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Abstrat

Theoretial results are presented on the ability to arbitrarily steer

about a wavefuntion for a quantum system under time-dependent

external �eld ontrol. Criteria on the �eld free Hamiltonian and the

�eld oupling term in the Hamiltonian are presented that assure full

wavefuntion ontrollability. Numerial simulations are given to il-

lustrate the riteria. A disussion on the theoretial and pratial

relationship between dynamial onservation laws and ontrollability

is also inluded.

PACS number(s): 32.80.Qk

1 Introdution

There is muh interest on ontrolling quantum systems through their inter-

ation with external �elds [1℄ - [11℄. This ativity is motivated by a potential

wide range of appliations [7℄ that this framework an aommodate. Enour-

aging positive results have already been obtained in losed loop experiments

[12, 13℄, but both theoretial and experimental researh is still needed to

understand the subtle nature of the ontrol proesses.

Early e�orts at ahieving quantum ontrol based on intuitive physial

understanding generally gave poor results. Signi�ant advanes have ome

through the introdution of rigorous ontrol theory tools together with en-

haned laser pulse shaping apabilities. An important preliminary step to

any experiment are indiations of its feasibility through theoretial studies

and omputer simulations. Suh analyses an indiate the set of objetives

that an reasonably be met and present the nature of a laser pulse to most

likely meet the objetives. The study of the set of quantum states that an
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be attained is an aspet of ontrol theory aimed at deiding whether the sys-

tem is ontrollable, i.e. if any admissible quantum state an be attained with

some (admissible) laser �eld. Until reently the answer to this question was

given using results available in [14℄ or [15℄ ; although useful in many ases,

these results may prove more general than often required, as in [14℄ where

general results are derived for the evolution of unitary operators, or too pes-

simisti as in [15℄ where negative results are presented for in�nite dimensional

ontrollability. A theoretial study was then undertaken [16℄ to shed some

light on the phenomena involved when ontrollability for the wavefuntion

is investigated in �nite dimensional bilinear quantum systems. The purpose

of this paper is to explore and disuss the pratial utility of these latter

formal theoretial results along with simple illustrations through omputer

simulations. The outline of the paper is as follows: the theoretial results

are presented in setion 2 ; supporting numerial simulations and some pra-

tial extensions of the theory are presented in setion 3. A disussion on

the onnetions between dynamial onservation laws and ontrollability of

quantum systems is given in setion 4 ; onluding remarks are presented in

setion 5.

2 Theoretial Controllability Criteria

Consider a quantum system with internal Hamiltonian H

0

prepared in the

initial state 	

0

(x), where x denotes the relevant oordinate variables. The

external interation will be taken here as a ontrol �eld amplitude �(t) 2 R

oupled to the system through a time independent (e.g, dipole moment)

operator B (see also [17℄) ; then the time-dependent ontrol Shr�odinger

equation that gives the evolution of the state 	(x; t) at time t is :

i~

�

�t

	(x; t) = H

0

	(x; t) + �(t) � B	(x; t) = H	(x; t) (1)

	(x; t = 0) = 	

0

(x)

In order to avoid trivial ontrol problems we suppose [H

0

;B℄ 6= 0, where the

Lie braket [�; �℄ is de�ned as [U; V ℄ = UV � V U .

The goal is to �nd if any �nal time T > 0 and �nite energy ontrol pulse

�(t) 2 L

2

([0; T ℄) exist suh that �(t) is able to steer the system from 	

0

(x) to

some prede�ned target 	(x; T ) = 	

target

(x). If the answer to this question is

aÆrmative, then the system is ontrollable. Given that H is Hermitian, the

L

2

norm k	(x; t)k

L

2

x

(R



)

of 	 is onserved throughout the evolution so that

	(x; t) evolves on the unit sphere S(0; 1) of L

2

(R



):

S(0; 1) = ff 2 L

2

(R



); kfk

L

2

(R



)

= 1g
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Numerial simulations on the system (1) require the introdution of a

�nite dimensional setting. A ommon hoie is to onsider the set D =

f	

i

(x); i = 1; ::; Ng of the �rst N eigenstates of the in�nite dimensional

Hamiltonian H

0

and restrit the operators involved to the linear spae that

D generates. Let A and B be the matries of the operators H

0

and B

respetively, in terms of this base, and as above, it is supposed that [A;B℄ 6=

0.

Before leaving the in�nite dimensional setting, we remark that the on-

trollability of (bilinear) quantum systems on in�nite dimensional spaes is a

diÆult problem and the resolution of this matter is only partially solved.

Moreover, the generi results obtained so far in this setting are negative

[20, 15, 21, 22, 23℄ showing the need for tailored ontrollability onepts and

a thorough understanding of the �nite dimensional ase in order to appro-

priately extend the positive ontrollability results available [14, 16℄ to the

in�nite dimensional setting. The present study is also motivated by the exis-

tene of intrinsially �nite dimensional quantum mehanial situations (e.g.

N-level spin systems, et.).

We denote C = (C

i

)

N

i=1

to be the oeÆients of 	

i

(x) in an expansion of

the evolving state 	(t; x) =

P

N

i=1

C

i

(t)	

i

(x), N � 3; Eq (1) now beomes

(

i~

�

�t

C = AC + �(t)BC

C(t = 0) = C

0

(2)

C

0

= (C

0i

)

N

i=1

; C

0i

=< 	

0

;	

i

>;

P

N

i=1

jC

0i

j

2

= 1 (3)

The ontrollability of Eq. (2) has been already dealt with in the literature

[14℄ by onsidering the problem of the ontrollability of a system posed on the

spae of the unitary matries of dimension N . This elegant approah has the

bene�t of drawing on the general tools and results from bilinear ontrollability

on Lie groups. However, verifying those riteria may be omputationally

diÆult when N is large; moreover the results obtained this way give only

suÆient onditions for exat ontrollability (due to a setting that is more

general than often required). Thus, we onsider identifying omputationally

onvenient and intuitive onditions for �nite dimensional wavefuntions to

be reahable from an arbitrary initial state (see also [24℄ for an overview of

the topi).

We make the ommon assumptions that the A matrix is diagonal and that

the B matrix is real symmetri (Hermitian). Denote �

i

2 R; i = 1; ::; N; as

the real diagonal elements of A (i.e. the energies assoiated with the states

	

i

). Denote S

M

(0; 1) = S(0; 1)\M . The onservation of the L

2

norm of the

wavefuntion an be written in the �nite dimensional representation:
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N

X

i=1

jC

i

(t)j

2

= 1; 8t � 0 (4)

2.1 Connetivity Graph

The B matrix plays the ritial role of speifying the kinemati oupling

amongst the eigenstates of the system referene Hamiltonian matrix A. The

struture of the set of all diret and indiret ouplings between eigenstates is

very relevant to assessing ontrollability. In order to formalize the onepts,

we assoiate to the system a non-oriented graph G = (V;E) alled the on-

netivity graph (the reader is referred to [25℄ for graph theory onepts). We

de�ne the set V of verties as onsisting of the eigenstates 	

i

and the set

of edges E as onsisting of all pairs of eigenstates diretly oupled by the

matrix B.

G = (V;E) : V = f	

1

; :::;	

n

g; E = f(	

i

;	

j

); i < j; B

ij

6= 0g (5)

This graph an be deomposed into (onneted) omponents G

�

= (V

�

,

E

�

), a = 1; ::; K. In more intuitive terms, two eigenstates 	

�

and 	

�

0

are in

the same onneted omponent (we will say that they are indiretly oupled)

if there exist a path 	

j

1

= 	

�

, 	

j

2

,..., 	

j

l

= 	

�

0

from 	

�

to 	

�

0

suh that any

onseutive verties 	

j

a

to 	

j

a+1

of this hain are diretly oupled, i.e. the

dipole moment B

j

a

j

a+1

is non-zero (whih is the same as (	

j

a

;	

j

a+1

) 2 E)

; note that there is no need for non-onseutive verties 	

j

a

to 	

j

b

to be

diretly onneted, i.e. if b 6= a+1 and a 6= b+1 the entry B

j

a

j

b

may be zero.

This deomposition orresponds to a blo-diagonal struture of the matrix B

(modulo some permutations on the indies), so it is just a matter of speifying

the number of independent subsystems we want to simultaneously ontrol

(see [21℄ for the general ase). We will onsider the following hypothesis as

true

H A The graph G is onneted, i.e. K = 1.

Remark 1 In agreement with the de�nition above, note that H A does not

imply that any two states are neessarily diretly onneted, one with the

other, but only that for any two states 	

�

and 	

�

0

there is a path in the graph

G that onnets 	

�

and 	

�

0

.

Denote by U(A;B; �; t

1

! t

2

) the propagator assoiated with Eq. (2);

for any state �(t

1

), U(A;B; �; t

1

! t

2

)�(t

1

) is de�ned as the solution at time

t = t

2

of Eq. (2) with the initial state at time t = t

1

being �(t

1

).
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De�nition 1 We say that

~

	 is reahable from 	 if there exists 0 < T <1,

�(t) 2 L

2

([0; T ℄;R) suh that U(A;B; �(t); 0! T )

~

	 = 	.

2.2 Controllability

Denote !

kl

= �

k

� �

l

; k; l = 1; :::; N as the eigenvalue di�erenes for the

matrix A, and atomi units (~ = 1) will be utilized. Consider the hypothesis:

H B The graph G does not have \degenerate transitions", that is for all

(i; j) 6= (a; b), i 6= j, a 6= b suh that B

ij

6= 0, B

ab

6= 0: !

ij

6= !

ab

.

Remark 2 This hypothesis ould be relaxed to requiring only that the graph

G remains onneted after elimination of all edge pairs (	

i

;	

j

); (	

a

;	

b

) suh

that !

ij

= !

ab

(degenerate transitions). However, to ease of presentation, H B

will be assumed to be true.

We also introdue one more hypothesis:

H C For eah i; j; a; b = 1; :::; N suh that !

ij

6= 0:

!

ab

!

ij

2 Q, where Q is the

set of all rational numbers.

Remark 3 Alternative ontrollability results ompletely exluding the need

of the assumption H C are also possible and will be presented in a future paper.

The main ontrollability result in [16℄ an be summarized as follows:

Theorem 1 Under the assumptions H A , H B , H C the system (2) is on-

trollable, that is for any 	 2 S

M

(0; 1) the set of reahable states from 	 is

S

M

(0; 1).

Remark 4 Under the assumption H B , the ontrollability riteria above has

very strong uniform properties with respet to the oupling matrix B. Indeed,

the only information needed to know is whether B

ij

is null or not for eah

i,j = 1; :::; N ; the exat value of B

ij

is not important. Thus, the ontrol-

lability analysis is generally independent of small errors in the entries of B.

Note also that when adding, for example, one more eigenstate to the basis D,

the ontrollability riterion is easy to hek for the new system: it is neessary

to ensure that the new state is onneted through B to at least one eigenstate

in the old basis and then hek that the transition energies thus introdued

do not equal other transition energies in the system - non-degeneray - (see

also remark 2 ).
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When H B is not satis�ed, hanging the exat values of the entries of

the oupling matrix B may transform a system that is not ontrollable into

a system that is ontrollable; other tehniques that allow for assessing the

ontrollability (see the situation presented in Eq. (7) later in setion 3) may

also be sensitive to hanges in oupling matrix entries.

Remark 5 Theorem 1 is a result omplementary to the work in [14℄ as the

settings are di�erent. Thorem 4.2 in [14℄ is appropriate when ontrollability

on spaes of unitary matries is under study (e.g., in quantum omputing

and in general where the Lie group transformation struture is relevant to

the system), while theorem 1 above is suitable for assessing wavefuntion

ontrollability. Extensions of theorem 1 are available in [21℄ for the ase

of multiple independent subsystems (non onneted graphs) along the same

paradigm.

A detailed proof of theorem 1 may be found in [16℄. Below we go beyond

the latter work and demonstrate the physial meaning and appliability of

the theorem.

3 Numerial Simulations

Numerial experiments have been undertaken to illustrate the theoretial re-

sult above. All of the examples orrespond to model systems with an external

laser eletri �eld oupled in through a dipole matrix B. The ontrollabil-

ity Theorem 1 is not onstrutive in that its satisfation does not produe

a partiular ontrol �eld. Thus the ontrolling �elds in the examples were

omputed using a geneti algorithm searh proedure. Consider the follow-

ing model [26℄ �ve-level system having internal Hamiltonian and oupling

matries,

A =

0

B

B

B

B

�

1:0 0 0 0 0

0 1:2 0 0 0

0 0 1:3 0 0

0 0 0 2:0 0

0 0 0 0 2:15

1

C

C

C

C

A

; B =

0

B

B

B

B

�

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0

1

C

C

C

C

A

: (6)

Prior numerial studies with optimal ontrol alulations hinted that this

system might be ontrollable, but suh omputations annot assure a full

assessment (.f., disussion later in this setion). The oupling graph of the

system plotted in Figure 1 is obviously onneted. In addition, it an be

easily heked that the system has non-degenerate transitions. It follows

by the ontrollability theorem that this system is ompletely ontrollable,
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Figure 1: The graph assoiated with the B matrix of the system in (6). Note

that the graph remains onneted even after removal of some edges, e.g.,

(	

3

;	

4

) and (	

1

;	

5

).

implying that any superposition of states is reahable from any other in

�nite time and with �nite laser energy.

An example of ontrol is given in Figure 2; we plot the overlap of the

wavefuntion with the initial state and the distane to the target state. This

situation was hoosen to demonstrate ontrol to a superposition of states.

The initial state was taken to be 	

4

and the target was set to

p

3

3

	

1

+

p

6

3

	

2

.

The target goal is ahieved to high auray at T

final

= 550.

Although theorem 1 is true only with satisfation of the hypothesis H B ,

various situations where H B at �rst glane appears to be violated may arise

in pratie. In this ase a simple tehnique is available to assess if H B is

valid and then return to the setting that aommodates theorem 1. One

suh example is given below.

Consider the system given by the following Hamiltonian and dipole mo-

ment matrix [27, 28℄:

A =

0

B

B

�

0 0 0 0

0 :004556 0 0

0 0 0:095683 0

0 0 0 0:095683

1

C

C

A

; B =

0

B

B

�

0 1 1 �1

1 0 1 1

1 1 0 0

�1 1 0 0

1

C

C

A

: (7)

As presented, the system does not omply with H B , being degenerate �

3

=

�

4

= 0:095683E

h

and therefore with degenerate transitions e.g. �

3

� �

1

=

�

4

��

1

. However the states 3 and 4 an be distinguished by having di�erent

dipole moments with state 1, and therefore the system is expeted to be

ontrollable, as suggested by numerial optimal ontrol alulations [27, 28℄.
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Distane to target k	(t)�

p

3

3

	

1

�

p

6

3

	

2

k

2

Overlap with initial state 	

4

:j < 	(t);	

4

> j

5004003002001000

3

2.5

2

1.5

1

0.5

0

Figure 2: The evolution of the system in (6) under a ontrol �eld realizing

the target: 	(T

final

) =

p

3

3

	

1

+

p

6

3

	

2

.

Figure 3: Graphial representation of the system in Eq. (7). It is seen that

energy level degeneray is present.
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Note that by writing �(t) = �+~�(t) the triplet (A;B; �(t)) that harater-

izes the ontrol system is transformed to (A + �B;B; ~�(t)). Here A + �B is

the matrix of the new HamiltonianH

�

= H

0

+�B. A unitary matrix U

�

may

be found suh that

~

A = U

�

(A + �B)U

t

�

is diagonal, and the dipole matrix

B hanges aordingly

~

B = U

�

BU

t

�

. The dynamial equations to ontrol are

now

(

i~

�

�t

~

C =

~

A

~

C + ~�(t)

~

B

~

C

~

C(t = 0) = U

�

C

0

(8)

It an be proven (and it is also trivial to hek as soon as the preise value

of � is known) that the number of onneted omponents of the onnetivity

graph

~

G assoiated to

~

B is the same as the onneted omponents of G and

so, aording to hypothesis H A ,

~

G is onneted. Therefore if

~

A omplies

with H B it follows (see also the remark 3) that the system under study is

ontrollable. The ontrollability of the initial system (2) redues then to

�nding � suh that A + �B has no degenerate transitions. Many values

for � are often aeptable. The onstant � may be viewed as a Stark �eld

whih ats to suitably shift the energy levels so as to remove the degenerate

transitions. However, this proedure is just a mathematial onstrution

to reveal if the riteria underlying theorem 1 are valid. The identi�ation

of � 6= 0 does not imply that a laboratory implementation of the ontrol

requires a DC bias �eld to be suessful. Satisfation of H A , H B , H C just

assure that at least some ontrol exists to steer about the system in any

arbitrary manner. As an illustration of the proedure above onsider the

example in Eq. (7) with � = 0:1 and then the eigenvalues of A + � � B are

�0:172362, �0:042466, 0:170297 and 0:240453 (non-degenerate). It is easy to

hek that the eigenvalues also omply with H B . The system (7) is therefore

ompletely ontrollable. So, despite the degeneray in the Hamiltonian, it is

possible for instane to steer the system from from the state 	(0) = 	

1

to

	(T ) = 	

4

; suh a laser pulse is presented in Figure 4 together with the

evolution of the populations of the eigenstates in Figure 5.

In pratie, the design of a ontrol is implemented by the omputation

of a laser pulse that best meets the presribed goals ; a general approah

to exeuting this searh is through the formalism of optimal ontrol theory

(OCT) where a ost funtional for optimization is onstruted that ontains

penalties for missing the target and various other osts (e.g. the uene of

the laser). A simple hoie for suh a ost funtional is :

J(�; T ) = k	

�

(T )�	

target

k

2

+ �

Z

T

0

�

2

(t)dt (9)

9



Eletri �eld

450004000035000300002500020000150001000050000

0.0006

0.0004

0.0002

0

-0.0002

-0.0004

-0.0006

Figure 4: The �eld realizing the target 	(T

final

) = 	

4

for the system in (7).

Fourth(4) state population

Third(3) state population

Seond(2) state population

First(1) state population

450004000035000300002500020000150001000050000

2

1.5

1

0.5

0

Figure 5: Evolution for the system (7) and �eld in Figure 4.
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It is important to stress that theorem 1 ( as any other exat ontrollability

theorem) does not guarantee quantitative results for the minimization of

J(�; T ), but only insures that in the absene of osts beyond reahing the

target state (e.g., the uene term in Eq. (9) ) the minimum value of J = 0

an be reahed for some T > 0 and �

0

(t) 2 L

2

([0; T ℄). An analysis of the

existene of at least one minimiser to a lass of quantum mehanial OCT

ost funtionals is given in [6℄. The trade-o� between the two extremes of

fully reahing the target state versus fully meeting the additional ost riteria

is the task of the OCT optimization. In this framework, any �eld that gives

exat ontrollability is a minimizer of J(�; T ) for � = 0. When other values

for � are hosen, the uene generally will be smaller but the overlap with

the the target will also be redued. In the example of Figures 4 and 5 where

the target was required to be exatly reahed, the laser uene was 0:0302.

In another example (not shown here) the uene term was retained in the

OCT ost funtional and an overlap with the target of 80% was ahived.

The optimal �eld was found to redue the uene to 0:021 at the expense of

dropping the yield in the target state.

4 Dynamial Conservation Laws and Control-

lability Restritions

In light of the manipulations on the system in Eq. (7) an Figure 3 it may seem

that the hypothesis H B has merely a tehnial role. Therefore a legitimate

question to ask is whether theorem 1 remains true in the absene of this

assumption. The answer to this question is negative and the presentation of

some very partiular phenomena that arise when H B is invalid is the purpose

of this setion.

We begin with some simple observations. For any Hermitian operator

O suh that the ommutators [H

0

; O℄ and [B; O℄ are both zero it is easy to

prove that :

< 	(t)jOj	(t) >=< 	

0

jOj	

0

>; 8t > 0: (10)

The quantity < 	(t)jOj	(t) > is therefore onserved during the evolution

of the system, irrespetive of the �eld �(t). The presene of any onservation

relation on 	(t), other than Eq. (4), implies some ontrollability restritions.

One speial lass of Hermitian operators are L

2

-projetions to losed sub-

spaes. Let P be suh a projetion to a losed subspae X of L

2

(R



). The

equalities [H

0

; P ℄ = [B; P ℄ = 0 mean in partiular that X and its orthogonal
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omplement X

?

are involutive for H

0

and B, i.e.

(

8	 2 X : H

0

	 2 X; B	 2 X

8	 2 X

?

: H

0

	 2 X

?

; B	 2 X

?

(11)

The system an then be viewed as deomposed into two independent sub-

systems with wavefuntions P	, (I�P )	 (the projetions of the total wave-

funtion 	 to X and X

?

). This deomposition an be further re�ned for any

additional projetion operator that ommutes with H

0

and B to obtain a

�nite number of independent subsystems, eah being assoiated with its L

2

-

projetor P

1

,...,P

K

suh that:

[H

0

; P

i

℄ = [B; P

i

℄ = 0; 8i = 1; :::; K

(

P

i

P

j

= 0; 8i 6= j; i; j = 1; :::K

P

K

i=1

P

i

= I

(12)

By using (10) for the projetors P

1

,...,P

k

one an prove that the system

evolves on the produt of hyper-spheres S

	

0

S

	

0

= ff 2 L

2

(R



); kP

i

fk

L

2

(R



)

= kP

i

	

0

k

L

2

(R



)

; i = 1; :::; Kg (13)

Thus, we obtain onditions for ontrollability : if 	 is reahable from 	

0

then 	 is neessary in S

	

0

.

This example shows how the existene of onservation laws for the system

introdue restritions for ontrollability. For projetors to losed subspaes,

the situation lends itself to an easy intuitive understanding. More ompli-

ated situations are possible when the onservation law in e�et does not

orrespond to a projetion and not even to a Hermitian operator. We may

see this point through a simple example. Consider the 3-level system:

A =

0

�

1 0 0

0 2 0

0 0 3

1

A

; B =

0

�

0 1 0

1 0 1

0 1 0

1

A

; (14)

and the orresponding evolution equations

i

d

dt

C

1

(t) = C

1

(t) + �(t)C

2

(t)

i

d

dt

C

2

(t) = 2C

2

(t) + �(t)C

1

(t) + �(t)C

3

(t)

i

d

dt

C

3

(t) = 3C

3

(t) + �(t)C

2

(t)

This system has degenerate transitions e.g. �

2

� �

1

= �

3

� �

2

and no � 2 R

an be found suh that A + �B omply with H B moreover no (non-trivial)

12



observable O exists that ommutes with both A and B. Upon loser ex-

amination, a \hidden symmetry" is however found for this system. More

preisely it is easy to prove that for any t > 0 and �(t) 2 L

2

([0; t℄) :

jC

1

(t)C

3

(t)�

C

2

(t)

2

2

j = jC

01

C

03

�

C

2

02

2

j: (15)

Therefore, if any ontrollability result is to be true for this setting, it must

take into aount the onservation law (15) ; any 	(t) =

P

3

i=1

C

i

(t)	

i

(x) that

is reahable from 	(0) =

P

3

i=1

C

0i

	

i

(x) must satisfy the onstraint (15). As

an illustration of this point onsider a simple numerial example. Suppose

that the initial state is the ground state (	

1

) and the target is the �rst exited

state (	

2

). A simple omputation gives for 	

1

: jC

01

C

03

�

C

2

02

2

j = j1�0�

0

2

2

j = 0

and for 	

2

: jC

1

(t)C

3

(t)�

C

2

(t)

2

2

j = j0 � 0�

1

2

2

j =

1

2

. Sine the two quantities

are di�erent, one infers that 	

2

is not reahable from 	

1

and therefore the

system is not ontrollable, despite the fat that the onnetivity assumption

H A is satis�ed.

A detailed analysis of the ase N = 3 shows that in eah irumstane

where the theorem 1 annot be used, onservation laws are in e�et. This

leads us to state the following

Conjeture As long as no new onservation laws appear {besides L

2

norm

onservation { the system is ontrollable, i.e. any state on the unit sphere

may be reahed (in �nite time and with �nite energy) from any other.

The statement above, if true, would have the merit of giving a ontrol-

lability result independent of the mathematial transription of the preise

ontrol situation (no mathematial properties of the matries A and B are

involved but only properties of the system they desribe). When the Lie

group orresponding to the Lie algebra generated by the internal Hamilto-

nian and the oupling matrix is a ompat Lie group, a proof that appears to

support the onjeture was ommuniated to us by V. Ramakrishna [29℄. In

general, it is not known whether the presene of onservation laws prevents

ontrollability or only restrits the reahable set aordingly.

Remark 6 Finite dimensional ontrollability results are only a part of the

e�ort neessary for the theoretial understanding of quantum ontrol prob-

lems. One still has to make ompatible the positive results above or else-

where ([14℄) with the generi negative results for the in�nite dimensional

systems [20, 15, 21, 23℄. The introdution of proper ontrollability onepts

seems neessary to make further advanes. Furthermore, it is interesting to

note that usually when a quantum system is to be ontrolled the aim is not

13



to preisely obtain a presribed wavefuntion, but rather to ensure that that

some useful projetions or expetation values have the desired behaviour.

Remark 7 In the absene of positive in�nite dimensional results, ontrolla-

bility onlusions based on some �nite disretization should be treated with

are. The number of eigenstates onsidered relevant to the ontrol problem is

important, as an be seen from the example in Eq. (14) : when disretized

with only two eigenstates, the system is trivially ontrollable but the introdu-

tion of a third eigenstate generates the \hidden symmetry" with its assoiated

loss of ontrollability. When the system is intrinsially in�nite dimensional,

the ontrollability of a low dimensional disretization does not imply the on-

trollability of a larger (and more truthful) disretization involving all states

that have important oupling matrix elements with the low dimensional spae

or domain of interest. As with numerial wave paket modelling alulations,

it is suggestive that onvergene of ontrollability onlusions may also our

within the domain of interest as the overall spae is expanded in dimension.

5 Conlusions

Wavefuntion ontrollability of �nite dimensional quantum systems interat-

ing with external �elds was explored from a pratial perspetive suggested

by reent theoretial results [16℄. The riteria presented was seen to be useful

for a wide range of problems and very easy to hek. Systems with unusual

onservation laws that prevent ontrollability were also presented and the re-

lationship with the theoretial riteria was investigated. Open questions with

positive answers in some partiular ases were stated as a onjeture. Nu-

merial experiments were undertaken to illustrate the theoretial results and

the onnetion with optimal ontrol theory was disussed. The assessment

of ontrollability is fundamental to the manipulation of quantum systems.

Some tools are now available to make this assessment, but a full omprehen-

sive analysis still needs to be developped.
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