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Reliable Real-Time Solution of 
Parametrized Partial Differential 
Equations: Reduced-Basis Output 
Bound Methods

We present a technique for the rapid and reliable prediction of linear-functional 
outputs of elliptic (and parabolic) partial differential equations with affine 
parameter dependence. The essential components are (i) (provably) rapidly 
convergent global reduced-basis approximations—Galerkin projection onto a 
space WN spanned by solutions of the gov-erning partial differential equation at 
N selected points in parameter space; (ii) a poste-riori error estimation—
relaxations of the error-residual equation that provide inexpensive yet sharp and 
rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line 
computational procedures methods which decouple the generation and projection 
stages of the approximation process. The operation count for the on-line stage in 
which, given a new parameter value, we calculate the output of interest and 
associated error bound, depends only on N (typically very small) and the 
parametric complexity of the problem; the method is thus ideally suited for the 
repeated and rapid evaluations required in the context of parameter estimation, 
design, optimization, and real-time control. 
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1 Introduction
The optimization, control, and characterization of an engine

ing component or system requires the prediction of certain ‘‘qu
tities of interest,’’ or performance metrics, which we shall den
outputs—for example deflections, maximum stresses, maxim
temperatures, heat transfer rates, flowrates, or lift and drags. T
outputs are typically expressed as functionals of field variab
associated with a parametrized partial differential equation wh
describes the physical behavior of the component or system.
parameters, which we shall denoteinputs, serve to identify a par
ticular ‘‘configuration’’of the component: these inputs may rep
sent design or decision variables, such as geometry—for exam
in optimization studies; control variables, such as actua
power—for example in real-time applications; or characterizat
variables, such as physical properties—for example in inve
problems. We thus arrive at an implicitinput-outputrelationship,
evaluation of which demands solution of the underlying par
differential equation.

Our goal is the development of computational methods t
permit rapid and reliable evaluation of this partial-differential-
equation-induced input-output relationshipin the limit of many
queries—that is, in the design, optimization, control, and char
terization contexts. The ‘‘many queries’’ limit has certainly r
ceived considerable attention: from ‘‘fast loads’’ or multiple righ
hand side notions~e.g., Chan and Wan@1#, Farhat et al.@2#! to
matrix perturbation theories~e.g., Akgun et al.@3#, Yip @4#! to
continuation methods~e.g., Allgower and Georg@5#, Rheinboldt
@6#!. Our particular approach is based on the reduced-b
method, first introduced in the late 1970s for nonlinear structu
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analysis ~Almroth et al. @7#, Noor and Peters@8#!, and subse-
quently developed more broadly in the 1980s and 1990s~Balmes
@9#, Barrett and Reddien@10#, Fink and Rheinboldt@11#, Peterson
@12#, Porsching@13#, Rheinboldt@14#!. The reduced-basis metho
recognizes that the field variable is not, in fact, some arbitr
member of the infinite-dimensional solution space associated
the partial differential equation; rather, it resides, or ‘‘evolves,’’ o
a much lower-dimensional manifold induced by the parame
dependence.

The reduced-basis approach as earlier articulated is loca
parameter space in both practice and theory. To wit, Lagrangia
Taylor approximation spaces for the low-dimensional manifo
are typically defined relative to a particular parameter point; a
the associateda priori convergence theory relies on asympto
arguments in sufficiently small neighborhoods~Fink and Rhein-
boldt @11#!. As a result, the computational improvements—relat
to conventional~say! finite element approximation—are ofte
quite modest~Porsching@13#!. Our work differs from these earlie
efforts in several important ways: first, we develop~in some cases,
provably!global approximation spaces; second, we introduce r
orousa posteriori error estimators; and third, we exploitoff-line/
on-linecomputational decompositions~see Balmes@9# for an ear-
lier application of this strategy within the reduced-basis conte!.
These three ingredients allow us, for the restricted but impor
class of ‘‘parameter-affine’’ problems, to reliably decouple t
generation and projection stages of reduced-basis approxima
thereby effecting computational economies of several orders
magnitude.

In this expository review paper we focus on these new ingre
ents. In Section 2 we introduce an abstract problem formula
and several illustrative instantiations. In Section 3 we describe,
coercive symmetric problems and ‘‘compliant’’ outputs, th
reduced-basis approximation; and in Section 4 we present the
sociateda posteriorierror estimation procedures. In Section 5 w
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consider the extension of our approach to noncompliant out
and nonsymmetric operators; eigenvalue problems; and, m
briefly, noncoercive operators, parabolic equations, and nona
problems. A description of the system architecture in which th
numerical objects reside may be found in Veroy et al.@15#.

2 Problem Statement

2.1 Abstract Formulation. We consider a suitably regula
domain V,Rd, d51, 2, or 3, and associated function spa
X,H1(V), where H1(V)5$vPL2(V), ¹vP(L2(V))d%, and
L2(V) is the space of square-X integrable functions overV. The
inner product and norm associated withX are given by (•,•)X and
i•iX5(•,•)X

1/2, respectively. We also define a parameter setD
PRP, a particular point in which will be denotedm. Note thatV
doesnot depend on the parameter.

We then introduce a bilinear forma: X3X3D→R, and linear
forms f: X→R, l : X→R. We shall assume thata is continuous,
a(w,v;m)<g(m)iwiXiviX<g0iwiX iviX , ;mPD; further-
more, in Sections 3 and 4, we assume thata is coercive,

0,a0<a~m!5 inf
wPX

a~w,w;m!

iwiX
2 , ;mPD, (1)

and symmetric,a(w,v;m)5a(v,w;m); ;w,vPX, ;mPD. We
also require that our linear formsf andl be bounded; in Section
3 and 4 we additionally assume a ‘‘compliant’’ output,f (v)
5l (v), ;vPX.

We shall also make certain assumptions on the parametric
pendence ofa, f, and l . In particular, we shall suppose that, fo
some finite~preferably small! integerQ, a may be expressed as

a~w,v;m!5(
q51

Q

sq~m!aq~w,v !, ;w,vPX,;mPD, (2)

for somesq: D→R andaq: X3X→R, q51, . . . ,Q. This ‘‘sepa-
rability,’’ or ‘‘affine,’’ assumption on the parameter dependence
crucial to computational efficiency; however, certain relaxatio
are possible—see Section 5.3.3. For simplicity of exposition,
assume thatf andl do not depend onm; in actual practice, affine
dependence is readily admitted.

Our abstract problem statement is then: for anymPD, find
s(m)PR given by

s~m!5l ~u~m!!, (3)

whereu(m)PX is the solution of
2
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a~u~m!,v;m!5 f ~v !, ;vPX. (4)

In the language of the Introduction,a is our partial differential
equation~in weak form!,m is our parameter,u(m) is our field
variable, ands(m) is our output. For simplicity of exposition, we
may on occasion suppress the explicit dependence onm.

2.2 Particular Instantiations. We indicate here a few in-
stantiations of the abstract formulation; these will serve to illu
trate the methods~for coercive, symmetric problems! of Sections
3 and 4.

2.2.1 A Thermal Fin. In this example, we consider the two
and three-dimensional thermal fins shown in Fig. 1; these
amples may be~interactively!accessed on our web site.1 The fins
consist of a vertical central ‘‘post’’ of conductivityk̃0 and four
horizontal ‘‘subfins’’ of conductivityk̃i , i 51, . . . ,4. The finscon-
duct heat from a prescribed uniform flux sourceq̃9 at the root
G̃ root through the post and large-surface-area subfins to the
rounding flowing air; the latter is characterized by a sink tempe
ture ũ0 and prescribed heat transfer coefficienth̃. The physical
model is simple conduction: the temperature field in the fin,ũ,
satisfies

(
i 50

4 E
Ṽ i

k̃i¹̃ũ•¹̃ ṽ1E
]Ṽ\G̃root

h̃~ ũ2ũ0!ṽ5E
G̃root

q̃9ṽ,

; ṽPX̃[H1~Ṽ !, (5)

whereṼi is that part of the domain with conductivityk̃i , and]Ṽ
denotes the boundary ofṼ.

We now~i! nondimensionalize the weak equations~5!, and~ii!
apply a continuous piecewise-affine transformation fromṼ to a
fixed ~m-independent!reference domainV ~Maday et al.@16#!.
The abstract problem statement~4! is then recovered for
m5$k1,k2,k3,k4,Bi,L,t%, D5@0.1,10.0#43@0.01,1.0#3@2.0,3.0#
3@0.1,0.5#, andP57; herek1, . . . ,k4 are the thermal conductivi-
ties of the ‘‘subfins’’~see Fig. 1!relative to the thermal conduc
tivity of the fin base; Bi is a nondimensional form of the he
transfer coefficient; and,L, t are the length and thickness of eac
of the ‘‘subfins’’ relative to the length of the fin rootG̃ root . It is
readily verified thata is continuous, coercive, and symmetric; an
that the ‘‘affine’’ assumption ~2! obtains for Q516 ~two-

1FIN2D: http://augustine.mit.edu/fin2d/fin2d.pdf and FIN3D: http://
augustine.mit.edu/fin3d–1/fin3d–1.pdf
Fig. 1 Two- and three-dimensional thermal fins



Fig. 2 A truss structure
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dimensional case!andQ525 ~three-dimensional case!. Note th
the geometric variations are reflected, via the mapping, in
sq(m).

For our output of interest,s(m), we consider the average tem
perature of the root of the fin nondimensionalized relative toq̃9,
k̃0, and the length of the fin root. This output may be expresse
s(m)5l (u(m)), where l (v)5*Groot

v. It is readily shown that
this output functional is bounded and also ‘‘compliant’’:l (v)
5 f (v), ;vPX.

2.2.2 A Truss Structure.We consider a prismatic microtrus
structure~Evans et al.@17#, Wicks and Hutchinson@18#! shown in
Fig. 2; this example may be~interactively!accessed on our we
site.2 The truss consists of a frame~upper and lower faces, in dar
gray! and a core~trusses and middle sheet, in light gray!. The
structure transmits a force per unit depthF̃ uniformly distributed

over the tip of the middle sheetG̃3 through the truss system to th

fixed left wall G̃0 . The physical model is simple plane-strain~two-
dimensional!linear elasticity: the displacement fieldui , i 51,2,
satisfies

E
Ṽ

] ṽ i

] x̃ j
Ẽi jkl

]ũk

] x̃l
52S F̃

t̃ c
D E

G̃3

ṽ2 , ;vPX̃, (6)

whereṼ is the truss domain,Ẽi jkl is the elasticity tensor, andX̃
refers to the set of functions inH1(Ṽ) which vanish onG̃0 . We
assume summation over repeated indices.

We now~i! nondimensionalize the weak equations~6!, and~ii!
apply a continuous piecewise-affine transformation fromṼ to a
fixed ~m-independent!reference domainV. The abstract problem
statement~4! is then recovered form5$t f ,t t ,H,u%, D5@0.08,1.0#
3@0.2,2.0#3@4.0,10.0#3@30.0°,60.0°#, andP54. Here t f and t t
are the thicknesses of the frame and trusses~normalized relative to
t̃ c!, respectively;H is the total height of the microtruss~normal-
ized relative tot̃ c!; andu is the angle between the trusses and
faces. The Poisson’s ratio,n50.3, and the frame and core Young
moduli, Ef575 GPa andEc5200 GPa, respectively, are he
fixed. It is readily verified thata is continuous, coercive, an
symmetric; and that the ‘‘affine’’ assumption~2! obtains forQ
544.

Our outputs of interest are~i! the average downward deflectio
~compliance!at the core tip,G3 , nondimensionalized byF̃/Ẽf ;
and~ii! the average normal stress across the critical~yield! section
denotedG1

s in Fig. 2. These compliance and noncompliance o
puts can be expressed ass1(m)5l 1(u(m)) and s2(m)
5l 2(u(m)), respectively, wherel 1(v)52*G3

v2 , and

l 2~v !5
1

t f
E

Vs

]x i

]xj
Ei jkl

]uk

]xl

2TRUSS: http://augustine.mit.edu/simple–truss/simple–truss.pdf
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are bounded linear functionals; herex i is any suitably smooth
function in H1(Vs) such thatx i n̂i51 on G1

s andx i n̂i50 on G2
s ,

wheren̂ is the unit normal. Note thats1(m) is a compliant output,
whereass2(m) is ‘‘noncompliant.’’

3 Reduced-Basis Approach
We recall that in this section, as well as in Section 4, we assu

that a is continuous, coercive, symmetric, and affine inm—see
~2!; and thatl (v)5 f (v), which we denote ‘‘compliance.’’

3.1 Reduced-Basis Approximation. We first introduce a
sample in parameter space,SN5$m1 , . . . ,mN%, wherem iPD, i
51, . . . , N; see Section 3.2.2 for a brief discussion of point d
tribution. We then define our Lagrangian~Porsching @13#!
reduced-basis approximation space asWN5span $zn[u(mn),n
51, . . . ,N%, whereu(mn)PX is the solution to~4! for m5mn .
In actual practice,u(mn) is replaced by an appropriate finite ele
ment approximation on a suitably fine truth mesh; we shall disc
the associated computational implications in Section 3.3. O
reduced-basis approximation is then: for anymPD, find sN(m)
5l (uN(m)), whereuN(m)PWN is the solution of

a~uN~m!,v;m!5l ~v !, ;vPWN . (7)

Non-Galerkin projections are briefly described in Section 5.3.

3.2 A Priori Convergence Theory.

3.2.1 Optimality. We consider here the convergence rate
uN(m)→u(m) andsN(m)→s(m) asN→`. To begin, it is stan-
dard to demonstrate optimality ofuN(m) in the sense that

iu~m!2uN~m!iX<Ag~m!

a~m!
inf

wNPWN

iu~m!2wNiX . (8)

~We note that, in the coercive case, stability of our~‘‘conform-
ing’’! discrete approximation is not an issue; the noncoercive c
is decidedly more delicate~see Section 5.3.1!.!Furthermore, for
our compliance output,

s~m!5sN~m!1l ~u2uN!5sN~m!1a~u,u2uN ;m!

5sN~m!1a~u2uN ,u2uN ;m! (9)

from symmetry and Galerkin orthogonality. It follows thats(m)
2sN(m) converges as the square of the error in the best appr
mation and, from coercivity, thatsN(m) is a lower bound for
s(m).

3.2.2 Best Approximation.It now remains to bound the de
pendence of the error in the best approximation as a function oN.
At present, the theory is restricted to the case in whichP51, D
5@0,mmax#, and

a~w,v;m!5a0~w,v !1ma1~w,v !, (10)

wherea0 is continuous, coercive, and symmetric, anda1 is con-
tinuous, positive semi-definite (a1(w,w)>0, ;wPX), and sym-
metric. This model problem~10! is rather broadly relevant, for
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example to variable orthotropic conductivity, variable rectiline
geometry, variable piecewise-constant conductivity, and varia
Robin boundary conditions.

We now suppose that themn , n51, . . . , N, are logarithmically
distributed in the sense that

ln~ l̄mn11!5
n21

N21
ln~ l̄mmax11!, n51, . . . ,N, (11)

where l̄ is an upper bound for the maximum eigenvalue ofa1

relative toa0 . ~Note l̄ is perforce bounded thanks to our assum
tion of continuity and coercivity; the possibility of a continuou
spectrum does not, in practice, pose any problems.! We can then
prove ~Maday et al.@19#! that, forN.Ncrit[e ln(l̄mmax11),

inf
wNPWN

iu~m!2wNiX<~11mmaxl̄ !iu~0!iX

3expH 2~N21!

~Ncrit21!J , ;mPD. (12)

We observe exponential convergence, uniformly~globally! for all
m in D, with only very weak~logarithmic! dependence on the
range of the parameter (mmax). ~Note the constants in~12! are for
the particular case in which (•,•)X5a0(•,•).!

The proof exploits a parameter-space~nonpolynomial!interpo-
lant as a surrogate for the Galerkin approximation. As a result,
bound is not always ‘‘sharp:’’ we observe many cases in which
Galerkin projection is considerably better than the associated
terpolant; optimality ~8! chooses to ‘‘illuminate’’ only certain
points mn , automatically selecting a best ‘‘subapproximatio
among all~combinatorially many! possibilities. We thus see wh
reduced-basisstate-spaceapproximation ofs(m) via u(m) is pre-
ferred to simpleparameter-spaceinterpolation of s(m) ~‘‘con-
necting the dots’’!via (mn ,s(mn)) pairs. We note, however, tha
the logarithmic point distribution ~11! implicated by our
interpolant-based arguments isnot simply an artifact of the proof:
in numerous numerical tests, the logarithmic distribution perfor
considerably~and in many cases, provably!better than other more
obvious candidates, in particular for large ranges of the param
Fortunately, the convergence rate is nottoo sensitive to point se-
lection: the theory only requires a log ‘‘on the average’’ distrib
tion ~Maday et al.@19#!; and, in practice,l̄ need not be a sharp
upper bound.

The result~12! is certainly tied to the particular form~10! and
associated regularity ofu(m). However, we do observe simila
exponential behavior for more general operators; and, most
portantly, the exponential convergence rate degrades only
slowly with increasing parameter dimension,P. We present in
Table 1 the errorus(m)2sN(m)u/s(m) as a function ofN, at a
particular representative pointm in D, for the two-dimensional
thermal fin problem of Section 2.2.1; we present similar data
Table 2 for the truss problem of Section 2.2.2. In both cases, s
tensor-product grids are prohibitively profligate asP increases, the
mn are chosen ‘‘log-randomly’’ overD: we sample from a multi-

Table 1 Error, error bound „Method I…, and effectivity as a
function of N, at a particular representative point m«D, for the
two-dimensional thermal fin problem „compliant output …

N us(m)2sN(m)u/s(m) DN(m)/s(m) hN(m)

10 1.2931022 8.6031022 2.85
20 1.2931023 9.3631023 2.76
30 5.3731024 4.2531023 2.68
40 8.0031025 5.3031024 2.86
50 3.9731025 2.9731024 2.72
60 1.3431025 1.2731024 2.54
70 8.1031026 7.7231025 2.53
80 2.5631026 2.2431025 2.59
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variate uniform probability density on log(m). We observe that, for
both the thermal fin (P57) and truss (P54) problems, the error
is remarkably small even for very smallN; and that, in both cases
very rapid convergence obtains asN→`. We do not yet have any
theory for P.1. But certainly the Galerkin optimality plays
central role, automatically selecting ‘‘appropriate’’ scattered-d
subsets ofSN and associated ‘‘good’’ weights so as to mitigate t
curse of dimensionality asP increases; and the log-random poi
distribution is also important—for example, for the truss proble
of Table 2, anon-logarithmicuniform random point distribution
for SN yields errors which are larger by factors of 20 and 10
N530 and 80, respectively.

3.3 Computational Procedure. The theoretical and empiri-
cal results of Sections 3.1 and 3.2 suggest thatN may, indeed, be
chosen very small. We now develop off-line/on-line compu
tional procedures that exploit this dimension reduction.

We first expressuN(m) as

uN~m!5(
j 51

N

uN j~m!z j5~uI N~m!!TzI , (13)

where uI N(m)PRN; we then choose for test functionsv5z i , i
51, . . . , N. Inserting these representations into~7! yields the de-
sired algebraic equations foruI N(m)PRN,

AI N~m!uI N~m!5FI N , (14)

in terms of which the output can then be evaluated assN(m)
5FI N

TuI N(m). HereAI N(m)PRN3N is the SPD matrix with entries
AN i, j (m)[a(z j ,z i ;m), 1<i , j <N, and FI NPRN is the ‘‘load’’
~and ‘‘output’’! vector with entriesFN i[ f (z i), i 51, . . . , N.

We now invoke~2! to write

AN i, j~m!5a~z j ,z i ;m!5(
q51

Q

sq~m!aq~z j ,z i !, (15)

or

AI N~m!5(
q51

Q

sq~m!AI N
q ,

where the AI N
q PRN3N are given by AN i, j

q 5aq(z j ,z i), i< i , j
<N, 1<q<Q. The off-line/on-line decomposition is now clea
In the off-line stage, we compute theu(mn) and form theAI N

q and
FI N : this requiresN ~expensive!‘‘ a’’ finite element solutions and
O(QN2) finite-element-vector inner products. In theon-linestage,
for any given newm, we first formAI N from ~15!, then solve~14!
for uI N(m), and finally evaluatesN(m)5FI N

TuI N(m): this requires
O(QN2)1O(2/3 N3) operations andO(QN2) storage.

Thus, as required, the incremental, or marginal, cost to eval
sN(m) for any given newm—as proposed in a design, optimiza
tion, or inverse-problem context—is very small: first, becauseN is
very small, typically O(10)—thanks to the good convergenc
properties ofWN ; and second, because~14! can be very rapidly

Table 2 Error, error bound „Method II…, and effectivity as a
function of N, at a particular representative point m«D, for the
truss problem „compliant output …

N us(m)2sN(m)u/s(m) DN(m)/s(m) hN(m)

10 3.2631022 6.4731022 1.98
20 2.5631024 4.7431024 1.85
30 7.3131025 1.3831024 1.89
40 1.9131025 3.5931025 1.88
50 1.0931025 2.0831025 1.90
60 4.1031026 8.1931026 2.00
70 2.6131026 5.2231026 2.00
80 1.1931026 2.3931026 2.00
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assembled and inverted—thanks to the off-line/on-line decom
sition ~see Balmes@9# for an earlier application of this strateg
within the reduced-basis context!. For the problems discusse
this paper, the resulting computational savings relative to stan
~well-designed!finite-element approaches are significant, at le
O(10), typicallyO(100), and oftenO(1000) or more.

4 A Posteriori Error Estimation: Output Bounds
From Section 3 we know that, in theory, we can obtainsN(m)

very inexpensively: the on-line computational effort scales
O(2/3 N3)1O(QN2); and N can, in theory, be chosen quite
small. However,in practice, we do not knowhowsmallN can be
chosen: this will depend on the desired accuracy, the sele
output~s!of interest, and the particular problem in question;
some casesN55 may suffice, while in other cases,N5100 may
still be insufficient. In the face of this uncertainty, either too ma
or too few basis functions will be retained: the former results
computational inefficiency; the latter in unacceptab
uncertainty---particularly egregious in the decision contexts
which reduced-basis methods typically serve. We thus needa pos-
teriori error estimators forsN . Surprisingly, a posteriori error
estimation has received relatively little attention within t
reduced-basis frame-work~Noor and Peters@8#!, even though
reduced-basis methods are particularly in need of accuracy as
ment: the spaces aread hocand pre-asymptotic, thus admittin
relatively little intuition, ‘‘rules of thumb,’’ or standard approxi
mation notions.

Recall that, in this section, we continue to assume thata is
coercive and symmetric, and thatl is ‘‘compliant.’’

4.1 Method I. The approach described in this section is
particular instance of a general ‘‘variational’’ framework fora
posteriori error estimation of outputs of interest. However, t
reduced-basis instantiation described here differs significa
from earlier applications to finite element discretization error~Ma-
day et al.@20#, Machiels et al.@21#! and iterative solution error
~Patera and Rønquist@22#! both in the choice of~energy!relax-
ation and in the associated computational artifice.

4.1.1 Formulation. We assume that we are given a positi
function g(m):D→R1 , and a continuous, coercive, symmetr
~m-independent!bilinear from â:X3X→R, such that

aI 0iviX
2<g~m!â~v,v !<a~v,v;m!, ;vPX,;mPD (16)

for some positive real constantaI 0 . We then findê(m)PX such
that

g~m!â~ ê~m!,v !5R~v;uN~m!;m!, ;vPX, (17)

where for a givenwPX, R(v;w;m)5l (v)2a(w,v;m) is the
weak form of the residual. Our lower and upper output estima
are then evaluated as

sN
2~m![sN~m!, and sN

1~m![sN~m!1DN~m!, (18)

respectively, where

DN~m![g~m!â~ ê~m!,ê~m!! (19)

is the estimator gap.

4.1.2 Properties. We shall prove in this section thatsN
2(m)

<s(m)<sN
1(m), and hence thatus(m)2sN(m)u5s(m)2sN(m)

<DN(m). Our lower and upper output estimators are thus low
and upper outputbounds; and our output estimator gap is thus
outputboundgap—a rigorous bound for the error in the output
interest. It is also critical thatDN(m) be a relativelysharpbound
for the true error: a poor~overly large!bound will encourage us to
refine an approximation which is, in fact, already adequate—w
a corresponding~unnecessary!increase in off-line and on-line
computational effort. We shall prove in this section thatDN(m)
<(g0 /aI 0)(s(m)2sN(m)), where g0 and aI 0 are the
5

po-

d in
ard
st

as

ted
in

ny
in
le
in

e

ess-

a

e
tly

e
ic

ors

er
an
of

ith

N-independent a-continuity andg(m)â-coercivity constants de-
fined earlier. Our two results of this section can thus be sum
rized as

1<hN~m!<Const, ;N, (20)

where

hN~m!5
DN~m!

s~m!2sN~m!
(21)

is the effectivity, and Const is a constant independent ofN. We
shall denote the left~bounding property!and right ~sharpness
property! inequalities of~20! as the lower effectivity and uppe
effectivity inequalities, respectively.

We first prove the lower effectivity inequality~bounding prop-
erty!: sN

2(m)<s(m)<sN
1(m), ;mPD, for sN

2(m) andsN
1(m) de-

fined in ~18!. The lower bound property follows directly from
Section 3.2.1. To prove the upper bound property, we first obse
that R(v;uN ;m)5a(u(m)2uN(m),v;m)5a(e(m),v;m), where
e(m)[u(m)2uN(m); we may thus rewrite ~17! as
g(m)â(ê(m),v)5a(e(m),v;m),;vPX. We thus obtain

g~m!â~ ê,ê!5g~m!â~ ê2e,ê2e!12g~m!â~ ê,e!2g~m!â~e,e!

5g~m!â~ ê2e,ê2e!1~a~e,e;m!2g~m!â~e,e!!

1a~e,e;m!

>a~e,e;m! (22)

since g(m)â(ê(m)2e(m),ê(m)2e(m))>0 and a(e(m),e(m);
m)2g(m)â(em),e(m))>0 from ~16!. Invoking ~9! and ~22!,
we then obtains(m)2sN(m)5a(e(m),e(m);m)<g(m)â(ê(m),
ê(m)); and thuss(m)<sN(m)1g(m)â(ê(m),ê(m))[sN

1(m), as
desired.

We next prove the upper effectivity inequality~sharpness
property!:

hN~m!5
DN~m!

s~m!2sN~m!
<

g0

aI 0
, ;N.

To begin, we appeal toa-continuity andg(m)â-coercivity to
obtain

a~ ê~m!,ê~m!;m!<
g0g~m!

aI 0
â~ ê~m!,ê~m!!. (23)

But from the modified error equation~17! we know that
g(m)â(ê(m),ê(m))5a(e(m),ê(m);m). Invoking the Cauchy-
Schwartz inequality, we obtain

g~m!â~ ê,ê!5a~e,ê;m!

<~a~ ê,ê;m!!1/2~a~e,e;m!!1/2

<S g0

aI 0
D 1/2

~g~m!â~ ê,ê!!1/2~a~e,e;m!!1/2;

the desired result then directly follows from~19! and ~9!.
We now provide empirical evidence for~20!. In particular, we

present in Table 1 the bound gap and effectivities for the ther
fin example. Clearly,hN(m) is always greater than unity for an
N, and bounded---indeed, quite close to unity---asN→`.

4.1.3. Computational Procedure.Finally, we turn to the com-
putational artifice by which we can efficiently computeDN(m) in
the on-line stage of our procedure. We again exploit the affi
parameter dependence, but now in a less transparent fashio
begin, we rewrite the ‘‘modified’’ error equation,~17!, as

â~ ê~m!,v !5
1

g~m! S l ~v !2(
q51

Q

(
j 51

N

sq~m!uN j~m!aq~z j ,v !D ,

;vPX,
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where we have appealed to our reduced-basis approximation~13!
and the affine decomposition~2!. It is immediately clear from
linear superposition that we can expressê(m) as

ê~m!5
1

g~m! S ẑ01(
q51

Q

(
j 51

N

sq~m!uN j~m!ẑj
qD , (24)

where ẑ0PX satisfies â( ẑ0 ,v)5l (v), ;vPX, and ẑj
qPX, j

51, . . . ,N, q51, . . . ,Q, satisfies â( ẑj
q ,v)52aq(z j ,v), ;v

PX. Inserting ~24! into our expression for the upper boun
sN

1(m)5sN(m)1g(m)â(ê(m),ê(m)), we obtain

sN
1~m!

5sN~m!1
1

g~m! S c012(
q51

Q

(
j 51

N

sq~m!uN j~m!L j
q

1(
q51

Q

(
q851

Q

(
j 51

N

(
j 851

N

sq~m!sq8~m!uN j~m!uN j8~m!G j j 8
qq8D

(25)

wherec05â( ẑ0 ,ẑ0), L j
q5â( ẑ0 ,ẑj

q), andG j j 8
qq85â( ẑj

q ,ẑj 8
q8).

The off-line/on-line decomposition should now be clear. In t
off-line stage we computeẑ0 and ẑj

q , j 51, . . . ,N, q51, . . . ,Q,

and then formc0 , L j
q , andG j j 8

qq8 : this requiresQN11 ~expen-
sive! ‘‘ â’’ finite element solutions, andO(Q2N2) finite-element-
vector inner products. In theon-line stage, for any given newm,
we evaluatesN

1 as expressed in~25!: this requiresO(Q2N2) op-

erations andO(Q2N2) storage~for c0 , L j
q , andG j j 8

qq8!. As for the
computation ofsN(m), the marginal cost for the computation o
sN

6(m) for any given newm is quite small—in particular, it is
independentof the dimension of the truth finite element approx
mation spaceX.

There are a variety of ways in which the off-line/on-line d
composition and output error bounds can be exploited. A part
larly attractive mode incorporates the error bounds into an on-
adaptive process, in which we successively approximatesN(m) on
a sequence of approximation spacesWN

j8
,WN , Nj85N02 j ---for

example,WN
j8

may contain theNj8 samples points ofSN closest to

the newm of interest---untilDN
j8

is less than a specified erro

tolerance. This procedure both minimizes the on-line compu
tional effort and reduces conditioning problems—while simul
neously ensuring accuracy and certainty.

The essential advantage of the approach described in this
tion is the guarantee of rigorous bounds. There are, however,
tain disadvantages. The first set of disadvantages relates to
choice ofg(m) and â. In many cases, simple inspection suffice
for example, in our thermal fin problem of Section 2.2.1,g(m)
5minq51, . . . ,Q sq(m) andâ(w,v)5(q51

Q aq(w,v) yields the very
good effectivities summarized in Table 1. In other cases, howe
there is no self-evident~or readily computed, Maday et al.@23#!
good choice: for example, for the truss problem of Section 2.
the existence of almost-pure rotations rendersg(m) very small
relative tog~m!, with corresponding detriment tohN(m). The sec-
ond set of disadvantages relates to the computational expen
theO(Q) off-line and theO(Q2) on-line scaling induced by~24!
and~25!, respectively. Both of these disadvantages are elimin
in the ‘‘Method II’’ to be discussed in the next section; howev
‘‘Method II’’ only provides asymptoticbounds asN→`. The
choice thus depends on the relative importance of absolute
tainty and computational efficiency.

4.2. Method II. As already indicated, Method I has certa
limitations; we discuss here a Method II which addresses th
limitations, albeit at the loss of complete certainty.
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4.2.1. Formulation. To begin, we setM.N, and introduce a
parameter sampleSM5$m1 , . . . ,mM% and associated reduced
basis approximation space WM5span$zm[u(mm),m
51, . . . ,M %; for both theoretical and practical reasons we requ
SN,SM and thereforeWN,WM . The procedure is very simple
we first find uM(m)PWM such thata(uM(m),v;m)5 f (v), ;v
PWM ; we then evaluatesM(m)5l (uM(m)); and, finally, we
compute our upper and lower output estimators as

sN,M
2 ~m!5sN~m!, sN,M

1 ~m!5sN~m!1DN,M~m!, (26)

whereDN,M(m), the estimator bound gap, is given by

DN,M~m!5
1

t
~sM~m!2sN~m!! (27)

for sometP(0,1). The effectivity of the approximation is define
as

hN,M~m!5
DN,M~m!

s~m!2sN~m!
. (28)

For our purposes here, we shall considerM52N.

4.2.2. Properties. As for Method I, we would like to prove the
effectivity inequality 1<hN,2N(m)<Const, ;N. However, we
will only be able to demonstrate an asymptotic form of this
equality. Furthermore, the latter shall require, and we shall ma
the hypothesis that

«N,2N~m![
s~m!2s2N~m!

s~m!2sN~m!
→0, as N→`. (29)

We note that the assumption~29! is certainly plausible: if oura
priori bound of ~12! in fact reflects asymptotic behavior, the
s(m)2sN(m);c1e2c2N, s(m)2s2N(m);c1e22c2N, and hence
«N,2N(m);e2c2N, as desired.

We first prove the lower effectivity inequality~bounding prop-
erty!: sN,2N

2 (m)<s(m)<sN,2N
1 (m), asN→`. To demonstrate the

lower bound we again appeal to~9! and the coercivity ofa; in-
deed, this result~still! obtains forall N. To demonstrate the uppe
bound, we write

sN,2N
1 ~m!5s~m!1S 1

t
21D ~s~m!2sN~m!!2

1

t
~s~m!2s2N~m!!

(30)

5s~m!1S 1

t
@12«N,2N~m!#21D ~s~m!2sN~m!!.

(31)

We now recall thats(m)2sN(m)>0, and that 0,t,1—that is,
1/t.1; it then follows from ~31! and our hypothesis~29! that
there exists a finiteN* such that

sN,2N
1 ~m!2s~m!>0, ;N.N* . (32)

This concludes the proof: we obtainasymptoticbounds.
We now prove the upper effectivity inequality~sharpness prop-

erty!. From the definitions ofhN,2N(m), DN,2N(m) and«N,2N(m),
we directly obtain

hN,2N~m!5
1

t

s2N~m!2sN~m!

s~m!2sN~m!

5
1

t

~s2N~m!2s~m!!2~sN~m!2s~m!!

~s~m!2sN~m!!
(33)

5
1

t
~12«N,2N~m!!. (34)

It is readily shown thathN,2N(m) is bounded from above by 1/t
for all N: we know from~9! that«N,2N(m) is strictly non-negative.
It can also readily be shown thathN,2N(m) is non-negative: since
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WN,W2N , it follows from ~8! ~for (•,•)X5a(•,•;m)! and ~9!
that s(m)>s2N(m)>sN(m), and hence«N,2N(m)<1. We thus
conclude that 0<hN,2N(m)<1/t for all N. Furthermore, from our
hypothesis on«N,2N(m), ~29!, we know thathN,2N(m) will tendto
1/t asN increases.

The essential approximation enabler is exponential con
gence: we obtain bounds even for rather smallN and relatively
larget. We thus achieve both ‘‘near’’ certaintyandgood effectivi-
ties. We demonstrate this claim in Table 2, in which we pres
the bound gap and effectivity for our truss example of Sect
2.2.2; the results tabulated correspond to the choicet51/2. We
clearly obtain bounds for allN; and we observe thathN,2N(m)
does, indeed, rather quickly approach 1/t.

4.2.3. Computational Procedure.Since the error bounds ar
based entirely on evaluation of the output,we can directly ad
the off-line/on-line procedure of Section 3.3. Note that the cal
lation of the output approximationsN(m) and the output bounds
are now integrated:AI N(m) and FI N(m) ~yielding sN(m)! are a
sub-matrix and sub-vector ofAI 2N(m) and FI 2N(m) ~yielding
s2N(m), DN,2N(m), and sN,2N

6 (m)!, respectively. In theoff-line
stage, we compute theu(mn) and form theAI 2N

q and FI 2N : this
requires 2N ~expensive! ‘‘ a’’ finite element solutions, and
O(4QN2) finite-element-vector inner products. In theon-line
stage, for any given newm, we first formAI N(m), FI N andAI 2N(m),
FI 2N , then solve foruI N(m) and uI 2N(m), and finally evaluate
sN,2N

6 (m): this requiresO(4QN2)1O(16/3 N3) operations and
O(4QN2) storage. The on-line effort for this Method II predicto
error estimator procedure~based onsN(m) ands2N(m)! will thus
require eightfold more operations than the ‘‘predictor-only’’ pr
cedure of Section 3.

Method II is in some sense very naı¨ve: we simply replace the
true outputs(m) with a finer-approximation surrogates2N(m).
~There are more obscure ways to describe the method—in te
of a reduced-basis approximation for the error—however, ther
little to be gained from these alternative interpretations.! The es-
sential computation enabler is again exponential converge
which permits us to chooseM52N—hence controlling the addi
tional computational effort attributable to error estimation—wh
simultaneously ensuring that«N,2N(m) tends rapidly to zero. Ex-
ponential convergence also ensures that the cost to compute
sN(m) and s2N(m) is ‘‘negligible.’’ In actual practice, since
s2N(m) is available, we can of course takes2N(m), rather than
sN(m), as our output prediction; this greatly improves not on
accuracy, but also certainty—DN,2N(m) is almost surely a bound
for s(m)—s2N(m), albeit an exponentially conservative bound
N tends to infinity.

5. Extensions

5.1. Noncompliant Outputs and Nonsymmetric Operators.
In Sections 3 and 4 we formulate the reduced-basis method
associated error estimation procedure for the case of comp
outputs,l (v)5 f (v), ;vPX. We briefly summarize here the for
mulation and theory for more general linear bounded output fu
tionals; moreover, the assumption of symmetry~but not yet coer-
civity! is relaxed, permitting treatment of a wider class
problems---a representative example is the convection-diffus
equation, in which the presence of the convective term renders
operator nonsymmetric. We first present the reduced-basis
proximation, now involving a dual or adjoint problem; we the
formulate the associateda posteriorierror estimators; and we con
clude with a few illustrative results.

As a preliminary, we first generalize the abstract formulation
Section 2.1. As before, we define the ‘‘primal’’ problem as in~4!,
however we of course no longer require symmetry. But we a
introduce an associated adjoint or ‘‘dual’’ problem: for anym
PX, find c(m)PX such that

a~v,c~m!;m!52l ~v !, ;vPX; (35)
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recall thatl (v) is our output functional.

5.1.1. Reduced-Basis Approximation.To develop the reduced
basis space, we first choose, randomly or log-randomly as
scribed in Section 3.2, a sample set in parameter space,SN/2
5$m1 , . . . ,mN/2%, where m iPD, i 51, . . . ,N/2 ~N even!. We
next define an ‘‘integrated’’ Lagrangian reduced-basis approxim
tion space,WN5span$(u(mn),c(mn)),n51, . . . ,N/2%.

For any mPD, our reduced basis approximation is then o
tained by standard Galerkin projection ontoWN ~though for highly
nonsymmetric operators minimum residual and Petrov-Gale
projections are attractive—stabler—alternatives!. To wit, for the
primal problem, we finduN(m)PWN such thata(uN(m),v;m)
5 f (v), ;vPWN ; and for the adjoint problem, we defin
~though, unless otherwise indicated, donot compute! cN(m)
PWN such that a(v,cN(m);m)52l (v), ;vPWN . The
reduced-basis output approximation is then calculated fr
sN(m)5l (uN(m)).

Turning now to thea priori theory, it follows from standard
arguments thatuN(m) andcN(m) are ‘‘optimal’’ in the sense that

iu~m!2uN~m!iX<S 11
g~m!

a~m! D inf
wNPWN

iu~m!2wNiX ,

ic~m!2cN~m!iX<S 11
g~m!

a~m! D inf
wNPWN

ic~m!2wNiX .

The best approximation analysis is then similar to that presen
in Section 3.2. As regards our output, we now have

us~m!2sN~m!u5ul ~u~m!!2l ~uN~m!!u

5ua~u2uN ,c;m!u

5ua~u2uN ,c2cN ;m!u<g0iu2uNiXic2cNiX

(36)

from Galerkin orthogonality, the definition of the primal and th
adjoint problems, and the Cauchy-Schwartz inequality. We n
understand why we include thec(mn) in WN : to ensure that
ic(m)2cN(m)iX is small. We thus recover the ‘‘square’’ effect i
the convergence rate of the output, albeit~and unlike the symmet-
ric case!at the expense of some additional computational effor
the inclusion of thec(mn) in WN ; typically, even for the very
rapidly convergent reduced-basis approximation, the ‘‘fixed err
minimum cost’’ criterion favors the adjoint enrichment.

For simplicity of exposition~and to a certain extent, implemen
tation!,we present here the ‘‘integrated’’ primal-dual approxim
tion space. However, there are significant computational and c
ditioning advantages associated with a ‘‘nonintegrated’’ approa
in which we introduceseparateprimal (u(mn)) and dual (c(mn))
approximation spaces foru(m) and c~m!, respectively. Note in
the ‘‘nonintegrated’’ case we are obliged to computecN(m), since
to preserve the output error ‘‘square effect’’ we mu
modify our predictor with a residual correction,f (cN(m))
2a(uN(m),cN(m);m) ~Maday et al.@23#!. Both the ‘‘integrated’’
and ‘‘nonintegrated’’ approaches admit an off-line/on-line deco
position similar to that described in Section 3.3 for the complia
symmetric problem; as before, the on-line complexity and stor
are independent of the dimension of the very fine~‘‘truth’’! finite
element approximation.

5.1.2. Method I A Posteriori Error Estimators.We extend
here the method developed in Section 4.1.2 to the more gen
case of noncompliant and nonsymmetric problems. We begin w
the formulation.

We first find êpr(m)PX such that

g~m!â~ êpr~m!,v !5Rpr~v;uN~m!;m!, ;vPX,

where Rpr(v;w;m)[ f (v)2a(w,v;m), ;vPX; and êdu(m)PX
such that
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g~m!â~ êdu~m!,v !5Rdu~v;cN~m!;m!, ;vPX,

where Rdu(v;w;m)[2l (v)2a(v,w;m), ;vPX. We then
define

s̄N~m!5sN~m!2
g~m!

2
â~ êpr~m!,êdu~m!!, and (37)

DN~m!5
g~m!

2
@ â~ êpr~m!,êpr~m!!#1/2@ â~ êdu~m!,êdu~m!!#1/2.

(38)

Finally, we evaluate our lower and upper estimators assN
6(m)

5 s̄N(m)6DN(m). Note that, as before,g(m) and â still satisfy
~16!; and that, furthermore,~16! will only involve the symmetric
part of a. We define the effectivity as

hN~m!5
DN~m!

us~m!2sN~m!u
; (39)

note thats(m)2sN(m) now has no definite sign.
We now prove that our error estimators are bounds~the lower

effectivity inequality!: sN
2(m)<s(m)<sN

1(m), ;N. To begin, we
defineê6(m)5êpr(m)71/k êdu(m), and note that, from the co
ercivity of â,

kg~m!âS epr2
1

2
ê6,epr2

1

2
ê6D

5kg~m!â~epr,epr!

1
kg~m!

4
â~ ê6,ê6!2kg~m!â~ ê6,epr!>0, (40)

whereepr(m)5u(m)2uN(m), edu(m)5c(m)2cN(m), andk is
a positive real number. From the definition ofê6(m) andêpr(m),
êdu(m), we can express the ‘‘cross-term’’ as

g~m!â~ ê6,epr!5Rpr~epr;uN ;m!7
1

k
Rdu~epr;cN ;m!

5a~epr,epr;m!7
1

k
a~epr,edu;m!

5a~epr,epr;m!6
1

k
~s~m!2sN~m!!, (41)

since Rpr(epr;uN;m)5a(u,epr;m)2a(uN ,epr;m)5a(epr,epr;m),
Rdu(epr;cN;m)5a(epr,c;m)2a(epr,cN ;m)5a(epr,edu;m), and
l (u)2l (uN)52a(u2uN ,c;m)52a(u2uN ,c2cN ;m) ~by
Galerkin orthogonality!52a(epr,edu;m). We then substitute~41!
into ~40! to obtain

6~s~m!2sN~m!!<2k~a~epr,epr;m!2g~m!â~epr,epr!!

1
kg~m!

4
â~ ê6,ê6!<

kg~m!

4
â~ ê6,ê6!,

since k.0 and a(epr(m),epr(m);m)2g(m)â(epr(m),epr(m))>0
from ~16!.

Expandingê6(m)5êpr(m)71/k êdu(m) then gives

6~s~m!2sN~m!!

<
g~m!

4 Fkâ~ êpr,êpr!1
1

k
â~ êdu,êdu!72â~ êpr,êdu!G ,

or

6S s~m!2S sN~m!2
g~m!

2
â~ êpr,êdu! D D

<
kg~m!

4
â~ êpr,êpr!1

g~m!

4k
â~ êdu,êdu!. (42)
8

We now choosek~m! as

k~m!5S â~ êdu~m!,êdu~m!!

â~ êpr~m!,êpr~m!! D
1/2

so as to minimize the right-hand side~42!; we then obtain

us~m!2 s̄N~m!u<DN~m!, (43)

and hencesN
2(m)<s(m)<sN

1(m).
We now turn to the upper effectivity inequality~sharpness

property!. If the primal and dual errors area-orthogonal, or
become increasingly orthogonal asN increases, then the effectiv
ity will not, in fact, be bounded asN→`. However, if we
make the ~plausible! hypothesis that us(m)2sN(m)u
>CI iepr(m)iXiedu(m)iX, then it is simple to demonstrate that

hN~m!<
g0

2

2CI aI 0
. (44)

In particular, it is an easy matter to demonstrate thatg1/2(m)
3(â(êpr(m),êpr(m)))1/2<g0 /aI 0

1/2iepr(m)iX ~note we lose a factor
of g0

1/2 relative to the symmetric case!; similarly, g1/2(m)
3(â(êdu(m),êdu(m)))1/2<g0 /aI 0

1/2iedu(m)iX. The desired result
then directly follows from the definition ofDN(m) and our hy-
pothesis onus(m)2sN(m)u.

Finally, turning to computational issues, we note that the o
line/on-line decomposition described in Section 4.1 for compli
symmetric problems directly extends to the noncompliant, n
symmetric case—except that we must compute the norm of b
the primal and dual ‘‘modified errors,’’ with a concomitant dou
bling of computational effort.

5.1.3 Method II A Posteriori Error Estimators.We discuss
here the extension of Method II of Section 4.2 to noncomplia
outputs and nonsymmetric operators.

To begin, we setM.N, M even, and introduce a paramet
sample SM /25$m1 , . . . ,mM /2% and associated ‘‘integrated’
reduced-basis approximation spaceWM5span$u(mm),c(mm),m
51, . . . ,M /2%. We first find uM(m)PWM such that
a(uM(m),v;m)5 f (v), ;vPWM ; we then evaluatesM(m)
5l (uM(m)); and finally, we compute our upper and lower outp
estimators as

sN,M
6 ~m!5sN~m!1

1

2t
~sM~m!2sN~m!!6

1

2
DN,M~m!, (45)

DN,M~m!5
1

t
usM~m!2sN~m!u, (46)

for tP(0,1). The effectivity of the approximation is defined as

hN,M~m!5
DN,M~m!

us~m!2sN~m!u
. (47)

We shall again only considerM52N.
As in Section 4.2, we would like to prove that 1<hN,2N(m)

<Const for sufficiently largeN; and, as in Section 4.2, we mus
again make the hypothesis~29!. We first consider the lower effec
tivity inequality ~bounding property!, and prove that

sN,2N
2 ~m!<s~m!<sN,2N

1 ~m!, as N→`. (48)

In particular, simple algebraic manipulations yield

sN,2N
2 ~m!5s~m!2

1

12«N,2N
usN~m!2s2N~m!u

3H 1 s2N~m!>sN~m!

1

t
~12«N,2N!21 s2N~m!,sN~m!

, (49)
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sN,2N
1 ~m!5s~m!1

1

12«N,2N
usN~m!2s2N~m!u

3H 1

t
~12«N,2N!21 s2N~m!>sN~m!

1 s2N~m!,sN~m!

. (50)

The desired result then directly follows from our hypothesis
«N,2N , ~29!, and the range oft.

The proof for the upper effectivity inequality~sharpness prop
erty! parallels the derivation of Section 4.2.2. In particular, w
write

hN,2N~m!5

1

t
us2N2sNu

us2sNu
5

1

t
us2N2s1s2sNu

us2sNu
(51)

5
1

t
u12«N,2Nu; (52)

from our hypothesis~29! we may thus conclude thathN,2N(m)
→1/t asN→`. Note in the noncompliant, nonsymmetric case
can make no stronger statement.

We demonstrate our effectivity claims in Table 3, in which w
present the error, bound gap, and effectivity for the noncompl
output ~s2(m), average stress!of the truss example of Sectio
2.2.2; the results tabulated correspond to the choicet51/2. We
clearly obtain bounds for allN; and the effectivity rather quickly
approaches 1/t ~for N>120,hN,2N(m) remains fixed at 1/t52.0!.

5.2 Eigenvalue Problems. We next consider the extensio
of our approach to symmetric positive definite eigenvalue pr
lems. The eigenvalues of appropriately defined partial-differen
equation eigenproblems convey critical information about a ph
cal system: in linear elasticity, the critical buckling load;
dynamic analysis of structures, the resonant modes; in conduc
heat transfer, the equilibrium timescales. Solution of large-sc
eigenvalue problems is computationally intensive: the reduc
basis method is thus very attractive.

The abstract statement of our eigenvalue problem is:
(ui(m),l i(m))PX3R, i 51, . . . , such that

a~ui~m!,v;m!5l i~m!m~ui~m!,v;m!, ;vPX,

and m~ui~m!,ui~m!;m!51. (53)

Here a is the continuous, coercive, symmetric form introduc
earlier, andm is ~say! the L2 inner product overV. The assump-
tions ona and m imply the eigenvaluesl i(m) will be real and
positive. We order the eigenvalues~and corresponding eigenfunc
tionsui! such that 0,l1(m),l2(m)< . . . ; weshall assume tha
l1(m) and l2(m) are distinct. We suppose that our output
interest is the minimum eigenvalue,

s~m!5l1~m!; (54)

other outputs may also be considered.

Table 3 Error, error bound „Method II…, and effectivity as a
function of N, at a particular representative point m«D, for the
truss problem „noncompliant output …

N us(m)2sN(m)u/s(m) DN,2N(m)/s(m) hN,2N(m)

20 2.3531022 4.6731022 1.99
40 1.7431024 3.1931024 1.83
60 5.5931025 1.0631024 1.90
80 1.4431025 2.7331025 1.89
100 7.4531026 1.4031025 1.88
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Following ~Machiels et al.@24#!, we present here a reduce
basis predictor and a Method I error estimator for symme
positive-definite eigenvalue problems; we also briefly describe
simpler Method II approach.

5.2.1 Reduced-Basis Approximation.We sample, randomly
or log-randomly, our design spaceD to create the paramete
sample SN/25$m1 , . . . ,mN/2%; we then introduce the reduced
basis spaceWN5span$u1(m1),u2(m1), . . . ,u1(mN/2),u2(mN/2)%,
where we recall thatu1(m) and u2(m) are the eigenfunctions
associated with the first~smallest!and second eigenvaluesl1(m)
and l2(m), respectively. Note thatWN has good approximation
properties both for the first and second lowest eigenfunctions,
hence eigenvalues; this is required by the Method I error estim
to be presented below. Our reduced-order approximation is th
find (uNi(m),lNi(m))PWN3R, i 51, . . . ,N, such that

a~uNi~m!,v;m!5lNi~m!m~uNi~m!,v;m!, ;vPWN ,

and m~uNi~m!,uNi~m!;m!51; (55)

the output approximation is thensN(m)5lN1(m).
The formulation admits an on-line/off-line decompositio

~Machiels et al.@24#! very similar to the approach described fo
equilibrium problems in Section 3.

5.2.2 Method I A Posteriori Error Estimators.As before, we
assume that we are given a positive functiong(m):D→R1 and a
continuous, coercive, symmetric bilinear formâ(w,v):X3X
→R, that satisfy the inequality~16!. We then findê(m)PX such
that

g~m!â~ ê~m!,v !5@lN1m~uN1~m!,v;m!2a~uN1~m!,v;m!#,

;vPX, (56)

in which the right-hand side is the eigenproblem equivalent of
residual. We then evaluate our estimators as

sN
1~m!5lN1~m!, sN

2~m!5lN1~m!2DN~m!,

DN~m!5
g~m!

td~m!
â~ ê~m!,ê~m!!,

whered(m)512lN1(m)/lN2(m) andtP~0,1!. The effectivity is
defined ashN(m)5DN(m)/(lN1(m)2l1(m)).

We now consider the lower and upper effectivity inequalitie
As regards the lower effectivity inequality~bounding property!,
we of course obtainsN

1(m)>l1(m), ;N. The difficult result is
the lower bound: it can be proven~Machiels et al.@24#! that there
exists anN* (SN/2 ,m) such thatsN

2(m)<l1(m), ;N.N* . In
practice,N* 51, due to the good~theoretically motivated! choice
for d~m!; there is thus very little uncertainty in our~asymptotic!
bounds. We also prove in Machiels et al.@24# a result related
to the upper effectivity inequality~sharpness property!; in, prac
tice, very good effectivities are obtained. To demonstrate th
claims we consider the eigenvalue problem associated with~the
homogeneous version!of our two-dimensional thermal fin ex
ample of Section 2.2.1. We present in Table 4 the error, e

Table 4 Error, error bound „Method I…, and effectivities as a
function of N, at a particular representative point m«D, for the
thermal fin eigenproblem

N ul1(m)2lN1(m)u/l1(m) DN(m)/l1(m) hN(m)

10 1.1931022 6.6631022 5.63
20 1.0831023 7.1931023 6.65
30 6.2031024 3.1931023 5.17
40 1.7231024 1.5531023 9.44
50 3.4731025 4.0631024 11.74
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bound, and effectivity as a function ofN at a particular pointm
PD. We observe rapid convergence, bounds for allN, and good
effectivities.

Finally, we note that our output estimator admits an off-line/o
line decomposition similar to that for equilibrium problems; t
additional terms in~56! are readily treated through our affin
expansion/linear superposition procedure.

5.2.3 Method II A Posteriori Error Estimators.For Method
II, we no longer require an estimate for the second eigenvalue
may thus define SN5$m1 , . . . ,mN%, WN5span$u1(m i), i
51, . . . ,N%, and ~for M52N! S2N5$m1 , . . . ,m2N%.SN , W2N
5span$u1(m i), i51, . . . ,2N%.WN . The reduced basis approx
mation now takes the form~53!, yielding sN(m)5lN1(m) and
~for N→2N! s2N(m)5l2N1(m). Our estimators are then given b

sN,2N
1 ~m!5lN1~m!, sN,2N

2 5lN1~m!2DN,2N~m!,

DN,2N~m!5
1

t
~sN~m!2s2N~m!! (57)

for tP(0,1). The effectivityhN,2N(m) is defined as for Method I.
For the lower effectivity inequality~bounding property!, we of

course retainsN,2N
1 (m)>l1(m), ;N. We also readily derive

sN,2N
2 (m)5l12(lN12l1)(1/t(12«N,2N)21); under our hy-

pothesis~29!, we thus obtain asymptotic bounds asN→`. For the
upper effectivity inequality~sharpness property!, we directly ob-
tain hN,2N51/t(12«N,2N). By variational arguments it is readily
shown that 0<«N,2N<1: we thus conclude that 0<hN,2N<1/t,
;N. Additionally, under hypothesis~29!, we deduce thathN,2N
→1/t asN→`.

5.3 Further Generalizations. In this section we briefly de-
scribe several additional extensions of the methodology. In e
case we focus on the essential new ingredient; further details~in
most cases!may be found in the referenced literature.

5.3.1 Noncoercive Linear Operators.The archetypical non-
coercive linear equation is the Helmholtz, or reduced-wave, eq
tion; many~e.g., inverse scattering! applications of this equation
arise, for example, in acoustics and electromagnetics. The es
tial new mathematical ingredient is the loss of coercivity ofa. In
particular, well-posedness is now ensured only by the inf-sup c
dition: there exists positiveb0 , b~m!, such that

0,b0<b~m!5 inf
wPX

sup
vPX

a~w,v;m!

iwiXiviX
, ;mPD. (58)

Two numerical difficulties arise due to this ‘‘weaker’’ stabilit
condition.

The first difficulty is preservation of the inf-sup stability cond
tion for finite dimensional approximation spaces. To wit, althou
in the coercive case restriction to the spaceWN actually increases
stability, in the noncoercive case restriction to the spaceWN can
easily decrease stability: the relevant supremizers may not be
equately represented. Loss of stability can, in turn, lead to p
approximations—the inf-sup parameter enters in the denomin
of thea priori convergence result. The second numerical difficu
is estimation of the inf-sup parameter, which for noncoerc
problems plays the role ofg(m) in Method I a posteriori error
estimation techniques. In particular,b~m! can not typically be de-
duced analytically, and thus must be evaluated~via an eigenvalue
formulation!as part of the reduced-basis approximation. Our re
lution of both these difficulties involves two elements~Maday
et al. @23#!: first, we consider projections other than stand
Galerkin; and second, we consider ‘‘enriched’’ approximati
spaces.

In one approach~Maday et al.@23#!, we pursue a minimum
residual projection: the~low-dimensional! infimizing space con-
tains both the solutionu and also the inf-sup infimizer at themn
sample points; and the~high-dimensional! supremizing space is
taken to beX. Stability is ensured and rigorous~sharp! error
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bounds are obtained—though technically the bounds are o
asymptotic due to the approximation of the inf-sup parame
and, despite the presence ofX, the on-line complexity remains
independent of the dimension ofX—as in Section 3.3, we exploi
affine parameter dependence and linear superposition to pre
pute the necessary inversions. In a second suite of much sim
and more general approaches~see Maday et al.@23# for one ex-
ample in the symmetric case!, we exploit minimum-residual or
Petrov-Galerkin projections with infimizer-supremizer enriche
but still very low-dimensional, infimizing and supremizing spac
Plausible but not yet completely rigorous arguments, and emp
cal evidence, suggest that stability is ensured and rigor
asymptotic~and sharp!error bounds are obtained.

In Maday et al.@23# we focus entirely on Method Ia posteriori
error estimator procedures; but Method II techniques are also
propriate. In particular, Method II approaches do not require
curate estimation of the inf-sup parameter; we thus need be
cerned only with stability in designing our reduced-basis spac

5.3.2 Parabolic Partial Differential Equations.The next ex-
tension considered is the treatment of parabolic partial differen
equations of the formm(ut ,v;m)5a(u,v;m); typical examples
are time-dependent problems such as unsteady heat conduct
the ‘‘heat’’ or ‘‘diffusion’’ equation. The essential new ingredien
is the presence of the time variable,t.

The reduced-basis approximation and error estimator pro
dures are similar to those for noncompliant nonsymmetric pr
lems, except that we now include the time variable as an a
tional parameter. Thus, as in certain other time-domain mo
order-reduction methods~Antoulas and Sorensen@25#, Sirovich
and Kirby @26#!, the basis functions are ‘‘snapshots’’ of the sol
tion at selected time instants; however, in our case, we cons
anensembleof such series corresponding to different points in t
non-time parameter domainD. For rapid convergence of the ou
put approximation, the solutions to an adjoint problem, wh
evolvesbackwardin time, must also be included in the reduce
basis space.

For the temporal discretization method, many possible cho
are available. The most appropriate method, although not the
choice, is the discontinuous Galerkin method~Machiels et al.
@27#!. The variational origin of the discontinuous Galerkin a
proach leads naturally to rigorous output bounds for Methoda
posteriori errorestimators; the Method II approach is also direc
applicable. Under our affine assumption, off-line/on-line deco
positions can be readily crafted; the complexity of the on-li
stage~calculation of the output predictor and associated bou
gap! is, as before, independent of the dimension ofX.

5.3.3 Locally Nonaffine Parameter Dependence.An impor-
tant restriction of our methods is the assumption of affine para
eter dependence. Although many property, boundary condit
load, and even geometry variations can indeed be expressed i
required form~2! for reasonably smallQ, there are many prob
lems, for example, general boundary shape variations, which
not admit such a representation. One simple approach to the t
ment of this more difficult class of nonaffine problems is~i! in the
off-line stage, store thezn[u(mn), and ~ii! in the on-line stage,
directly evaluate the reduced-basis stiffness matrix
a(z j ,z i ,m). Unfortunately, the operation count~respectively,
storage!for the on-line stage will now scale asO(N2dim(X))
~respectively,O(Ndim(X)!, where dim(X) is the dimension of
the truth~very fine!finite element approximation space: the resu
ing method may no longer be competitive with advanced itera
techniques; and, in any event, ‘‘real-time’’ response may
compromised.

We prefer an approach which is slightly less general but pot
tially much more efficient. In particular, we note that in man
cases—for example, boundary geometry modification—the n
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affine parametric dependence can be restricted to a small su
main of V, V II . We can then express our bilinear forma as an
affine/nonaffine sum,

a~w,v;m!5aI~w,v;m!1aII ~w,v;m!. (59)

HereaI , defined overV I , the majority of the domain, is affinely
dependent onm; andaII , defined overV II , a small portion of the
domain, is not affinely dependent onm. It immediately follows
that the reduced-basis stiffness matrix can be expressed as the
of two stiffness matrices corresponding to contributions fromaI
andaII , respectively; that the stiffness matrix associated withaI
admits the usual on-line/off-line decomposition described in S
tion 3.3; and that the stiffness matrix associated withaII requires
storage~and inner product evaluation!only of z i uV II

~z i restricted
to V II !. The nonaffine contribution to the on-line computation
complexity thus scales only asO(N2dim(XuV II

)), where
dim(XuV II

) refers ~in practice! to the number of finite-elemen
nodes located withinV II , often extremely small. We thus recove
a method that is~almost! independent of dim(X), though clearly
the on-line code will be more complicated than in the purely
fine case.

In the above we focus on approximation. As regardsa poste-
riori error estimation, the nonaffine dependence ofa ~even lo-
cally! precludes the precomputation and linear superposition s
egy required by Method I~unless domain decomposition concep
are exploited~Machiels et al.@28#!; however, Method II directly
extends to the locally nonaffine case.
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