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Abstra
t

Theoreti
al results are presented on the ability to arbitrarily steer

about a wavefun
tion for a quantum system under time-dependent

external �eld 
ontrol. Criteria on the �eld free Hamiltonian and the

�eld 
oupling term in the Hamiltonian are presented that assure full

wavefun
tion 
ontrollability. Numeri
al simulations are given to il-

lustrate the 
riteria. A dis
ussion on the theoreti
al and pra
ti
al

relationship between dynami
al 
onservation laws and 
ontrollability

is also in
luded.

PACS number(s): 32.80.Qk

1 Introdu
tion

There is mu
h interest on 
ontrolling quantum systems through their inter-

a
tion with external �elds [1℄ - [11℄. This a
tivity is motivated by a potential

wide range of appli
ations [7℄ that this framework 
an a

ommodate. En
our-

aging positive results have already been obtained in 
losed loop experiments

[12, 13℄, but both theoreti
al and experimental resear
h is still needed to

understand the subtle nature of the 
ontrol pro
esses.

Early e�orts at a
hieving quantum 
ontrol based on intuitive physi
al

understanding generally gave poor results. Signi�
ant advan
es have 
ome

through the introdu
tion of rigorous 
ontrol theory tools together with en-

han
ed laser pulse shaping 
apabilities. An important preliminary step to

any experiment are indi
ations of its feasibility through theoreti
al studies

and 
omputer simulations. Su
h analyses 
an indi
ate the set of obje
tives

that 
an reasonably be met and present the nature of a laser pulse to most

likely meet the obje
tives. The study of the set of quantum states that 
an
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be attained is an aspe
t of 
ontrol theory aimed at de
iding whether the sys-

tem is 
ontrollable, i.e. if any admissible quantum state 
an be attained with

some (admissible) laser �eld. Until re
ently the answer to this question was

given using results available in [14℄ or [15℄ ; although useful in many 
ases,

these results may prove more general than often required, as in [14℄ where

general results are derived for the evolution of unitary operators, or too pes-

simisti
 as in [15℄ where negative results are presented for in�nite dimensional


ontrollability. A theoreti
al study was then undertaken [16℄ to shed some

light on the phenomena involved when 
ontrollability for the wavefun
tion

is investigated in �nite dimensional bilinear quantum systems. The purpose

of this paper is to explore and dis
uss the pra
ti
al utility of these latter

formal theoreti
al results along with simple illustrations through 
omputer

simulations. The outline of the paper is as follows: the theoreti
al results

are presented in se
tion 2 ; supporting numeri
al simulations and some pra
-

ti
al extensions of the theory are presented in se
tion 3. A dis
ussion on

the 
onne
tions between dynami
al 
onservation laws and 
ontrollability of

quantum systems is given in se
tion 4 ; 
on
luding remarks are presented in

se
tion 5.

2 Theoreti
al Controllability Criteria

Consider a quantum system with internal Hamiltonian H

0

prepared in the

initial state 	

0

(x), where x denotes the relevant 
oordinate variables. The

external intera
tion will be taken here as a 
ontrol �eld amplitude �(t) 2 R


oupled to the system through a time independent (e.g, dipole moment)

operator B (see also [17℄) ; then the time-dependent 
ontrol S
hr�odinger

equation that gives the evolution of the state 	(x; t) at time t is :

i~

�

�t

	(x; t) = H

0

	(x; t) + �(t) � B	(x; t) = H	(x; t) (1)

	(x; t = 0) = 	

0

(x)

In order to avoid trivial 
ontrol problems we suppose [H

0

;B℄ 6= 0, where the

Lie bra
ket [�; �℄ is de�ned as [U; V ℄ = UV � V U .

The goal is to �nd if any �nal time T > 0 and �nite energy 
ontrol pulse

�(t) 2 L

2

([0; T ℄) exist su
h that �(t) is able to steer the system from 	

0

(x) to

some prede�ned target 	(x; T ) = 	

target

(x). If the answer to this question is

aÆrmative, then the system is 
ontrollable. Given that H is Hermitian, the

L

2

norm k	(x; t)k

L

2

x

(R




)

of 	 is 
onserved throughout the evolution so that

	(x; t) evolves on the unit sphere S(0; 1) of L

2

(R




):

S(0; 1) = ff 2 L

2

(R




); kfk

L

2

(R




)

= 1g
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Numeri
al simulations on the system (1) require the introdu
tion of a

�nite dimensional setting. A 
ommon 
hoi
e is to 
onsider the set D =

f	

i

(x); i = 1; ::; Ng of the �rst N eigenstates of the in�nite dimensional

Hamiltonian H

0

and restri
t the operators involved to the linear spa
e that

D generates. Let A and B be the matri
es of the operators H

0

and B

respe
tively, in terms of this base, and as above, it is supposed that [A;B℄ 6=

0.

Before leaving the in�nite dimensional setting, we remark that the 
on-

trollability of (bilinear) quantum systems on in�nite dimensional spa
es is a

diÆ
ult problem and the resolution of this matter is only partially solved.

Moreover, the generi
 results obtained so far in this setting are negative

[20, 15, 21, 22, 23℄ showing the need for tailored 
ontrollability 
on
epts and

a thorough understanding of the �nite dimensional 
ase in order to appro-

priately extend the positive 
ontrollability results available [14, 16℄ to the

in�nite dimensional setting. The present study is also motivated by the exis-

ten
e of intrinsi
ally �nite dimensional quantum me
hani
al situations (e.g.

N-level spin systems, et
.).

We denote C = (C

i

)

N

i=1

to be the 
oeÆ
ients of 	

i

(x) in an expansion of

the evolving state 	(t; x) =

P

N

i=1

C

i

(t)	

i

(x), N � 3; Eq (1) now be
omes

(

i~

�

�t

C = AC + �(t)BC

C(t = 0) = C

0

(2)

C

0

= (C

0i

)

N

i=1

; C

0i

=< 	

0

;	

i

>;

P

N

i=1

jC

0i

j

2

= 1 (3)

The 
ontrollability of Eq. (2) has been already dealt with in the literature

[14℄ by 
onsidering the problem of the 
ontrollability of a system posed on the

spa
e of the unitary matri
es of dimension N . This elegant approa
h has the

bene�t of drawing on the general tools and results from bilinear 
ontrollability

on Lie groups. However, verifying those 
riteria may be 
omputationally

diÆ
ult when N is large; moreover the results obtained this way give only

suÆ
ient 
onditions for exa
t 
ontrollability (due to a setting that is more

general than often required). Thus, we 
onsider identifying 
omputationally


onvenient and intuitive 
onditions for �nite dimensional wavefun
tions to

be rea
hable from an arbitrary initial state (see also [24℄ for an overview of

the topi
).

We make the 
ommon assumptions that the A matrix is diagonal and that

the B matrix is real symmetri
 (Hermitian). Denote �

i

2 R; i = 1; ::; N; as

the real diagonal elements of A (i.e. the energies asso
iated with the states

	

i

). Denote S

M

(0; 1) = S(0; 1)\M . The 
onservation of the L

2

norm of the

wavefun
tion 
an be written in the �nite dimensional representation:
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N

X

i=1

jC

i

(t)j

2

= 1; 8t � 0 (4)

2.1 Conne
tivity Graph

The B matrix plays the 
riti
al role of spe
ifying the kinemati
 
oupling

amongst the eigenstates of the system referen
e Hamiltonian matrix A. The

stru
ture of the set of all dire
t and indire
t 
ouplings between eigenstates is

very relevant to assessing 
ontrollability. In order to formalize the 
on
epts,

we asso
iate to the system a non-oriented graph G = (V;E) 
alled the 
on-

ne
tivity graph (the reader is referred to [25℄ for graph theory 
on
epts). We

de�ne the set V of verti
es as 
onsisting of the eigenstates 	

i

and the set

of edges E as 
onsisting of all pairs of eigenstates dire
tly 
oupled by the

matrix B.

G = (V;E) : V = f	

1

; :::;	

n

g; E = f(	

i

;	

j

); i < j; B

ij

6= 0g (5)

This graph 
an be de
omposed into (
onne
ted) 
omponents G

�

= (V

�

,

E

�

), a = 1; ::; K. In more intuitive terms, two eigenstates 	

�

and 	

�

0

are in

the same 
onne
ted 
omponent (we will say that they are indire
tly 
oupled)

if there exist a path 	

j

1

= 	

�

, 	

j

2

,..., 	

j

l

= 	

�

0

from 	

�

to 	

�

0

su
h that any


onse
utive verti
es 	

j

a

to 	

j

a+1

of this 
hain are dire
tly 
oupled, i.e. the

dipole moment B

j

a

j

a+1

is non-zero (whi
h is the same as (	

j

a

;	

j

a+1

) 2 E)

; note that there is no need for non-
onse
utive verti
es 	

j

a

to 	

j

b

to be

dire
tly 
onne
ted, i.e. if b 6= a+1 and a 6= b+1 the entry B

j

a

j

b

may be zero.

This de
omposition 
orresponds to a blo
-diagonal stru
ture of the matrix B

(modulo some permutations on the indi
es), so it is just a matter of spe
ifying

the number of independent subsystems we want to simultaneously 
ontrol

(see [21℄ for the general 
ase). We will 
onsider the following hypothesis as

true

H A The graph G is 
onne
ted, i.e. K = 1.

Remark 1 In agreement with the de�nition above, note that H A does not

imply that any two states are ne
essarily dire
tly 
onne
ted, one with the

other, but only that for any two states 	

�

and 	

�

0

there is a path in the graph

G that 
onne
ts 	

�

and 	

�

0

.

Denote by U(A;B; �; t

1

! t

2

) the propagator asso
iated with Eq. (2);

for any state �(t

1

), U(A;B; �; t

1

! t

2

)�(t

1

) is de�ned as the solution at time

t = t

2

of Eq. (2) with the initial state at time t = t

1

being �(t

1

).
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De�nition 1 We say that

~

	 is rea
hable from 	 if there exists 0 < T <1,

�(t) 2 L

2

([0; T ℄;R) su
h that U(A;B; �(t); 0! T )

~

	 = 	.

2.2 Controllability

Denote !

kl

= �

k

� �

l

; k; l = 1; :::; N as the eigenvalue di�eren
es for the

matrix A, and atomi
 units (~ = 1) will be utilized. Consider the hypothesis:

H B The graph G does not have \degenerate transitions", that is for all

(i; j) 6= (a; b), i 6= j, a 6= b su
h that B

ij

6= 0, B

ab

6= 0: !

ij

6= !

ab

.

Remark 2 This hypothesis 
ould be relaxed to requiring only that the graph

G remains 
onne
ted after elimination of all edge pairs (	

i

;	

j

); (	

a

;	

b

) su
h

that !

ij

= !

ab

(degenerate transitions). However, to ease of presentation, H B

will be assumed to be true.

We also introdu
e one more hypothesis:

H C For ea
h i; j; a; b = 1; :::; N su
h that !

ij

6= 0:

!

ab

!

ij

2 Q, where Q is the

set of all rational numbers.

Remark 3 Alternative 
ontrollability results 
ompletely ex
luding the need

of the assumption H C are also possible and will be presented in a future paper.

The main 
ontrollability result in [16℄ 
an be summarized as follows:

Theorem 1 Under the assumptions H A , H B , H C the system (2) is 
on-

trollable, that is for any 	 2 S

M

(0; 1) the set of rea
hable states from 	 is

S

M

(0; 1).

Remark 4 Under the assumption H B , the 
ontrollability 
riteria above has

very strong uniform properties with respe
t to the 
oupling matrix B. Indeed,

the only information needed to know is whether B

ij

is null or not for ea
h

i,j = 1; :::; N ; the exa
t value of B

ij

is not important. Thus, the 
ontrol-

lability analysis is generally independent of small errors in the entries of B.

Note also that when adding, for example, one more eigenstate to the basis D,

the 
ontrollability 
riterion is easy to 
he
k for the new system: it is ne
essary

to ensure that the new state is 
onne
ted through B to at least one eigenstate

in the old basis and then 
he
k that the transition energies thus introdu
ed

do not equal other transition energies in the system - non-degenera
y - (see

also remark 2 ).
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When H B is not satis�ed, 
hanging the exa
t values of the entries of

the 
oupling matrix B may transform a system that is not 
ontrollable into

a system that is 
ontrollable; other te
hniques that allow for assessing the


ontrollability (see the situation presented in Eq. (7) later in se
tion 3) may

also be sensitive to 
hanges in 
oupling matrix entries.

Remark 5 Theorem 1 is a result 
omplementary to the work in [14℄ as the

settings are di�erent. Thorem 4.2 in [14℄ is appropriate when 
ontrollability

on spa
es of unitary matri
es is under study (e.g., in quantum 
omputing

and in general where the Lie group transformation stru
ture is relevant to

the system), while theorem 1 above is suitable for assessing wavefun
tion


ontrollability. Extensions of theorem 1 are available in [21℄ for the 
ase

of multiple independent subsystems (non 
onne
ted graphs) along the same

paradigm.

A detailed proof of theorem 1 may be found in [16℄. Below we go beyond

the latter work and demonstrate the physi
al meaning and appli
ability of

the theorem.

3 Numeri
al Simulations

Numeri
al experiments have been undertaken to illustrate the theoreti
al re-

sult above. All of the examples 
orrespond to model systems with an external

laser ele
tri
 �eld 
oupled in through a dipole matrix B. The 
ontrollabil-

ity Theorem 1 is not 
onstru
tive in that its satisfa
tion does not produ
e

a parti
ular 
ontrol �eld. Thus the 
ontrolling �elds in the examples were


omputed using a geneti
 algorithm sear
h pro
edure. Consider the follow-

ing model [26℄ �ve-level system having internal Hamiltonian and 
oupling

matri
es,

A =

0

B

B

B

B

�

1:0 0 0 0 0

0 1:2 0 0 0

0 0 1:3 0 0

0 0 0 2:0 0

0 0 0 0 2:15

1

C

C

C

C

A

; B =

0

B

B

B

B

�

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0

1

C

C

C

C

A

: (6)

Prior numeri
al studies with optimal 
ontrol 
al
ulations hinted that this

system might be 
ontrollable, but su
h 
omputations 
annot assure a full

assessment (
.f., dis
ussion later in this se
tion). The 
oupling graph of the

system plotted in Figure 1 is obviously 
onne
ted. In addition, it 
an be

easily 
he
ked that the system has non-degenerate transitions. It follows

by the 
ontrollability theorem that this system is 
ompletely 
ontrollable,

6



Figure 1: The graph asso
iated with the B matrix of the system in (6). Note

that the graph remains 
onne
ted even after removal of some edges, e.g.,

(	

3

;	

4

) and (	

1

;	

5

).

implying that any superposition of states is rea
hable from any other in

�nite time and with �nite laser energy.

An example of 
ontrol is given in Figure 2; we plot the overlap of the

wavefun
tion with the initial state and the distan
e to the target state. This

situation was 
hoosen to demonstrate 
ontrol to a superposition of states.

The initial state was taken to be 	

4

and the target was set to

p

3

3

	

1

+

p

6

3

	

2

.

The target goal is a
hieved to high a

ura
y at T

final

= 550.

Although theorem 1 is true only with satisfa
tion of the hypothesis H B ,

various situations where H B at �rst glan
e appears to be violated may arise

in pra
ti
e. In this 
ase a simple te
hnique is available to assess if H B is

valid and then return to the setting that a

ommodates theorem 1. One

su
h example is given below.

Consider the system given by the following Hamiltonian and dipole mo-

ment matrix [27, 28℄:

A =

0

B

B

�

0 0 0 0

0 :004556 0 0

0 0 0:095683 0

0 0 0 0:095683

1

C

C

A

; B =

0

B

B

�

0 1 1 �1

1 0 1 1

1 1 0 0

�1 1 0 0

1

C

C

A

: (7)

As presented, the system does not 
omply with H B , being degenerate �

3

=

�

4

= 0:095683E

h

and therefore with degenerate transitions e.g. �

3

� �

1

=

�

4

��

1

. However the states 3 and 4 
an be distinguished by having di�erent

dipole moments with state 1, and therefore the system is expe
ted to be


ontrollable, as suggested by numeri
al optimal 
ontrol 
al
ulations [27, 28℄.
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Distan
e to target k	(t)�

p

3

3

	

1

�

p

6

3

	

2

k

2

Overlap with initial state 	

4

:j < 	(t);	

4

> j

5004003002001000

3

2.5

2

1.5

1

0.5

0

Figure 2: The evolution of the system in (6) under a 
ontrol �eld realizing

the target: 	(T

final

) =

p

3

3

	

1

+

p

6

3

	

2

.

Figure 3: Graphi
al representation of the system in Eq. (7). It is seen that

energy level degenera
y is present.
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Note that by writing �(t) = �+~�(t) the triplet (A;B; �(t)) that 
hara
ter-

izes the 
ontrol system is transformed to (A + �B;B; ~�(t)). Here A + �B is

the matrix of the new HamiltonianH

�

= H

0

+�B. A unitary matrix U

�

may

be found su
h that

~

A = U

�

(A + �B)U

t

�

is diagonal, and the dipole matrix

B 
hanges a

ordingly

~

B = U

�

BU

t

�

. The dynami
al equations to 
ontrol are

now

(

i~

�

�t

~

C =

~

A

~

C + ~�(t)

~

B

~

C

~

C(t = 0) = U

�

C

0

(8)

It 
an be proven (and it is also trivial to 
he
k as soon as the pre
ise value

of � is known) that the number of 
onne
ted 
omponents of the 
onne
tivity

graph

~

G asso
iated to

~

B is the same as the 
onne
ted 
omponents of G and

so, a

ording to hypothesis H A ,

~

G is 
onne
ted. Therefore if

~

A 
omplies

with H B it follows (see also the remark 3) that the system under study is


ontrollable. The 
ontrollability of the initial system (2) redu
es then to

�nding � su
h that A + �B has no degenerate transitions. Many values

for � are often a

eptable. The 
onstant � may be viewed as a Stark �eld

whi
h a
ts to suitably shift the energy levels so as to remove the degenerate

transitions. However, this pro
edure is just a mathemati
al 
onstru
tion

to reveal if the 
riteria underlying theorem 1 are valid. The identi�
ation

of � 6= 0 does not imply that a laboratory implementation of the 
ontrol

requires a DC bias �eld to be su

essful. Satisfa
tion of H A , H B , H C just

assure that at least some 
ontrol exists to steer about the system in any

arbitrary manner. As an illustration of the pro
edure above 
onsider the

example in Eq. (7) with � = 0:1 and then the eigenvalues of A + � � B are

�0:172362, �0:042466, 0:170297 and 0:240453 (non-degenerate). It is easy to


he
k that the eigenvalues also 
omply with H B . The system (7) is therefore


ompletely 
ontrollable. So, despite the degenera
y in the Hamiltonian, it is

possible for instan
e to steer the system from from the state 	(0) = 	

1

to

	(T ) = 	

4

; su
h a laser pulse is presented in Figure 4 together with the

evolution of the populations of the eigenstates in Figure 5.

In pra
ti
e, the design of a 
ontrol is implemented by the 
omputation

of a laser pulse that best meets the pres
ribed goals ; a general approa
h

to exe
uting this sear
h is through the formalism of optimal 
ontrol theory

(OCT) where a 
ost fun
tional for optimization is 
onstru
ted that 
ontains

penalties for missing the target and various other 
osts (e.g. the 
uen
e of

the laser). A simple 
hoi
e for su
h a 
ost fun
tional is :

J(�; T ) = k	

�

(T )�	

target

k

2

+ �

Z

T

0

�

2

(t)dt (9)

9



Ele
tri
 �eld

450004000035000300002500020000150001000050000

0.0006

0.0004

0.0002

0

-0.0002

-0.0004

-0.0006

Figure 4: The �eld realizing the target 	(T

final

) = 	

4

for the system in (7).

Fourth(4) state population

Third(3) state population

Se
ond(2) state population

First(1) state population

450004000035000300002500020000150001000050000

2

1.5

1

0.5

0

Figure 5: Evolution for the system (7) and �eld in Figure 4.
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It is important to stress that theorem 1 ( as any other exa
t 
ontrollability

theorem) does not guarantee quantitative results for the minimization of

J(�; T ), but only insures that in the absen
e of 
osts beyond rea
hing the

target state (e.g., the 
uen
e term in Eq. (9) ) the minimum value of J = 0


an be rea
hed for some T > 0 and �

0

(t) 2 L

2

([0; T ℄). An analysis of the

existen
e of at least one minimiser to a 
lass of quantum me
hani
al OCT


ost fun
tionals is given in [6℄. The trade-o� between the two extremes of

fully rea
hing the target state versus fully meeting the additional 
ost 
riteria

is the task of the OCT optimization. In this framework, any �eld that gives

exa
t 
ontrollability is a minimizer of J(�; T ) for � = 0. When other values

for � are 
hosen, the 
uen
e generally will be smaller but the overlap with

the the target will also be redu
ed. In the example of Figures 4 and 5 where

the target was required to be exa
tly rea
hed, the laser 
uen
e was 0:0302.

In another example (not shown here) the 
uen
e term was retained in the

OCT 
ost fun
tional and an overlap with the target of 80% was a
hived.

The optimal �eld was found to redu
e the 
uen
e to 0:021 at the expense of

dropping the yield in the target state.

4 Dynami
al Conservation Laws and Control-

lability Restri
tions

In light of the manipulations on the system in Eq. (7) an Figure 3 it may seem

that the hypothesis H B has merely a te
hni
al role. Therefore a legitimate

question to ask is whether theorem 1 remains true in the absen
e of this

assumption. The answer to this question is negative and the presentation of

some very parti
ular phenomena that arise when H B is invalid is the purpose

of this se
tion.

We begin with some simple observations. For any Hermitian operator

O su
h that the 
ommutators [H

0

; O℄ and [B; O℄ are both zero it is easy to

prove that :

< 	(t)jOj	(t) >=< 	

0

jOj	

0

>; 8t > 0: (10)

The quantity < 	(t)jOj	(t) > is therefore 
onserved during the evolution

of the system, irrespe
tive of the �eld �(t). The presen
e of any 
onservation

relation on 	(t), other than Eq. (4), implies some 
ontrollability restri
tions.

One spe
ial 
lass of Hermitian operators are L

2

-proje
tions to 
losed sub-

spa
es. Let P be su
h a proje
tion to a 
losed subspa
e X of L

2

(R




). The

equalities [H

0

; P ℄ = [B; P ℄ = 0 mean in parti
ular that X and its orthogonal
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omplement X

?

are involutive for H

0

and B, i.e.

(

8	 2 X : H

0

	 2 X; B	 2 X

8	 2 X

?

: H

0

	 2 X

?

; B	 2 X

?

(11)

The system 
an then be viewed as de
omposed into two independent sub-

systems with wavefun
tions P	, (I�P )	 (the proje
tions of the total wave-

fun
tion 	 to X and X

?

). This de
omposition 
an be further re�ned for any

additional proje
tion operator that 
ommutes with H

0

and B to obtain a

�nite number of independent subsystems, ea
h being asso
iated with its L

2

-

proje
tor P

1

,...,P

K

su
h that:

[H

0

; P

i

℄ = [B; P

i

℄ = 0; 8i = 1; :::; K

(

P

i

P

j

= 0; 8i 6= j; i; j = 1; :::K

P

K

i=1

P

i

= I

(12)

By using (10) for the proje
tors P

1

,...,P

k

one 
an prove that the system

evolves on the produ
t of hyper-spheres S

	

0

S

	

0

= ff 2 L

2

(R




); kP

i

fk

L

2

(R




)

= kP

i

	

0

k

L

2

(R




)

; i = 1; :::; Kg (13)

Thus, we obtain 
onditions for 
ontrollability : if 	 is rea
hable from 	

0

then 	 is ne
essary in S

	

0

.

This example shows how the existen
e of 
onservation laws for the system

introdu
e restri
tions for 
ontrollability. For proje
tors to 
losed subspa
es,

the situation lends itself to an easy intuitive understanding. More 
ompli-


ated situations are possible when the 
onservation law in e�e
t does not


orrespond to a proje
tion and not even to a Hermitian operator. We may

see this point through a simple example. Consider the 3-level system:

A =

0

�

1 0 0

0 2 0

0 0 3

1

A

; B =

0

�

0 1 0

1 0 1

0 1 0

1

A

; (14)

and the 
orresponding evolution equations

i

d

dt

C

1

(t) = C

1

(t) + �(t)C

2

(t)

i

d

dt

C

2

(t) = 2C

2

(t) + �(t)C

1

(t) + �(t)C

3

(t)

i

d

dt

C

3

(t) = 3C

3

(t) + �(t)C

2

(t)

This system has degenerate transitions e.g. �

2

� �

1

= �

3

� �

2

and no � 2 R


an be found su
h that A + �B 
omply with H B moreover no (non-trivial)
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observable O exists that 
ommutes with both A and B. Upon 
loser ex-

amination, a \hidden symmetry" is however found for this system. More

pre
isely it is easy to prove that for any t > 0 and �(t) 2 L

2

([0; t℄) :

jC

1

(t)C

3

(t)�

C

2

(t)

2

2

j = jC

01

C

03

�

C

2

02

2

j: (15)

Therefore, if any 
ontrollability result is to be true for this setting, it must

take into a

ount the 
onservation law (15) ; any 	(t) =

P

3

i=1

C

i

(t)	

i

(x) that

is rea
hable from 	(0) =

P

3

i=1

C

0i

	

i

(x) must satisfy the 
onstraint (15). As

an illustration of this point 
onsider a simple numeri
al example. Suppose

that the initial state is the ground state (	

1

) and the target is the �rst ex
ited

state (	

2

). A simple 
omputation gives for 	

1

: jC

01

C

03

�

C

2

02

2

j = j1�0�

0

2

2

j = 0

and for 	

2

: jC

1

(t)C

3

(t)�

C

2

(t)

2

2

j = j0 � 0�

1

2

2

j =

1

2

. Sin
e the two quantities

are di�erent, one infers that 	

2

is not rea
hable from 	

1

and therefore the

system is not 
ontrollable, despite the fa
t that the 
onne
tivity assumption

H A is satis�ed.

A detailed analysis of the 
ase N = 3 shows that in ea
h 
ir
umstan
e

where the theorem 1 
annot be used, 
onservation laws are in e�e
t. This

leads us to state the following

Conje
ture As long as no new 
onservation laws appear {besides L

2

norm


onservation { the system is 
ontrollable, i.e. any state on the unit sphere

may be rea
hed (in �nite time and with �nite energy) from any other.

The statement above, if true, would have the merit of giving a 
ontrol-

lability result independent of the mathemati
al trans
ription of the pre
ise


ontrol situation (no mathemati
al properties of the matri
es A and B are

involved but only properties of the system they des
ribe). When the Lie

group 
orresponding to the Lie algebra generated by the internal Hamilto-

nian and the 
oupling matrix is a 
ompa
t Lie group, a proof that appears to

support the 
onje
ture was 
ommuni
ated to us by V. Ramakrishna [29℄. In

general, it is not known whether the presen
e of 
onservation laws prevents


ontrollability or only restri
ts the rea
hable set a

ordingly.

Remark 6 Finite dimensional 
ontrollability results are only a part of the

e�ort ne
essary for the theoreti
al understanding of quantum 
ontrol prob-

lems. One still has to make 
ompatible the positive results above or else-

where ([14℄) with the generi
 negative results for the in�nite dimensional

systems [20, 15, 21, 23℄. The introdu
tion of proper 
ontrollability 
on
epts

seems ne
essary to make further advan
es. Furthermore, it is interesting to

note that usually when a quantum system is to be 
ontrolled the aim is not

13



to pre
isely obtain a pres
ribed wavefun
tion, but rather to ensure that that

some useful proje
tions or expe
tation values have the desired behaviour.

Remark 7 In the absen
e of positive in�nite dimensional results, 
ontrolla-

bility 
on
lusions based on some �nite dis
retization should be treated with


are. The number of eigenstates 
onsidered relevant to the 
ontrol problem is

important, as 
an be seen from the example in Eq. (14) : when dis
retized

with only two eigenstates, the system is trivially 
ontrollable but the introdu
-

tion of a third eigenstate generates the \hidden symmetry" with its asso
iated

loss of 
ontrollability. When the system is intrinsi
ally in�nite dimensional,

the 
ontrollability of a low dimensional dis
retization does not imply the 
on-

trollability of a larger (and more truthful) dis
retization involving all states

that have important 
oupling matrix elements with the low dimensional spa
e

or domain of interest. As with numeri
al wave pa
ket modelling 
al
ulations,

it is suggestive that 
onvergen
e of 
ontrollability 
on
lusions may also o

ur

within the domain of interest as the overall spa
e is expanded in dimension.

5 Con
lusions

Wavefun
tion 
ontrollability of �nite dimensional quantum systems intera
t-

ing with external �elds was explored from a pra
ti
al perspe
tive suggested

by re
ent theoreti
al results [16℄. The 
riteria presented was seen to be useful

for a wide range of problems and very easy to 
he
k. Systems with unusual


onservation laws that prevent 
ontrollability were also presented and the re-

lationship with the theoreti
al 
riteria was investigated. Open questions with

positive answers in some parti
ular 
ases were stated as a 
onje
ture. Nu-

meri
al experiments were undertaken to illustrate the theoreti
al results and

the 
onne
tion with optimal 
ontrol theory was dis
ussed. The assessment

of 
ontrollability is fundamental to the manipulation of quantum systems.

Some tools are now available to make this assessment, but a full 
omprehen-

sive analysis still needs to be developped.
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