
and m(u;(u),ui(u);u)=1. (53)

Here a is the continuous, coercive, symmetric form introduced@ble 4 Error, error bound ~ (Method 1), and effectivities as a
earlier, andm is (say)the L2 inner product ovef). The assump- Iﬂgfrtr'gl‘ ]$:1 eliv 'eit ?Jij‘ég’“'af representative point €D, for the
tions ona and m imply the eigenvalues () will be real and genp

positive. We order the eigenvalu@nd corresponding eigenfunc-— [N g () = Aa () [/ 1 () An(m)\(p) ()
tionsu;) such that B<\;(u)<Ay(u)=< ... ; weshall assume that — —

N1(u) and N,(u) are distinct. We suppose that our output of %8 1.19x10 6.66x10" 7 2'23

interest is the minimum eigenvalue, 1.08x10 7.19x10 7 63

30 6.20x10 3.19x10 5.17

s(p)=N(p); 54 40 1.72x1074 1.55%103 9.44

() =halp N 5 3.47x10°° 4.06x10* 11.74

other outputs may also be considered.



bound, and effectivity as a function &f at a particular poinju  bounds are obtained—though technically the bounds are only
eD. We observe rapid convergence, bounds foM\aland good asymptotic due to the approximation of the inf-sup parameter;
effectivities. and, despite the presence Xf the on-line complexity remains
Finally, we note that our output estimator admits an oﬁ-line/oqndependem of the dimension ¥f—as in Section 3.3, we exploit
line decomposition similar to that for equilibrium problems; theyfine parameter dependence and linear superposition to precom-
additional terms in(56) are readily treated through our affinep e the necessary inversions. In a second suite of much simpler
expansion/linear superposition procedure. and more general approach@ge Maday et a[23] for one ex-
5.2.3 Method Il A Posteriori Error Estimators.For Method ample in the symmetric casewe exploit minimum-residual or
1, we no longer require an estimate for the second eigenvalue. \Rgtrov-Galerkin projections with infimizer-supremizer enriched,

may thus define Sy={u,....un}, Wy=spadu,(u;),i butstill very low-dimensional, infimizing and supremizing spaces.
=1,... N}, and(for M=2N) S;n={p1, - .. .aon} DSy, Woy  Plausible but not yet completely rigorous arguments, and empiri-
=spaduq(ui),i=1,...,N}DWy. The reduced basis approxi-cal evidence, suggest that stability is ensured and rigorous

mation now takes the forn(53), yielding sy(«) =An1(x) and asymptotic(and sharperror bounds are obtained.

(for N—2N) s,n(1) =Non1(a). Our estimators are then given by  In Maday et al[23]we focus entirely on Methodd posteriori

error estimator procedures; but Method Il techniques are also ap-

propriate. In particular, Method Il approaches do not require ac-
1 curate estimation of the inf-sup parameter; we thus need be con-

Anan(p) =~ (sn(p) = San(p) (57) cerned only with stability in designing our reduced-basis spaces.

Sﬁ,zN(M) =Mna(4), Snon=Ana(p) —Anon( ),

for 7 (0,1). The effectivityyy ,n(x) is defined as for Method 1. 5.3.2 Pargbolic Partial Differential Equations.ThQ nextex-
For the lower effectivity inequalitybounding property), we of tension considered is the treatment of parabolic partial differential

course retainsy =\,(u), YN. We also readily derive €duations of the forim(u;,v;u)=a(u,v;u); typical examples
Son(i) =\ 7(N>’\2N(/f))\ )(isf()lfe )—1): under Zur hy are time-dependent problems such as unsteady heat conduction—
N,2N — N1 N1 1 N,2N. ’ -

pothesis29), we thus obtain asymptotic boundshis»o. For the the “heat” or “diffusion” equation. The essential new ingredient

LT ; : is the presence of the time variabte
upper effectivity inequalitysharpness propeitywe directly ob- . e .
tain 7= 1/7(1—ey ). By variational arguments it is readily The reduced-basis approximation and error estimator proce-

shown that Bey y<1: we thus conclude thatzy ,<1/7 dures are similar to those for noncompliant nonsymmetric prob-

VN. Additionally, under hypothesi29), we deduce thaty oy Igms, except that we now include the time \{ariable as an addi-
. 1/7 asN—s . tional parameter. Thus, as in certain other time-domain model-

order-reduction methodéAntoulas and Sorense25], Sirovich
5.3 Further Generalizations. In this section we briefly de- and Kirby [26]), the basis functions are “snapshots” of the solu-
scribe several additional extensions of the methodology. In eaghn at selected time instants; however, in our case, we construct
case we focus on the essential new ingredient; further details 5 ensemblef such series corresponding to different points in the
most casesinay be found in the referenced literature. non-time parameter domaiR. For rapid convergence of the out-

5.3.1 Noncoercive Linear OperatorsThe archetypical non- Put approximation, the solutions to an adjoint problem, which
coercive linear equation is the Helmholtz, or reduced-wave, equiolvesbackwardin time, must also be included in the reduced-
tion; many (e.g., inverse scatteringipplications of this equation basis space.
arise, for example, in acoustics and electromagnetics. The esserf=or the temporal discretization method, many possible choices
tial new mathematical ingredient is the loss of coercivityaoln —are available. The most appropriate method, although not the only
particular, well-posedness is now ensured only by the inf-sup cothoice, is the discontinuous Galerkin meth@dachiels et al.
dition: there exists positivg,, B(u), such that [27]). The variational origin of the discontinuous Galerkin ap-
proach leads naturally to rigorous output bounds for Methad |
0<Bo<pB(w)= inf sup , YueD. (58) posteriorierrorestimators; the Method Il approach is also directly

wex vex IWI[vllx applicable. Under our affine assumption, off-line/on-line decom-
. e 1 . - » .. positions can be readily crafted; the complexity of the on-line
Two numerical difficulties arise due to this “weaker Stab'"tystage(calculation of the output predictor and associated bound

condition. - . - .
The first difficulty is preservation of the inf-sup stability condi-gap) is, as before, independent of the dimensiorof

tion for finite dimensional approximation spaces. To wit, although 5.3.3 Locally Nonaffine Parameter DependencAn impor-

in the coercive case restriction to the spalég actually increases tant restriction of our methods is the assumption of affine param-
stability, in the noncoercive case restriction to the spagecan eter dependence. Although many property, boundary condition,
easily decrease stability: the relevant supremizers may not be gehq, and even geometry variations can indeed be expressed in the
equately represented. Loss of stability can, in turn, lead to poRIguired form(2) for reasonably smalQ, there are many prob-
approximations—the inf-sup parameter enters in the denominafgg,q for example, general boundary shape variations, which do

Yot admit such a representation. One simple approach to the treat-

IS ebsltlmatloln ofﬂt]he |r|1f-sup parar’\r)leiﬁr,dv%hlch fct>r NONCOETCIVERant of this more difficult class of nonaffine problemsgijsin the
problems plays the role aj(x) in Method |a posteriori error off-line stage, store thé,=u(u,), and(ii) in the on-line stage,

estimation techniques. In particulgi(u) can not typically be de- directly evaluate the reduced-basis stiffness matrix as

duced analytically, and thus must be evaludigd an eigenvalue - -
formulation)as part of the reduced-basis approximation. Our resggi {i ). Unfortunately, the operation couritespectively,

lution of both these difficulties involves two elemerttdaday Storage)for the on-line stage will now scale @ (N*dim(X))

et al. [23)): first, we consider projections other than standardespectively,O(Ndim(X)), where dimi) is the dimension of

Galerkin; and second, we consider “enriched” approximatiofle truth(very fine)finite element approximation space: the result-

spaces. ing method may no longer be competitive with advanced iterative
In one approachMaday et al.[23]), we pursue a minimum- techniques; and, in any event, “real-time” response may be

residual projection: thélow-dimensional infimizing space con- compromised.

tains both the solutiom and also the inf-sup infimizer at the, We prefer an approach which is slightly less general but poten-

sample points; and thénigh-dimensional supremizing space is tially much more efficient. In particular, we note that in many

taken to beX. Stability is ensured and rigorousharp) error cases—for example, boundary geometry modification—the non-

a(w,v;u)
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affine parametric dependence can be restricted to a small subddr] Allgower, E., and Georg, K., 1980, “Simplicial and continuation methods for

main of Q. Q. . We can then express our bilinear fomras an approximating fixed-points and solutions to systems of equations,” SIAM
AL p Rev.,22, No. 1, pp. 28—85.

affine/nonaffine sum, [6] Rheinboldt, W., 1981, “Numerical analysis of continuation methods for non-
N i i linear structural problems,” Comput. Struct3, No. 1-3, pp. 103—-113.
a(w,v;p)=a(w,v;u)+a;(w,o;u). (59) [7] Almroth, B. O., Stern, P., and Brogan, F. A., 1978, “Automatic choice of

: R P i global shape functions in structural analysis,” AIAA 16, pp. 525-528.
Herea' , defined OVelQ| , the majority of the domain, is amnEIy [8] Noor, A. K., and Peters, J. M., 1980, “Reduced basis technique for nonlinear

dependent om; anda,; , defined ovef},, , a small portion of the analysis of structures,” AIAA J.18, No. 4, pp. 455—-462.

domain, is not affinely dependent qn It immediately follows [9] Balmes, E., 1996, “Parametric families of reduced finite element models
that the reduced-basis stiffness matrix can be expressed as the sumtheory and applications,” Mech. Syst. Signal Proces8, No. 4, pp. 381-394.

of two stiffness matrices corresponding to contributions fram [0l r?AzrtLenMéEr?n7d5R§gd"7enb§"5}12?55' 4“;3“ the reduced basis method,” Z. Angew.
anda, , respectively; that the stiffness matrix associated \&jth [11] Fink, J. P, and Rheinboldt, W. C., 1983, “On the error behaviour of the
admits the usual on-line/off-line decomposition described in Sec-  reduced basis technique for nonlinear finite element approximations,” Z. An-
tion 3.3; and that the stiffness matrix associated withrequires gew. Math. Mech.63, pp. 21-28.

i ; : : i [12] Peterson, J. S., 1989, “The reduced basis method for incompressible viscous
Storage(and inner prOdUCt evaluatlorm)"lly of é’/'|Q|| ((. restricted flow calculations,” SIAM (Soc. Ind. Appl. Math. J. Sci. Stat. Computl10,

to Q). The nonaffine contribution to the on-line computational  No. 4, pp. 777-786.

complexity thus scales 0n|y a&D(NZdim(X|Q ))’ where [13] Porsg:hing, T. A:, 1985, “Es_timation of the error in the reduced basis method
1 solution of nonlinear equations,” Math. Comput5, No. 172, pp. 487—-496.

dim(X|Q”) refers (in practice)to the number of finite-element [14] Rheinboldt, W., 1993, “On the theory and error estimation of the reduced basis

nodes located withit) often extremely small. We thus recover method for multi-parameter problems,” Nonlinear Analysis, Theory, Methods
N ' and Applications21, No. 11, pp. 849-858.

a methqd that |$almost)|ndependent_ of de)' th_OUQh clearly [15] Veroy, K., Leurent, T., Prud’homme, C., Rovas, D., and Patera, A., 2002,
the on-line code will be more complicated than in the purely af- = “Reliable real-time solution of parametrized elliptic partial differential equa-
fine case. tions: Application to elasticity,Proceedings SMA Symposium 2002

In the above we focus on approximation. As regaadgoste- ~ [161Maday, Y., Machiels, L., Patera, A. T, and Rovas, D. V., 2000, "Blackbox
- . . . reduced-basis output bound methods for shape optimizatiBroteedings
riori error estimation, the nonaf_flne dep_endenceadfeve_n_ lo- 12th International Domain Decomposition Confereneds. T. Chan, et al.,
cally) precludes the precomputation and linear superposition strat- ddm.org, pp. 429-436.
egy required by Method (Iunless domain decomposition concepts[l?] Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., and Wadley, H. N.

are exploitedMachiels et al[28]); however, Method I directly ,\G‘A;tgfoslc'i“de,\tl‘(’)p‘;°iicz'r)d§3g”3‘;f7m“'“f””°“°”a' cellular metals,” Prog.
extends to the locally nonaffine case. [18] Wicks, N., L’:lnc’i Hutchins'on, J. W., 2001, “Optimal truss plates,” Int. J. Solids

Struct.,38, No. 30-31, pp. 5165-5183.
[19] Maday, Y., Patera, A., and Turinici, G., “Global a priori convergence theory
ACknOW|edgmentS for reduced-basis approximation of single-parameter symmetric coercive ellip-
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