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Summary This paper presents an a posteriori error analysis of the

disretization methods used in omputational quantum hemistry on

the Hartree-Fok equations. Upper and lower bounds for the energy

are obtained from any disrete approximation strategy of the solution

and the estimator proposed is shown to possess further approximation

virtues.

1 Introdution

The purpose of this paper is to present an a posteriori error analysis

for the approximation of the Hartree-Fok equations. This analysis

is designed to quantitatively asses the performane of an approxima-

tion strategy of a solution of the Hartree-Fok equations obtained by

prior omputation. In agreement with the general paradigm of the a

posteriori analysis of [13,15{17℄, an error bar for an output suh as

the Hartree-Fok energy starting from the approximated solution at

hand is proposed. As in the real laboratory experiments, numerial

omputations do not provide the exat value of the searhed quantity

but rather an approximation that is to be quali�ed by the use of the

error bars in exatly the same spirit as in the laboratory measure-

ments. In addition we will show that in some ases the a posteriori

method may also be seen as an aelerator of the onvergene of the

primary algorithm used to ompute the solution.
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The time independent Shr�odinger equation that models the be-

havior of a quantum moleular system deals with state funtions

 (x), where x denotes the position of the partiles (nulei and ele-

trons) hene is a variable that lives in R

3K

where K is the number

of partiles

1

. This system is far too large to be diretly tratable by

numerial simulations for moleules larger than the hydrogen atom.

The quantum hemists have thus introdued a series of simpli�ed

models. One of them (the Born Oppenheimer approximation) allows

to separate the eletron and the nulei so as to onsider �rst a sys-

tem in whih only the N eletrons of the moleule move (thus are

the only N variables of the state funtion) and the nulei are �xed

in x

j

(and appear as parameters). For eah on�guration (x

1

; :::; x

m

)

of the m nulei a omplex eletroni wavefuntion �(x

1

; :::; x

N

) 2 C ,

x

i

2 R

3

, i = 1; :::; N is sought after that minimizes the energy of

the system. This �rst simpli�ation is nevertheless not suÆient to

make the resulting equations aessible for omputations for large

moleules; another simpli�ation is therefore introdued by onsider-

ing that the state funtion is a N dimensional determinant of simple

funtions of R

3

, alled Slater determinant:

�(r

1

; :::; r

N

) =

1

p

N !

det(�

i

(r

j

));

where �

i

; i = 1; :::; N are now funtions of one variable in R

3

hosen

orthogonal with respet to the anonial salar produt < �; � > on

L

2

(R

3

).

Let us denote by K the subset of (L

2

(R

2

))

N

de�ned by

K = f(�

1

; :::; �

N

) 2 (L

2

(R

2

))

N

;< �

i

; �

j

>= Æ

ij

g: (1)

Assuming that the moleule is isolated and only Coulombi fores

are present, the desription of the non-relativisti eletrons where, for

the sake of simpliity we have negleted the spin dependeny, leads

to the following expression of the Hartree-Fok energy :

E

HF

(�

1

; :::; �

N

) =

N

X

i=1

Z

R

3

�

jr�

i

j

2

+ V j�

i

j

2

�

+

1

2

ZZ

R

3

�R

3

�

�

(x)�

�

(y)

jx� yj

dxdy �

1

2

ZZ

R

3

�R

3

j�

�

(x; y)j

2

jx� yj

dxdy; (2)

1

we will onsider non relativisti models without spin variables
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where the density matrix �

�

(x; y), the eletroni density �

�

(x) and

the potential V are given by the formulaes :

�

�

(x; y) =

N

X

i=1

�

i

(x)�

i

(y) (3)

�

�

(x) = �

�

(x; x)

V (x) = �

m

X

j=1

Z

j

jx� x

j

j

:

We have denoted here by Z

j

> 0 the harge of the j-th nuleo.

In order to determine the ground state of the moleule that, by

de�nition, minimizes the energy (2) under the onstraint (1), the

Euler Lagrange equations give rise to the Hartree-Fok problem :

Find a L

2

(R

3

)-orthonormal system � = f�

i

g

t

i=1;N

and an hermi-

tian matrix � = [�

i;j

℄

i;j=1;N

suh that

8i; 1 � i � N; F

�

(�

i

) = �

N

X

j=1

�

i;j

�

j

; (4)

where F

�

is the Fok operator. When ating on an element  regular

enough of the variable x 2 R

3

, this operator assoiates the following

funtion of the x 2 R

3

variable:

F

�

( )(x) =

�

��+ V (x) + (�

�

?

1

jxj

)

�

 (x) �

Z

R

3

�

�

(x; y)

jx� yj

 (y)dy:

(5)

Here ? is the onvolution produt

(f ? g)(x) =

Z

R

3

f(x� y)g(y)dy:

Remark 1 It is standard to notie that the density matrix is invariant

under unitary transforms, i.e. for any element U of the set of the

N �N unitary matries U(N) :

8(x; y) 2 R

3

; �

�

(x; y) = �

U�

(x; y) (6)

Hene it follows that the unitary transform U an be hosen in suh

a way that the hermitian matrix � beome diagonal: � = [�

i

℄

i=1;N

.

The solution 	 = U� = f(U�)

i

g

i=1;N

satis�es indeed the more simple

Hartree-Fok problem :

8i; 1 � i � N; F

	

( 

i

) = ��

i

 

i

(7)

The problem then appears as a non linear eigenvalue problem.
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This highly nonlinear problem is solved through iterations known

as Self Consistent Field approximation; we refer to [6℄ for a very

reent and omplete analysis on the onvergene of some of these al-

gorithms (Roothaan algorithm and the level shifting algorithm). It is

still a very expensive problem sine the non linear ontribution has a

large omputational omplexity (we refer to [20,8℄ for some example

of tailored tehniques to minimize this omplexity). The numerial

analysis of the method used typially by the hemists ommunity is

most often an open problem and in any ase will not provide sound in-

formation sine most of the numerial approximations are very often

at the limit of the onvergene. More interesting seems the onept

of a posteriori error estimators where, from the omputed solution,

it is possible to derive reliable information about the validity of the

omputation that has been done. The purpose of this paper is in this

diretion.

Denote by H = (H

1

(R

3

))

N

the natural spae for the solutions of

the Hartree-Fok equations and by F

ij

the mapping F

ij

: H 7! R

de�ned over any element � = (�

i

)

N

i=1

by

F

ij

(�) =< �

i

; �

j

> �Æ

ij

:

In all that follows any N -tuple element � = (�

i

)

N

i=1

will be supposed

to be a olumn (N � 1) vetor of H. Consider the minimization

problem

inffE

HF

(�);� 2 H \Kg (8)

Remark 2 The analysis of problem (7) is not ompletely under on-

trol: we an ite the partial results obtained in [10,11℄ about the

existene of a ground state for positive or neutral moleules and non

existene results for negative ions. The basi result of uniqueness of

the density solution is still an open problem of outstanding diÆulty.

Under the hypothesis

m

X

j=1

Z

j

> N � 1; (9)

it has been proven in [11℄ that a minimum of the problem (8) exists

and any suh minimum is a solution of the Hartree-Fok equation (4).

Moreover, when this problem is written in the form (7) additional

information is available on �

i

, namely �

i

> 0, i = 1; :::; N . We will

assume in all that follows that (9) is true.
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In order to make the presentation easy, we will assume in all that

follows that the eletroni wavefuntion is real and will work on real

funtion spaes; trivial adaptations allow the treatment of omplex

valued wavefuntions.

2 Error deomposition

2.1 Error metris

Let �

0

= (�

0i

)

N

i=1

2 H\K be a minimum of (8) and � = (�

i

)

N

i=1

2 H\

K an approximation of �

0

obtained as the solution of a minimization

problem:

inffE

HF

(�);� 2 X

N

\Kg (10)

where X is a �nite dimensional subspae of H

1

(R

3

).

The a posteriori analysis on the one hand studies bounds for the

di�erene E

HF

(�

0

) � E

HF

(�) and on the other hand proposes ex-

pliit trust intervals on the desired (but unknown) quantity E

HF

(�

0

)

using only the approximate solution at hand � ; of ourse, due to

the variational setting, an upper bound on E

HF

(�

0

) is E

HF

(�) itself;

the main fous will therefore be plaed on �nding lower bounds for

E

HF

(�

0

), whih is a non-trivial problem that, to our knowledge, has

not been addressed in the literature.

Before dwelling into the a posteriori analysis of (8) it is ruial to

introdue the proper de�nition for the error between a minimizer �

0

and its approximation �. To this end one has to reall the invariane

property of the Hartree-Fok energy:

E

HF

(	) = E

HF

(U	);8	 2 H \K; 8U 2 U(N) (11)

From (11) it follows that if �

0

is a minimizer of (8), then for any U 2

U(N), U�

0

is also a minimizer and therefore a solution of (4). The

same onsiderations remain true for the problem (10). It is therefore

natural to onsider the distane between the sets fU�

0

;U 2 U(N)g

and fV �;V 2 U(N)g as the most appropriate de�nition of the dis-

tane between �

0

and �. For reasons that will be made lear later on,

we will use in fat an equivalent form (see setion 2.3) of the above

de�nition. For any 	

1

; 	

2

2 H let

U

	

1

;	

2

= argminfkU	

1

� 	

2

k

2

(L

2

(R

3

))

N

;U 2 U(N)g: (12)

For a given norm k � k (k � k

(L

2

)

N

, k � k

(H

1

)

N

...) we will measure the

distane between (sets represented by) 	

1

and 	

2

as:

k	

1

� 	

2

k

?

= kU

	

1

;	

2

	

1

� 	

2

k = k	

1

� U

	

2

;	

1

	

2

k;
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the last equality being motivated by the fat that U

	

2

;	

1

= U

t

	

1

;	

2

2

U(N).

Remark 3 Note from (12) that U

	

2

;	

1

is intrinsially related to the

norm of (L

2

)

N

; when k�k = k�k

(L

2

)

N

we reover the distane between

the sets fU	

1

;U 2 U(N)g and fV 	

2

;V 2 U(N)g.

The properties of this metri are losely related to the following

deomposition of H:

H = A

�

� S

�

� �

??

(13)

where for any � 2 H \K:

A

�

= fC�;C 2 R

N�N

; C

t

= �Cg

S

�

= fS�;S 2 R

N�N

; S

t

= Sg

�

??

= f	 = (	

i

)

N

i=1

2 H;< 	

i

; �

j

>= 0; i; j = 1; :::; Ng

We will denote for any 	

1

; 	

2

2 (L

2

)

N

: 	

1

??	

2

if for any i; j = 1; N :

< (	

1

)

i

; (	

2

)

j

>= 0; then �

??

an be de�ned equivalently

�

??

= f	 2 H;	??�g:

For any � = (�

i

)

N

i=1

2 H the deomposition (13) is obtained in

the following manner: ompute the matrix M = (M

ij

)

N

i;j=1

where for

eah i; j = 1; :::; N :M

ij

=< �

i

; �

j

>. Denote by S the symmetri part

of M : S =

M+M

t

2

and by C the antisymmetri part: C =

M�M

t

2

.

Then S� will be the omponent of � in the spae S

�

and C� the

omponent of � in the spae A

�

; in addition it is easy to see that

(� � S�� C�)??�, so the di�erene � � S��C� is in �

??

.

Lemma 1 Let �; 	 2 H \ K. Then the matrix U

	;�

solution of (12)

has the properties

U

	;�

	 � � 2 S

�

� �

??

; �� U

	;�

	 2 S

U

	;�

	

� 	

??

: (14)

In partiular for 	 = �

0

,

U

�

0

;�

�

0

= �+ S�+W; S 2 R

N�N

: S

t

= S; W 2 �

??

: (15)

Proof. Consider the deomposition

	 � � = C�+ S�+W; C� 2 A

�

; S� 2 S

�

; W 2 �

??

; (16)
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and denote M = C + S. Then we an write

U

	;�

= argminfkU	 � �k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfkU((Id

N

+M)�+W )� �k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfk(U(Id

N

+M)� Id

N

)�k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfkU(Id

N

+M)� Id

N

)k

2

R

N�N

;U 2 U(N)g

= argminfk(Id

N

+M)� U

t

k

2

R

N�N

;U 2 U(N)g (17)

The transformation from the seond to the third line is a onsequene

of the fat that W??� so therefore U(Id

N

+M)�??W ; the next

equality is true beause � 2 K.

For any antisymmetri matrix

~

C 2 R

N�N

onsider the path in U(N)

given by t ! e

~

Ct

U

	;�

. The tangent at t = 0 to this path is

~

CU

	;�

.

Writing the �rst order onditions for the minimality in (17) we obtain:

0 =< (Id

N

+M)� U

t

	;�

; U

t

	;�

~

C

t

>

R

N�N

=< U

	;�

(Id

N

+M)� Id

N

;

~

C

t

>

R

N�N

;

8

~

C 2 R

N�N

:

~

C

t

= �

~

C;

whih shows that U

	;�

(Id

N

+M) is a symmetri matrix ; and there-

fore U

	;�

	 2 S

�

��

??

. To prove the seond part of the equation (14)

denote for any 	

1

, 	

2

by C

	

1

;	

2

the antisymmetri matrix appearing

in the deomposition 	

1

� 	

2

= C

	

1

;	

2

	

2

+ S

	

1

;	

2

	

2

+W

	

1

;	

2

with

C

	

1

;	

2

	

2

2 A	

2

, S

	

1

;	

2

	

2

2 S	

2

andW

	

1

;	

2

2 	

??

2

; then one obtains

by straightforward omputations C

	

1

;	

2

= �C

	

2

;	

1

. ut

Remark 4 In pratie the representative of the lass of isoenergy fun-

tions fU�

0

;U 2 U(N)g is taken to be the one that solves equations

(7), and the same is true for any of its approximations �. It is not

lear whether a norm for whih this pratial hoie gives optimal

approximations in the sense of (12) exists and to what extent this

hoie is also optimal in the L

2

norm.

2.2 Order of the symmetri part of the error

Let 	;� 2 H \ K and let us onsider the deomposition (16). We

have seen that the antisymmetri part given by matrix C may be

set to zero modulo some appropriate \rotation" on 	 ; it is therefore

natural to study the properties of the symmetri part S�.
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Lemma 2 Let 	;� 2 H\K with assoiated deomposition (16). Then

there exists onstants C

1

, C

2

depending only of N suh that:

kS�k

(L

2

(R

3

))

N

� C

1

k	 � �k

2

(L

2

(R

3

))

N

(18)

kS�k

H

� C

2

k	 � �k

2

H

k�k

H

(19)

Proof. Let us write W = D

~

W suh that <

~

W

i

;

~

W

j

>= Æ

ij

, M =

C + S. Denote

� = k	 � �k

(L

2

(R

3

))

N

=

v

u

u

t

N

X

i;j=1

M

2

ij

+D

2

ij

Sine 	 2 K, F

ij

(	) = 0, i; j = 1; :::; N . For j = i we obtain:

1 = (1 +M

ii

)

2

+

X

j 6=i

M

2

ij

+

N

X

j=1

D

2

ij

;

or equivalently:

S

ii

=M

ii

= �

P

N

j=1

M

2

ij

+

P

N

j=1

D

2

ij

2

;

whih proves that M

ii

� �

2

, i = 1; :::; N . For i 6= j one obtains:

0 =

X

k 6=i;k 6=j

M

ik

M

jk

+ (M

ii

+ 1)M

ji

+M

ij

(M

jj

+ 1) +

N

X

k=1

D

ki

D

kj

;

whih gives after straightforward manipulations S

ij

=

M

ij

+M

ji

2

� �

2

; this onludes the proof of (18). For (19) one denotes �rst that

k	 � �k

(L

2

(R

3

))

N

� k	 � �k

H

and apply (18) to onlude that S

ij

�

k	��k

2

H

, i; j = 1; :::; N . The onlusion follows then by the de�nition

of the norm k � k

H

. ut

2.3 Optimality in H

1

norm

We have proposed in setion 2.1 that for any norm k�k the error �

0

��

be omputed as kU

�

0

;�

�

0

� �k. Sine the de�nition U

�

0

;�

is losely

related to the L

2

norm it is natural to ask whether this de�nition is

still appropriate when norms other than L

2

are used, for instane the

anonial norm of H. The situation is settled by the following
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Lemma 3 Let 	 = (	

1

; :::; 	

N

) 2 H \K and � 2 H \K and denote

U

1

	;�

= argminfkU	 � �k

H

;U 2 U(N)g

There exists a onstant  depending only of N and 	 suh that

kU

	;�

	 � �k

H

� kU

1

	;�

	 � �k

H

� kU

	;�

	 � �k

H

Proof. The inequality

kU

	;�

	 � �k

H

� kU

1

	;�

	 � �k

H

follows as a onsequene of the de�nition of U

1

	;�

.

Denote by F the linear spae generated by f	

1

; :::; 	

N

g and de�ne:

M = f� 2 H

1

(R

3

);< �; � >

L

2

;L

2
= 0; 8� 2 Fg:

For any � 2 H

1

(R

3

) denote by �

F

the L

2

projetion of � on F and

�

M

= �� �

F

. We de�ne a norm k � k

d

on H

1

(R

3

) as follows:

k�k

2

d

= k�

F

k

2

L

2

+ k�

M

k

2

H

1

(R

3

)

:

We will prove that this norm is equivalent to the anonial norm of

H

1

(R

3

) (with onstants depending only on N and 	). Write for any

� 2 H

1

(R

3

):

k�k

H

1

(R

3

)

� k�� �

F

k

H

1

(R

3

)

+ k�

F

k

H

1

(R

3

)

� k�k

d

+ k�

F

k

H

1

(R

3

)

� Ck�k

d

where we have used the fat that the norms k � k

L

2
and k � k

H

1

(R

3

)

are

equivalent on the �nite dimensional spae F . It follows that there

exists a onstant C (depending only on N and 	) suh that for any

� 2 H

1

(R

3

)

k�k

H

1

(R

3

)

� Ck�k

d

:

We will prove next that the norm k�k

H

1

(R

3

)

an also be lower bounded

by the norm k � k

d

modulo some onstant depending only N and 	 .

Assume on the ontrary that this is not true. Then there exists a

sequene (�

n

)

n�1

� H

1

(R

3

) suh that k�

n

k

d

= 1 and k�

n

k

H

1

(R

3

)

! 0

as n ! 1. It follows that the sequene �

n

onverges to zero in L

2

and in partiular the sequene (�

n

F

)

n�1

of L

2

projetions to F is also

onverging to zero: k�

n

F

k

L

2
! 0 (n ! 1); by the same argument

as above we obtain k�

n

F

k

H

1

(R

3

)

! 0 (n!1). Then

k�

n

M

k

H

1

(R

3

)

= k�

n

� �

n

F

k

H

1

(R

3

)

� k�

n

k

H

1

(R

3

)

+ k�

n

F

k

H

1

(R

3

)

and it follows that k�

n

M

k

H

1

(R

3

)

! 0 (n ! 1). Together with

k�

n

F

k

L

2
! 0 (n ! 1) we onlude that k�

n

k

d

! 0 (n ! 1), in
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ontradition with the initial assumption. We have therefore proved

that there exists onstants ; C (depending only N and 	) suh that

for any � 2 H

1

(R

3

)

k�k

d

� k�k

H

1

(R

3

)

� Ck�k

d

:

The above equivalene imply that the anonial norm k � k

d;N

of

(H

1

(R

3

); k � k

d

)

N

is equivalent (with onstants depending only on

N and 	) to the anonial norm of H:



1

k�k

H

� k�k

d;N

� C

1

k�k

H

; 8� 2 H:

Sine 	 2 K, the funtions f	

1

; :::; 	

N

g are orthonormal with

respet to the salar produt of L

2

(R

3

) and also with respet to the

salar produt < �; � >

d

assoiated with the norm k � k

d

. It follows by

(17) that

U

	;�

= argminfkU	 � �k

k�k

d;N

;U 2 U(N)g;

as both solve the same minimization problem on U(N). But then

kU

1

	;�

	 � �k

H

�

1

C

1

kU

1

	;�

	 � �k

d;N

�

1

C

1

kU

	;�

	 � �k

d;N

�



1

C

1

kU

	;�

	 � �k

H

:

whih onludes the proof. ut

3 Optimality onditions and oerivity

We will begin this setion with some elementary information about

the geometry of the manifolds K and H \K:

Lemma 4 Let � 2 H \ K.The tangent spae in � to the manifold

H \K is A

�

� �

??

.

Proof. Let �(t) :℄��; �[! H\K, � > 0, �(0) = � be a C

1

path in

H\K. Consider the deomposition �

0

(0) = S�+C�+W , S� 2 S

�

,

C� 2 A

�

, W 2 �

??

. By di�erentiating the ondition F

ij

(�(t)) = 0

we obtain < �

i

; �

0

j

(0) > + < �

0

i

(0); �

j

>= 0 whih proves that

S

ij

= 0. Sine this is true for any i; j = 1; :::; N we onlude S = 0

i.e. �

0

(0) 2 A

�

� �

??

.

To prove that any 	 = C�+W 2 A

�

� �

??

may be seen as the

tangent in � of a C

1

path in H \ K, hoose �(t) :℄ � �; �[! H \ K,

0 < � < 1, �(t) =

p

1� t

2

e

Ct

� + tW and note that �

0

(0) = 	 and

k�(t)k = 1; �� < t < �. ut
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The seond order optimality onditions for the minimization prob-

lem (8) will be seen to be very useful within our approah. Let

�

0

2 H \ K be a minimizer of (8) and �

0

be the hermitian ma-

trix orresponding to �

0

in equations (4). We will write the seond

order onditions in the form:

D

2

E

HF

(�

0

)(	; 	)+ < �

0

	; 	 >

(L

2

(R

3

))

N

� 0; 8	 2 A

�

0

� �

??

0

:

Denote for any � 2 H \K:

E

�

(�) = E

HF

(�) +

N

X

i;j=1

�

ij

F

ij

(�) (20)

where �

ij

=< F

�

�

i

; �

j

>, i; j = 1; :::; N .

Remark 5 The Hartree-Fok equations (4) an be \symbolially" de-

rived as a orollary of lemma 4. Indeed, the �rst order minimality

onditions assoiated to (8) read

< DE

HF

(�

0

); 	 >

(L

2

(R

3

))

N

= 0; 8	 2 A

�

0

� �

??

0

whih is the same as writingDE

HF

(�

0

) = S�

0

, (S being a symmetri

matrix) whih are exatly equations (4) sine DE

HF

(�

0

) an be iden-

ti�ed with (F

�

0

; :::;F

�

0

). Moreover, with the de�nition (20) we note

that

DE

�

0

� 0: (21)

Denote by a

�

(�; �) the bilinear form D

2

E

�

(�)(�; �) and remark that

a

�

0

(�; �) = D

2

E

HF

(�

0

)(�; �)+ < �

0

�; � >

(L

2

(R

3

))

N

:

In order to obtain an expliit formula for a

�

0

we need the expres-

sion of D

2

E

HF

(�

0

). Let �; 	

1

; 	

2

2 H \K. Then

D

2

E

HF

(�)(	

1

; 	

2

) = 2 �

N

X

i=1

Z

R

3

�

r	

1

i

� r	

2

i

+ V 	

1

i

	

2

i

�

+

1

2

ZZ

R

3

�R

3

8�

�;	

1
(x)�

�;	

2
(y) + 4�

	

1

;	

2
(x)�

�

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

2�

�

(x; y)(�

	

1

;	

2
(x; y) + �

	

1

;	

2
(y; x))

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

+4�

�;	

1(x; y)(�

�;	

2(x; y) + �

�;	

2(y; x))

jx� yj

dxdy;
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with the de�nitions

�

	

1

;	

2(x; y) =

P

N

i=1

	

1

i

(x)	

2

i

(y);

�

	

1

;	

2
(x) = �

	

1

;	

2
(x; x):

We obtain therefore:

D

2

E

HF

(�

0

)(	; 	) = 2 �

N

X

i=1

Z

R

3

�

jr	

i

j

2

+ V 	

2

i

�

+

1

2

ZZ

R

3

�R

3

8�

�

0

;	

(x)�

�

0

;	

(y) + 4�

	

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

(x; y)(�

�

0

;	

(x; y) + �

�

0

;	

(y; x))

jx� yj

dxdy:

We will study in the following the oerivity properties of the

bilinear form a

�

0

. Note that for any 	 2 H \ K: E

HF

(	) = E

�

0

(	)

and in addition a

�

0

= D

2

E

�

0

(�

0

). By di�erentiating the invariane

property (11) we obtain in partiular (f. lemma 4):

DE

�

0

(	)(C	) = 0;8	 2 H \K; 8C	 2 A

	

: (22)

Di�erentiating now (22) in 	 = �

0

and taking into aount the fat

that �

0

is a solution of (4) we obtain:

< D

2

E

�

0

(�

0

)(C�

0

;

~

C�

0

+W ) = 0; 8C�

0

;

~

C�

0

2 A

�

0

; 8W 2 �

??

0

:

Then it follows that a

�

0

vanishes on A

�

0

thus annot be oerive

there ; the oerivity properties of a

�

0

are desribed by the following

two lemmata.

Lemma 5 Let V

�

0

be the losure of spanf	 2 A

�

0

��

??

0

: a

�

0

(	; 	) =

0g with respet to the anonial topology of H. Then a

�

0

is null on

V

�

0

� V

�

0

.

Proof. Let 	

1

; 	

2

2 A

�

0

��

??

0

be suh that a

�

0

(	

i

; 	

i

) = 0, i = 1; 2.

Then sine a

�

0

� 0 on A

�

0

��

??

0

by a standard Cauhy-Shwartz in-

equality for the positive bilinear form a

�

0

we obtain 2ja

�

0

(	

1

; 	

2

)j �

a

�

0

(	

1

; 	

1

) + a

�

0

(	

2

; 	

2

) and therefore a

�

0

(	

1

; 	

2

) = 0. It follows

then that for any 	 = �

1

	

1

+ �

2

	

2

suh that �

1

; �

2

2 R we have

a

�

0

(	; 	) = 0 whih, together with the ontinuity of a

�

0

onludes

the proof. ut
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Proposition 1 Let X

�

0

be a losed subspae of �

??

0

(H) suh that

8	 2 X

�

0

; 	 6= 0 : a

�

0

(	; 	) > 0:

Then a

�

0

is oerive on X

�

0

.

The proof of this proposition makes use of the following auxiliary

result

Lemma 6 The mapping

	 7!

1

2

ZZ

R

3

�R

3

8�

�

0

;	

(x)�

�

0

;	

(y) + 4�

	

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

(x; y)(�

�

0

;	

(x; y) + �

�

0

;	

(y; x))

jx� yj

dxdy

is sequentially weakly lower semiontinuous with respet to the anoni

topology of H.

Proof. Let us reall the Hardy inequality (used in the version of [11℄

p.42) whih holds for all y 2 R

3

, ' 2 H

1

(R

3

):

Z

R

3

j'(x)j

2

jx� yj

dx � Ck'k

L

2

(R

3

)

kr'k

L

2

(R

3

)

with a onstant C independent of y and '. Note that if u; v 2 H

1

(R

3

)

u(x)v(y)

p

jx�yj

2 L

2

(R

3

� R

3

). Indeed:

ZZ

R

3

�R

3

u

2

(x)v

2

(y)

jx� yj

dxdy =

Z

R

3

�

Z

R

3

u

2

(x)

jx� yj

dx

�

v

2

(y)dy

� Ckuk

L

2

(R

3

)

kruk

L

2

(R

3

)

Z

R

3

v

2

(y)dy � Ckuk

L

2

(R

3

)

kruk

L

2

(R

3

)

kvk

2

L

2

(R

3

)

Let 	

m

be a sequene weakly onvergent in H to 	 ; this sequene

is bounded in H ; without loss of generality it an be supposed that

k	

m

k

H

� 1.

Consider a term of the form

ZZ

R

3

�R

3

f(x)g(y)	

m

i

(x)	

m

j

(y)

jx� yj

dxdy (23)

where f; g 2 f(�

0

)

1

; :::; (�

0

)

N

g. We have seen that

f(x)g(y)

p

jx�yj

,

	

m

i

(x)	

m

j

(y)

p

jx�yj

2

L

2

(R

3

� R

3

); sine k	

m

k

H

� 1, it follows that

	

m

i

(x)	

m

j

(y)

p

jx�yj

is weakly
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onvergent in L

2

(R

3

�R

3

) to

2

	

i

(x)	

j

(y)

p

jx�yj

so any term of the form (23)

is weakly ontinuous (so also lower weakly semiontinuous), and of

ourse the same is true for any sum of terms of this type, in partiular

�

�

0

;	

m
(x)�

�

0

;	

m
(y)

jx�yj

,

�

�

0

(x;y)�

	

m
(x;y)

jx�yj

,

�

�

0

;	

m
(x;y)�

�

0

;	

m
(y;x)

jx�yj

.

The only term that remains to be analyzed in (23) is

4

ZZ

R

3

�R

3

�

	

(x)�

�

0

(y)� �

�

0

;	

(x; y)

2

jx� yj

dxdy

We transform the numerator of the above fration as follows:

�

	

(x)�

�

0

(y)� (�

�

0

;	

(x; y))

2

=

N

X

i=1

(	

i

)

2

(x)(�

0

)

2

i

(y)

+

X

i<j

(	

i

)

2

(x)(�

0

)

2

j

(y) + (	

j

)

2

(x)(�

0

)

2

i

(y)

�

N

X

i=1

(	

i

)

2

(x)(�

0

)

2

i

(y)�

X

i<j

	

i

(x)(�

0

)

i

(y)	

j

(x)(�

0

)

j

(y)

=

X

i<j

�

	

i

(x)(�

0

)

j

(y)� 	

j

(x)(�

0

)

i

(y)

�

2

It is easy to see from this equality that �

	

(x)�

�

0

(y)�(�

�

0

;	

(x; y))

2

is

a onvex funtion of 	 and therefore, by a lassial funtional analysis

argument, is sequentially weakly lower semiontinuous. ut

Proof of Proposition 1: Let us proeed with the proof of propo-

sition 1. Suppose on the ontrary that the onlusion is not true. Then

there exists a sequene f	

m

g

m�1

2 X

�

0

suh that k	

m

k

H

= 1, and

lim

m!1

a

�

0

(	

m

; 	

m

) = 0 ; extrating if neessary a subsequene out

of it, we may suppose that f	

m

g

m�1

is weakly onvergent in H to

2

In order to rigorously identify the weak limit one uses appropriate test fun-

tions

p

jx� yj�(x)�(y)1

jxj�R

1

jyj�R

for any �; � 2 L

2

(R

3

), R > 0 .
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	 2 X

�

0

. We �rst write:

a

�

0

(	

m

; 	

m

) = 2 �

N

X

i=1

Z

R

3

jr	

m

i

j

2

+

2 �

N

X

i;j=1

�

0

ij

Z

R

3

	

m

i

	

m

j

+ 2 �

N

X

i=1

Z

R

3

V (	

m

i

)

2

+

1

2

ZZ

R

3

�R

3

8�

�

0

;	

m

(x)�

�

0

;	

m

(y) + 4�

	

m

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

m

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

m

(x; y)(�

�

0

;	

m

(x; y) + �

�

0

;	

m

(y; x))

jx� yj

dxdy(24)

Reall that ([11℄ p.42) that

R

R

3

V  

2

dx is weakly lower semiontinuous

onH

1

(R

3

) ([11℄ p.42). By the lemma 6 the integrals on R

3

�R

3

in (24)

also have weakly lower semiontinuity properties. Sine the matrix �

0

has stritly positive eigenvalues (remark 2) the �rst two terms on

the right hand side of (24) de�ne a norm so this part is also weakly

lower semiontinuous ; we obtain

a

�

0

(	; 	) � lim

m!1

a

�

0

(	

m

; 	

m

) = 0

whih together with (1) imply 	 = 0. We will use now this infor-

mation for a �ner analysis of the sequene a

�

0

(	

m

; 	

m

) ; by the

argument above there exists a onstant 

0

> 0 depending on �

0

suh

that for any 	 2 H:

N

X

i=1

Z

R

3

2jr	

i

j

2

+

N

X

i;j=1

�

0

ij

Z

R

3

	

i

	

j

� 

0

k	k

H

:

Using again the lower semiontinuity of the remaining terms we ob-

tain:

0 = lim

m!1

a

�

0

(	

m

; 	

m

) � 0 + lim inf

m!1

N

X

i=1

Z

R

3

2jr	

m

i

j

2

+

N

X

i;j=1

�

0

ij

Z

R

3

	

m

i

	

m

j

� 

0

lim inf

m!1

k	

m

k

H

= 

0

> 0;

whih is impossible. ut



16 Yvon Maday and Gabriel Turinii

Motivated by the above analysis, we will introdue the following

hypothesis:

8	 2 �

??

0

; 	 6= 0 : a

�

0

(	; 	) > 0: (25)

whih, by proposition 1, ensures the existene of a \oerivity on-

stant" 

�

0

> 0 suh that

8	 2 �

??

0

; 	 6= 0 : a

�

0

(	; 	) � 

�

0

k	k

2

H

: (26)

Remark 6 Using the lemma 5 a posteriori analysis may still be ar-

ried out without the hypothesis 25 ; some aspets of a more general

analysis are presented in remark 11.

4 Error estimators, bounds and onvergene aeleration

Let �

0

; � 2 H\K be as in setion 2.1: �

0

a minimizer of (8) (whih is

thus a solution of (4)) and � 2 H\K a given disrete approximation

of �

0

obtained by a previous omputation.

Let us denote by � = kU

�

0

;�

�

0

� �k

H

= kU

�;�

0

� � �

0

k

H

the

distane between � and �

0

. Even if the wavefuntion �

0

may be

intrinsially interesting (e.g. when the form of the moleular orbitals

is studied), the main result of a Hartree-Fok omputation is the

Hartree-Fok energy E

HF

(�

0

).

We will suppose in all that follows that � is lose enough to �

0

suh that e.g. in the development of the error E

HF

(�) � E

HF

(�

0

)

with respet to powers of �: E

HF

(�) � E

HF

(�

0

) = 

k

�

k

+ o(�

k

) the

seond term o(�

k

) is indeed smaller than 

k

�

k

(due to the asymptoti

properties of the deomposition this is ertain to happen when � is

small enough).

4.1 Error estimators

The a posteriori analysis method presented in this setion is on-

neted to the works of Babu�ska [1℄, Bernardi [4℄, Ladev�eze [9℄, Oden

[14℄, Pousin and Rappaz [18℄, Verf�urth [21,22℄ and is aimed at giving

quantitative indiations on the form of the error, through bilateral

estimates. Even if the onstants are not expliitly known, this method

may prove interesting when only relative error estimates are needed

(as in adaptative proedures) or when the estimator is shown to pos-

sess further properties that allow to estimate those onstants.



Error bars for the Hartree-Fok equations 17

Let us reall (see also (15)) that U

�;�

0

� � �

0

2 S

�

0

� �

??

0

and

denote U

�;�

0

���

0

= S�

0

+W , S�

0

2 S

�

0

, W 2 �

??

0

. Then one an

write

E

HF

(�)� E

HF

(�

0

) = E

HF

(U

�;�

0

�)� E

HF

(�

0

)

= E

�

0

(�

0

+ S�

0

+W )� E

�

0

(�

0

)

= DE

�

0

(�

0

)(S�

0

+W ) +D

2

E

�

0

(�

0

)(S�

0

+W;S�

0

+W ) +O(�

3

)

= 0 +D

2

E

�

0

(�

0

)(W;W ) +O(�

3

) = a

�

0

(W;W ) +O(�

3

)

where we have used �rstly the fat that �

0

is the solution of (4) (see

remark 5 equation 21) and seondly the lemma 2 for (U

�;�

0

�;�

0

)!

(	;�). From the ontinuity of a

�

0

and (26) one onludes that kWk

2

H

is a third order estimator of the energy error E

HF

(�)� E

HF

(�

0

).

Remark 7 It easy to see by (19) that kWk

H

= �+O(�

2

).

Unfortunately diret omputation of W (and then of kWk

2

H

) as-

sumes knowledge of �

0

whih is not available. However good approxi-

mations of kWk

2

H

that require only the knowledge of � an be found.

Indeed, let us set F = DE

HF

, 	 = U

�;�

0

� and study the norm of

F (	) in the dual spae 	

??�

of 	

??

kF (	)k

	

??�

= sup

�2	

??

< DE

HF

(	); � >

k�k

H

= sup

�2	

??

< DE

�

0

(	); � >

k�k

H

= sup

�2	

??

< DE

�

0

(	)�DE

�

0

(�

0

); � >

k�k

H

= sup

�2	

??

D

2

E

�

0

(�

0

)(	 � �

0

; �)

k�k

H

+O(�

2

)

We used in the �rst line of the equation above the de�nition (20) of

E

�

0

and the identity DF

ij

(	; �) � 0 on 	

??

. We show now that we an

replae in the above supremum the spae 	

??

= (U

�;�

0

�)

??

= �

??

by

�

??

0

. Let � 2 	

??

be written as � =M�

0

+

~

�,

~

� 2 �

??

0

. Note that

jM

ij

j = j < �

i

; �

0j

> j = j < �

i

; �

0j

� 	

j

> j

� k�k

(L

2

(R

3

))

N

k�

0

� 	k

(L

2

(R

3

))

N

(27)

so one an write

j

a

�

0

(	 � �

0

;M�

0

)

k�k

H

j �

C

�

0

k	 � �

0

k

H

k�k

H

k�

0

� 	k

(L

2

(R

3

))

N

k�k

H

� C

�

0

�

2

;
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where C

�

0

is the ontinuity onstant of a

�

0

. Sine

k

~

�k

H

k�k

H

= 1 + O(�)

one onludes that

kF (	)k

	

??�

= sup

�2	

??

a

�

0

(	 � �

0

;

~

�)

k

~

�k

H

+O(�

2

)

= sup

~

�2	

??

0

a

�

0

(	 � �

0

;

~

�)

k

~

�k

H

+O(�

2

) = sup

~

�2	

??

0

a

�

0

(S�

0

+W;

~

�)

k

~

�k

H

+O(�

2

)

= sup

~

�2	

??

0

a

�

0

(W;

~

�)

k

~

�k

H

+O(�

2

) = kWk

H

+O(�

2

):

We have shown above that kF (	)k

	

??�

is a seond order approx-

imation of kWk

H

and therefore kF (	)k

2

	

??�

will be a third order

estimator of the energy error E

HF

(�) � E

HF

(�

0

). We next prove

that kF (	)k

	

??�

is invariant with respet to the multipliation of 	

by unitary matries and therefore equal to kF (�)k

�

??�

, so it an be

omputed (a posteriori) using only available data (i.e. �). Let us om-

pute for � in H \ K the funtion F (U�), by the de�nition of F this

equals DE

HF

(U�) whih an be written:

DE

HF

(U�) =

�

F

U�

((U�)

i

)

�

N

i=1

=

�

(�

1

2

�+ V )((U�)

i

)

�

N

i=1

+

�

(�

U�

?

1

jxj

)(U�)

i

�

Z

R

3

�

U�

(x; y)

jx� yj

(U�)

i

(y)dy

�

N

i=1

= U

�

(�

1

2

�+ V )(�

i

)

�

N

i=1

+ U

�

(�

�

?

1

jxj

)�

i

�

Z

R

3

�

�

(x; y)

jx� yj

�

i

(y)dy

�

N

i=1

;

where we have used the invariane property (6). It was therefore

proven that

F (U�) = UF (�);8� 2 H \ K;

and therefore kF (	)k

	

??�

= kF (U

�;�

0

�)k

	

??�

= kF (�)k

�

??�

We will

summarize the results obtained in this setion in the following

Theorem 1 Let �

0

be a minimizer of (8), � 2 H \ K a (given)

disrete approximation of �

0

obtained by a previous omputation as

desribed in setion 2.1 (10), and denote � = kU

�

0

;�

�

0

��k

H

the quo-

tient distane between � and �

0

. Then, under the assumption (25),

kDE

HF

(�)k

�

??�

= �+O(�

2

):

Moreover there exists onstants 

1

; 

2

depending only on �

0

suh that



1

kDE

HF

(�)k

2

�

??�

+O(�

3

) � E

HF

(�)� E

HF

(�

0

)

� 

2

kDE

HF

(�)k

2

�

??�

+O(�

3

): (28)
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Remark 8 The onstants 

1

; 

2

in (28) are not known and therefore

the quantity kDE

HF

(�)k

2

�

??�

an be used to estimate the error in

energy but not to obtain preise error bars.

4.2 Expliit bounds for the Hartree-Fok energy and onvergene

aeleration

The purpose of this setion is to propose methods to �nd expliit

bounds for the Hartree-Fok energy. The method belongs to the more

general paradigm [13,15{17℄ of de�nition of expliit lower and upper

bounds for outputs depending on the solution of a partial di�erential

equation. The output of interest will be taken to be the Hartree-Fok

energy ; this hoie will be seen (f. thm. 2 ) to posses partiularities

that in fat allow to design an improvement of the solution itself,

although this is not expeted to be the ase for general outputs.

We will begin this setion with some remarks on the oerivity

properties of the bilinear forms a

�

0

and a

�

.

Lemma 7 Under the hypothesis (25) there exists a onstant  > 0

depending only on �

0

suh that for any U 2 U(N) the bilinear form

a

U�

0

is oerive on (U�

0

)

??

= �

??

0

with oerivity onstant .

Proof. Note that for any 	

1

2 H \ K , 	

2

2 H, U 2 U(N):

a

U	

1

(U	

2

; U	

2

) = a

	

1

(	

2

; 	

2

), so by (25) and proposition 1 we obtain

the onlusion. ut

Lemma 8 Under the assumption (25) there exists a onstant � > 0

depending only on �

0

suh that for all � 2 H\K with k���

0

k

H

� �

the bilinear form a

�

is oerive on �

??

with a oerivity onstant

depending only of �

0

.

Proof. Let � 2 �

??

, k�k

H

� 1 be written as � = M�

0

+

~

�,

~

� 2 �

??

0

.

We will generially denote by C various onstants depending only on

�

0

. Reall that (by (27)) jM

ij

j � k�k

(L

2

(R

3

))

N

k�

0

� 	k

(L

2

(R

3

))

N

, so

for k�

0

� 	k

H

small enough

a

�

(�; �) = a

�

(

~

�+M�

0

;

~

�+M�

0

) � a

�

(

~

�;

~

�)�Ck�k

H

k

~

�k

H

k�

0

�	k

H

:

But for k�

0

� 	k

H

small enough we an also write

k�k

H

k

~

�k

H

k�

0

� 	k

H

� k�k

H

(k�k

H

+ k�k

H

k�

0

� 	k

H

)k�

0

� 	k

H

� Ck�k

2

H

k�

0

� 	k

H

:
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Sine j�

ij

��

0

ij

j � Ck���

0

k

H

it follows that ja

�

(

~

�;

~

�)�a

�

0

(

~

�;

~

�)j �

Ck

~

�k

2

H

k�

0

� 	k

H

so in fat

a

�

(�; �) � a

�

0

(

~

�;

~

�)� C(k

~

�k

2

H

+ k�k

2

H

)k�

0

� 	k

H

� k

~

�k

2

H

� C(k

~

�k

2

H

+ k�k

2

H

)k�

0

� 	k

H

:

It suÆes now to use a last time jk�k

H

�k

~

�k

H

j � k�k

H

k�

0

� 	k

H

to

onlude. ut

In what follows we start the presentation of the onstrution of

(lower) bounds for the Hartree-Fok energy. As it was seen in lemma

7, under the assumption (25) we have uniform oerivity properties

for bilinear forms a

�

0

with respet to the multipliation of �

0

by uni-

tary matries U 2 U(N); for this reason we an replae �

0

with any

U�

0

that �ts better our needs; we will therefore suppose in agreement

with lemma 1 that �

0

is suh that �

0

� � = S�+W 2 S

�

� �

??

.

The onstrution of (lower) bounds for the Hartree-Fok energy

is based on the following development:

E

HF

(�

0

)� E

HF

(�) = E

�

(�

0

)� E

�

(�) = E

�

(�+ S�+W )� E

�

(�)

= DE

�

(�)(S�+W ) +

1

2

D

2

E

�

(�)(S�+W;S�+W ) +O(�

3

)

Note �rst that by the properties of � as desribed in setion 2.1 eq.

(10) DE

�

(�) is null on the dual spae of the disretization spae so in

partiular DE

�

(�)(S�) = 0 ; reall also the fat that S� is of order

�

2

and W of order � to obtain

E

HF

(�

0

)� E

HF

(�) = DE

�

(�)(W ) +

1

2

D

2

E

�

(�)(W;W ) +O(�

3

) (29)

Consider now the problem: �nd the reonstruted error

^

W 2 �

??

suh

that

D

2

E

�

(�)(

^

W;	) +DE

�

(�)(	) = 0; 8	 2 �

??

: (30)

By the oerivity of a

�

it follows that (30) has a unique solution

^

W 2 �

??

.

Remark 9 Note that in order to ompute

^

W one solves a diret (i.e.

not eigenvalue) problem on the solution spae ; moreover all operators

involved depend only on �.
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Using the de�nition of

^

W one an rewrite (29):

E

HF

(�

0

) = E

HF

(�)�D

2

E

�

(�)(

^

W;W ) +

1

2

D

2

E

�

(�)(W;W )

+O(�

3

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W )

+

1

2

D

2

E

�

(�)(W �

^

W;W �

^

W ) +O(�

3

): (31)

But sine a

�

is positive on �

??

it follows that

1

2

D

2

E

�

(�)(W�

^

W;W�

^

W ) � 0 so in fat we obtain an asymptoti expliit lower bound

on the Hartree-Fok energy:

E

HF

(�

0

) � E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

); (32)

whih together with the inequality E

HF

(�

0

) � E

HF

(�) gives an in-

terval for the exat value of the Hartree-Fok energy.

Remark 10 A natural question is to study the order in � of the length

of the error bar found above. Let us reall that the error in energy is

of order �

2

; we will prove that this interval is optimal in a sense that

its length is also of order �

2

; indeed the distane between the upper

and lower bound is

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

) whih is equivalent to

k

^

Wk

H

; all that remains to be proven is that k

^

Wk

H

� C� (with a

onstant not depending on �

0

). Indeed:

k

^

Wk

H

� CkDE

�

(�)k

�

??�

� CkDE

�

(�)�DE

�

(�

0

)k

�

??�

+CkDE

�

(�

0

)�DE

�

0

(�

0

)k

�

??�

� C�

where we have used the fat that DE

�

0

(�

0

) is null on �

??

0

.

The nomination of

^

W as \reonstruted error" is best explained

by the following property:

^

W =W +O(�

2

): (33)

In order to prove (33) we will prove thatW has the following property:

jD

2

E

�

(�)(W;	) +DE

�

(�)(	)j � C�

2

; 8	 2 �

??

; k	k

H

= 1: (34)

with a onstant C independent of �, 	 . Suppose (34) is true then

jointly with (30) one obtains:

jD

2

E

�

(�)(W �

^

W;	)j � C�

2

;8	 2 �

??

; k	k

H

= 1:
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Let 	 =

W�

^

W

kW�

^

Wk

H

; from the oerivity of a

�

= D

2

E

�

(�) we dedue:

1

kW �

^

Wk

H

� kW �

^

Wk

2

H

� C�

2

;

and (33) follows.

Reall that, from lemma 2, k�

0

� ��Wk is of order �

2

. In order

to prove (34) it is thus suÆient to prove it for �

0

�� instead of W :

let us write

DE

�

(�)(	) = DE

�

(�

0

)(	) +D

2

E

�

(�

0

)(�� �

0

; 	) +O(�

2

):

Besides we have

jD

2

E

�

(�

0

)(�� �

0

; 	)�D

2

E

�

(�)(�� �

0

; 	)j � C�

2

k	k

H

;

(with a onstant C depending only of �

0

), so

DE

�

(�)(	) = DE

�

(�

0

)(	) +D

2

E

�

(�)(�� �

0

; 	) +O(�

2

)

and therefore

D

2

E

�

(�)(�

0

� �; 	) +DE

�

(�)(	) = DE

�

(�

0

)(	) +O(�

2

):

It suÆes now to prove that DE

�

(�

0

)(	) = O(�

2

). By the de�nition

of E

�

,

DE

�

(�

0

)(	) = DE

�

0

(�

0

)(	) +

P

N

i;j=1

(�

ij

� �

0

ij

)DF

ij

(�

0

)(	)

= 0 +

P

N

i;j=1

(�

ij

� �

0

ij

)DF

ij

(�

0

)(	):

Note �rstly that �

ij

��

0

ij

� C� (C depending only of �

0

). Moreover

DF

ij

(�

0

)(	) =< �

0i

; 	

j

> + < �

0j

; 	

i

>

=< �

0i

� �

i

; 	

j

> + < �

0j

� �

j

; 	

i

>

thus jDF

ij

(�

0

)(	)j an be upper bounded by C� (we used the fat

that 	 2 �

??

), whih onludes the proof of (33).

Combining (31) and (33) we an give a better version of (32):

E

HF

(�

0

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

); (35)

so instead of a lower bound we have obtained an improvement of

the Hartree-Fok energy ; note that this improvement is of a stritly

higher order in � sine the best approximation known before the om-

putation of

^

W was E

HF

(�) whih is exat to the order �

2

.

Although (35) may represent in itself the onlusion of the a pos-

teriori analysis, further progress is possible. To this end note that
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an improvement for the wavefuntion � has also been found, namely

~

� = � +

^

W . However we annot propose

~

� as a legitimate solution

of (4) sine it is not ertain to be in K. We will see in the following

that it is possible to �nd a orretion to add to �+

^

W whih not only

gives an admissible solution of (4) but also improves with another

order the approximation (35) of the Hartree-Fok energy E

HF

(�

0

).

In order to improve even more the solution, remind the equality

�

0

= �+W + S�. Sine both �

0

and � are in K we an write

Æ

ij

=< �

0i

; �

0j

>=< �

i

+

N

X

k=1

S

ik

�

k

+W

i

; �

j

+

N

X

l=1

S

jl

�

l

+W

j

>

= Æ

ij

+ < W

i

;W

j

> +

N

X

k=1

S

ik

Æ

kj

+

N

X

k=1

S

jl

Æ

il

+O(�

4

) (36)

beause we know that S

ij

= O(�

2

). We obtain

0 =< W

i

;W

j

> +S

ij

+ S

ji

+O(�

4

) =<

^

W

i

;

^

W

j

> +S

ij

+ S

ji

+O(�

3

)

so denoting

~

S

ij

= �

1

2

<

^

W

i

;

^

W

j

>, we obtain that

~

S� is a order �

3

approximation of S�:

~

S� = S�+O(�

3

). Note that by remark 9 that

the omputation of

~

S requires knowledge of � only.

We will prove in the following that having an approximation

^

W

of W to the order �

2

and an approximation

~

S of S to the order �

3

is

enough to have an approximation of the Hartree-Fok energy to the

order �

4

. Indeed, write

E

HF

(�

0

)� E

HF

(�) = E

�

(�

0

)� E

�

(�) = E

�

(�+ S�+W )� E

�

(�)

= DE

�

(�)(S�+W ) +

1

2

D

2

E

�

(�)(S�+W;S�+W )

+

1

3!

D

3

E

�

(�)(S�+W;S�+W;S�+W ) +O(�

4

)

= DE

�

(�)(W ) +

1

2

D

2

E

�

(�)(W;W ) +D

2

E

�

(�)(S�;W )

+

1

3!

D

3

E

�

(�)(W;W;W ) +O(�

4

)

= �

1

2

D

2

E

�

(�)(

^

W;

^

W ) +

1

2

D

2

E

�

(�)(W �

^

W;W �

^

W ) +

D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

)

= �

1

2

D

2

E

�

(�)(

^

W;

^

W ) +D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

);



24 Yvon Maday and Gabriel Turinii

so we have obtained

E

HF

(�

0

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

):

where all terms involved in the right hand side an be omputed from

�.

One problem remains though, our best approximation for the so-

lution �

0

, namely

~

~

� = � +

^

W +

~

S� is still not ertain to be in

K ; in fat it an be proved that there exists an

^

S that depends

only of � that has the property

^

S� =

~

S� + O(�

3

) and suh that

^

� = �+

^

W +

^

S� 2 K. Moreover, using the above arguments, we will

also have E

HF

(�

0

) = E

HF

(

^

�) +O(�

4

). The existene and properties

of

^

S follows by onsidering as in (36) the equations satis�ed by

^

S.

Denote by M the matrix with entries <

^

W

i

;

^

W

j

> then

^

S is solution

of the equation

(I +

^

S)

2

= I �M: (37)

This shows that

^

S is an O(�

3

) approximation of

~

S. The matrix

^

S an

be omputed from equation 37 by taking the square root of I �M

whih is well de�ned as

^

W is lose to W (and small). Note that this

proedure may be ostly for non-sparse matries and an be replaed

in pratie with Taylor-like series expansion formulas

I +

^

S =

p

I �M = I �

1

2

M +

1

8

M

2

�

1

16

M

3

+ :::

We will summarize the results obtained in this setion in the fol-

lowing theorem:

Theorem 2 Let �

0

be a minimizer of (8), � 2 H \ K a (known)

disrete approximation of �

0

obtained by a previous omputation as

desribed in setion 2.1 (10). Then, under the assumption (25), there

exists an � > 0 suh that for any � 2 H\K with kU

�

0

;�

�

0

��k � �

there exists

^

W 2 �

??

and

^

S� 2 S

�

whose omputation requires only

knowledge of � suh that

^

� = �+

^

S�+

^

W 2 H\K has the following

properties:

k

^

�� �

0

k

H

� 

1

k�� �

0

k

2

H

;

jE

HF

(

^

�)� E

HF

(�

0

)j � 

2

jE

HF

(�)� E

HF

(�

0

)j

2

:

with onstants 

1

,

2

depending only of �

0

.
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Error bars an be easily derived from the Thm. 2 above and the

minimization properties of E

HF

(�

0

):

Theorem 3 Under the same assumptions and with the same nota-

tions as in Thm. 2, there exists an ~� > 0 suh that for any � 2 H\K

with kU

�

0

;�

�

0

� �k � ~� the following estimates hold:

2 � E

HF

(

^

�)� E

HF

(�) � E

HF

(�

0

) � E

HF

(�):

Remark 11 The approah desribed in this setion an be developed

under more general assumptions than (25). Denote by X

�

0

the losed

subspae of �

??

0

where (1) holds so that, in agreement with propo-

sition 1 a

�

0

is oerive on X

�

0

; using the same arguments as in

lemma 8 one proves for k�

0

��k

H

small enough oerivity for a

�

on

X

�

0

\�

??

; this shows that the problem (30) has an unique solution on

X

�

0

\�

??

and this solution is then shown to posses the same property

(33) as

^

W . A \reonstruted symmetrial" part is then omputed by

the same method as above and we obtain thus an improvement for

the energy and for the wavefuntion. The only omputational imped-

iment to this program is that one annot really identify the spae

X

�

0

\ �

??

where problem (30) is to be solved ; one hooses then

the largest subspae in �

??

where a

�

is positive (therefore oerive),

whih will ontain X

�

0

\ �

??

, and proves that the solution of (30)

on this spae is an order �

2

approximation of the solution of (30) on

X

�

0

\�

??

. In pratie (f. setion 5) there was no need to implement

this proedure as (25) seems to be satis�ed.

Remark 12 The numerial omputation of

^

W involves the resolution

of equation (30) over the disrete subspae �

??

Æ

of �

??

; the orrespond-

ing solution

^

W

Æ

will be an approximation of

^

W whih onverges to

^

W when the disretization parameter Æ is suh that �

??

Æ

onverges to

the spae �

??

.

Remark 13 Upon writing this paper we were made aware [5℄ that (30)

is equivalent to a density matrix quadrati onvergene equation (see

for instane [3℄ an referenes therein for an introdution). A study

is being undertaken to further investigate the advantages that this

equivalene may bring at the numerial level.

5 Numerial simulations

The theory presented in the previous setions was tested in two at-

egories of numerial experiments.
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In the experiments of the �rst ategory we heked on simple ases

(hydrogen moleule, helium) that the methodology proposed above is

oherent with available results when the problem (30) that provides

^

W is solved on a very �ne disretization of H.

In a seond stage more omplex moleules were studied and the

method was implemented in a Hartree-Fok quantum hemistry ode.

Before presenting the results let us remark that the partial di�er-

ential equation (PDE) (30) is, for N large, very diÆult to disretize

with lassial tools from the PDE equations (�nite elements, �nite

volumes, ...) due to the high dimensionality of the linear spaes in-

volved. Moreover a good disretization has also to take into aount

some spei� quantum hemial e�ets as the singularities of the

eletroni wavefuntion around nulei; in onlusion, only very small

quantum systems are thus available for study using lassial tools in

solving PDEs ; suh systems are for example the hydrogen moleule

(H

2

) and the helium atom (He).

5.1 Validation of the disretization basis

We illustrate in this setion how to use of the error bars to validate

the disretization basis used to solve the Hartree-Fok problem. Error

bars are omputed for several approximations of the exat wavefun-

tion orresponding to several disretization basis and the exat (best

known) Hartree-Fok energy is seen to fall within the error bars as

indiated by the theory. The size of the error bar an be therefore

used to to asses the quality of the result and thus to validate the

disretisation basis used.

For all the numerial experiments we plaed ourselves into the

Restrited (losed) shell Hartree-Fok (Lewis eletron pair) approxi-

mation that states that when the number of eletrons in a moleule is

even, one an group together the eletrons 2 by 2; the two eletrons in

eah suh pair will share a ommon spatial wavefuntion but will have

opposite spin. Within this approximation, for a bi-eletroni system

as the hydrogen moleule or Helium atom, the searh of the eletroni

wavefuntion of the system redues to the searh of a funtion u of 3

variables suh that

��u+ V u+

�

juj

2

?

1

jxj

�

+ �u = 0 in R

3

:

The spae to be disretized is therefore R

3

; in fat using lassial

loalization arguments it an be redued to a brik of R

3

that ontains
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the nulei of the system ; in the ase of the Helium atom this brik

was taken to be a ube entered around the nuleus.

We will present in the following the results obtained for the Helium

atom; eah axis of a ube entered in the nuleus mentioned above

was disretized with the same number of points that varied between

60 and 120 depending on the singularities of the initial solutions

onsidered; preise results were obtained for about 100 points per

dimension and orresponding vetors of size 100

3

= 10

6

.

Several initial approximations �

i

, i = 2; 3; 4; 5; 6 of the eletroni

wavefuntion were onsidered; eah orrespond to a quantum hem-

ial omputation that used spei� quantum basis sets denominated

as STOnG, n = 2; 3; 4; 5; 6 ; the larger the parameter n, the �ner

the basis used; in eah ase the linear problem (30) was solved on

the hosen grid as indiated in Remark 12 and then the symmetri

part of the error was reonstruted as indiated in previous setion.

In order to solve (30) an iterative algorithm was employed, the ma-

trix assoiated to D

2

E

�

(�)(�; �) (typially 10

6

� 10

6

) being too large

for diret inversion; �nally in order to take advantage of the tensor-

produt-like disretization the omputation of onvolution produts

was done by means of fast Fourier transforms.

The �gure 1 shows the energy of the initial wavefuntion � (\Clas-

sially omputed energy"), the best known approximation of the en-

ergy Helium atom, the improved energy obtained as in thm. 2 and

then the order �

2

lower bound as desribed in Thm. 3; agreement

with the theoretial results is obtained.

5.2 Validation of the iterative resolution proedure

The numerial resolution of the Hartree-Fok equations involves it-

erative resolution of eigenvalue problems. The number of iterations

neessary is not known in advane and no natural stoping riterion

exists. We found therefore important to illustrate how the error bars

presented above an be used to validate the number of iterations to be

undertaken by the resolution proedure. This time error bars are om-

puted for several approximations of the eletroni wavefuntion eah

orresponding to a di�erent number of iterations, the disretiza-

tions basis being kept �xed. The error bar give in this ase lower

and upper bounds for the Hartree-Fok energy of the solution of the

Hartree-Fok equations on the given disretizations basis. The size

of the error bar an be taken as a measure of the improvement still

possible if iterations are arried on untill onvergene (in the given

disrete basis) is reahed.
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Lower estimator

Improved energy

Best known energy

Classially omputed energy

Estimator behaviour

Basis set STOnG

E

n

e

r

g

y

65432

-2.7

-2.75

-2.8

-2.85

-2.9

-2.95

-3

-3.05

Fig. 1. A posteriori improvements for the energy obtained with the basis sets

STOnG.

Motivated by the suess of the �rst series of experiments, this

time the moleules onsidered were larger, as is for instane the ase

of the arbyne moleule Cr(CO)

4

ClCH, with 52 eletron pairs (104

eletrons) ; the model hosen was again the Restrited Hartree Fok

model; in this setting the energy to minimize is

E

HF

(�

1

; :::; �

N

) =

N

X

i=1

Z

R

3

�

jr�

i

j

2

+ V j�

i

j

2

�

+

ZZ

R

3

�R

3

�

�

(x)�

�

(y)

jx� yj

dxdy �

1

2

ZZ

R

3

�R

3

j�

�

(x; y)j

2

jx� yj

dxdy

with the same formal de�nitions (f. Eq. (3 , 4) for �

�

(x), �

�

(x; y)).

The Euler-Lagrange equations assoiated to the minimization of E

HF

on H \ K are ompletely similar to (7) (only some multipliative

fators before the last two terms in (5) are hanged).

Due to onerns about omputation omplexity and eÆieny and

also for realisti veri�ation we have hosen to implement the a pos-

teriori proedure (and the \onvergene aeleration" version) in a

quantum omputational hemistry ode named Asterix [7,19,23℄. As

a onsequene, the evaluation of the performanes of the a posteri-

ori proedure is to be ompared with the performanes of quantum
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hemistry ab initio odes. An introdution to the omplexity of the

algorithms used is given in the following.

One partiularity of omputational quantum hemistry odes (es-

peially at the Hartree-Fok level) is the presene of very speial

Galerkin disretization basis. This basis ontains in general funtions

on R

3

whih are entered in the nulei of the system and are sum of

Gaussian type funtions; it is beyond the sope of this paper to give

a rigorous presentation of the basis involved, let us just say that they

all satisfy an important requirement: for any elements h

�

, h

�

, h



and

h

Æ

of the disretization basis, the quantity

(��jjÆ) =

ZZ

R

3

�R

3

h

�

(x)h

�

(x)h



(y)h

Æ

(y)

jx� yj

dxdy (38)

an be omputed in O(1) time

3

.

Let us denote by n the number of basis funtions used when om-

puting the Hartree-Fok energy of a moleule with N eletron pairs

(2N eletrons); in general n is taken to depend linearly on N .

In order to solve the nonlinear eigenvalue equations (7) iterative

(also named selfonsistent - SCF) algorithms are used. The most

straightforward idea is to start from an initial guess �

1

for the wave-

funtion and then, for any i � 1, onstrut the Fok operator F

i

=

F

�

i

assoiated to �

i

, diagonalize F

i

and take its �rst N eigenfun-

tions as the next guess �

i+1

for the wavefuntion (Roothaan algo-

rithm) ; ideally this �xed point algorithm will onverge and the so-

lution will be the solution of equations (7). Numerial reality does

not however always validate this hoie, we refer to [6℄ for a mathe-

matial desription of the phenomena involved. In order to ure the

onvergene de�ienies, various other methods have been proposed

[6℄: the basi level shift method, DIIS,...

During the SCF resolution of the Hartree-Fok equations, the most

time onsuming part is the onstrution of the Fok operator F

�

i
; we

will see in the following that this is an O(N

4

) operation, one order of

magnitude larger than the diagonalization of the Fok operator itself

(under assumption that n is linear in N). Let

B = fh

�

;� = 1; :::; ng

be a disretization basis and � = (

P

n

�=1

�

i�

h

�

)

N

i=1

be an element in

the disretized spae X = (span(B))

N

and also in K. The matrix

of the operators �� and V take O(N

2

) time to ompute, supposing

3

Using the fat that the produt of two gaussian funtions is also a gaussian

funtion, analytial formulas may be provided for the omputation of the integral

(38).
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that �nite onstant time to ompute

R

R

3

rh

�

�rh

�

and

R

R

3

V h

�

h

�

is

needed. The situation is very di�erent for the matries of the opera-

tors (�

�

?

1

jxj

) and  7!

R

R

3

�

�

(x;y)

jx�yj

 (y)dy. Let us take for instane the

last operator. To ompute the matrix of this operator it is neessary

to ompute for all h

�

, h



2 B:

Z

R

3

Z

R

3

�

�

(x; y)h

�

(y)

jx� yj

dyh



(x)dx =

N

X

i=1

ZZ

R

3

�R

3

P

n

�=1

�

i�

h

�

(x)

jx� yj

�

n

X

Æ=1

�

iÆ

h

Æ

(y)h

�

(y)h



(x)dxdy =

N

X

i=1

n

X

�=1

n

X

Æ=1

�

i�

�

iÆ

(�jj�Æ):

Even if formally this is a O(N

5

) omputation (summation over three

indies for eah of the N

2

required terms), it is easy to see that pre-

omputing in O(N

3

) for any �; Æ = 1; :::; n: D

�

�;Æ

=

P

N

i=1

�

i�

�

iÆ

the

omputation redues to order N

4

; unfortunately no further redu-

tions are possible so the matrix of the operator  7!

R

R

3

�

�

(x;y)

jx�yj

 (y)dy

is obtained by omputing (D

�

�;Æ

)

n

�;Æ=1

, then obtain in O(N

4

) the de-

sired matrix

�

P

n

�;Æ=1

D

�

�;Æ

(�jj�Æ)

�

n

�;=1

. The omputational om-

plexity of a SCF Hartree-Fok omputation is therefore N

I

?N

4

where

N

I

is the number of iterations required by the SCF method, usually

in the range 10 � 50. We shall apply the bound proedure and the

improvement strategy to qualify the (known) solution obtained from

the previous iterative proedure far from onvergene.

Let us now present the omplexity issues related to the omputa-

tion of the reonstruted error

^

W . The problem (30) is approximated

on a produt of N dimensional spaes so the solution will be an

n � N vetor (onsidering the same disretization X of H as the

one used to solve the Hartree-Fok problem)

4

; we will denote by P

the matrix of the projetor from X to X \�

??

; it is easy to see that

P is blok diagonal so projeting an element 	 = (

P

n

�=1

	

i�

h

�

)

n

i=1

of X to X \ �

??

will be an O(N

3

) operation. Let us denote by A

�

the matrix of the seond di�erential in � of the energy with respet

to this disretization, and by b

�

the \vetor" orresponding to the

4

Sine only one disretization is used for the entire omputation, the bounds

thus obtained refer to the energy of the solution of the Hartree-Fok problem on

disrete spae X. When the disretization X is �ne enough, one an onsider to

obtain bounds for the Hartree-Fok energy. In any situation, bounds are usefull

e.g. as stopping riteria for the iterative SCF proedure (and eventually to ael-

erate onvergene); then, in order to obtain bounds on the Hartree-Fok energy,

orretion need to be solved on a grid �ne enough to be onsidered exat as is the

ase of the omputation presented in Fig. 1.
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�rst di�erential in � of the energy, interpreted as an element of the

dual X

0

. The problem (30) has then the following disretization: �nd

w 2 R

n�N

suh that w = Pw and

(P

t

A

�

P )w + (P

t

b

�

) = 0: (39)

The matrix A

�

of the linear system (39) is full and impossible to om-

pletely invert in pratie due to the high omputational omplexity

O(N

6

) required. However, using the same argument as above, ap-

plying the matrix A

�

to a vetor v 2 R

n�N

an be done in O(N

4

)

operations. The problem (39) is then solved iteratively ; �nally let

us remark that the total ost of the reonstrution of the symmetri

part is an O(N

3

) proess.

The a posteriori method was tested in the omputation of the

Hartree-Fok energy of the arbyne Cr(CO)

4

ClCH moleule. For

eah iteration step of the SCF algorithm the order �

4

exat energy es-

timations were onstruted, and also the orresponding lower bounds

as desribed in Thm. 3. The onvergene of the SCF method is pre-

sented in Fig. 2 and 3. Remark the presene of quadratially onver-

gene periods (iterations 10-50), the presene of "jumps" (55-65) and

slow onvergene periods (70-90). In order to avoid the last regime,

in pratie one only uses the SCF algorithm for a small number of

iterations 10-40 and then enlarges disretization basis, or tries to em-

pirially optimize other parameters (DIIS).

The results obtained by the a posteriori proedure are presented

in the Fig. 4 and 5. For some approximate solution obtained during

the SCF iterations, the method desribed in previous setion was

applied to improve the energy and obtain a lower bound (initial data

orresponding to more than 60 iterations is interpreted as onverged

due to numerial round-o� errors); we do not attah speial meaning

to the good properties of the reonstruted error for N = 30 (f. Fig.

5). As the results show, the method gives nearly onverged results as

soon as the initial approximation is as good as the one from the 10

th

iteration of the SCF proedure.

Remark 14 The number of iterations required to solve the linear sys-

tem (39) was of the order of 10, whih makes this method more

eÆient than the SCF yles; for instane �nding the improvement

from the 10

th

SCF yle needs 10 iterations to solve (39) and is as

good as the result of the 60

th

SCF iteration.

Remark 15 Applying the matrix A

�

to a vetor v 2 R

n�N

in (39) re-

quires at most O(N

4

) operations. The method is however ompatible
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Fig. 2. The onvergene of the energy omputed by the SCF algorithm in the

form used by Chemists. The number of SCF yles (iterations) ranges between 1

and 30. No a posteriori improvements are made.
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Fig. 3. The onvergene of the energy omputed by the SCF algorithm in the

form used by Chemists. The number of SCF yles (iterations) ranges between 15

and 90. No a posteriori improvements are made.
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Fig. 4. A posteriori error bounds and improvements are omputed for the re-

sults of the SCF proedure. In eah ase we plot the energy of the initial (SCF)

approximation, the energy of the wavefuntion as omputed by the a posteriori

improvement proedure and the lower bound as desribed in Thm. 3. The refer-

ene value of the energy is the result of the SCF algorithm after 90 iterations.

The initial approximations to improve are the results of the SCF proedure for a

number of yles between 7 and 30.

with the a priori introdution of further loalization properties (as

domain deomposition methods) of the eletroni wavefuntion as it

is usually the ase when more eÆient Hartree-Fok omputations

are searhed for [20℄, whih results in the appliation of the matrix

A

�

being a O(N

3

) proess (or even less); ombining with lassial

onvergene aeleration tools from the linear system solving (pre-

onditioning ...) and with theorem 2, this method an be also seen as

another approah towards the design of Hartree-Fok omputations

of lower algorithmi omplexity.
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