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Abstract

Theoretical results are presented on the ability to arbitrarily steer
about a wavefunction for a quantum system under time-dependent
external field control. Criteria on the field free Hamiltonian and the
field coupling term in the Hamiltonian are presented that assure full
wavefunction controllability. Numerical simulations are given to il-
lustrate the criteria. A discussion on the theoretical and practical
relationship between dynamical conservation laws and controllability
is also included.

PACS number(s): 32.80.Qk

1 Introduction

There is much interest on controlling quantum systems through their inter-
action with external fields [1] - [11]. This activity is motivated by a potential
wide range of applications [7] that this framework can accommodate. Encour-
aging positive results have already been obtained in closed loop experiments
[12, 13], but both theoretical and experimental research is still needed to
understand the subtle nature of the control processes.

Early efforts at achieving quantum control based on intuitive physical
understanding generally gave poor results. Significant advances have come
through the introduction of rigorous control theory tools together with en-
hanced laser pulse shaping capabilities. An important preliminary step to
any experiment are indications of its feasibility through theoretical studies
and computer simulations. Such analyses can indicate the set of objectives
that can reasonably be met and present the nature of a laser pulse to most
likely meet the objectives. The study of the set of quantum states that can



be attained is an aspect of control theory aimed at deciding whether the sys-
tem is controllable, i.e. if any admissible quantum state can be attained with
some (admissible) laser field. Until recently the answer to this question was
given using results available in [14] or [15] ; although useful in many cases,
these results may prove more general than often required, as in [14] where
general results are derived for the evolution of unitary operators, or too pes-
simistic as in [15] where negative results are presented for infinite dimensional
controllability. A theoretical study was then undertaken [16] to shed some
light on the phenomena involved when controllability for the wavefunction
is investigated in finite dimensional bilinear quantum systems. The purpose
of this paper is to explore and discuss the practical utility of these latter
formal theoretical results along with simple illustrations through computer
simulations. The outline of the paper is as follows: the theoretical results
are presented in section 2 ; supporting numerical simulations and some prac-
tical extensions of the theory are presented in section 3. A discussion on
the connections between dynamical conservation laws and controllability of
quantum systems is given in section 4 ; concluding remarks are presented in
section 5.

2 Theoretical Controllability Criteria

Consider a quantum system with internal Hamiltonian H, prepared in the
initial state Wy(z), where x denotes the relevant coordinate variables. The
external interaction will be taken here as a control field amplitude €(t) € R
coupled to the system through a time independent (e.g, dipole moment)
operator B (see also [17]) ; then the time-dependent control Schrodinger
equation that gives the evolution of the state W(x,t) at time ¢ is :

ih2W(z,t) = HyW(z,t)+e(t) - BY(z,t) = HU(z,t) (1)
U(zr,t=0)= Yo(z)
In order to avoid trivial control problems we suppose [Hy, B] # 0, where the
Lie bracket [-,-] is defined as [U, V] =UV — VU.

The goal is to find if any final time 7" > 0 and finite energy control pulse
e(t) € L*([0, T7]) exist such that () is able to steer the system from Wy(z) to
some predefined target W(x, T) = Wygrgei (). If the answer to this question is
affirmative, then the system is controllable. Given that H is Hermitian, the

L? norm ||¥(z,t)|| g2y of ¥ is conserved throughout the evolution so that
U (z,t) evolves on the unit sphere S(0,1) of L*(R?):

S(0,1) = {f € L*(R"); [| fll L2y = 1}
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Numerical simulations on the system (1) require the introduction of a
finite dimensional setting. A common choice is to consider the set D =
{VU;(x);i = 1,..,N} of the first N eigenstates of the infinite dimensional
Hamiltonian H, and restrict the operators involved to the linear space that
D generates. Let A and B be the matrices of the operators Hy, and B
respectively, in terms of this base, and as above, it is supposed that [A, B] #
0.

Before leaving the infinite dimensional setting, we remark that the con-
trollability of (bilinear) quantum systems on infinite dimensional spaces is a
difficult problem and the resolution of this matter is only partially solved.
Moreover, the generic results obtained so far in this setting are negative
20, 15, 21, 22, 23] showing the need for tailored controllability concepts and
a thorough understanding of the finite dimensional case in order to appro-
priately extend the positive controllability results available [14, 16] to the
infinite dimensional setting. The present study is also motivated by the exis-
tence of intrinsically finite dimensional quantum mechanical situations (e.g.
N-level spin systems, etc.).

We denote C' = (C;)Y, to be the coefficients of ¥;(x) in an expansion of
the evolving state W(t,z) = S~ | Ci(t)¥;(z), N > 3; BEq (1) now becomes

ih2C = AC + €(t)BC
{C(tzO):C’g @

Co = (Con)¥y, Coi =< Vg, U; >, Zl]\il |Coil> =1 (3)

The controllability of Eq. (2) has been already dealt with in the literature
[14] by considering the problem of the controllability of a system posed on the
space of the unitary matrices of dimension /N. This elegant approach has the
benefit of drawing on the general tools and results from bilinear controllability
on Lie groups. However, verifying those criteria may be computationally
difficult when N is large; moreover the results obtained this way give only
sufficient conditions for exact controllability (due to a setting that is more
general than often required). Thus, we consider identifying computationally
convenient and intuitive conditions for finite dimensional wavefunctions to
be reachable from an arbitrary initial state (see also [24] for an overview of
the topic).

We make the common assumptions that the A matrix is diagonal and that
the B matrix is real symmetric (Hermitian). Denote \; € R, i =1,.., N, as
the real diagonal elements of A (i.e. the energies associated with the states
;). Denote Sy;(0,1) = S(0,1) N M. The conservation of the L? norm of the
wavefunction can be written in the finite dimensional representation:



ZN: ICit) =1, vt >0 (4)

2.1 Connectivity Graph

The B matrix plays the critical role of specifying the kinematic coupling
amongst the eigenstates of the system reference Hamiltonian matrix A. The
structure of the set of all direct and indirect couplings between eigenstates is
very relevant to assessing controllability. In order to formalize the concepts,
we associate to the system a non-oriented graph G = (V, E) called the con-
nectivity graph (the reader is referred to [25] for graph theory concepts). We
define the set V' of vertices as consisting of the eigenstates W; and the set
of edges F as consisting of all pairs of eigenstates directly coupled by the
matrix B.

This graph can be decomposed into (connected) components G, = (V4,
E,), a =1, .., K. In more intuitive terms, two eigenstates ¥, and ¥, are in
the same connected component (we will say that they are indirectly coupled)
if there exist a path ¥; =W,, ¥, ..., ¥; = U, from ¥, to ¥, such that any
consecutive vertices W; to W; . of this chain are directly coupled, i.e. the
dipole moment Bj,, ., is non-zero (which is the same as (¥;,, ¥, . ) € E)
; note that there is no need for non-consecutive vertices ¥, to ¥; to be
directly connected, i.e. if b # a+1 and a # b+1 the entry B, ;, may be zero.
This decomposition corresponds to a bloc-diagonal structure of the matrix B
(modulo some permutations on the indices), so it is just a matter of specifying
the number of independent subsystems we want to simultaneously control
(see [21] for the general case). We will consider the following hypothesis as
true

HA The graph G is connected, i.e. K = 1.

Remark 1 In agreement with the definition above, note that HA does not
imply that any two states are necessarily directly connected, one with the
other, but only that for any two states Vo and V. there is a path in the graph
G that connects ¥, and V.

Denote by U(A, B,¢e,t; — ty) the propagator associated with Eq. (2);
for any state x(t1), U(A, B,¢€,t; — t2)x(t1) is defined as the solution at time
t =ty of Eq. (2) with the initial state at time ¢t = ¢; being x(¢;).
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Definition 1 We say that ¥ is reachable from ¥ if there ezists 0 < T < o0,
e(t) € L*([0,T];R) such that U(A, B,€e(t),0 = T)¥ = ¥,

2.2 Controllability

Denote wy; = Ay — A\, k0l = 1,...,N as the eigenvalue differences for the
matrix A, and atomic units (% = 1) will be utilized. Consider the hypothesis:

HB The graph G does not have “degenerate transitions”, that is for all
(Zaj) 7£ (CL, b); i 7é j; a 7é b such that Bij 7£ O; Bab 7£ 0: Wij 7£ Wab-

Remark 2 This hypothesis could be relaxed to requiring only that the graph
G remains connected after elimination of all edge pairs (¥;, ¥;), (Vq, ¥p) such
that wij = wep (degenerate transitions). However, to ease of presentation, HB
will be assumed to be true.

We also introduce one more hypothesis:

HC For each i,j,a,b =1,...,N such that w;; # 0: %‘1‘]” € @, where Q 1is the
set of all rational numbers.

Remark 3 Alternative controllability results completely excluding the need
of the assumption HC are also possible and will be presented in a future paper.

The main controllability result in [16] can be summarized as follows:

Theorem 1 Under the assumptions HA, HB, HC the system (2) is con-
trollable, that is for any ¥ € Sy (0,1) the set of reachable states from ¥ is
Sy (0,1).

Remark 4 Under the assumption HB, the controllability criteria above has
very strong uniform properties with respect to the coupling matriz B. Indeed,
the only information needed to know is whether B;j is null or not for each
i,j = 1,..., N ; the exact value of B;; is not important. Thus, the control-
lability analysis 1s generally independent of small errors in the entries of B.
Note also that when adding, for example, one more eigenstate to the basis D,
the controllability criterion is easy to check for the new system: it is necessary
to ensure that the new state is connected through B to at least one eigenstate
in the old basis and then check that the transition energies thus introduced
do not equal other transition energies in the system - non-degeneracy - (see
also remark 2 ).



When HB is not satisfied, changing the exact values of the entries of
the coupling matriz B may transform a system that is not controllable into
a system that is controllable; other techniques that allow for assessing the
controllability (see the situation presented in Eq. (7) later in section 3) may
also be sensitive to changes in coupling matrix entries.

Remark 5 Theorem 1 is a result complementary to the work in [14] as the
settings are different. Thorem 4.2 in [14] is appropriate when controllability
on spaces of unitary matrices is under study (e.g., in quantum computing
and in general where the Lie group transformation structure is relevant to
the system), while theorem 1 above is suitable for assessing wavefunction
controllability. Extensions of theorem 1 are available in [21] for the case
of multiple independent subsystems (non connected graphs) along the same
paradigm.

A detailed proof of theorem 1 may be found in [16]. Below we go beyond
the latter work and demonstrate the physical meaning and applicability of
the theorem.

3 Numerical Simulations

Numerical experiments have been undertaken to illustrate the theoretical re-
sult above. All of the examples correspond to model systems with an external
laser electric field coupled in through a dipole matrix B. The controllabil-
ity Theorem 1 is not constructive in that its satisfaction does not produce
a particular control field. Thus the controlling fields in the examples were
computed using a genetic algorithm search procedure. Consider the follow-
ing model [26] five-level system having internal Hamiltonian and coupling
matrices,

1.0 0 0 0 0 00011
0 12 0 0 0 00011

A= 0o o 13 0o o |,B=l000 11 (6)
0 0 0 20 0 11100
0O 0 0 0 215 11100

Prior numerical studies with optimal control calculations hinted that this
system might be controllable, but such computations cannot assure a full
assessment (c.f., discussion later in this section). The coupling graph of the
system plotted in Figure 1 is obviously connected. In addition, it can be
easily checked that the system has non-degenerate transitions. It follows
by the controllability theorem that this system is completely controllable,
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Figure 1: The graph associated with the B matrix of the system in (6). Note
that the graph remains connected even after removal of some edges, e.g.,
(\Ijg, \:[14) and (\Ijl, \:[15)

implying that any superposition of states is reachable from any other in
finite time and with finite laser energy.

An example of control is given in Figure 2; we plot the overlap of the
wavefunction with the initial state and the distance to the target state. This
situation was choosen to demonstrate control to a superposition of states.
The initial state was taken to be ¥, and the target was set to ?\1/1 + @\Dg.
The target goal is achieved to high accuracy at T'n, = 550.

Although theorem 1 is true only with satisfaction of the hypothesis HB,
various situations where HB at first glance appears to be violated may arise
in practice. In this case a simple technique is available to assess if HB is
valid and then return to the setting that accommodates theorem 1. One
such example is given below.

Consider the system given by the following Hamiltonian and dipole mo-
ment matrix [27, 28]:

0 0 0 0 0 1 1 -1
0 .004556 0 0 1 01 1

A= 0 0 0.095683 0 » B= 1 1.0 0 (")
0 0 0 0.095683 -11 0 0

As presented, the system does not comply with HB, being degenerate \3 =
Ay = 0.095683F), and therefore with degenerate transitions e.g. A3 — \; =
Ay — A;. However the states 3 and 4 can be distinguished by having different
dipole moments with state 1, and therefore the system is expected to be
controllable, as suggested by numerical optimal control calculations [27, 28].
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Figure 2: The evolution of the system in (6) under a control field realizing
the target: V(Tfina) = ‘[\IJ + ‘[\112
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Figure 3: Graphical representation of the system in Eq. (7). It is seen that
energy level degeneracy is present.



Note that by writing €(t) = p+€(t) the triplet (A, B, €(t)) that character-
izes the control system is transformed to (A + uB, B,é(t)). Here A+ uB is
the matrix of the new Hamiltonian H,, = Hy+ puB. A unitary matrix U, may
be found such that A = U, (A + pB)U. is diagonal, and the dipole matrix

B changes accordingly B = U,BU ZL The dynamical equations to control are
now

C(t=0)=U,C, ®)

{mgé — AC +é(t)BC

It can be proven (and it is also trivial to check as soon as the precise value
of u is known) that the number of connected components of the connectivity
graph G associated to B is the same as the connected components of G and
so, according to hypothesis HA, G is connected. Therefore if A complies
with HB it follows (see also the remark 3) that the system under study is
controllable. The controllability of the initial system (2) reduces then to
finding g such that A + pB has no degenerate transitions. Many values
for p are often acceptable. The constant p may be viewed as a Stark field
which acts to suitably shift the energy levels so as to remove the degenerate
transitions. However, this procedure is just a mathematical construction
to reveal if the criteria underlying theorem 1 are valid. The identification
of ;1 # 0 does not imply that a laboratory implementation of the control
requires a DC bias field to be successful. Satisfaction of HA, HB, HC just
assure that at least some control exists to steer about the system in any
arbitrary manner. As an illustration of the procedure above consider the
example in Eq. (7) with x = 0.1 and then the eigenvalues of A + - B are
—0.172362, —0.042466, 0.170297 and 0.240453 (non-degenerate). It is easy to
check that the eigenvalues also comply with HB. The system (7) is therefore
completely controllable. So, despite the degeneracy in the Hamiltonian, it is
possible for instance to steer the system from from the state W(0) = ¥, to
U(T) = ¥, ; such a laser pulse is presented in Figure 4 together with the
evolution of the populations of the eigenstates in Figure 5.

In practice, the design of a control is implemented by the computation
of a laser pulse that best meets the prescribed goals ; a general approach
to executing this search is through the formalism of optimal control theory
(OCT) where a cost functional for optimization is constructed that contains
penalties for missing the target and various other costs (e.g. the fluence of
the laser). A simple choice for such a cost functional is :

JET) = [0 (T) ~ papyrl? + / (t)dt (9)
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Figure 5: Evolution for the system (7) and field in Figure 4.
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It is important to stress that theorem 1 ( as any other exact controllability
theorem) does not guarantee quantitative results for the minimization of
J(e,T), but only insures that in the absence of costs beyond reaching the
target state (e.g., the fluence term in Eq. (9) ) the minimum value of J =0
can be reached for some T > 0 and € (¢t) € L*([0,T]). An analysis of the
existence of at least one minimiser to a class of quantum mechanical OCT
cost functionals is given in [6]. The trade-off between the two extremes of
fully reaching the target state versus fully meeting the additional cost criteria
is the task of the OCT optimization. In this framework, any field that gives
exact controllability is a minimizer of J(e,T') for & = 0. When other values
for «v are chosen, the fluence generally will be smaller but the overlap with
the the target will also be reduced. In the example of Figures 4 and 5 where
the target was required to be exactly reached, the laser fluence was 0.0302.
In another example (not shown here) the fluence term was retained in the
OCT cost functional and an overlap with the target of 80% was achived.
The optimal field was found to reduce the fluence to 0.021 at the expense of
dropping the yield in the target state.

4 Dynamical Conservation Laws and Control-
lability Restrictions

In light of the manipulations on the system in Eq. (7) an Figure 3 it may seem
that the hypothesis HB has merely a technical role. Therefore a legitimate
question to ask is whether theorem 1 remains true in the absence of this
assumption. The answer to this question is negative and the presentation of
some very particular phenomena that arise when HB is invalid is the purpose
of this section.

We begin with some simple observations. For any Hermitian operator
O such that the commutators [Hy, O] and [B, O] are both zero it is easy to
prove that :

< U ()|ONI(t) >=< ¥y|O| ¥y >, Vi > 0. (10)

The quantity < ¥(¢)|O|¥(t) > is therefore conserved during the evolution
of the system, irrespective of the field €(¢). The presence of any conservation
relation on W(t), other than Eq. (4), implies some controllability restrictions.

One special class of Hermitian operators are L2-projections to closed sub-
spaces. Let P be such a projection to a closed subspace X of L?*(R"). The
equalities [Hy, P| = [B, P] = 0 mean in particular that X and its orthogonal
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complement X+ are involutive for H, and B, i.e.

VeX: HVe X, BV e X
{VE Ve X, BY e (1)

YU € Xt: HWUe Xt BUecX*

The system can then be viewed as decomposed into two independent sub-
systems with wavefunctions PV, (I — P)W (the projections of the total wave-
function ¥ to X and X+). This decomposition can be further refined for any
additional projection operator that commutes with Hy and B to obtain a
finite number of independent subsystems, each being associated with its L?-
projector P,...,Pk such that:

[Hy, P;| = [B,P] =0, Vi=1,..,K
PP;=0,Vi#j, 4,j=1,..K
Zfilpi:]

By using (10) for the projectors P,...,P; one can prove that the system
evolves on the product of hyper-spheres Sy,

Sv, = {f € L*(R"); | Pif lz2gny = 1P %ol 2y, i =1, ..., K} (13)

(12)

Thus, we obtain conditions for controllability : if ¥ is reachable from ¥,
then WU is necessary in Sy,.

This example shows how the existence of conservation laws for the system
introduce restrictions for controllability. For projectors to closed subspaces,
the situation lends itself to an easy intuitive understanding. More compli-
cated situations are possible when the conservation law in effect does not
correspond to a projection and not even to a Hermitian operator. We may
see this point through a simple example. Consider the 3-level system:

100 010
A=(020|,B=(101}|, (14)
00 3 010

and the corresponding evolution equations

Lo = i) + e Oot)

dt
7;%02@) — 9C(t) + () Cu (1) + e(£)Ci(8)
HCy(t) = 305(1) + ()1

This system has degenerate transitions e.g. Ay — Ay = A3 — Ay and no 4 € R
can be found such that A + pB comply with HB moreover no (non-trivial)
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observable O exists that commutes with both A and B. Upon closer ex-
amination, a “hidden symmetry” is however found for this system. More
precisely it is easy to prove that for any ¢ > 0 and ¢(t) € L*([0,¢]) :

Cy(t)? Cj
C a0 - A = oo - 2. (19

Therefore, if any controllability result is to be true for this setting, it must
take into account the conservation law (15) ; any W(t) = 327 C(t)W;(x) that
is reachable from W(0) = 377 | Cp;;(x) must satisfy the constraint (15). As
an illustration of this point consider a simple numerical example. Suppose
that the initial state is the ground state (¥;) and the target is the first excited
state (Uy). A simple computation gives for ¥ : |C’01003—CT§2| = |1-0—02—2| =0
and for Wy : |Cy(t)C5(t) — %’”ﬂ =10-0— % = 1. Since the two quantities
are different, one infers that W, is not reachable from W, and therefore the
system is not controllable, despite the fact that the connectivity assumption
HA is satisfied.

A detailed analysis of the case N = 3 shows that in each circumstance
where the theorem 1 cannot be used, conservation laws are in effect. This
leads us to state the following

Conjecture As long as no new conservation laws appear —besides L* norm
conservation — the system is controllable, i.e. any state on the unit sphere
may be reached (in finite time and with finite energy) from any other.

The statement above, if true, would have the merit of giving a control-
lability result independent of the mathematical transcription of the precise
control situation (no mathematical properties of the matrices A and B are
involved but only properties of the system they describe). When the Lie
group corresponding to the Lie algebra generated by the internal Hamilto-
nian and the coupling matrix is a compact Lie group, a proof that appears to
support the conjecture was communicated to us by V. Ramakrishna [29]. In
general, it is not known whether the presence of conservation laws prevents
controllability or only restricts the reachable set accordingly.

Remark 6 Finite dimensional controllability results are only a part of the
effort necessary for the theoretical understanding of quantum control prob-
lems. One still has to make compatible the positive results above or else-
where ([14]) with the generic negative results for the infinite dimensional
systems [20, 15, 21, 23]. The introduction of proper controllability concepts
seems necessary to make further advances. Furthermore, it is interesting to
note that usually when a quantum system s to be controlled the aim 1s not

13



to precisely obtain a prescribed wavefunction, but rather to ensure that that
some useful projections or expectation values have the desired behaviour.

Remark 7 In the absence of positive infinite dimensional results, controlla-
bility conclusions based on some finite discretization should be treated with
care. The number of eigenstates considered relevant to the control problem is
important, as can be seen from the example in Eq. (14) : when discretized
with only two eigenstates, the system is trivially controllable but the introduc-
tion of a third eigenstate generates the “hidden symmetry” with its associated
loss of controllability. When the system is intrinsically infinite dimensional,
the controllability of a low dimensional discretization does not imply the con-
trollability of a larger (and more truthful) discretization involving all states
that have important coupling matriz elements with the low dimensional space
or domain of interest. As with numerical wave packet modelling calculations,
it is suggestive that convergence of controllability conclusions may also occur
within the domain of interest as the overall space is expanded in dimension.

5 Conclusions

Wavefunction controllability of finite dimensional quantum systems interact-
ing with external fields was explored from a practical perspective suggested
by recent theoretical results [16]. The criteria presented was seen to be useful
for a wide range of problems and very easy to check. Systems with unusual
conservation laws that prevent controllability were also presented and the re-
lationship with the theoretical criteria was investigated. Open questions with
positive answers in some particular cases were stated as a conjecture. Nu-
merical experiments were undertaken to illustrate the theoretical results and
the connection with optimal control theory was discussed. The assessment
of controllability is fundamental to the manipulation of quantum systems.
Some tools are now available to make this assessment, but a full comprehen-
sive analysis still needs to be developped.
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