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The first-order phase transition of the two-dimensional eight-state Potts model is shown to be
rounded when long-range correlated disorder is coupled to energy density. Critical exponents are
estimated by means of large-scale Monte Carlo simulations. In contrast to uncorrelated disorder, a
violation of the hyperscaling relation γ/ν = d − 2xσ is observed. This violation is caused by large
disorder fluctuations, like in the 3D random field Ising model. In the thermal sector too, evidences
are given for such violation in the two hyperscaling relations α/ν = d− 2xǫ and 1/ν = d− xǫ. The
scaling dimension of energy is conjectured to be xǫ = a/2, where a is the exponent of the algebraic
decay of disorder correlations.

PACS numbers: PACS numbers: 64.60.De, 05.50.+q, 05.70.Jk, 05.10.Ln

Quenched disorder when coupled to the energy den-
sity, say by dilution or random couplings, is known to
soften first-order phase transitions. As argued by Imry
and Wortis [1], local fluctuations of impurity concentra-
tion can destabilize the ordered phases in coexistence at
the transition temperature if the surface tension is suf-
ficiently small. In 2D, it was rigorously proved that an
infinitesimal amount of disorder is sufficient to make any
first-order transition continuous [2, 3]. The complete van-
ishing of the latent heat was first observed numerically
in the case of the 2D 8-state Potts model [4]. The criti-
cal behavior of the disorder-induced second-order phase
transition is governed by a new random fixed point [5].
The universality class was later shown to depend on the
number of states q [6]. In 3D, a finite disorder is required
to round completely the first-order phase transition. The
phase diagram exhibits a tricritical point separating a
first-order regime from the disorder-induced continuous
one, as first observed in the bond-diluted 4-state Potts
model [7]. A rounding of the first-order phase transition
of the 2D Potts model was also reported for anisotropic
aperiodic sequences of couplings [8], and for layered ran-
dom couplings [9, 10]. In both cases, the couplings are
infinitely correlated in one direction. In the random case,
the critical behavior was shown to be governed by a q-
independent infinite-randomness fixed point. The critical
exponents are therefore those of the layered random Ising
model, the celebrated McCoy-Wu model [11, 12]. Inter-
estingly, the same critical behavior is observed for the
Potts model with homogeneous uncorrelated disorder in
the limit q → +∞ [13]. Hyperscaling holds for all these
models.

In the following, we consider random bond cou-
plings Jij > 0 with algebraically decaying correla-

tions (J(0)− J̄)(J(~r)− J̄) ∼ r−a. A simple general-
ization of the Imry-Wortis criterion shows that the low-
temperature phase is destabilized when the coupling fluc-

tuations, inside a domain of characteristic length ℓ,

√

(J − J̄)2 ∼

[

ℓd
∫

ℓd

dd~r

ra

]1/2

∼ ℓd−a/2, (a < d) (1)

increase faster with ℓ than the interface free energy σℓd−1.
In the two-dimensional case, we expect the first-order
phase transition to be softened for a ≤ 2.
We consider the 2D q-state Potts model with Hamil-

tonian

−βH =
∑

(i,j)

Jijδσi,σj
(2)

where σi ∈ {0, 1, . . . , q − 1} and the sum extends over
pairs of nearest neighbors of the square lattice. We re-
strict ourselves to the case q = 8 for which the correlation
length of the pure model is ξ ≃ 24 at the transition tem-
perature. We considered a binary distribution of coupling
constants Jij ∈ {J1, J2} with

(

eJ1 − 1
)(

eJ2 − 1
)

= q. (3)

In the case of uncorrelated disorder, Eq. (3) is the self-
duality condition that gives the location of the critical
line. The ratio r = J2/J1 is used as a measure of the
strength of disorder. Here, we presents results for the
case r = 8. To generate correlated coupling configura-
tions {Jij}, we simulate another spin model, namely the
Ashkin-Teller model (σi, τi = ±1)

−βHAT =
∑

(i,j)

[

JATσiσj + JATτiτj +KATσiσjτiτj
]

(4)

at different points of its critical line e−2KAT

= sinh 2JAT.
Two symmetries of the Hamiltonian are spontaneously
broken at low temperatures: the global reversal of the
spins σi and the reversal of both σi and τi. There-
fore, two order parameters can be defined, magnetiza-
tion

∑

i σi and polarization
∑

i σiτi, leading to two inde-
pendent scaling dimensions βAT

σ = 2−y
24−16y and βAT

στ =



2

1
12−8y wherein we use the parametrization cos πy

2 =

1
2

[

e4K
AT

− 1
]

(y ∈ [0; 4/3]). The correlation length ex-

ponent is νAT = 2−y
3−2y . Spin configurations of this model

are generated by Monte Carlo simulation using a cluster
algorithm [14]. For each of them, a coupling configura-
tion of the Potts model is constructed as

Jij =
J1 + J2

2
+

J1 − J2
2

σiτi, (5)

where the site j is either at the right or below the site
i. By construction, disorder fluctuations are self-similar
and the coupling constants display algebraic correlations

(Jij − J̄)(Jkl − J̄) ∼ |~ri − ~rk|
−a at large distances with

a = 2βAT
στ /νAT = 1/(4 − 2y). We have considered six

points on the critical line, y ∈ {0, 0.25, 0.50, 0.75, 1, 1.25},
leading to six correlated disorder distributions with a ≃
0.25, 0.286, 0.333, 0.4, 0.5 and 0.667. Note that for y = 0,
the Ashkin-Teller model is equivalent to the 4-state Potts
model. The critical behavior is therefore affected by log-
arithmic corrections. Finally note that this construction
ensures that the constraint (3) implies the self-duality of
our random Potts model.
The Potts model is then simulated using the Swendsen-

Wang algorithm [15]. Lattice sizes between L = 16 and
256 are considered. For each disorder configuration, 1000
MCS are performed to thermalize the system and 20, 000
MCS for data accumulation (auto-correlation time is
τ ≃ 2 for L = 256). Thermodynamic quantities are av-
eraged over a number of disorder configurations propor-
tional to 1/L2. For the largest lattice size L = 256, 2560
disorder configurations are generated while for L = 64
for instance, this number is raised up to 40960. Stabil-
ity of disorder averages is checked. In the following, we
will denote 〈X〉 the average of an observable over ther-
mal fluctuations and 〈X〉 the average of the latter over
disorder.
On the critical line, the typical spin configurations of

the Ashkin-Teller model display a large cluster of polar-
ization στ = +1 or −1. As a consequence, our random
coupling configurations also exhibit large clusters of ei-
ther strong or weak bonds. The probability distribution
of the total energy of the Potts model shows two peaks
corresponding to these two kinds of bond configurations.
This distribution is highly correlated to the probability
distribution of polarization of the Ashkin-Teller model.
Since the latter undergoes a second-order phase transi-
tion, the two peaks come closer as the lattice size is in-
creased. Note that in our model, macroscopic region of
strong couplings are not rare: they have a probability
1/2. Moreover, they have a fractal dimension 1 < df < 2
determined by the Ashkin-Teller model and, in the ther-
modynamic limit, only one such macroscopic region is
expected to be present in the system. For this reason,
the transition is not smeared but rounded [16].
We estimate critical exponents by Finite-Size Scaling.

The exponent β/ν can be extracted from magnetization
〈m〉 and its moments 〈mn〉 with n = 2, 3, 4. We observe
nice power laws without any significant correction to scal-
ing. Our estimates of xσ = β/ν evolve with a and range
from 0.061(5) (y = 0) to 0.108(4) (y = 1.25), to be com-
pared with 0.150(2) for uncorrelated disorder (Tab. I).
We then consider the average magnetic susceptibility, nu-
merically computed via the fluctuation-dissipation theo-
rem χ̄ = Ld〈m2〉 − 〈m〉2. The data display large cor-
rections to scaling (see Fig. 1). A cross-over is observed
around L = 48, not far from the correlation length ξ = 24
of the pure 8-state Potts model. In the region L ≥ 96,
power-law interpolations give stable estimates for γ/ν
going from 1.70(7) (y = 0.00) to 1.62(4) (y = 1.25),
to be compared with 1.69(4) for uncorrelated disorder.
The hyperscaling relation γ/ν = d − 2β/ν is therefore
not satisfied. We shall identify disorder fluctuations as
the origin of this hyperscaling violation, like in the 3D
Random-Field Ising Model (RFIM). Consider the follow-
ing decomposition:

χ̄ = Ld
[

〈m2〉 − 〈m〉
2]

− Ld
[

〈m〉2 − 〈m〉
2]
. (6)

The first term, when computed separately, displays a
power law behavior with an exponent (γ/ν)∗ incompat-
ible with γ/ν but in agreement with the hyperscaling
relation (Tab. I). The second term of (6), the so-called
disconnected susceptibility, involves the ratio

Rm =
〈m〉2 − 〈m〉

2

〈m〉
2 , (7)

which is expected to behave as Rm ∼ Rm(∞) + AL−φ,
if magnetization is not self-averaging [17]. We indeed
observe that Rm goes to a non-vanishing constant in the
limit L → +∞ (Fig. 2). The second term of Eq. (6)

therefore behaves as Ld〈m〉
2
∼ Ld−2β/ν, i.e. with an

exponent satisfying the hyperscaling relation. Since the
data indicate that it is also the case for the first term
of Eq. (6), one can imagine that, if their amplitudes
are equal, the dominant terms will cancel. To test this
hypothesis, we compute the ratio

〈m2〉 − 〈m〉
2

〈m〉2 − 〈m〉
2 . (8)

We observe a plateau at 1.00(4) (Fig. 2). We therefore
conclude that the hyperscaling violation is the result of
an exact cancellation of the dominant contributions of the
two terms of Eq. (6). The scaling of the average suscep-
tibility is therefore determined by the first non-vanishing
scaling correction χ̄ ∼ Ld−2β/ν−ω of any of the two terms
of Eq. (6) and the hyperscaling violation exponent θ is
the exponent ω of this correction. Note that this is also
the mechanism of hyperscaling violation invoked in the
context of the RFIM [18] where our exponent (γ/ν)∗ is
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FIG. 1. Average magnetic susceptibility χ̄ (bottom) and

Ld[〈m2〉−〈m〉
2

] (top) versus lattice size L for different values
of y and uncorrelated disorder (Uncorr.). The dashed line
indicates that the fit is performed over lattice sizes L ≥ 96
only.
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FIG. 2. Ratios defined by Eq. (7) on the left and (8) on the
right versus the inverse of the lattice size.

denoted 4 − η̄ [19]. In the case of uncorrelated disorder,
the ratio (8) goes to a value significantly different from
1 in the large size limit (Fig. 2). The dominant contri-
bution of the two terms of (6) do not cancel in this case
and therefore hyperscaling is not violated.
The divergence of specific heat is completely washed

out by the introduction of disorder, which means that
the specific heat exponent α/ν is zero or negative (Fig 3).
C̄ = Ld< e2 > − < e >2 can be decomposed in the same
way as χ̄:

C̄ = Ld
[

〈e2〉 − 〈e〉
2]

− Ld
[

〈e〉2 − 〈e〉
2]
. (9)

We observe a nice power-law behavior of the first term
with an exponent in good agreement with (α/ν)∗ =
(γ/ν)AT = d − a, which means that the fluctuations of
energy are dominated by the fluctuations of the couplings
and therefore of the polarization density in the original
Ashkin-Teller model. The second term involves the ra-
tio Re, constructed in the same way as Rm (7). Our
numerical data show that energy is not self-averaging
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FIG. 3. Average specific heat C̄ (bottom) and Ld[〈e2〉− 〈e〉
2

]
(top) versus lattice size L for different values of y and uncor-
related disorder (Uncorr.). For clarity, error bars of C̄ in the
uncorrelated case have been drawn as dashed line when they
overlap with other points.
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FIG. 4. Ratios defined in the same way as Eq. (7) on the left
and (8) on the right but for energy instead of magnetization.
On the right, the error bars for uncorrelated disorder are large
(they overlap other bars for large lattice sizes) and have not
been represented for clarity.

(Re(∞) 6= 0) and the ratio <e2>−<e>2

<e>2−<e>2 exhibits a plateau

at the value 1.00(5) (Fig. 4). This implies the cancella-
tion of the dominant contribution of the two terms of C̄ so
that a violation of the hyperscaling relation α/ν = d−2xǫ

is expected. Even though we cannot measure xǫ from
the scaling behavior of energy, we infer that it can be ex-
tracted from the hyperscaling relation (α/ν)∗ = d− 2xǫ

which implies xǫ = a/2. In the case of uncorrelated disor-
der, Re is compatible with zero which means that energy
is self-averaging and therefore the two dominant contri-
butions of Eq. (9) do not cancel. As observed, hyper-
scaling is not violated in this case.

In pure systems, a good estimator for the deter-

mination of the correlation exponent ν is − d ln〈m〉
dβ =

Ld 〈me〉−〈m〉〈e〉
〈m〉 . This is generalized to random systems
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FIG. 5. Quantity − d ln 〈m〉
dβ

(bottom) and Ld 〈me〉−〈m〉 〈e〉

〈m〉

(top) versus lattice size L for different values of y and un-
correlated disorder (Uncorr.).

as:

−
d ln 〈m〉

dβ
= Ld 〈me〉 − 〈m〉〈e〉

〈m〉
. (10)

and is expected to scale as d− xǫ. A power-law interpo-
lation of our data gives exponents 1/ν close to zero but
with large error bars. Consider again the decomposition

−
d ln 〈m〉

dβ
= Ld

[

〈me〉 − 〈m〉 〈e〉
]

〈m〉
−Ld

[

〈m〉〈e〉 − 〈m〉 〈e〉
]

〈m〉
.

(11)
The first term displays a power-law behavior with expo-
nents 1/ν∗ close to, though slightly above, d− xǫ, which
implies xǫ ≃ a/2 (Tab. I). This estimate is consistent
with the one obtained from the specific heat. The sec-
ond term of (11) involves the ratio

Rme =
〈m〉〈e〉 − 〈m〉 〈e〉

〈m〉 〈e〉
, (12)

which behaves as Rme(L) ∼ Rme(∞) + aL−φ′

with φ′ ≃
0.3. The constant Rme(∞) is clearly finite, except maybe
for y = 1.25. Like in the magnetic case, the two terms of
Eq. (11) have the same dominant scaling behavior. The
ratio

〈me〉 − 〈m〉 〈e〉

〈m〉〈e〉 − 〈m〉 〈e〉
(13)

displays a plateau at 1.00(4) (Fig. 6). Consequently, the
dominant contribution of the two terms of (11) is the
same and they cancel. Hence, the hyperscaling relation
1/ν = d − xǫ is expected to be violated. In the case of
uncorrelated disorder, Rme is compatible with zero so we
do not expect any cancellation of the two dominant con-
tributions of Eq. (11) and, consequently, no hyperscaling
violation.
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FIG. 6. Ratios defined by Eq. (12) on the left and (13) on the
right. On the right, the error bars for uncorrelated disorder
are large and have not been represented for clarity.

y 0 0.25 0.5 0.75 1 1.25

a 0.25 0.286 0.333 0.4 0.5 0.667

β/ν 0.061(5) 0.060(5) 0.067(5) 0.075(5) 0.091(5) 0.108(4)

d− 2β/ν 1.88(1) 1.88(1) 1.87(1) 1.85(1) 1.82(1) 1.784(8)

γ/ν 1.70(7) 1.69(8) 1.69(7) 1.67(8) 1.66(6) 1.62(5)

(γ/ν)∗ 1.91(2) 1.90(3) 1.89(3) 1.87(3) 1.83(3) 1.79(3)

(α/ν)∗ 1.75(1) 1.73(2) 1.68(2) 1.61(2) 1.51(2) 1.34(2)

d− a 1.75 1.714 1.667 1.600 1.500 1.333

1/ν∗ 1.90(2) 1.89(2) 1.86(2) 1.83(2) 1.78(2) 1.69(2)

d− a/2 1.875 1.857 1.835 1.8 1.75 1.667

TABLE I. Critical exponents measured by Monte Carlo sim-
ulations, or computed from them, and conjectured values.

Finally, note that, in contrast to the RFIM, at least
two hyperscaling violation exponents are needed to ex-
plain the numerical data presented in this letter. In the
magnetic sector, the hyperscaling violation exponent is
estimated to be θ = (γ/ν)∗ − (γ/ν) ≃ 0.2 while in the
energy sector, θ = (α/ν)∗ − (α/ν) & d− a.
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