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Abstract

We prove a strong approximation result with rates for the empirical process associated to an ab-
solutely regular stationary sequence of random variables with values in R?. As soon as the absolute
regular coefficients of the sequence decrease more rapidly than n!~P for some p €]2, 3], we show that the
error of approximation between the empirical process and a two-parameter Gaussian process is of order
n'/?(logn)M4) for some positive A\(d) depending on d, both in ! and almost surely. The power of n
being independent of the dimension, our results are even new in the independent setting, and improve
earlier results. In addition, for absolutely regular sequences, we show that the rate of approximation is
optimal up to the logarithmic term.

1 Introduction

Let (X;)iez be a strictly stationary sequence of random variables in R? equipped with the usual product
order, with common distribution function F. Define the empirical process of (X;);cz by

Rx(s,t)= Y (lx,<s—F(s)),s€R? teR", (1.1)
1<k<t

In this paper we are interested in extensions of the results of Kiefer for the process Rx to absolutely
regular processes. Let us start by recalling the known results in the case of independent and identically
distributed (iid) random variables X;. Kiefer (1972) obtained the first result in the case d = 1. He
constructed a continuous centered Gaussian process Kx with covariance function

E(Kx(s,t)Kx(s',t")) = (t At)(F(sAs') — F(s)F(s"))
in such a way that

sup  |Rx(s,[nt]) — Kx(s,[nt])| = O(a,) almost surely, (1.2)
(s,t)eRx[0,1]

with a,, = n'/3(logn)?/?. The two-parameter Gaussian process K x is known in the literature as the Kiefer
process. Csorgd and Révész (1975a) extended Kiefer’s result to the multivariate case. For iid random
variables with the uniform distribution over [0,1]¢, they obtained (1.2) with a,, = n(?+1)/(2d+4)(1ogn)2.
Next they extended this result to iid random variables in R¢ with a density satisfying some smoothness
conditions (see Csorgd and Révész (1975b)).

In the univariate case, a major advance was made by Komlds, Major and Tusnddy (1975): they
obtained (1.2) with a,, = (logn)? (we refer to Castelle and Laurent-Bonvalot (1998) for a detailed proof)



via a new method of construction of the Gaussian process. Concerning the strong approximation by a
sequence of Gaussian processes in the case d = 2, Tusnddy (1977) proved that when the random variables
X; are iid with uniform distribution over [0, 1]?, then one can construct a sequence of centered continuous
Gaussian processes (G, ),>1 in R? with covariance function

Cov(Gp(8),Gn(s") = n((s1 A s))(s2 A sh) — s1828755),
with s = (51, $2) and s’ = (s, s), such that

sup |Rx(s,n) — Gn(s)| = O(log>n) almost surely. (1.3)
s€[0,1]2

Adapting the dyadic method of Komlés, Major and Tusnddy (sometimes called Hungarian construc-
tion), several authors obtained new results in the multivariate case. For iid random variables in R¢ with
distribution with dependent components (without regularity conditions on the distribution), Borisov
(1982) obtained the almost sure rate of approximation O(n(4=1/(24=1) Jogn) in the Tusnady strong ap-
proximation. Next, starting from the result of Borisov (1982), Csorgd and Horvath (1988) obtained the
almost sure rate O(n24=1/(4d) (Jogn)3/2) for the strong approximation by a Kiefer process. Up to our
knowledge, this result has not yet been improved in the case of general distributions with dependent
components. For d > 3 and Tusnddy’s type results, Rio (1994) obtained the rate O(n(dfl)/(zd)(log n)1/2)
for random variables with the uniform distribution or more generally with smooth positive density on the
unit cube (see also Massart (1989) in the uniform case). Still in the uniform case, concerning the strong
approximation by a Kiefer process, Massart (1989) obtained the almost sure rate O(nd/ (2d+2) (1og n)z) for
any d > 2, which improves the results of Csorgo and Révész (1975a). In fact the results of Massart (1989)
and Rio (1994) also apply to Vapnik-Chervonenkis classes of sets with uniformly bounded perimeters,
such as the class of Euclidean balls. In that case, Beck (1985) proved that the error term cannot be
better than n(4=1/(29)  Consequently the result of Rio (1994) for Euclidean balls is optimal, up to the
factor y/logn. However, there is a gap in the lower bounds between the class of Euclidean balls and
the class of orthants, which corresponds to the empirical distribution function. Indeed, concerning the
lower bounds in Tusnddy’s type results, Beck (1985) showed that the rate of approximation cannot be
less than c4(log n)(d’l)/ 2 where cq is a positive constant depending on d. To be precise, he proved (see
his Theorem 2) that when the random variables X; are iid with the uniform distribution over [0, 1], then
for any sequence of Brownian bridges (G, )n>1 in R4,

]P’( sup |Rx(s,n) — Gnp(s)] < cd(logn)(d_l)/z) <e ™.
s€[0,1]4

Beck’s result implies in particular that, for any n > 2,

(logn)(l_d)/Q]E< sup |Rx(s,n)— Gn(s)\) >cq/2. (1.4)
s€[0,1]4

The results of Beck (1985) motivated new research in the multivariate case. For the empirical distribution
function and Tusnddy type results, Rio (1996) obtained the rate O(ns/ 12(log n)c(d)) for random variables
with the uniform distribution, where ¢(d) is a positive constant depending on the dimension d, without
the help of Hungarian construction. Here the power of n does not depend on the dimension: consequently
this result is better than the previous results if d > 7. It is worth noticing that, although this subject
has been treated intensively, up to now, the best known rates for the strong approximation by a Kiefer
process in the multivariate case are of the order n'/3 for d = 2, up to some power of logn, even in the
uniform case. Furthermore these rates depend on the dimension, contrary to the result of Rio (1996) for
Tusnady type approximations.

We now come to the weakly dependent case. Contrary to the iid case, there are only few results
concerning the rate of approximation. Up to our knowledge, when (X;);cz is a geometrically strongly
mixing (in the sense of Rosenblatt (1956)) strictly stationary sequence of random variables in R?, the
best known result concerning rates of convergence, is due to Doukhan and Portal (1987) stating that
one can construct a sequence of centered continuous Gaussian processes (Gp)n>1 in R? with common
covariance function

A(s,s') =D Cov(lxy<s, Lxyss) s
keZ



such that the Ky-Fan distance between {n™'/?Rx(s,n),s € R} and {G,(s),s € R%} is o(n™®) for any
a < 1/(15d + 12). In their paper, they also give some rates in case of polynomial decay of the mixing
coefficients. Concerning the strong approximation by a Kiefer process in the stationary and strongly
mixing case, Theorem 3 in Dhompongsa (1984) yields the rate O(n'/?(logn)~*) for some positive A,
under the strong mixing condition «,, = O(n~%) for some a > 2 + d, improving slightly previous results
of Phillip and Pinzur (1980) (here A depends on a and d).

Strong mixing conditions seem to be too poor to get optimal rates of convergence. Now recall that,
for irreducible, aperiodic and positively recurrent Markov chains, the coefficients of strong mixing and
the coefficients of absolute regularity are of the same order (see for example Rio (2000), chap. 9). Since
absolute regularity is a stronger condition, it is more convenient to consider absolute regularity, at least
in the case of irreducible Markov chains. Let

BAB) = Jsup { 3 ST IP(4: 11 B)) — B(AJB(B,)I}

iel jeJ

the maximum being taken over all finite partitions (4;);er and (B;);cs of Q respectively with elements
in A and B. For a strictly stationary sequence (Xg)rez, let Fo = o(X;,7 < 0) and G, = o(X;,i > k).
The sequence (X )rez is said to be absolutely regular in the sense of Rozanov and Volkonskii (1959) or
[-mixing if
Bn = B(Fo,Gn) =0, asn — oco.

Concerning the strong approximation by a Kiefer process in the stationary and S-mixing case, Theorem 1
in Dhompongsa (1984) yields the rate O(n('/2)=*) for some positive A, under the assumption 3, = O(n~%)
for some a > 2 4 d. Nevertheless this mixing condition is clearly too restrictive and A is not explicit.

We now come to our results. For absolutely regular sequences, the finite dimensional convergence of
{n"Y2Rx(s,n) : s € R} to a Gaussian process holds under the summability condition Y k>0 Br < 00,
and this condition is sharp. Rio (1998) proved that this summability condition also implies the functional
central limit theorem for {n='/?Rx(s,n) : s € R?} in the sense of Dudley (1978) for any d > 1. Assume
now that the stronger S-mixing condition

By = O(n'~P) for some p > 2 (1.5)

holds true. In Section 2, we shall prove that, in the case d = 1, one can construct a stationary absolutely
regular Markov chain satisfying (1.5), whose marginals are uniformly distributed over [0, 1], and such
that, for any construction of a sequence (Gy,),>0 of continuous Gaussian processes on [0, 1],

liminf(nlogn)_l/pE( sup |Rx(s,n)— Gn(5)|) >0.

n—o0 56(0,1]

Concerning the upper bound, Dedecker, Merlevede and Rio (2012) obtain a strong approximation by
a Kiefer process under a weak dependence condition which is implied by the above condition, with a
power-type rate O(n(l/ 2)=9) for some positive § depending on p. Nevertheless their result holds only for
d = 1 and the value of ¢ is far from the optimal value (1/2) — (1/p). This gap motivates the present
work. In Section 3, we prove that, if (X;);cz is a strictly stationary sequence of random variables in RY
satisfying (1.5) for p €]2, 3], there exists a two-parameter continuous (with respect to the pseudo metric
defined by (3.1)) Kiefer type process Kx such that

E( swp  [Rax(s.nt]) = Kx(s,[nt))]) = O(n/"(logn)*®)
s€R4,t€(0,1]

We also prove that, for another Kiefer process Kx,

sup |Rx (s, k) — Kx(s,k)| = O(n*/?(logn)MD+T=+1/P)  almost surely, for any & > 0.

s€Rd
k<n

More precisely, the covariance function I'x of Kx is given by

Tx(s,s,t,t') = min(t,#')Ax(s,s") where Ax(s,s') = Cov(lx,<s, Lx <o) (1.6)
keZ



Our proofs can be adapted to iid random variables with values in R? and arbitrary distribution
function, for any d > 2, yielding the error term in the strong approximation O(n1/3(log n)5+(2d+4)/3) in
the almost sure strong approximation by a Kiefer process. This result improves the results of Csorgo and
Horvéath (1988) for general distributions as soon as d > 2 and the result of Massart (1989) concerning the
specific case of the uniform law as soon as d > 3 (recall that Massart’s rate is O(n'/3(logn)?) for d = 2
and O(n?*/8(logn)?) for d = 3).

We now describe our methods of proofs. We shall apply the conditional version of the transport
theorem of Kantorovich and Rubinstein to the trajectories to get a bound on the error. However, in
the dependence setting, we do not apply the transport theorem directly. Indeed, we start by approxi-
mating the initial process Rx by a Gaussian process with the same covariance structure as Ry, using
the conditional Kantorovich-Rubinstein theorem applied in the space of trajectories, together with the
Lindeberg method. Next, we use a martingale method to approximate the Gaussian process by the Kiefer
process. This step is due to the fact that the Lindeberg method in the space of trajectories applies only to
processes with the same covariance structure. In all these steps the error terms can be bounded by n!/?
up to some power of logn, which leads to the (nearly) optimal rates of convergence for absolutely regular
sequences. Note that the Lindeberg method in the space of trajectories was introduced by Sakhanenko
(1987) in the real case to bound up the Prokhorov distance between the partial sum process and the
Brownian motion. This result was then extended to random vectors in Banach spaces by Bentkus and
Lyubinskas (1987) using smoothing techniques introduced by the first author in his doctoral dissertation.
Later, Sakhanenko (2000) improved the results of Bentkus and Lyubinskas (1987) in the specific case
of the L°°-norm, yielding efficient estimates under some assumptions on the moments of order two and
three of the Euclidean norms of the random vectors. Sakhanenko (1988, 2000) also gives some results for
martingale differences under very restrictive assumptions on the conditional moments of order two. In
our opinion, the smoothing technique used in Sakhanenko (2000) is not suitable in the dependent case.
Indeed the assumption on the conditional moments cannot be relaxed.

Our paper is organized as follows. In Section 2 we give an example of absolutely regular process for
which we can derive lower bounds for the rates of approximation by any continuous Gaussian processes.
In Section 3 we formulate our main results concerning the upper bounds for the rates of approximation
both in the dependent setting and in the independent one. The proofs of these results are given in
Sections 4 and 5. Section 6 is devoted to the very technical proofs of key intermediate lemmas leading to
our main results. Finally, in Section 7 we collect some auxiliary assertions and general facts.

2 Lower bounds for the rate of approximation

In this section, we give an example of a stationary absolutely regular Markov chain with state space [0, 1]
and absolute regularity coefficients 8j of the order of k'~P for p > 2 which has the following property:
with probability one, the error in the strong approximation by Gaussian processes is bounded from below
by (nlog n)l/ P, for any construction of a sequence of continuous Gaussian processes, whereas the L!-error
is bounded from below by n'/?.

Theorem 2.1 For any p > 2, there exists a stationary Markov chain (X;);cz of random variables with
uniform distribution over [0,1] and S-mizing coefficients (Bp)n>0, such that:

(i) 0 <liminf, ,;enP~'3, <limsup,_, . n?"*6, < oo .

(i1) There exists a positive constant C such that, for any construction of a sequence (Gp)n>o0 of continuous
Gaussian processes on [0, 1]

(a) liminfnfl/pE( sup |Rx(s,n)— G"(S)D >C.
n—00 5€(0,1]
Furthermore
(b) limsup(nlogn)~Y? sup |Rx(s,n) — Gn(s)| > 0 almost surely.
n—00 s€(0,1]

Before proving this result, we give a second theorem, which proves that the strong approximation of
partial sums of functionals of the chain holds with the same error term.



Theorem 2.2 Let (X;)iez be the stationary Markov chain defined in Theorem 2.1 and let f be a map
from [0,1] to R, with continuous and strictly positive derivative f’ on [0,1]. Let

Su(f) =3 f(Xi) —n / F)dt.
k=1 0

Then the series Var f(Xo) 4+ 23,0 Cov(f(Xo), f(Xr)) is absolutely convergent to some nonnegative
o%(f). Furthermore, for 2 < p < 3 and any positive €, one can construct a sequence of iid Gaussian
random variables (g, )k>0 with law N(0,02%(f)) such that

(a) Sn(f) — Z g = o(n*/P\/log n(loglog n)3+)/P) almost surely.
k=1

In addition, for any p > 2 and any stationary and Gaussian centered sequence (gi)rez with convergent
series of covariances,

(b) lim sup(n logn) /P

n—oo

Sn(f) — ng’ > 0 almost surely.
k=1

Note that Part (a) of this theorem was proved in Merlevede and Rio (2012). Part (b) proves that
the result in Merlevede and Rio (2012) is optimal up to the factor (logn)(/2=(1/P)(loglogn)(1+e)/P. Tt
is worth noticing that the power of the logarithm in the loss tends to 0 as p tends to 2.

Proof of Theorem 2.1. The sequence (X;);¢z is defined from a strictly stationary Markov chain (&;);ez
on [0,1] as in Rio (2000), Section 9.7. Let A be the Lebesgue measure, a = p—1 and v = (1+a)x%1j ).
The conditional distribution II(z,.) of &,41, given (£, = ), is defined by

I(z,.) =1(ds,.) = (1 — )0, + v,

where J, is the Dirac measure at point . Then the S-mixing coefficients (8,)n>0 of the stationary
chain (&;);cz with transition probability II(x,.) satisfy (i) of Theorem 2.1 (see Rio (2000), Section 9.7).
Moreover, the stationary distribution 7 has distribution function F(x) = 2%, and consequently setting
X; = & we obtain a stationary Markov chain (X;);ez of random variables with uniform distribution over
[0,1] and adequate rate of S-mixing. Define then the empirical measure P, by

Pn = 71_1 zn:(le .
=1

The regeneration times (T )x of the Markov chain (&;);cz are defined by induction as follows: Ty =
inf{n >0:&, # &1} and T, = inf{n > Tp_1 : & # &1} Let 7 = Tpy1 — T It follows that the
empirical measure at time T — 1 satisfies the equality

k—1

(Tx — 1)Pp,—1 = (To — 1)0x, + ZTjéXTj . (2.1)
=0

Consequently, for n > T}, — 1 the maximal jump of Rx(s,n) is greater than

A= max Tj.
F€l0,k—1]

Next, from the continuity of G,,, for n > Ty, — 1,

D,, := sup |Rx(s,n)— Gnp(s)| > Ax/2. (2.2)
s€(0,1]

Now the sequence (Ag)y is a nondecreasing sequence of positive integers. Notice that the random vari-
ables (&7, 7) are independent and identically distributed. Moreover &7, has the distribution v and the
conditional distribution of 7, given ({1, = x) is the geometric distribution G(x). Hence,

P(Ar <m) = (P(rg < m))*,



and

P(rg >m) = (14 a)m_l_“/ (1—y/m)™ydy ~ (1+a)l'(1+a)m " asm T oo. (2.3)
0
From the above facts, it follows that
E(Ar) = Y P(Ag >m) > kP, (2.4)
m>0

In the same way, one can prove that
Akl 2 4a)2 < Cpk/P. (2.5)

Here ¢, and C,, are positive constants depending only on p.
Now, by the strong law of large numbers T} /k converges to E(7g) almost surely, and therefore in
probability. Consequently, for k = k,, = [n/(2E(79))],

lim P(n < Ty, —1)=0.

n—oo
Now
2E(Dn) > E(A, 1n>,, -1) = E(Ag,)
From (2.5), (2.4) and the above inequality, we get that, there exists some positive constant C' (depending
on p) such that, for n large enough, E(D,,) > Cn'/?, which completes the proof of (a) of Theorem 2.1.
To prove (b), we note that, by (2.3) ,

P(r > (kInk)P) ~ ¢,/ (klogk). (2.6)

250 (P(n < T, — 1))z .

Since the regeneration times 7 are independent, by the converse Borel-Cantelli lemma, it follows that
P(73, > (klog k)'/? infinitely often ) = 1. (2.7)

Hence, by (2.2),
limsup(nInn)~YPDy 1 > (1/2) almost surely.

n

Both this inequality and the strong law of large numbers for T, then imply (b) of Theorem 2.1.

Proof of Theorem 2.2. Let b be a real in ]0,1] such that f(b) < fo t)dt (note that such a positive b
exists). With the same notations as in the proof of the previous theorem, the random variables (X, , )
are independent and identically distributed, and

mbl/®
P(rg > m, X1, <b)=(1+ a)m_l_a/ (1 —y/m)™ydy ~ (1+a)l'(1 +a)m =" asm 1 oco.
0

Consequently, by the converse Borel-Cantelli lemma,
P(7i, > (klog k)P and X7, < b infinitely often ) = 1. (2.8)

Since T,,/n converges to E(7y) almost surely, it follows that, for some positive constant ¢ depending on
E(To)u
n+le(nlogn)'/?)
lim sup Z (f(b) — f(X;)) > 0 almost surely. (2.9)
" i=n+1
Consider now a stationary and Gaussian centered sequence (g ) ez With convergent series of covariances.
If follows from both the Borel-Cantelli lemma and the usual tail inequality for Gaussian random variables
that, for any positive 6,
n+[e(nlogn)'/?]
lim inf Z (9; +0) > 0 almost surely.
" i=n+1

Taking 6 = ( fol f()dt — f(b))/2 in the above inequality, we then infer from the two above inequalities
that

1 n+[c(n log n)l/p
lim sup

N B - ‘
n—oo |c(nlogn)t/p] 92 / f)dt )) > 0 almost surely,

1= n+1
which implies Theorem 2.2.



3 Upper bounds for the rate of approximation

In this section, we state the main result of this paper, which is a Kiefer type approximation theorem
for absolutely regular sequences. In all this section, we assume that the underlying probability space
(Q, A,P), is rich enough to contain a sequence (U;)icz = (i, ds, Vi, € )icz of iid random variables with
uniform distribution over [0, 1]4, independent of (X;);cz.

Theorem 3.1 Let (X;)icz be a strictly stationary sequence of random variables in R?. Let F; be the
distribution function of the j-th marginal of Xo. Assume that the absolutely reqular coefficients of (X;)icz
are such that 3, = O(n'=P) for some p €]2,3]. Then

1. for all (s,s') in R%9, the series Ax(s,s') defined by (1.6) converges absolutely.

2. For any (s,s") € R* and (t,t') in RT x RT, let T'x(s,s’,t,t') = min(¢,t')Ax(s,s"). There exists a
centered Gaussian process Kx with covariance function I'x, whose sample paths are almost surely
uniformly continuous with respect to the pseudo metric

d
d((s,), (s',t) = [t =t + Y [Fj(s;) — F(s})]. (3.1)
=1
and such that
(a) IE( sup  |Rx(s,k) — Kx(s, k)|) — O(n/?(log ) @) |
s€Rd k<n

Furthermore, one can construct another centered Gaussian process Kx with the above covariance
function in such a way that

(b) sup  |Rx(s, k) — Kx(s,k)| = O(n*/P(logn)MD++YPY  almost surely, for any e > 0
s€R4 k<n

In both items A(d) = (3¢ +2 — %)11@2’3[ +(2+49) 1,5,
From the above theorem, in the independent setting, the error in the L' approximation is bounded
up by n'/3(logn)?+44/3 whereas the almost sure error is bounded up by n'/?(logn)*t©+44)/3  for any
€ > 0. However, in that case, the powers of logn can be improved as follows.

Theorem 3.2 Let (X;);cz be a sequence of independent and identically distributed random variables in
R?. Then one can construct a centered Gaussian process Kx with covariance function

Ix(s,s',t,t') =min(t,t')(F(sAs') — F(s)F(s')) where s A s’ = (min(sy,s}),...,min(sq, s5)),

whose sample paths are almost surely uniformly continuous with respect to the pseudo metric d defined in

(3.1), and such that

(a) E( sup |Rx(s, k) — Kx(s,k)|> = O(n1/3(10g n)(2d+3)/3) )
seRd k<n

Furthermore, one can construct another centered Gaussian process K x with the above covariance function
in such a way that

(b) sup  |Rx (s, k) — Kx(s, k)| = O(n'/3(logn)CD/3) glmost surely, for any e > 0.
seRd k<n

Recently, Merlevede and Rio (2012) obtained efficient strong approximation results for partial sums
of real-valued random variables. In the bounded case, under the mixing condition 3, = O(n'~P), they
obtain in their Theorem 2.1 (see Item 1(b)) the rate of almost sure approximation O(n'/?(logn)1/2)+).
According to the results of Section 2, the power of n cannot be improved, contrary to the previous papers
on the same subject. Starting from Theorem 3.1, we can derive an extension of this result to partial sums
of random vectors in R%, in the same way as Borisov (1983) derives strong approximation of partial sums
from the strong Kiefer approximation of Komlés, Major and Tusnady.



Corollary 3.1 Let (X;);cz be a strictly stationary and absolutely regular sequence of bounded random
vectors in RY.  Assume that its absolutely reqular coefficients are such that B, = O(n'~P) for some
p €]2,3]. Then the series of covariance matrices ), ., Cov(Xo, X) is convergent to a non-negative
definite symmetric matriz I'. Furthermore, there exists a sequence (Z;);>1 of d random vectors with law

N(0,T) such that, setting A = Zle(Xi -E(X;) - Zy),

(a) E(zgp 1AK]l) = O(n'/? (log n)* @) .

In addition, there exists another sequence (Z;);>1 of #d random vectors with law N(0,T) such that, for
any positive €,

sup ||Ax|| = o(n*/P(logn almost surely.

b A 1/p(] Md)+e+1/py 41 ]
k<n

In both items, A(d) is defined in Theorem 3.1.

Proof of Corollary 3.1. Adding some constant vector to the initial random vectors if necessary, we
may assume that the components of the random vectors X; are non-positive. For each integer i, we set
X; = (Xi(l), XZ-(Z), . ,Xi(d)). From our assumptions, there exists some positive constant M such that, for
any integer 4 and any X; belongs to [—M,0]¢. Then, for any j in [1,d],

, 0
Xz‘(J) = _/ 1X,¥j)<tdt'
-M i =

Let then Kgg)(t,k) = Kx((1,...,1,¢1,...,1), k), where t is the j-th component. Define the random
vectors Z, for any positive integer k by

z9 = _/ (Kﬁ?(t,k) — KQ(t,k—1))dt for any j€[1,d].
-M

Then the so defined sequence (7)o is a Gaussian sequence (this means that, for any positive integer n,
(Z1,...,%Z,) is a Gaussian vector) and, from the definition of the covariance of Ky, the random vectors
Zy. are not correlated. It follows that (Z)r>o is a sequence of independent Gaussian random vectors.
Now, from the definition of Zj,

, _ 0 0
Cov(z,2") =" / / Cov( ., 1o, )dtds.
el _MJ_M 0o > m >
Hence, interverting the summation and the integral in the above formula, we get that
Conz), 2%) = Y Con(X§), X§) =T,
meZ
which implies that Z; has the prescribed covariance. Next

xP —m(xP) -z = / (KLt k)~ Kt k- 1) +P(XY <t) -1
-M

Xij)gt)dt :

Let then Ag) denote the j-th component of Ay and Rgg)(t,k) = Rx((1,...,1,¢,1,...,1), k), where t is
the j-th component. From the above identity,

. O . .
AP = [ (k) RY (e k).
-M
It follows that, for any integer j in [1,d],

sup [AY| < M sup [Ry (s, k) — Kx (s, k)| .
k<n ske<1Rd

Part (a) (resp. Part (b)) of Corollary 3.1 follows then from both these inequalities and Part (a) (resp.
Part (b)) of Theorem 3.1.



4 Proof of Theorem 3.1

In this section we shall sometimes use the notation a, < b, to mean that there exists a numerical
constant C' not depending on n such that a, < Cb,, for all positive integers n. We shall also use the
notations Fi = o(X;,7 < k) and Foo = V ey Fi-
For any (s,s’) € R??, by using Lemma 7.4 with U = 1x,<5, V = 1x,<s, r = 1 and s = oo, we get
that
|Cov(Lxy<s: Lx,<sr)| < 285
Since >4~ Bk < 00, Item 1 of Theorem 3.1 follows.

To prove Item 2, we first transform the random variables X;. With this aim, for any k in Z and any j
in {1,...,d}, we denote by X,EJ) the j-th marginal of X;. By Lemma 7.4 applied with p =1 and ¢ = oo,
there exists some non-negative random variable b(x, k) with values in [0, 1] such that, for any functions
f:RY = Randg:R?— [-1,1],

Cov(f(Xo), 9(Xr)) < 2E(b(Xo, k)| f(X0)]) and E(b(Xo, k)) < Bs . (4.1)
Let then .
b;(Xo, k) = E(b(Xo, k) | XI).

We now introduce another probability on (2. Let P§ ; be the probability on §2 whose density with respect
to Pis

[e.¢] o0
Cit(1+4) b;(Xo, k) with Cj =144 E(b;(Xo, k). (4.2)
k=1 k=1
Let P; be the law of Xéj ). Notice then that the image measure P} of Pj ; by X(gj ) is absolutely continuous
with respect to P; with density

Cil(1+4 i b(z, k). (4.3)
k=1

Let Fp: be the distribution function of P}, and let Fp: (x—0) = sup, ., F'p+(2). Let (1;)icz be a sequence
of iid random variables with uniform distribution over [0, 1], independent of the initial sequence (X;);cz.
Define then

Y = Fpe (X7 = 0) +0;(Fps (X)) = Fpe (X = 0) and Vi = (VY. v\ (44)

?

Note that (Y;);ez forms a strictly stationary sequence of random variables with values in [0, 1]¢ whose
B-mixing coefficients are also of order 8, = O(n!=P). In addition, it follows from Lemma F.1. in Rio

(2000) that Xi(j )= F 1;1(}/;(3' )) almost surely, where Fj.! is the generalized inverse of the cadlag function
J J

Fp;. Hence
Rx () = Ry ((Fp; (), ..., Fp:(+)), -) almost surely
where
Ry(s,t) = Y (lyy<e ~E(ly,<d)), s € [0,1]*, t e RT.
1<k<t
Furthermore
P(Yy” € [a,b]) < CjP5;(Yy” € [a, b)) = Cj(b — a) (4.5)

where the last inequality comes from the fact that the random variables Yo(j ) are uniformly distributed

on [0, 1] under Pg ; (see Item 1 of Lemma 5.1 in Dedecker, Merlevede and Rio (2012)). Hence Yo(j) has a
density with respect to the Lebesgue measure uniformly bounded by Cj.

For a strictly stationary sequence (Z;);cz of random variables with values in R?, let Gz be a two
parameters Gaussian process with covariance function I'z defined as follows: for any (s,s’) € R?? and

(t,t) € (RY)?

Tz(s,s',t,t") = min(¢,t')Az(s,s") where Az(s,s") = Z Cov(lz,<s,1z,<s), (4.6)
keZ



provided that Az is well defined.

Let us now give an upper bound on the variance of Gy. Below, we prove that, for any v = (u1,...,uq)
and v = (vy,...,vq) in [0,1]% and any positive integer n,
d
Var(Gy (u,n) — Gy (v,n)) < nC(B) Z |u; — v;|, where C(8) =1+ 426k . (4.7
i=1 k>0

Note that, if (u1,...,ua) = (Fpy(s1),---,Fp;(sa)) and (vi,...,va) = (Fp;(s1),. .., Fp;(sy)), then
the following equalities hold in distribution: Gy (u,n) = Gx(s,n) and Gy (v,n) = Gx(s',n). Hence

Var(Gy (u,n) — Gy (v,n)) = Var(Gx(s,n) — Gx(s',n)) .
Now, by definition of the covariance of Gy,
n~'Var(Gx(s,n) — Gx(s',n)) = A}gnoo N~'"Var(Rx(s,N) — Rx(s',N)).
Hence, by (4.1) and Corollary 1.4 in Rio (2000),
n~'Var(Gx(s,n) — Gx(s',n)) <E(|1x,<s — Lx,<s|(1 +4Zb(X0, k).
k>0

Now

d
1x,<s — Ixo<s| < E |1X(§j>§5§ —1lxoc,,l
i=1

Taking into account the definition of Pj ;, it follows that

d
Var(Gx(s,n) — Gx(s',n)) < nZCjP(ﬁ;’j('lXéj)Ss{ - 1X(gj>§5j|) :

J=1

Now, by definition of P},

]P’S’j( ‘]_Xéj)SS; — 1Xéj)§8j|) = P;(J min(s;, s5), max(s;, s5)]) = [u; — vil,
whence
d d
Var(Gx(s,n) — Gx(s',n)) < nZCj|uj —v;] < nC(B) Z lui — v,
=1 i=1

which completes the proof of (4.7) .

We shall prove in what follows that the conclusion of Theorem 3.1 holds for the stationary sequence
(Y;):iez and the associated continuous Gaussian process Ky with covariance function I'y defined by (4.6).
This will imply Theorem 3.1 by taking for s = (sq,..., sq4),

Kx(s,t) = Ky((Fpl* (31), [N ,Fp; (Sd)),t) 5

since for any (s, s') = ((s1,...,5aq), (s},...,5})) € R*,

Lx(s,s',t,t) =Ty ((Fpy(s1),-.., Fps(sa)), (Fps(s), ..., Fp:(sy)), t,t') .
We start by a reduction to a grid and a discretization.

4.1 Reduction to a grid

In this section, we consider a strictly stationary sequence of random variables Z; in R? with marginal
distributions with support included in [0, 1] and bounded densities. Our aim is to compare the maximal
deviation over the unit cube with the maximal deviation over a grid. Let A,, denote the set of z in [0, 1]%
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such that nz is a multivariate integer. The main result of the section is that, if the marginal densities
are each bounded by M, then, for any integer k < n,

sup |Rz(s,k)—Gz(s,k)| < sup |Rz(s,k)—Gz(s,k)|+dM+  sup |Gz(s,k)—Gz(s', k)|, (4.8)
s€0,1]4 s€A, ls—s"lloo <1/

where we recall that Gz is a two parameters Gaussian process with covariance function I'y defined by

(4.6).
We now prove the above inequality. For each s = (s1,...,84), we set m_(s) = n=Y([ns1],...,[ns4])
and 7, (s) = 7_(s) + n~1(1,...,1). From the monotonicity of the multivariate distribution function F

and the empirical distribution function F},
K (r—(s)) — kF (4 (5)) < Ra(s, k) < kFy (o (s)) — kF (m_(5))..
Next let F; denote the distribution function of the i-th coordinate of Zy. From our assumption
Fi(t) — Fi(s) < M|t — s].

Now, for any s = (s1,...84) and t = (t1,...,tq) with s <¢,

d
0< F(t)—F(s) < Z(Fi(ti) - Fi(si)),

which, together with the above inequality, ensures that
0 <kF(m4(s)) — kF(m_(s)) < k(Md/n) < Md
since k < n. Hence
Rz(m_(s),k) —dM < Rz(s,k) < Rz(my(s),k) +dM .
Let then
Dy(k,n) = sup |Gz (s, k) — Gz (s, k)|.
lls=s"llec<1/m

Clearly
—Gz(r_(s),k) — Dz(k,n) < —Gz(s,k) < =Gz(m4(s),k) + Dz(k,n).

Let Ay = Rz — Gz. Adding the two above inequalities, we now get that
Az(m_(8),k) —dM — Dz(k,n) < Az(s, k) < Agz(ri(s), k) +dM + Dz (k,n),

which implies immediately (4.8).

4.2 Discretization

We now apply the inequality (4.8) to our problem. Let N € N* and let k €]1,2VF!]. We first notice that
for any construction of a Kiefer process Gy with covariance function I'y defined by (4.6),

N
sup sup ’Ry(s,k‘) - Gy(s,k:)| < sup ‘Ry(s, 1) — Gy (s, 1)‘ + Z Dr(Gy). (4.9)
1<k<2N+1 s¢[0,1]4 s€[0,1]4 I—0
where
Dr(Gy):=  sup sup |(Ry(s,€) — Ry (s, 2 — (Gy (5, 0) — Gy (s, QL))| . (4.10)
2L <¢<2L+1 5¢[0,1]4
Let then
Di(Gy)= sup  sup |Ry(s,{) = Ry(s,2") = (Gy(s,£) — Gy (s,2"))|, (4.11)

2L <f<2L+1 s€EA,L

where we recall that Ay. is the set of z in [0,1]¢ such that 2Lz is a multivariate integer. Applying
Inequality (4.8) with n = 2L to the variables Z; = Y; o and taking into account (4.5), we get that

Dr(Gy) < Dp(Gy) +dC(B) + s [(Gy (s,£) = Gy (5,2")) = (Gy (s',0) = Gy (s, 27))] . (4.12)
lls—slloo<2—L
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4.3 Construction of the Kiefer process

We shall construct in this section a Kiefer process Ky with covariance function I'y defined by (4.6) in
such a way that for Gy = Ky, the terms involved in (4.12) can be suitably handled.
We start with some notations and definitions.

Definition 4.1 For two positive integers m and n, let My, »(R) be the set of real matrices with m lines
and n columns. The Kronecker product (or Tensor product) of A = [a; ;] € My n(R) and B = [b; ;] €
M, o(R) is denoted by A ® B and is defined to be the block matriz
al,lB e al,nB
A®B = : : € Mimpng(R).
ama1B - amnB
For any positive integer k, the k-th Kronecker power A®F is defined inductively by: A®' = A and

AP = AR ASFD and @1, Ai = A1 Q@ (R, A)).
We denote by At the transposed matriz of A.

Let L € N. For any k € Z and any £ € {1,...,d}, let Zkl,L be the column vector of R2" defined by

N t
Zror = ((1Yk+2Le[0,1]@*1x[O,jQ*L}X[O,l]d*Z)jzl 2L) . (4.13)

.....

Let now ﬁk 1 and U 1502 be the column vectors of R2*" defined by

d
[7,1@[‘ = ® Zkyg,L and [7]5?2 = ﬁk,L — E(ﬁk,L) . (414)
(=1

For any k € {1,...,2E}, let € 1, be the column vector of R2" defined by

t
€k, = ((1kgm)m=17“_72L) ; (4.15)
and let §L’d the column vector of R2“""" defined by
2k ok
Spa= Z €k, @ *é?i = Z Vi, - (4.16)
k=1 k=1

Let Cr 4 be the covariance matrix of §L,d. It is then the matrix of MQ(d+1)L’2(d+1)L (R) defined by
Cra=E(S145% ). (4.17)
Let us now continue with some other definitions.

Definition 4.2 Let m be a positive integer. Let Py and Py be two probabilities on (R™,B(R™)). Let ¢
be a distance on R™ associated to a norm. The Wasserstein distance of order 1 between Py and Py with
respect to the distance c is defined by

W (P, Py) = inf{E(c(X,Y)), (X,Y) such that X ~ P, Y ~ P} = sup (Pi(f)— P(f)),
f€Lip(c)

where Lip(c) is the set of functions from R™ into R that are Lipschitz with respect to c¢; namely for any
T and Y Ome7 |f($) - f(y)l < C(.”L',y).

Definition 4.3 Let m be a positive integer. For x = (ac(l), . 7x(2m))t and y = (y(l), .. .,y(2m))t two
vectors of RZ", we define the following distance

Cm(mvy) = sup "/I;(J) - y(J)| .
jefl,.2m}

12



Let K € {0,..., L} and define the following set of integers
E(L,K)={1,...,2L" "y n (2N +1), (4.18)

meaning that if k € £(L, K) then k is an odd integer in [1,2L7X].
For K €{0,...,L} and k € £(L, K), define

(k —1)2K @]

BK*’“:} 2L 9L

Notice that for any m € {1,...,2L},

L
J0,m] = 2% Z Z brc ki (M) Br i (4.19)

K=0ky€e&(L,K)

with bk i, (m) = 0 or 1. This representation is unique in the sense that, for m fixed, there exists only
one vector (b k) (m), ki € 5(L,K))K€{O 1y satisfying (4.19). In addition, for any K € {0,..., L},

> okee(rn,x) b e(m) < 1. Let b(m, L) be the column vector of R2" defined by

b(m, L) = ((bK,kK (m), kx € E(L,K))KE{OV__,L})t and Pp, = (5(1,L),b(2,L), . .,E(QL,L))t. (4.20)

P, has the following property: it is a square matrix of R2" with determinant equal to 1. Let us denote by
P its inverse. Notice also that for any positive integer m, (P$™)~! = (P;')®™ (see Corollary 4.2.11
in Horn and Johnson (1991)).

Let P§L I For be the conditional law of §L,d given For and N¢, , denote the N'(0,Cp 4)-law. Let
B 2 B

now (ar)r>0 be a sequence of positive reals and (GZL) >0 be a sequence of independent random vec-
tors in R2“""" with respective laws N(0,a2 Iyas1r) (here Iywsnz is the identity matrix on RQ(d+1)L)
and independent of Fo, V o(n;,i € Z). Let G,, = P%(d+1)@:L. Recall that the probability space
is assumed to be large enough to contain a sequence (¢;);ez of iid random variables uniformly dis-
tributed on [0, 1], independent of the sequences (X;);ez and (7;)iez. According to Riischendorf (1985)
(see also Theorem 2 in Dedecker, Prieur and Raynaud de Fitte (2006)), there exists a random vector

. L(d+1)
Wia = (Wélc)l, e Wfd ))t in R2“™M" with law Ne, . * P5  that is measurable with respect to
b 9 i G/L

o(0.)V 0(SL.a+ Ga,) V For, independent of Fpr and such that

]E(C(d—‘,-l)L(S;L,d + éaL7 WL,d))

)

PgL,d\sz * P@aL ’NCL,d * P@aL) (4.21)

E sup (E(f<§L,d + éaL)|f2L) - E(f(WL,d))) .
feLip(catyr)

E(W,

C(d+1)L(

Here and in what follows * stands for the usual convolution product. Recall that the probability space is
assumed to be large enough to contain a sequence (v;);ez of iid random variables uniformly distributed
on [0,1], independent of the sequences (X;);cz and (7;,0;)icz. By the Skorohod lemma (1976), there

exists a measurable function  from R2“™"" x [0,1] into R2VE RV guch that

h(WL,davL) = (éZZL,

fL’d) satisfies é;L + fLyd = ng a.s. and Z(GH;MTL’d) = Pé% ®NCL,d . (4.22)
Hence we have constructed a sequence of centered Gaussian random variables (T'L_,d) Len in RV
such that ]E(T'L,dfi’ d) = (4, and that are mutually independent. The approximating Kiefer process is
then constructed from this Gaussian process as we explain in what follows.
Let us write

2dL) (1 2dL t
Ty T )

= (1) 2%5) (1)
TL,dZ(Tl,LV-»TﬁL 7T2(,L7~-~7T2( or g o dor

so that for k € {1,...,2} and i € {1,...,29L}, TIEZ}J is the ((k — 1)29% 4 4)-th coordinate of the vector
fL,d. Now, for any k € {1,...,25} and any i € {1,...,2%}, we set

i i i o 1 24k
g =T — T, and Gur = (9], 07 )" (4.23)

s
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Notice that since E(fL’dfi)d) = E(§L7d§tL)d), one can easily verify that for any (k,¢) € {1,...,25}? and
any (i,7) € {1,...,29L}2

Cov(giy» 9¢'1) = Cov(uy uy) (4.24)
where ul(;)L is the i-th coordinate of the vector Uk’L. For any k € {1,...,2%}, we define now the following
Gaussian vectors in RQ(d+1)L,

Gr,L = €k,1 D Gk,L » (4.25)

where we recall that € 1, is defined in (4.15). We observe that

TL,d = Z ék,L . (4.26)
dL
We want to extend now the Gaussian vector (g | )req,....20) = (glil)L, . ,g,(fL )>k€{1,.“72L} of R2“™" into
dL
a Gaussian vector of (RQdL)Z denoted by (G{ )kez = (g,(cl)L, e ,g,(fL ))kez in such a way that (g}  )rez

is independent of F,r and that for any (k,¢) € Z? and any (i,5) € {1,...,29}2, the property (4.24)
holds. With this aim, we first notice that by the Kolmogorov extension theorem, there exists a sequence

denoted by (B(l)7 . ,B,(de))keZ of centered Gaussian random variables such that Cov(B,(f),Béj)) =

Cov(uk L,uéjz) and we recall that the probability space is assumed to be large enough to contain a

sequence (ez)mz of iid random variables uniformly distributed on [0, 1], independent of the sequences
(Xi)iez and (n;,0;,v;)iez introduced before. By the Skorohod lemma (1976) (see also Lemma 2.11 of

Dudley and Philipp (1983) and its proof), since (R2dL)Z is a Polish space, there exists a measurable
function A from R2“™7" x [0,1] into (R2™)% such that

h((Fk ke, 20y €n) = (Fh 1)ken 1, 20} (4.27)

satisfies (B,gl), cee B,(de))keZ = (G{ 1 )kez in law. Therefore the vector (g ; )rez of (R2dL)Z constructed
by the relation (4.27) has the desired property and is such that the random variables ((g’,j L) keZ)
mutually independent.

We use now the following notations: for any k € Z,

Len 8¢

Gr=0((FL)e<r) + Gooo =\ Gx and Piu() =E(-[Gr) —E([Gr1)-

keZ

Let us prove that, for any k € Z and any i € {1,..., 2dL}, the random variable

A =" Pulgl)) (4.28)

02>k

is well defined in L2. Notice first that by stationarity, >, [Pk (gél)L)HQ =30 HPO(géi)L)Hg. Next using
the computations page 1615 in Peligrad and Utev (2006), we get that, for any integer m > 0,

Z H,PO( HQ Z ” (gf L|g0)H2. (4.29)

1/2
>2m >m (f + 1) /

We denote now Hj, = span(1, (G; ;)e<k) (where the closure is taken in L.?) and J = span(1, (@}, 1 )e<k)

where iy, ;, = (u,(cl)L, A ugfL )) with u( ) the i-th coordinate of the vector U;C L. We denote by Iy, (+)
the orthogonal projection on Hj; and by ij( ) the orthogonal projection on Jj. Since (ghL)keZ is a
Gaussian process, for any ¢ > 0,

(gg L|go) = Iy, (géZ)L) a.s. and in L2,

Since the property (4.24) holds for any (k, /) € Z?2, we observe that
1Mo (952l = 1T, (g, = ECuf') 2 -
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Moreover, for any ¢ > 0, we have that

Tz, (uf), — E(S)))ll2 < IE(uf), — E(uf))[For)ll2.

So, overall, for any ¢ > 0, 4
IE (950 1Go) ll2 < I1E(ul), — E(uy’) )| Far )2 (4.30)

Next, notice that HIE(uEZ)L - E(u@ L)\]:QL)HQ < Supgzepe(x,,) Cov(Z, ué)L) where B?(F,c) is the set of
For-measurable random variables such that || Z]|2 < 1. Observe that ué)L is 0 (Y, o1 )-measurable and

such that |u$)L| < 1. Therefore, by applying Lemma 7.4 with 7 = co and s = 1, we get that there exists
a Fyr-measurable random variable bz, (£ + 2%) such that

IE(uf), — E(ug))|For) 2 <2 sup  E(|ZJbz, (€ +20)) < 2(E(bf2L (£ + 2L))) —28,/%. (4.31)
ZEBZ(]:QL)

Hence, starting from (4.30) and considering (4.31), we get that, for any ¢ > 0,

IE (g5, 1Go) 12 < 28,7 (4.32)
Therefore, starting from (4.29) and taking into account (4.32), it follows that

1/2

Z”PO ”2 <<Z g+1 r1i/2’

£>0 Z>0

implying that the series in (4.28) is well defined in L? since by our condition on (8x), 5, 6’1/2@}/2 < oo.
We define now -

oL
- dL — — — —
dk,L = (dg’}/, .. ,d,(CQ,L ))t 5 D;%L = gk,L ® d]%[, and ML,d = E Dk,L- (433)
k=1

= . o L o N
Since the random vectors (Dy, 1)k>1 are orthogonal, ]E(ML,dM};d) = Zi:l E(Dk’LDva), and then, by
the property of the tensor product (see for instance Lemma 4.2.10 in Horn and Johnson (1991)),

2L
E(MpaM} ) = &6 @E(drdf 1) - (4.34)
k=1

Let us prove now that for any integer k and any (i, j) € {1,...,29L}2,

d,ﬁ’Ldﬁg)L =" Cov( ug;,ugﬂp (4.35)
LET

which, together with (4.34), will imply that
E(ML,dME,d) = ZAk,L,d, (4.36)

where Ak 1. := Y ez €h.LEF 1 ®E(U(§OL)( ) ) => ez E ((é’k7L®Tj(§?L))(€k,L® (ﬁé(OL))t)) (by the property
of the tensor product).

To prove (4.35), we first notice that the following decomposition is valid: gffl) L= ’Pk(gm L) (to
see this, it suffices to notice that (4.32) implies that E(gg)’ﬂg,oo) = 0 a.s.). Hence, using the fact that
the property (4.24) holds for any (k,f) € Z?2, we derive by orthogonality followed by stationarity that

ONe [eS)

Cov(uly,uf)) = BS99 = Y EPulad L) Pral) = Y. E(Polgl ) Poleiir)) -
k=—o0 k=0V(—£)
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Whence

3 Cov(ulhul)) = 37 STE(Po(l) ) PoaY))) - (4.37)

(€L m>0k>0

On the other hand, by the definition (4.28) of d;c ', and stationarity, we have that

i) =3 S EPual)Pe9) = 30 S E(Polal))Po(69)) (4.38)

>k m>k £>0 m>0

Considering the equalities (4.37) and (4.38), (4.35) follows.

Hence we have constructed Gaussian random variables (M L.d)LeN in that are mutually in-
dependent and such that, according to (4.36), for £,m € {1,...,2L} and sp; = (j127F, ..., ja27 L) with
§= (s, da) €{1,...,28 and sp 1 = (k12750 ka27F) with k = (ky, ..., k) € {1,..., 25}

R2(d+1)L

Cov ((ML d)(e 1)24L 43¢ (4 —1)20d=DL41s (ML d)(m 1)24L 4379 (ky—1)2(d— 1>L+1) (4.39)
= inf @,m ZCOV 1Y0§5L,j71Yt§SL,A~,) = Fy(sLyj,SLyk,f, m) .
teL

Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer process Ky with
covariance function I'y defined by (4.6) such that

L L v
Ky (sp,j, 0 +2%) — Ky(s1,j,27) = (ML,d)(571)2dL+Z;i:1(jifl)g(d—i)L+1 - (4.40)

Thus our construction is now complete. In addition recalling the notation (4.11) and the definition 4.3,
we have that for any L € N,

D} (Ky) = c(ar1yr(St.a, Mp,q)
< C(d+1)L(§L,d + Gy Troa+ ész) + C(d+1)L(fL,d, Mp,.q4) + C(d+1)L(6, Ga,) + C(d+1)L(6a GQL) . (4.41)

4.4 Gaussian approximation

Proposition 4.1 Let L € N, Ky defined by (4.40) and D} (Ky) by (4.11). Under the assumptions of
Theorem 3.1 the following inequality holds: there exists a positive constant C depending on p and d but
not depending on L, such that

E(D},(Ky)) < C(L+ 1D 4 Cob/P(L 4+ 1) ¥ 127551, 0y 5 + C2L/3(L + 1)2H44/%1,,

Proposition 4.2 Let L € N*, Ky defined by (4.40) and D7 (Ky) by (4.11). Assume that the assumptions
of Theorem 8.1 holds. Then there exists a positive constant C(d, p) depending on d and p such that for any
L > C(d,p) and any positive real xy, € [2LB=P)/(4=p) [243d/2 9L [=d/2] “4he following inequality holds:

[,p(3d/2+2)

P(DIL(KY) 2 l'L) S exp ( — KIL) + %) .’I;Zl(L + 1)d+1 + %) :L‘ZP2LW 32LL4d+61p:3 s

+ Ko xp,

where k1 and ko depend on p and d but not on L.

Proof of Proposition 4.1. We shall bound up E(D’ (Ky)) with the help of Inequality (4.41). So, for
any sequence of positive reals (ar)r>0,

E(D}(Ky)) < 2E(c(as1)n(Gap s 0)VE(ciasryn (Tr.as Mr.a)) YE(ctarnyr (Sp.a+Gay , Trat+Gh,)) - (4.42)

We start by giving an upper bound for ]E(C(d+1)L(éaL76))~ With this aim we first recall that éaL =
(GSL), e GEIQL(dH)L))t is a centered Gaussian vector with covariance matrix a2L (PLPtL)®(dH) where Py, is
defined in (4.20) (indeed, notice that by Lemma 4.2.10 in Horn and Johnson (1991), PEHD (p@(dtlye —
(PLPtL)®(d+1)). Therefore, for each m € {1,...,20@*tDL} if we denote by V3, the variance of G((IT), it
follows from the definition of the tensor product that there exists j = (ji,...,j441) in {1,...,2L}(@+D

such that
d+1 L

Vapm H ( Z Z bE ke (Ji)) ; (4.43)

i=1 K=0kge&(L,K)

16



where we recall that the notations bx . (j;) and £(L, K) have been respectively introduced in (4.19) and
(4.18). According to the inequality (3.6) in Ledoux and Talagrand (1991),

]E(c(dH)L(éaL,(_)')) = E( max |G(m) ) < (2 + 3(10g(2(d+1)L))1/2) max Vap, m -

m=1,...,2(d+1)L L m=1,...,2(d+ 1)L

Since v2. < a2 (L+ 1)1 we then get that

ar,,m
E(cas1)z(Gay,0)) < 5ap(d+1)Y2 (L +1)1+4/2, (4.44)

To bound up now the second and third terms in the right hand side of (4.42), we shall use the two
following lemmas. The proof of the second lemma being very technical, it is postponed to Appendix A.

Lemma 4.1 Let L € N. Under the assumptions of Theorem 3.1 and the notations of Section 4.3, the
following inequality holds: there exists a positive constant Cy not depending on (L, d), such that

E(c(arnn(Tr,a Mr.a)) < Crd?(L + 1)V2(LV? 4 26-P)E/2) (4.45)

Lemma 4.2 Let L € N. Under the assumptions of Theorem 3.1 and the notations of Section 4.3, the
following inequality holds: for any ar € [(L + 1)1, 25 (L + 1)+, there ewists a positive constant Cy
depending on p but not on (L,d), such that
E(C(d+1)L(§L,d + Gy Troa + éﬁLL))
S Cg((L + 1)d+1 + a}/_p(L + 1)p(d+1)2L + GZB(L + 1)4(d+1)2L (2L(3—p) + (L + 1)11):3)
+ap P(L+ 1) 4o YL+ 1)24431, 5 + a (L + 1)%4 1281, 5) . (4.46)

Starting from (4.42) and considering the upper bound (4.44) and the two above lemmas, the proof of
Proposition 4.1 is then achieved by selecting

ay = (L _|_ 1)d+1 vV (2L/p(L + 1)d+1—(2+d)/(2p)1p€]2’3[ + 2L/3(L + 1)1+5d/61p:3)

in the bounds (4.44) and (4.46). O

Proof of Lemma 4.1. Notice that by construction, T'L@ — ]\2,;,1 is a Gaussian vector of R2“TVE

Therefore, according to the inequality (3.6) in Ledoux and Talagrand (1991),
E(cenn(Tha, Mr.a)) < (24310 09)72) sup 132 (gf7) — dii))le

Using stationarity and Theorem 1(ii) in Wu (2007) followed by Inequality (4.29), we derive that

SICRP U R IE(¢}190)]12 )
[ Z(ge,L —dy )z < Z (ZPO(QLL)) < Z Z ez )
=1 Jj=1 £zj J=1 \ex>[5/2]
Next using (4.32), followed by the fact that 8; = O(k'~P) for p €]2, 3], we get that
k . .
I (967 = deDI3 = Onk + K*7P1,25). (4.47)
=1

So overall, (4.45) follows. This ends the proof of the lemma. O

Proof of Proposition 4.2. Let y;, = x1,/7. Starting from the inequality (4.41), we derive that for any
sequence of positive reals (ar) L>0,

P(D}(Ky) > zr) < P(C(d+1)L(fL,d,ML,d) > 2yr) + ]P’(C(d+1)L(§L,d + Gy Troa + éﬁLL) > L)
+2P(c(ar1yn(Gay , 0) > 2y1) - (4.48)
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Recalling Inequality (4.44), we then derive that if we select

T 35(d+ 1) 2(L + 1)1

(4.49)

then
P(c(dJrl)L(éaLa(_i) >2yL) < P(C(d+1)L(éaL76) - E(C(d+1)L(éaL76)) > L) -

Applying the often-called Cirel’son-Ibragimov-Sudakov inequality (1976), we then infer that for any
sequence of positive reals (ar)ren satisfying (4.49),

2
. —y
]P)(C(d-‘rl)L(GaLaO) > 2yL) < exp <20_2 L ) ’
aL,d

and v2, . is defined in (4.43). Since vZ, ,, < a3 (L+1)*"!, it follows

2 _ 2
where 0y, ;= Sup <, <o v an.m

ar,,m
that for any sequence of positive reals (ar)ren satisfying (4.49),

P(c(d+1)L(éaL,6) > 2yL) < exp ( - dL) . (4.50)

Let now C be the constant defined in Lemma 4.1. Due to the restriction on xr,, there exists a positive
constant C;(d,p) depending only on p and d, such that for L > C(d,p), yr, > C1d"/?(L + 1)Y/?(L +
2B-P)L/2) Whence, for L > Cy(d,p),

P(C(d+1)L(fL,da My q) > 2y) < P(C(d+1)L(fL,d; My q) — E(C(d+1)L(fL,d7 ]\Z’L,d))) >yr) -

By construction, TL,d — M 1,4 is a Gaussian vector of R2(4+DL - Therefore, applying again the Cirel’son-
Ibragimov-Sudakov inequality (1976), we then infer that

P(C(d+1)L(fL,d,]\ZfL,d) > 2yL) < exp (2;?2& ) 7

L,d
where
b 2
wig= swp |3 (g - dipll,-
i=1,...,2(d+1)L =1
k<2l

Using (4.47), it follows that uf ; = O(L + 2L(3=P)1,,,3). Hence, there exists a positive constant r(d)
depending on d such that, for L > Cs(d, p) where Cs(d, p) is a positive constant depending only on p and
d,

P(C(d—i-l)L(TL,da ML,d) Z QyL) S exp ( — K(d)L) . (451)
Notice now that by the conditions on zp, the choice of ay given in (4.49) implies that a; belongs to

[(L+1)4+ 25 (L 4+1)4+1 for L larger than a constant depending on d and p. Therefore applying Lemma
4.2, it follows that there exists a positive constant o not depending on L, such that, for L > C(d, p),

p Lp(Bd/2+2) oL

P(C(d+1)L(SL,d+GaLaTL,d+G:1L) > yL) < Ko yzl(L—l— 1)d+1—|—/€2 Yr, W+H2 ZJZSQLL4d+61p=3.

(4.52)
Starting from (4.48) and considering the upper bounds (4.50), (4.51) and (4.52), the proposition follows.
O
4.5 End of the proof of Theorem 3.1
We start by proving Item 1. Let Ky defined by (4.40). Starting from (4.9) with Gy = Ky, we get that

N
IE( sup sup |Ry(s,k)—Ky(s,k)|) <E( sup |Ry(s,1)—Ky(s,l)’)—i—ZE(DL(Ky)), (4.53)
1<k<2N+1 5¢[0,1]¢ s€(0,1)¢ o

where D (Ky) is defined by (4.10).
Notice first that

sup |Ry(s,1) — Ky(s,1)| <1+ sup |Ky(s,1)|.
s€[0,1]4 s€[0,1]4

18



Now, from (4.7), the Gaussian process Ky (., 1) has a continuous version. Therefore, according to Theorem
11.17 in Ledoux and Talagrand (1991), there exists a positive constant c(d) depending on d, such that

E( sup |Ky(s,1)[) < c(d),
s€0,1]¢
implying that
E( sup |Ry(s,1)— Ky(s,1)]) <c(d)+1. (4.54)
s€[0,1]¢

We bound now the terms E(Dp(Ky)) in (4.53). With this aim, we start with the inequality (4.12) with
Gy = Ky. By definition of Ay, the Gaussian processes By defined by

Bk(S) = Ky(S,]C + 1) — Ky(S,k')

are independent and identically distributed, with common covariance function Ay. Hence, by (4.7), for
any integers k and ¢ with k < ¢,

Var(Ky (s,¢) — Ky (s,k)) — (Ky (s',0) — Ky (s',k)) < ({ = k)C(B)|ls — |1 -

Therefrom, starting from Theorem 11.17 in Ledoux and Talagrand (1991), one can prove that there exists
a positive constant C'(d) depending on d, such that
E( sup  [(Ky(s, ) — Ky(s,25)) — (Ky (s, ) — Ky (s',2%))|) < C(d)VL. (4.55)

oL cg<ol+1
ls—s’lloo <27 L

Hence starting from Inequality (4.12) with Gy = Ky, we derive that there exists some positive constant
c'(d) such that
E(Dr(Ky)) < E(D}(Ky)) +c(d)VL, (4.56)
where D7 (Ky) is defined by (4.11). Starting from (4.53) and considering (4.54) and (4.56) together with
the upper bound given in Proposition 4.1, Item 1 of Theorem 3.1 then follows.
We turn now to the proof of Item 2. Starting from (4.9) with Gy = Ky, and considering the upper
bound (4.54), we infer that Item 2 of Theorem 3.1 will hold true provided that we can show that for L

large enough,
Dp(Ky) = O@2F/PLMD+=+1/Py - almost surely, for any € > 0, (4.57)

where A(d) = (% +2 - %)1},6]273[ +(2+ %)lng and D (Ky) is defined by (4.10). Starting from

Inequality (4.12) with Gy = Ky and considering the upper bound (4.55), we infer that (4.57) will hold
true provided that one can prove that for L large enough,

D} (Ky) = O2F/PLMD++1/P)  almost surely, for any € > 0, (4.58)

where D (Ky) is defined by (4.10). But by using Proposition 4.2, we derive that for L large enough,
there exist two positive constants k1 and ks depending on p and d but not on L, such that

_ 1
P(D/L(KY) > 2L/pL)\(d)+ +1/P) < exp ( — K,lL) + Ko m )

which proves (4.58) by using Borel-Cantelli Lemma. This ends the proof of Item 2 and then of the
theorem. [J

5 Proof of Theorem 3.2

As in the beginning of the proof of Theorem 3.1, we first transform the random variables X;. The
transformation in the iid case is more direct since we do not need to introduce another probability. So,
for any k in Z and any j in {1,...,d}, we still denote by X,ij) the j-th marginal of X}, and by P; the law
of X(gj). Let Fp, be the distribution function of P;, and let Fp,(x —0) = sup,_, Fp,(z). Let (1;)icz be a
sequence of iid random variables with uniform distribution over [0, 1], independent of the initial sequence
(Xi)iEZ- Define then

Y9 = Fp (X9 = 0) + ni(Fp, (X)) = Fp, (X = 0)) and Vi = (Y7, .,V (5.1)

K3
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Note that (Y;);ez forms a sequence of iid random variables with values in [0, 1]¢. In addition the marginals
of Y; are uniformly distributed on [0,1] and X, 0 =F 3 ! (Yi(] )) almost surely, where F' 3 !is the generalized

i
inverse of the cadlag function Fp, (see Lemma F.1. in Rio (2000)). Hence

Rx(-,-) = Ry ((Fp,(-), ..., Fp,(+)), ) almost surely,

where

Ry(s,t)= Y (ly,<s —E(ly,<i)), s €[0,1], t e RT.
1<k<t

Therefore to prove Theorem 3.2, it suffices to prove that its conclusions hold for the iid sequence (Y;);ez
defined above and the associated continuous Gaussian process Ky with covariance function I'y defined
as follows: for any (s,s’) € [0,1]?? and (¢,t') € (RT)??

Ly (s,s',t,t") = min(¢,¢')Ay (s,s") where Ay (s,s') = Cov(ly,<s, lyp<s)- (5.2)
This will clearly imply Theorem 3.2 by taking for s = (s1,...,54),
Kx(s,t) = Ky ((Fp,(s1),--.,Fp,(54)),t) ,
since for any (s,s') = ((s1,...,5a), (s],...,5})) € R*,

FX(S,S/,t,t’) = FY((FPI (81)7 cee 7FPd(Sd))7 (FPI (8/1)’ e .,de(Sél)),t,tl) .

According to the proof of Theorem 3.1, the crucial point is to construct a Kiefer process Ky with
covariance function I'y defined by (5.2) in such a way that one can handle both the expectation and the
deviation probability of the quantity D (Ky) with (Y;);cz defined by (5.1).

Construction of the Kiefer process. We shall use the same notations and definitions than in Section
4.3. Therefore Sy, 4 denotes the column vector of R2“""" defined by (4.16) with (Y;);ez defined by (5.1),
and Cp, 4 the covariance matrix of gL,d. It is then the matrix of My+1nr g+ (R) defined by (4.17).
Notice that by independence and the properties of the tensor product (see Lemma 4.2.10 in Horn and
Johnson (1991)),
2L
Cra= Y el @B (T (5.3)
k=1
As in Section 4.3, to construct the Kiefer process, we consider a sequence (ar)r>o of positive reals and

9(d+1)L

a sequence (ézL)LZO of independent random vectors in R with respective laws N(0, a% Ipwi1)z)

(Iyar1z being the identity matrix on RQ(HDL)

, and independent of Foo V o(n;,i € Z). Moreover we set
éaL = P%(dﬂ)é’jﬁ where P, has been defined in (4.20). Since the probability space has been assumed
to be large enough to contain a sequence (0;);cz of iid random variables uniformly distributed on [0, 1],

independent of the sequences (X;);ez and (1;)icz, according to Riischendorf (1985), there exists a random

= 1 oL(d+1)y\ ¢t , (d+1)L
vector Wp g = (W, ..., w@ ) in R2

to 0(0.) V o (Sp.q+ Ga,) V Far, independent of Fyr, and such that

with law N, , * P;  that is measurable with respect
, ar

E(C(d+1)L(SL’d + Gy, WL,d)) = WC(d+1)L (PgL,d * Pé“L 7NC'L,d * PéaL> (5.4)

sup  (E(f(Spa+Gay)) —E(f(Wra)))
feLip(eat1yr)

where PE'L ) and and NCL,d respectively denote the law of §L7d and the N(0,Cp, 4)-law.
As in Section 4.3, using the Skorohod Lemma (1976), we infer that there exists a measurable function h
from R2“"V" x [0,1] into RV RV guch that

h(WL,d, UL) = (é/

ar”?

T'Ld) satisfies é;L + fL,d = WL@ a.s. and E(é;L,de) = PéaL @Ne, .. (5.5)
Hence we have constructed a sequence of centered Gaussian random variables (fL7d) LeN in R2HVE
that are mutually independent and such that IE(TL’dTE’d) = Cpr,q. In particular, they satisfy for
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6m o€ {1,...,2Y and sp; = (jh27 L., 5a27L) with §j = (j1,...,7a) € {1,...,21}¢ and sp =
(k1270 kg2 ) with k = (ky,...,kq) € {1,..., 25},
Cov ((TL,d)(é—l)QdL-&-Eff:l(ji—l)Q(d—i)L-i-l’ (TL,d)(m—1)2dL+Efj=1(ki—1)2<d—i)L+1) (5.6)
= inf(é, m) COV(1YOSSL,j’ 1Y0§5L,k) = Fy(SL,j,SL,k,g, m)

Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer process Ky with
covariance function I'y defined by (5.2) such that

Ky (s, 0 +2") = Ky(sp.3,2") = (TL,d) (5.7)

(=129 4500 (=120 D 4L
Thus our construction is now complete.

End of the proof. Following the proof of Theorem 3.1 (see Section 4.5), to complete the proof of
Theorem 3.2, it suffices to prove the following two propositions.

Proposition 5.1 Let L € N, Ky defined by (5.7) and D} (Ky) by (4.11). Under the assumptions of
Theorem 3.2, the following inequality holds: there exists a positive constant C' not depending on (L,d),
such that

E(D(Ky)) < C(d+ 1)"/3(L 4 1) T24/325/3

Proposition 5.2 Let L € N, Ky deﬁned by (5.7) and D} (Ky) by (4.11). Assume that the assumptions
of Theorem 8.2 holds. Then, for any xp > (L + 1)4T3/2 the following inequality holds:

IP’(D’L(Ky) > $L) < exp ( — I€1L) + Ko ng(L + 1)2d+32L ,
where k1 and ko depend on d but not on L.

Proof of Proposition 5.1. Recalling the definition 4.3, we have that for any L € N,

D/L(KY) = C(d+1)L(§L,dafL,d)
< C(d+1)L(§L,d +Gapy Trog + éQL) + ¢ty (0, Gop) + ety (0, égL) ) (5.8)

where T}, 4 and éfm have been defined in (5.5).
To bound up the expectation of the first term in the right hand side of (5.8), we shall use the following

lemma whose proof is postponed in Appendix A. The expectation of the two last terms is handled by
using (4.44).

Lemma 5.1 Let L € N. Under the assumptions of Theorem 3.2 the following inequality holds: For any
sequence (ar)r>o0 of positive reals, there exists a positive constant C not depending on (L,d), such that

E(c(ainn(Sp,a+ Gapy Tra+Gh,)) < Cap?(L+1)%128 4 Cap®(L 4 1)3@D/22L (5.9)

Starting from (5.8), taking the expectation and considering the upper bounds (4.44) and (5.9) by selecting
ar, = (d+1)"Y/S(L +1)4/62L/3 the proposition follows. [

Proof of Proposition 5.2. The proof of this proposition follows the lines of the one’s of Proposition
4.2 with obvious modifications. The term c(441) L(TL d, M 1.4) is obviously equal to zero, Lemma 5.1 is
used instead of Lemma 4.2 and we select ay, = O

25(d+1)1/2(L+1)1+d/2

6 Appendix A

This section is devoted to the proofs of Lemmas 4.1 and 5.1. We keep the same notations as those given
in Section 4.
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6.1 Proof of Lemma 4.2
We first recall that

]E(C(d+1)L(§L,d+éaL7fL,d+égL)) :E(Wc(d+1)L(P§ For *Péa,./\/'chd *P@a’)) , (6.1)
L,dl 2
. = 2k 5 St =i t. . o(d+2)L
where N, , is the law of T, g = >, Gi and (G} ,..., G5 ;) is a Gaussian vector of R uch
that ]E(ézLégL) = E(‘_/;th/;tL) We consider now a Gaussian vector (ﬁf)L, ., NL L)t of R2“"™" such
that ' ’
(Nt o N ) = (G, G ) inlaw, (6.2)
and . . .
(Mg, ,N;L,L) is independent of Foo V o (n;,i € Z). (6.3)
Define = =
Npa=Nip+Nop+---+Nar .
Notice that we have in particular that
E(N;, N! ) =E(V!,V}!,) and E(Np 4N} ) =E(SLaSt,)- (6.4)

Let now W;L be a random vector in R2“™"" with law N(0,a? Iy ) independent of Foo V a(]\_fi,L, 1<
i <28V o(n,i e Z). Let W,, = P%(dH)W;L. With these notations, we can write that

E(W,

Ca+1)L (P§L,d\f2L

= sup (E(f(gL,d + WﬂL)|‘F2L) - E(f(NL,d + WaL))) . (6.5)
feLip(cay1yr)

We introduce now the following additional notations and definitions:

Notation 6.1 For any K = (K, ...,Ky) €{0,..., L} we shall denote
d
et =Tlew. k),
i=0

where the E(L, K;)’s are defined in (4.18). Therefore the notation kx € 52‘?;}1) means that kx =
(krys--- kK,) € H?:Oé'(LKi). In addition, we also denote

¢ = {0,..., L}@D,

. L L

So the notation EKeIﬁ“ ZkKEE(LfZ” Means Y g o+ 2 i y—0 kao ce(L,Ko) - Zdees(L,Kd) and the
. L L

notation ZKGIZ“ SUDy,, ¢ g(dH1) TEANS D Ko=0 - Dok g=0 SWPhkye E(LKo) - - - SUD e e (LKy)-

d+1)L

Definition 6.1 Let x and y be two vectors of R2' with coordinates

t
v = (20 ke € £ pann)
’ L

and .
d
y = ((y(K"“K),kK € 5£,1+<1))Kezg+l) .

Let Czd+1)L be the following distance on RQ(dH)L,

c>(kd+1)L(337y) = Z sup |x(Kka) _ y(K7kK)|_

(d+1)
KeTitt br€ &y

Let also Lip(c’(de)L) be the set of functions from R2“"V into R that are Lipschitz with respect to cZ‘dH)L;

namely, |f(z) — f(y)| < ZKGIZ“ SUDL, ¢ eglty |z (BOk) g (k) |
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Let z = (J:(l), e ,x(2(d+1)L))t and y = (y(l), ... ,y(Q(dH)L))t be two column vectors of R2“""". Let now
u = (P%(dﬂ))flx and v = (P%(dﬂ))fly (recall that Py has been defined in (4.20), and since Py, is

non singular so is P%(dﬂ)). The vectors u and v of R2“"™"" can be rewritten u = ((U(K’kK),k'K €

t t
‘Sfj(l))KeIﬁ“) and v = ((U(K’kK)7 ki € 52‘?;;1)) ) . Notice now that if f € Lip(c(g41)r), then

Kezdtt

|f($) - f(y)| < C(d+1)L(x,y) — Sup |$(m) _ y(m)| .
me{l,...,2(d+1DL}

In addition, for any m € {1,...,2(@* DL} there exists an unique (jo,...,7q) € {1,...,25}%*! such that

d
m=Y (ji— 12" 1.
=0

Therefore,
20—y = | (g b, 1) — (@ b 1) 0]

So overall,

[f (@) = f(y)]
L L
< Sup Z Z T Z Z bKo,kKO (30) T bKd,7de (jd)

; ; d
(Jos-msda) €41, 2B AL g ko €(L,Ko) Ka=0ky,€E(L,Kq)
X|u((K07---7Kd)7(kK07---J<Kd)) _ U((Kow-de)v(kKU7~»-»de))|

L

L
< sup > oo > broksg (J0) by ks, (Ga)

(Joseesja) €L, 2B FAH oy breg €8(LoKo)  Kam0 kne, €8 (L,Ka)
% sup |u((KUa~~~7Kd)’(i0,~‘~77;d)) _ U((KO:Hde)v(iOw"aid))| )
(i05--via) E[TE—o E(L,K¢)
Since for any K € {0,...,L} and any j € {0,...,2L}, Yree(r,x) brp(j) < 1, it follows that if f €
Lip(c(a+1)L),
@) = f@)l = 1f o PL T (w) = fo PR ()

L L
sup |u((Ko ----- Ka)s(iosia)) _ 4y (Koo, Ka), (oo id))|'

Ko=0  Kq=0(0,-ia)€lli—o E(L,Ky)

7
M

Whence, if f € Lip(c(g+1)L),

[f(2) = F(W)] < ¢laray(u, ). (6.6)
Starting from (6.5), considering (6.6), recalling that W,, = P%(dH)W;L, and using the notations
T 1 = = _1 -
Sta= (P%(dﬂ)) Sp,a and N7 ;= (P%(dﬂ)) Nra, (6.7)
we get that
]E(Wc(d+1)L (PgLyd‘]_}L * Péa7NCL‘d * P@a))

<E s (E(f(Sia+ Wi )l Fn) —E((NLa+W2,)) . (63)
fGLip(cE‘d_H)L)
Let now Lip(c’(*d+1)L,]:2L) be the set of measurable functions g : R2V" 2 0 5 R wrt the o-fields

B(RQ(d+1)L) ® For and B(R), such that f(-,w) € Lip(c{y ,),) and f(0,w) = 0 for any w € Q. For the
sake of brevity, we shall write g(x) in place of g(x,w). From Point 2 of Theorem 1 in Dedecker, Prieur
and Raynaud de Fitte (2006), the following inequality holds:

E s (E(f(Sia+Wi)lFor) — B/ (N g+ W2,)))
fELip(cE‘dJrl)L)

= sup E(g(S; 4+ W5,)) —E(g(N} 4+ W) (6.9)

geLip(ch+1)L WFoL)
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To bound up the right-hand side term of the above equality, we shall use the Lindeberg method. Before
developing it, let us make some useful comments.

Recall that since Py, is nonsingular, then so is P$¢, and (P%d)71 = (le)®d (see e.g. Corollary

—

2.2.11 in Horn and Johnson (1991)). Therefore, for any i € Z, we can define the column vectors €/, , U
7+(0)
and U; | by

&= (Pr) @, U= P 0, and U = (P§Y) 0. (6.10)

With these notations, we have that
2k 2k
Jx > 7%(0) . _ 7%
Sta=Y ol =) Vi (6.11)
i=1 i=1

Clearly I_/;*L = (P%(dﬂ)) 71Vi7L where V; 1, is defined in (4.16). The vector ‘_/;*L can be written as follows:

d
~, ~(K.k t
‘/i,L = ((‘/lEL K)7 kx = (k’Kla ey k'Kd) S HS(L, Ki))K:(K17...,Kd)€{0,...7L}d') ’
i=1
where
~(K.k
ViEL ®) = liEZLBKokaO (1Yi+2L €8xy ke, ><~~~><BKd,de - E(]‘Yi+2L€BK1,kK1 X"'XBKd:k'Kd )) . (612)
Notice now that
2L
ﬁz,d = Zﬁz*,L where N:L = (P%(d+1))_11\7@L . (6.13)
i=1
In addition, the vector ]\7'1* ;, can be written as follows:
~ (K kk) d t
Niw = ((NM’ ki = (krys- - kk,) € Hf(L,KZ-))K:(Kl7__7Kd)€{07“_,L}d) , (6.14)
i=1
and we have that o) ~(Ope) o) (@)
E(N{LMINGP) = BV, (6.15)

where Yz(ka) is defined in (6.12).

Let us now introduce some notations useful to develop the Lindeberg method.

- t
Notation 6.2 Let @,, be the density of W, and let for v = ((x(K*kK),kK € 5,%‘1}21))}{614“) ,
’ L

g* Pay (T,w0) = /g(w+y,w)%L(y)dy-

For the sake of brevity, we shall write g x @,, (x) instead of g * pqu, (x,w) (the partial derivatives will be
taken wrt x). Let also

J
So=0 and forj>1, §j:ZﬁTL’
i=1

where the V;*L ’s are defined in (6.11), and
2L
T2L+1 =0 and forje {1,...,2, ’f‘j :ZN;L,
i=j

where the N'Z*L s are defined in (6.13).
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Let a € [(L 4 1)@tV 25(L + 1)(@+D]. Starting from (6.1) and considering (6.5), (6.8) and (6.9), we
(d+1)L"7: L) (g(s}i,d + W;L)) -

E(g (Nz aT W;L )). With this aim, we shall use the Lindeberg method combined with the so-called Stein’s
identity, as it is described and done in what follows (see also Neumann (2011) for the case of the partial
sums of real-valued random variables).

With the above notations, we write that

see that to prove (4.46) it suffices to prove the same bound for supger;p(c

sup E(9(St.a+Ws,)) —E(9(Nf 4+ Wy,))
gELip(CZdJrl)L,]:QL

< ZE(Q*%L (Sici + Vi, + Tis1) — g% @, (Si 1+N*L+T1+1))

gELlp((’(d+1)L"F2L i=1

For any i € {1,...,2L}, let

A1,;0(9) =g *¢a, (§z‘71 + ‘_/;*L + ’f‘iJrl) — g% Pay (gi—l + ’fiJrl) ; (6.16)
and . . . . .
Aoin(9) = 9% ar, (Si—1 + Nip + Tig1) — g% ay, (Sic1 + Tig1) - (6.17)
With these notations, it follows that
sup E(g(S]a+ WE,) —E(g(N 0+ W2,))
g»Epr(('(dH)L,]:2
2L
< sup > (B(Ariz(g) —E(A2irl(g)). (6.18)

96Lip(c?d+1)u]:2L) i=1
Let us introduce the following definition:
Definition 6.2 Let m be a positive integer. If V denotes the differentiation operator given by V =

(8%1, cee %)t acting on the differentiable functions f : R™ — R, we define V®* in the same way as

in Definition 4.1. If f : R™ — R is k-times differentiable, for any x € R™, let D* f(z) = VEF f(x), and
for any vector A of R™, we define D f(x).A®* as the usual scalar product in R™" between D*f(z) and
A®F . We write Df(x) in place of D' f(z).

We start by analyzing the term E(AM’L(Q)). By Taylor’s integral formula,
. . . 1 . . .
’E(Al,i,L@)) - E(Dg * Pap, (Sifl + Ti+1)-ViTL) - §E(D29 * Pay, (Siq + Ti+1>-V:i®2)‘
! (1 — t)2 3 Q T — %3
< ‘E/ TD g* Pa, (Sifl + Tt -l-ﬂ/;*L)V;*EQ ‘ .

Applying Lemma 7.2 and using the fact that sup, el \V(K ki) | <2and ), egd+1(V(K k) ) <2,
we get that

|E(A1,i,L(9)) - E(Dg * Qay, (Sz 1+ TH—l) ) - *E(D g * Pay, (Si—l + Tz+1)‘7;*?2)|

< ap}(L+ 1)+, (6.19)
Let . . . .
A(i,5)(9) = D*g * ¢ay, (Si—j + Tit1) — D*g % 0a, (Si—j—1 + Tis1) (6.20)
and
ur, = [ar(L+1)~@D]. (6.21)

Clearly with the notation X(*) = X — E(X),

ng * Qap, (§i—l —+ Ti+1),(‘_/';j‘§2)(0)
(upAi)—1

Z A, 5)(9)-(VIEH O + D2g 5 gy (Sizup piy + Tigt)-(VEH O (6.22)
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In the rest of the proof, to weaken the notations and when no confusion is possible, we write

2. 2 =2

KeTit ke edtl Kok
For any j < (ur A1) — 1, notice that
A, 4)(9)-(VEH)©

0%g * Pa, < - %9 % Qa, () 7 (Ppe) ()
::gg; ;EI (aaxk:kx)ax<PwP)(Si—j*‘“”*ﬁ)“ 8x(K*m06x(PwP)(Sz —i- 1*‘“3+4))(‘/ Vi)
sJRK I5,pP

Using Lemma 7.4 with

9’9 * ay
8$(Kka)8z(P’ZDP)

0%g * pa,

0K k) 9 (Ppr) (Si—j—1+ Tit1),

U= (§i—j + Ti—l—l) -

V= ng’k")\zgf’”), U = a((Yg,é <i42F - j),Ti+1)7 V =0(Y; or), r =00 and s = 1, we get that
there exists a V-measurable random variable by (i + 2L — j) such that

IE(A(, j)(g)-(ﬁ’fi@?)(o)) |

g*@U«L < ol 829*@(@ < P
<2 g s e (Sei + Tonn) = gt S + )|}

X Z Z (bv (i +2F — }‘N/iff’kmf/iff’pp”).

K,kx Ppp

Using the fact that ZKEZZ“ ZkKEEZLf; “Z(fkk)| < 2(L + 1)1, and that E(by(i + 25 — j)) < 85, it
follows that
[E(A(,§)(9)-(VE?) <0>)y < (L +1)2d+0p;

89 * Pay,
Oz (Kki) 9 (Prpp)

99 * ay
ax(K»kK)ax(Pva)

(Sij+Tis1) — (Siya+Tu)| - (629)

oo

X sup sup
(Kkx) (PppP)

Next, using the property of the convolution product and Lemma 7.3, we derive that

99 * Pay, Sy 9 * pay 5 =
H 0z K ki) §z(Ppr) (Sivj + Tia) = 0z K ki) §z(Ppr) (Sizjm1+ Tipa) Hoo
3280%
< +9) — 9|
H 92 Ekr) 9 (Porr) ‘ H yeﬂiEEl)L St ) =9
< aZQH sup }g(V Lty - |H
ycRE+1L
But, since g € Lip(cZ‘dH)L,]:zL),
= (K k
gV +y) —9w)| < > sup [V <2(L + 1)+ (6.24)
Keritt ke gl
So overall, we get that B
[E(AG ) (@)-(VEDD)| < ap® (L + 1) g; (6.25)

On the other hand, using the same arguments as to get (6.23), we infer that

[B(D?g * @ay, (Sizupni) + Tira) (V) ?)]

829 * QOGL
‘8x(K:kK)8x(PaPP) (

—

Si—(urni) + ’fi+1) HOO

< (L+ 1)2(d+1)ﬁuLM sup  sup
(K.kk) (PpP)
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Therefore using Lemma 7.3,
[E(D2g * @ay (Si—upniy) + Tiz1)-(VEH D) < ag (L + 1)2@HVB, 1 (6.26)

Hence, starting from (6.22) and taking into account (6.25), (6.26), the choice of up, the fact that a; <
2L(L + 1)4+! and using that £;, < k'~P for some p €]2,3], we derive that

2L

. L+1 (p—1)(d+1) L+1 d+1
ST E(D?g40a, (Sic1+Tii1).(VE2)©) < 2bap (L+1) <d+1>(( i”‘l 4 aL) ) (6.27)
i=1 L

We give now an estimate of the expectation of Dg * ¢, (§i_1 + ’fz+1)‘_/;*L With this aim, we write

i—1

Dg * ¢q, (§i—1 + Ti+1) =Dg* ¢a, (Ti+1) + Z (Dg * ¢a,, (gi—j + Ti+1) — Dg* @q, (§i—j—1 + Ti-l—l)) .
=1

Hence

—

]E(Dg * Qar (§i—1 + ’fz+1)‘_/;*[,) = E(Dg * Qay, (Tz+1)V1*L)

i—1
+ > E((Dg* ¢ar (Si—j + Ti1) = Dg * pay (Simjr + Tir1)). Vi) . (6:28)
j=1
Notice that
09 % o, 1=
E(Dg* o (Tisn)- Vi) = 3 3. B G (T V™).

KeTit kreedtt

. Ogxpa. e . -
Since % (Tit1) is a For Vo (T;41)-measurable random variable, and T, 1 is independent of VoL

applying Lemma 7.4 with U = %(_}Hl) V= V(K ki) , U = For V O(THl), Y= U(Yi_,_QL), r=1
and s = 0o, we get that there exists a {/-measurable random Variable bu (i + 2%) such that

(9 a T .
’E(Dg * (PaL( 7,+1 ‘ < Z Z (‘ ai(ﬂ;{i L) ( i+1)‘bu(’t + QL)) .
KeTIit ke ety

(K, kK)

Notice now that by the inequality (7.1), for any K in Z¢™* s D ke g+l
E(by(i +2%)) < B;. Therefore,

%(%1)‘ < 1. In addition
[E(Dg * o, (Ti1)- V)| < (L+ 15, (6.20)

We give now an estimate of Z;;ll E((Dg *QVap (§Z-,j + ’fi+1) —Dg*p,, (§i,j,1 + TZ+1))‘7Z*L) For any
1> j—+ 1, we first write that

(DQ * Qqp (§i7j + Ti+1) —Dg*@q, (§i7j71 + Ti+1))-‘7;*L

09 * Yoy (g = 09 * a, (& K.k
= 3 (G (s Town) = G (s + To) JUEH.

Using Lemma 7.4 with

g * pa,
Ox(K kx)

09 * pa,,

U= 9z (K Frc)

(gi—j + Tz‘+1) - (§i—j—1 + Tz’+1) ;

V= IN/iff’kK), U=0Yel <i+2L—j)Vo(Ti), V= 0(Yior), 7 =00 and s = 1, we get that there
exists a V-measurable random variable by, (i + 2% — j) such that

|E((Dg * ¢a, (Sivj + Ti1) = Dg* pa, (Simjr + Tisa)). Vi )|

9 * Par, (g = 09 * Pa;, & = . (P,
< 2(1?2}) H@x(K kKL) (Sz‘—j + Ti+1) - W(Si_j_l + TH_l)Hoo X Z E(bv(z +of —j)|ViEpr)|) .
’ Ppp
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Using the fact that ZKGIZJA ZkKEECLH; HN/Z(ka)| < 2(L +1)41, and that E(by(i + 2% — j)) < 8;, it
follows that ’

|E((D9 * QPar (gi—j =+ Ti+1) — Dg x Par, (Sl j—1+ TH‘l)) V* )|

99 * Pay, (&
d+1lp ar (& Y
< (L + 1), (;3};) ‘ Oz (K kx) (Si—j + Tz+1)

ag * L)D(ZL
Ox (K kx)

(S'ifjfl + 'f‘i+1) HOO

Next, using as the property of the convolution product, Lemma 7.3 and the upper bound (6.24), we derive
that

|2rfon (s, s+ Torn) - %(s + )|
< Haf(iaém I s LotV ) - ol <azt @+
It follows that for any ¢ > j + 1,
IE((Dg * @a, (Si—j + Tiz1) — Dg* @ay (Si—j1 + Tiz1)).Vip)| < ap (L + )23, (6.30)

From now on, we assume that 7 < ¢ A uy. Notice that
(Dg * ¢ay, (§i,j + ’f‘i+1) —Dg*p,, (gi,j,l + 'f‘ZH))V;*L —D%gxqp,, (SZ -1+ T1+1) (V- L ® V )
- /01(1 —t)D%g % a, (Simj1 + Tiga +tV;7 1).(V92 @ Vi )dt .
We first write that
[B(D?g % ¢y, (Sicj1 + Tisa + 1V, 1) Vi5 @ Vi)

DP9 @a, 3 = 5 (K ki) 77 (Ppp) T7(Qu40)
= E( D2 D S aa e ga@ay Simit + T + 4V 1) x VOV )
K,kx Ppp Q,qq

Let

3
(Q “0) _ 0°g * pay, 3 o 2 S (K ki) T7(Popp)
Wi KZ; PZ Oz (K ki) 9 (Prr) 9z (Q.4Q) (Swfl + Tip1 + tVifj,L) x Vifj,L Vi*j,L .
K IpP

Usmg Lemma 7.4 with U = W( ]’qf?), V= V( Q) U=0(Y 0 <i+2E—j)Va(Tip), V= o(Yiyor),
r = o0 and s = 1, we get that we get that there ex1sts a V-measurable random variable by (i + 2% — §)
such that

Z Z W(Q‘JQ)‘/;(QQQ) ’<2 Z Z HW(QQQ) XE(by(i+2L |V(QqQ)|)

Qezdtt qQEE‘”l QeT¢ g€ 5d+1

v kK)V(P’pP | <4(L +1)214+D we get that

Using Lemma 7.3 and the fact that >, > p 1 SL

|W(Q7‘ZQ |<<a (L_H)z(dﬂ)_

Hence,
> Y EWERL)| <o @12 3 S B (bl 28 - )V
i L i, L
QGId+1 d0€ gd+1 QGI‘HI q0€ £d+1

Using the fact that ZQE:Z'ZJrl > g4l ‘V(Q qQ)| < 2(L+ 1) and that E(by(i + 2% — j)) < B;, we get

overall that

aQ€
1 — — — — —
& ( / (=D % @, (Siyr + Tusa + 4V, 1) V5, @ Vit )| < ag(L+ 1205, (631)
0
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In order to estimate the term E(ng * Va (§i,j,1 + 'f‘l-ﬂ).(\_/;*_ﬂ ® _;*L)), we use the following decom-
position:

(G=DA(i—j—1)
D29 * Par (gi—j—l + 'fi+1) = Z (D29 * Payp, (gi—j—l + Ti+1) - D29 * Pay, (§i—j—z—1 + Ti—i—l))
=1

+ D?g % ¢q, (§(i72j)\/0 + Ti-{-l) .

Forany l € {1,...,(j —1) A (i — j — 1)}, we notice that
[E((D?g * @ay (Sivjt + Tis1) = D2 % 9a, (Sivjir + Tig)). Vi L @ Vi )|
- ’]E( /01 D?g % @ay (Sivjmt + Towa + V7,1 1) Vi p @V, © ‘Z'TLdt) ‘ ’
whence, using the same arguments as to get (6.31), we obtain that
|]E((ng*<paL (gi_j_l+f'i+1) —D?gxp,, (gi—j—l—1+’f‘i+l))"_/;tj7L®‘_/'iTL)| < aZQ(LJrl)B(‘Hl)Bj . (6.32)

As a second step, we bound up ‘E(ng * Qo (§(i,2j)v0 + ’f‘i_H) '(‘Z‘tj,L ® f/;fL)(O)) | Assume first that
j < [i/2]. Clearly, using the notation (6.20),

(ur —=1)A(i—j—1)
D?g % @a, (Si—2j + Ti1) = Z A(i, 1+ )(g9) + D * ay, (S(i—j—ur)vo + Tit1) -
1=

Now for any I € {j,...,(ur, —1) A (i —j — 1)}, by using similar arguments as to get (6.25), we infer that
IE(AG L+ 5)-(Vi, @ Vi) D) < ap(L+1)%@H D3, (6.33)
If j <i— wup, with similar arguments,
[E(D%g * ay (Simj—up + Tign) (Vi @ Vi) )| € ap (L +1)* Y8y, . (6.34)
Now if j > ¢ — up, we infer that
[E(D%g * @a, (Tiﬂ)-(‘ztj,L @ Vi) O < ap (L +1)* 85 <ap (L+ 1) B, (6.35)

where we have use the fact that j < [i/2], for the last inequality. Assume now that j > [i/2] + 1. We
then get that

[B(D?g % ¢a, (Tir1)- Vi, @ Vi | < ap (L + 1) 85 < ap (L + 1) Bl ) (6.36)

Starting from (6.28), adding the inequalities (6.29)-(6.36) and summing on j and I, we then obtain:

uLfl
[E(Dg * @ay (Sic1 + Tir1)Vip) = Y E(D?g % @ay (Sivaj + Tis1))-E(Vi L © Viip) L<pia]
j=1

< (L+1)d+1ﬂi+azl(L+1)2(d+l) Z ﬁj+ail(L+1)2(d+1)uL5uL

Jj=iAur,
ur
+ap (L4 12 B g + a2 (L + 1) Y ;.
j=1

Next summing on i and taking into account the fact that 8, < k'~P for some p €]2, 3], and the choice of
ur, we get that

2k up—1
) ‘E(Dg #Pay (Sic1 + Tig) Vip) = ) E(D?g % @ay (Sivaj + Tita))-E(ViL; L @ ViTL)ljs[i/z}‘
i=1 j=1

< (L+ 1) 4 a (L + 1)PEAD2L 4 7 2(L 4+ 1)3 @ D2l log(up)1,—3 . (6.37)
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Hence, Starting from (6.19) and considering the upper bounds (6.27) and (6.37) together with the fact
that ar > (L + 1)%!, we get that

2% up—1
ZE(Al,i,L(g)) - Z Z E(D?g * @a, (Si—2j + Tis1))-E(V;5 L @ Vi) i<
= i=1 j=1
_ 72}]‘:‘: g*(paL Sz—l +T1+1)).E({Zj‘i®2)
< (L + 1) fap (L 1)PEDRL 4o (L4 1) 201, (6.38)

We analyze now the “Gaussian part” in (6.18), namely, the term ]E(Ag,i,L(g)). By Taylor’s integral
formula,

E(A2,i,1(9)) — E(Dg * ¢ay, (Sic1 + Tig1).Nip) — %E(DQg %@, (Sic1 + Tipr) .N;92)
— SE(D%g % gy (Sima + Tonn) N 5)
- é/olu —t)°E(D*g * @a, (Si—1 + Tip1 +tN; ). N*®4)d . (6.39)
Applying Lemma 7.2, we derive that, for any i € {1,...,2L},

|E(D%g * ¢a, (SZ 1+ T + tN;L) N*®4)]

<<aZ3IE(( Z sup |Ni(7[£7kK)‘>( Z Z (]\Nfi(f’k"))Q)?)/Q)

(d+1)
Keritt Fre&y i KeI{t' ke el
~ 45 1/4 - 2y 3/4
-3 (K,kx) (K kx)y\2
<a?(B( D sup |N(}; ) (E( D S (N . (6.40)
KeTjtt Frefy i KeZ{™ kel th

Notice that

S s NEM <@anp@ne( 3 3 (ﬁffj’“”)?)w, (6.41)

(d+1)
KeTitt kr€ &y x KeT{M ke gl

and

IN

(X T ) s (5T e

KeZit kel KeZi ke e}y

~ 2
<3( Y Y EWERM) (6.42)
KeZit kel }h
Moreover by using (6.15), we get that
S BWNERY = S 3 BN < 2L+ 1) (6.43)
KeIft kel sV KeIft kreelds?

Therefore, starting from (6.40), taking into account (6.41), (6.42) and (6.43), we derive that for any
t e [0,1],
[E(D*g # ¢ay (Si1 + Tiga + tN7L) NFH)| < ap®(L+ 1)PHD/2, (6.44)

We deal now with the term E(D3g * ¢, (§i_1 + ’fi+1)-ﬁz%3)- With this aim, we write that
]E(Dgg * Qar, (gi—l + Ti+1)'1\7i*%3)

%9 * Pa 3. = (K ki) 37 (Ppp) 37(Q.4)
Z Z Z O (K k) ax(P,ppLax(Q,qQ) (Slfl +T1+1) X Ni,L " Ni,L i Ni,L )
K,kik Ppp Q,q9Q
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We shall now use the so-called Stein’s identity for Gaussian vectors (see e.g. Lemma 1 in Liu (1994)): for

G = (G1,...,Gx)t a centered Gaussian vector of R¥ and any function h : R¥ — R such that its partial
derivatives exist almost everywhere and E‘a%ih(G)‘ < oo for any i = 1,...,k, the following equality
holds true:
oh .
ZE (GiGy) ( (G)) for any i € {1,...,k}. (6.45)

Therefore using (6.45) and the fact that (Y;,j € Z) is independent of (N7, 1 <i<2F), we derive that
E(D%g * ¢a, (§¢—1 + T‘i+1).J\7i*7%3)

=2 Z Z Z IE( D3g * pa, (§ + T, ) % N(K,kx))]E<N§P,pp)ﬁ(Q,qQ)>
92K ki) 9z (Prr) 9z (Qaq) VWit i+1 0L il il
K,kk P,pp Q,qq

99 * pa, 3 o G (K ki) 35 (Ppp)
+ Z Z Z Z E(ax(K,kK)ax(RpP)a$(Q,qQ)am(R,rR) (Si—l + TH—l) X Nz‘,L Ni,L >

K.kx Pipp Q,qq@ R.'r

x Z RTR)N(Q"JQ)). (6.46)
{=i+1

Using again (6.45) and the fact that (Y}, j € Z) is independent of (1\71*, 1 <i <25, we have that

%9 * ¢a,, g = (K k)
(ax(K,kmax(P,pp)ax(Q,qQ) (Si—1+Tip1) x Ny )
349 * Par, S = R JR) (K kx)
- RZ E(agg(mkx)agg(RpP)ax(Q,qQ)ax(R,m) (Si—1+ Tt ) ;;F N, ). (6.47)
TR 1

On the other hand, applying twice (6.45) and taking into account that (Y;,j € Z) is independent of
(N7, 1 <i <25, we derive that

( 'g % Qa,

g T S(Kki) 7 (Pop)
TP s b 1 NPy (Sic1 +Tiga) x NFHOINT )

= ]E( 849 * SOG/L
Oz Kkk) 9 (Ppp) §(Q:0Q) 9 (RoTR)

9°g * a,, S = ~(K.,kx)
+ (ag;(K,kK)ag;(P,pp)ag;(Q,qQ)ax(Rm)ax(M,mM) (Si—1 4 Tiga) x Ni, )

(g’ifl + 'f‘lqu))E(Ni(’fz,kx)ﬁi(i»pp))

MmM

« Z (M mM)N(P;DP))
l=i+1

= ]E( 849 * Pay,
Oz Kkk) 9 (Prp) §(Q:0Q) 9 (R R)

(Si-1+ T +1)>E( NSk fi(Poe)y

a g* (paL S =
+MZ sz: ( 9z (K k) 97 (Prp) 9(Q:40) 91 (Bor ) 9 (Mymar) 9 (Fofr) (Si-1 +Ti+1))
mn F

2L 2L

% ( Z E(N;ﬁfﬂﬁi(f’km))( Z E(ﬁéyz\g,mM)Ni(f;pp))). (6.48)

k=it+1 (=i+1
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Therefore gathering (6.46)-(6.48), using (6.15) and the definition of the tensor product to shorten the
notations, we derive that

E(Dsg * Par, (§i—1 + Ti+1) .]\7:%3)

oL
=3 Z E(D4g * Qap (gi_1 + Tz+1))(E(‘7[TL ® ‘_/':L) & ]E({_/;TE@Q))
f=it1

2L ok ok
30 > Y B(DOgx u, (Sic + Tis) ) (B(Vip © Vi) @ B(Vip © Vi) @ B(ViL 0 Vi)
l=i+1 k=i+1 j=i+1
(6.49)

Using now Lemma 7.5, we get that
2" 2" 3
E(D%g % ¢a, (Sic1 + Tign) NyE%) < az(L+ 1) D37 8, + ap®(L + 1)504+D ( > 55) .
=1 =1
Taking into account the condition on the S-coefficients and the fact that az, > (L + 1)%+!, it follows that
E(D%g % @a, (Sica + Tiaa) NIE%) < ap®(L4 1), (6.50)

We analyze now the second and third term in the left-hand side of equality (6.39). This will be done by
using similar decompositions as done when analyzing the corresponding terms to deal with ]E(Al,i’ L(g)).

Let us first analyze E(D?g * ¢, (§i_1 + T‘Hl).]\_'f;%Q). Let

R(i,5)(9) = D*g * ¢a, (Sic1 + Titj) — D2g % @, (Sic1 + Titji1) s (6.51)
and write
ng * Par, (§i—1 + ']_f‘i+1)-ﬁ;:%2

up A(2F —i)

= Z R(Zaj)(g)°]\7:%2 + ng * Par, (gifl + ’fi+(uL/\(2L*i))+1)'N;%2 ) (652)
j=1

where we recall that uy, as been defined in (6.21). We shall use now several times (6.45) together with
(6.15) as we did to get (6.49). Therefore, for any 1 < j < up A (21 — i),

E(R(i,j)(g).ﬁif%Q) = E(R(@j)(g))-E(‘?ﬁ@Q) + ]E(DSQ * Par, (gi—l + 'f‘¢+j)~]\7:L ® E(‘Zj—jlz ® ‘Z*L))
2L
+ > E((D39 % ay, (Sic1 + Tiys) = DP9 % 0ay (Sic1 + Tiyinn))-Nip @ E(Vip © V;*L)) - (6.53)
t=itj+

Next,

—

E(DSQ * Pap, (S’ifl + ’fi+j)’ﬁifL ® ]E(Viij,L ® ﬂi’,kL))
=E(D*g * @, (Sic1 + Tiry))-BE(V L @ Vi) @ E(Vis, L @ Vi) - (6.54)
Writing that
(D% % @ay (Sica + Titg) = D% @ay (Sica + Tigjn)) Nip @ E(Vp @ Vip)
1
= /0 D*g % @q, (Ri,j,L(t))-Ni*Jrj,L QN E(V/ ] ® ViTL) )
where

Rijo(t):=Si1+Tipjp+ t]\7{'3rj7L ) (6.55)
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we get
E((D3g * QPa (gi,1 + 'f‘z‘Jrj) — D?’g * POy (§i,1 + 'fi+j+1))-]\7;L ® E(VZL ® ‘_/;TL))
1
= [ E(D (B 2 00) BV 0 V) @ BTy )

1
+/o tE<D59*90aL(Ri,j, (t))- N+]L®E(V1+JL®VL)®E(VZL®V;L)>

+ Z / D°g % ¢a, (Rij,(t)).Niy, ®E(Vi, @ Vi) @ E(Vy @ Vi )).
k=i+j+1

Whence,
]E((DSQ % Qay (Sic1 + Tigj) — D39 % 0a, (Sic1 + Tigjir)) N @ E(ViL @ ‘7{,2))
1
= [ B (R 0))- BTy 0 Vi) @ (Vi @ V)

1

+ /O 2 E(D% * ¢a,, (RijL (1)) E(VE%) @BV, L @ Vi) @ B(V, @ Vi)

oL 1 . . . .
+ D /0 tE(Dg * pa, (Riyn(1))-E(Vip ® Vi, 1) @ B(V L © Vi) @ E(ViL @ Vi)
k=i+j+1
oL 1 . . . . .

+ Z /0 tE(D° * pa, (RijL(1)))- (‘/;:_(XJ)QL) ®E(ViL @ Vi) ®E(ViL @ VL)

k= z'+j+1

S [ D (R 0)) BT Vi) @ BV © V) © (T @ Vi)
k=i+j+1m=i+j+1
(6.56)

Gathering (6.53)-(6.56), using Lemma 7.5 and taking into account the condition on the S coefficients, we
then derive that

ur A(2F —i)
Y BRIV - V)
j=1

” az?’(L n 1)4(d+1) + aZS(L + 1)6(d+1) + G/ZS(L + 1)6(d+1) Z ( Z B@)

up A(2F—i) oL _;

2
< a7 (L + )M 475 (L 4 1)0(@+D) ( 3 ,34) , (6.57)

where for the last inequality we used the fact that ar, > (L +1)?*!. On the other hand, using once again
several times (6.45) together with (6.15) as we did to get (6.49), we derive that for i < 21 —uy,

E(D%9 # Ga, (Sic1 + Tivup11)-N;2) = (D20 x 0a, (Sic1 + Tig upner—i))- E(VF?)
2L

+ Z E<D3g*§0aL (S‘ifl +’f‘z+u[,+1)-]\7:L®E(‘7ZL®‘7:L))
L=i+(up A(2L —1))

= ]E(ng * Pap, (§¢—1 + Ti+uL+1))-E(‘7;T?2)

+ Z Z E(D49 * Par (gi—l + Ti+uL+1))‘E(‘77;kl,L ® ‘_/;*L) ® E(‘?Z*L ® ‘_/;*L)) .
l=i+ur+1 k=itur+1
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Hence, using Lemma 7.5, we obtain that for i < 2F — up,

2k 4
. . . . 2
‘E<D29 #@ay (Sic1 + Ty 1) (N7? — E(V;T?z))‘ <ap®(L+ 1)4(d+1)( > 5@) - (658
l=ur+1

Assume now that i > 2 — uy. Using the independence between S,_1 and N;:L, and the relation (6.15),
we then notice that

E(D%9 # pa, (Si1)-N;5?) = E(D%g + 6, (Si1))-E(V2). (6.59)

Therefore, starting from (6.52), considering (6.57), (6.58) and (6.59), and using that 8 = O(k'~P) with
p €]2, 3], we get that

2L
S B (D205 pu (Sio1 + Tin) (V52— BV |
i=1

< ap(L+ 1)L 4 75 (L 4 1)0(dH ok 3 7P

Whence, taking into account the choice of uy,, we get overall that

2L
Z ’E(DQg * Par (§i71 + Ti+1)-(ﬁif%2 _ ]E(V;*i@Z))
i=1

< ap3(L4 1)L o 27P(L 4 1)BHPIEHIL - (6.60)
We analyze now the term E(Dg * @q, (Si—1 + 'f‘i+1).]\7i*)L) in the left-hand side of equality (6.39).
With this aim, we write

2 —i

Dg* pq, (gifl + 'fz'+1) = Dg* q, (5171) + Z (Dg * Pay, (gifl + ’f‘iJrj) — Dg* g, (§i71 + ’fi+j+1)) .
j=1

Using the independence between S;_; and ]\71* 1, we first notice that

E(Dg * ¢a, (Si—1)-N;) =E(Dg * ¢a, (Si-1)).E(N;L) =0.

Hence

E(Dg * ¢a, (Si—1 + Tis1)-N;1)

2l
= Z E((Dg * Qg <§i71 + T‘i+j) —Dg g, (§¢71 + Ti+j+1))‘]\7iﬂiL) . (6.61)
j=1

Notice now that

E((Dg * ¢ay, (Si—1 + Tits) — Dg* pa, (Si1 + Tigjs1)) N7 1)

)

1
- /0 E(D?g % @a,, (RijL(t).Ni ;i ® Nip)dt, (6.62)

where we recall that ﬁi}j’L(t) as been defined in (6.55). We use now several times (6.45) together with
(6.15) as we did to get (6.49). Hence,

E(D*g  @a, (RijL(t)-Niyy ® N7 ) = E(D%g % a, (Sic1 + Tipjpr + N7 1)) BV L @ Vi)
+ tE(D39 * Qqp, (ﬁi,j’L(t))-Ni*Jrj,L ® ]E(V;fHL ® ‘Z*L))

2L
+ Y E(Dgxa, (Rigr()-Nip 9 E(ViL 0 Vi)
l=i+j+1
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Next,

]E(D29 * Pa, (ﬁ i, L (t ))‘Ni*+j,L ® Nz*L) = E(D29 * Qg (R ig.n(t))- ( itj, L @ Z*L)
+ 2 ]E(D4g * Pq (Ri,j,L( ))) (‘/;i%QL) (V 15,0 ® Vi,L))

2L
+t Y E(D'9xpa, (Rigr(®))E(Vi @V, ) 0BV L@ foL))
b=i+j+1
2L
+t > E(D'gx g, (Rign ) -E(VAEL) @ E(V @ Vi)
L=it+j+1

+ > Y E(D'grpa (Riyn(®)E(Vi @ Vi, L) @BV, © ‘Z‘TL)) :
k=itjt1l=itjt+1

Hence, starting from (6.62), the above equalities and using Lemma 7.5, we obtain that for 1 < j < 2F —4,

’E((Dg % Pay (Sic1 + Tiyy) — Dgxa, (Sia + Ti+ﬂ'+1))'ﬁ:L)‘

oL 2l 1
<ap (L4128 4+ ap® (L 4+ )M " B+ ap (L + MY Y ﬁeZﬁk
=1 l=j+1 k=1
2l
<ap (L4128 4 ap®(L+ 1) 3" 8, (6.63)
=j+1

where for the last inequality we have used that a, > (L + 1) and Y, -, B < occ.
From now on we assume that j < (2L — i) A uz. Recalling the notation (6.55), we first write that

(Dg* ¢a, (§z‘71 + Ti+j) —Dg*pa, (Sz 1+ Tz+j+1)) N —D?g* ¢, (Siﬂ + 'f‘i+j+1) -(Ni*H’L ® NﬁL)
1
_ / (1= 1)D?g % a, (Riyn())-(N7E2, @ Nyp)dt.  (6.64)
0
Applying (6.45) together with (6.15), we derive that

B(D%g * pay (R, () -(Ni22, @ Nip)) = 2B( D+ 9, (Riy () -Niyy . @ B(V 0 @ Vi)

+tE(DYg + pa, (Rin (1))-NiE2 @ B(V, 0 V7))

oL
+ Z E<D4g * Pay, (ﬁi’j,L( ))) Nz*§2L ® E(VZL ® ‘Z*L)) .
{=i+j+1

Next, applying again (6.45) together with (6.15), we get that

]E(D39 * Pay, (ﬁ i, (t ))-ﬁi*Jrj,L ® E(‘ZLL ® _‘:L))
=tE(D*g* ¢a, (Rij,L(t)))- (szf?QL) QE(V,L © VL),
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and
]E<D49 # @y, (R (1)) fo}zL RE(Vy ® Vi)

= E(D'gxpa, (Rijn(1)))- (Ki?zL)®]E(‘7eTL®‘7iTL)
+ 1 B(D * pa, (Rij o (1)) E(VA5%) @ E(ViSE) © (V) @ Vi)

N———

2L
+2t Y E(Dgxpa, (Rijn(1)-E(ViE) BV, @ Vi) @E(Vi, @ Vi)
k=itj+1
+ Z Z / Dgx @, (ﬁ'l]L(t)))]E<Vrsz® _;*+JL) ®]E(‘7k*,L®V+g L) ®E(VZL®‘7:L) .

k=i+j+1m=i+j+1

Gathering the previous equalities and using Lemma 7.5, we derive that

1
B( [ (=00 grau, (B (0) (152, © Nyt

2L

aZS(L+1)4(d+1)Zﬁz+a 5(L 4 1)0(d+1) Z 3@(2&)

=3 l=j+1 E>1
2L

<ap*(L+ 1M "8, (6.65)
=j

where for the last inequality we have used that ar > (L + 1)?*! and > k>1 Bk < oo

In order to estimate the term E(D?g * ¢, (Si,l + Tl+j+1) .(NiH’L ® Ni’jL)) in the right-hand side of
(6.64), we use the following decomposition:

]E(DQQ * Pay, (§i—1 + Ti+j+1)'(]\7i*+j,L ® ]\_;Z*L))
(G-1)ARF —i—j) . . . . . .
= Z E((ng * Qqr (Si—l + Ti+j+l) - D2g * Qap (Si—l + Ti+j+l+1))'Ni*+j,L ® N’L*L>
1=1
+ E(D29 * Par, (gi—l + T(i+2j)A(2L+1))-(Ni*+j,L ® NZ*L)) .

For any [ € {1,...,(j — 1) A (28 —i — 5)}, we write that
‘E<(D29 * Par (§H + 'f'i+j+l) —D?g% ¢, (§H + Ti+j+l+1))-]\7i1j,L ® NiL) ‘
1
= ‘E(/ D?g % ¢q,, (Rijuo(®)-Nipjrr ® Nz+J L® N:Ldt)‘ )
0

where . B )
Rij0(t) = Sic1 + Tigjurrn + N -

Applying (6.45) together with (6.15), we derive that
]E(D3g # Pay (Rijn(0)-Niviorr @ Ny, ® N
= E(D3g * Qg (Ri,j,l,L(t))-Ni*HH,L ® E(Vﬂ L® Vﬁ))
+ E<D39 * Oay (Ri,j,l,L(t)) 'Ni*+j,L ® E(Viij—o—l,L ® V:L))

* tE<D4g *Par, (Ri gL (8))-N i ® NH—J L® E(‘/l"r_]-i-l L® V:L))

2L
+ Z E(D4g * Qqp, (Ri,j’l,L(t))'Ni*Jerrl,L ® N+] L ® ]E(Vk L ® VZ*L)) .
k=it j+i+1
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Next, applying again (6.45) together with (6.15), we get that

]E(D39 *ay, (Rijin(0) Ny @B (Vi ® ‘Z*L))
= “E(D49 *Par, (RLJ»LL( ))) (‘/:Sil L) ® E(‘?:FJL ® _;*L)

2L
+ Y E(D'gxpa, (Rijur(®))-EVEL @ Vi) @BV, L ® Vi),
k=it+jri+1

]E(Dgg * Qay, (ﬁi,j,l,L(t)) Nerj L ® E(‘/;+g+l L ® V;, L))

= tE(D 9 * Pay, (Rz}j,hL( ))) (V:-ﬁ-l L@ VH—] L) ® E(VH-J-H L® Vz L)
2L

+ Y E(D'gr e, (Rijur®))EVEL @ Vi) @BV ® Vi),
k=i+j+I1+1

and
]E<D49 * Pq, (ﬁi,j,l,L(t))-Nz’*ﬂH,L ® Ny itjL @ E<Vk L® VfL))
= E(D4g * Par, (ﬁi,j l L( ))) (V+]+l L X V;j_] L) ®]E(‘7k*L X _’i*L))

+ tE(D5g *ay (Rijun(0))-Nij @BV @ Vi) @BV @V L))

2L
+ Z ]E(D59 % Pa,, (Rijuo(t))- Nz+g+l L® E(V L ® Vzij L) ® E(Vk L® ‘Z*L)) .
m=itj+i+1

Next,

]E<D59 * Pay, (ﬁ'i,j7l,L(t))'Ni*+j+l,L ® E(V;z L® ‘Z:]L) ® E(Vk*L ® V;*L>)
= tE(D # ¢a, (Riju,n(1)))-E(Vi5 ) @BV L @ Vi) @ B(ViL ® Vi)

2L
+ Y B(Dgxpa, (R () E(ViL @ Vi) @BV L@ Vi, ) @ B(ViL @ Vi) -
r=i+j+Ii+1

So, gathering the previous equalities, using Lemma 7.5 and the fact that 2@1 B < 0o, we get overall
that, for any 1 € {1,...,(j — 1) A (28 —i —5)},

‘E((D2g #0ay, (Sic1 + Titja1) — D2g* 0a, (Sic1 + 'fi+j+l+1))-]\7i1j,L ® NiﬁL) ‘

2l 2l 2l —i—j
<ap®(L+ D"+ a3 ( L+ )M N B+ a®(L+ D)%) N 8 > B
k=j+1 k=j+l m=l
Therefore, using again that 21@1 B < 00,
(=DAEF~i—j) . . . B B B
Z ‘]E((ng * Par, (Sifl + Ti+j+l) — D?g * Par (Sifl + Ti+j+l+1))'Ni*+j,L ® NZL) ‘
1=1
28 —i (jfl)/\(QL*i*j) 2k 2l —i—j
<ap* (LD B +ar (L )N Y 7 Betar (LD YT Y B Z B
k=j 1=1 k=j+1
(6.66)

We analyze now |E(D2g * Doy (Sz 1+ T(H_QJ)A(QL_H)) (N i ® N ))| Assume first that j <
[(2F —i +1)/2]. Clearly, using the notation (6.51),
(ur =A@ —i—j)

D?g g, (§i71 + 'f‘i+2j) = Z R(i, 1+ j)(g9) + D*g * @a, (§¢71 + T(i+j+uL)/\(2L+1)) .

l=j
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Now for any I € {j,...,(ur —1) A (i —j — 1)}, by (6.45) together with (6.15), we get that

E(R(i,l + j)(g)'(]\_fi*-&-j,L ® ﬁz*L)) =E(R(i, 1+ ])(g))E(‘Z:-]L ® _;*L)

2L
+ Z E(D39 % 0ay (Sic1 + Tipjr) -Nip @ ]E(V+J LoV L))
k=i+j+1
2L
- Z E(Dsg % ay (Sic1 + Tipjpir) N7 ® ]E(V+] LRV L))
k=itj+i+1
Therefore,
(ur —1)A (2" —i—j)
S (B(RGE+ 19Ny Nip) = E(RG, L+ 5)(9) E(Vi L 0 Vi)
— )
Z E(Dgg * SOQL (§i—1 + Ti-}-Qj)'N;:L ® E(V_;’_] L X Vk L))
k=i+2;
2L
- Z E<D39*‘Pu (Sic1+ Tlitjrunnit))- 1L®]E(V+]L ® Vi L))

k=(i+j+ur)A(2L+1)
Whence, using again (6.45) together with (6.15),

(uL—1)A(2F —i—j)

3 (E(R(i,lJr])()(NﬂL@N L)) —E(R(i,1+ j)(9))- (V+]L®VJL))

Yo D E(D'rpa (Sicn+Tisey))E(Vr L @ Vi) @BV, L © Vip)
k=i+2j m=i+2j
2k 2k

- > > E(D*g%¢ay, (Sic1+T (14 jrup)ne+))) BV 1@V ) RE(V L @VE L) -
k=(i+j+ur)A(2E+1) m=(i+j+ur)A(2L+1)

Next, using Lemma 7.5 and the fact that 21@1 Br < oo, we get that

(ur=1)A(2F —i—j)

S (BRGL+)(9)- (N © Nip)) = E(RG, U+ 5)(9)) (Vi © Vi) )|

ap®(L4+ DM Y8 b a P (L+ )M N7 5 (6.67)
k>j E>ur,

Still assuming that j < [(2F — i 4 1)/2], let us analyze the following term:
E(D?g * @, (Sict + Tiorjrupinern)- (N @ Nip)) -
Let us first consider the case where j < 2L —i —uy + 1. By (6.45) together with (6.15), we get that
E(D?g# ¢ay, (Sic1 + Titjus )-(Nips 0 ® Ni)) = E(D?g * a, (Sic1 + Tigjru,))-E(Vi L ® Vi)
2L

+ Z E(D3g*¢aL(§i*1+'fi+j+uL) N+]L®]E(VkL®‘/iTL))'
k=i+j+ur

Therefore using again (6.45) together with (6.15),

E(D?g % @ay, (Sic1 + Tigjtur )-(Nivjr @ N71)) = E(Dg % @y (Sic1 + Tigjiu,)) E(Viy L @ Vi)

= Z Z ]E(D49 * Par, (gifl + ’f‘i+j+uL))'E(‘7’r;,L ® _’i:-j,L) ® E(VkiL & ‘_/;*L)) .
k=i+j+ur m=i+j+ur
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Hence using Lemma 7.5 and the fact that Zk21 B < 00, it follows that

‘E(ng * QOqp (S‘iq + 'fi+j+uL)-(]\7¢*+j,L ® NZL)) — E(D2g * Qar, (S‘ifl + T‘i‘l’j*ﬁ'uL))']E(‘_/‘i:’j,L ® ‘_/;*L) ’
2L
<ap(L+ 1M N 8 (6.68)

k:uL

Consider now the case where j > 2 —4i — uy, + 1. Notice then that by independence between S, 1 and
the random variables N, and N; (6.15) entails that

i+3,L
E(D?g % ay (Si1)-(N7y . © N7 1)) = E(D?g % 9a, (Sic1)) E(Vi, L @ Vi) - (6.69)

Assume now that j > [(2F — i —1)/2] + 1. Starting from (6.69) and using Lemma 7.5, we get that
[E(D?g * @a, (i—l)-(ﬁz’*ﬂ,L ® Nip)| <ap (L + 1298 «ap (L + 1) B0y 9. (6.70)

Starting from (6.61), summing the inequalities (6.63), (6.65), (6.66), (6.67), (6.68) and (6.70) in 7,
adding them, and taking into account that 8 = O(k'~P) with p €]2, 3], we then infer that

ur—1

[E(Dg * par (Sic1 + Tint).NiL) = D E(D%g * pay (Sic1 + Tiveg))-E(Vii L ® Vi) Licior —i1)/2)]
j=1
2l

< aZI(L + 1)2(d+1) Z jlfp 4 aZS(L 4 1)4(d+1)2L(37p) 4 aZ3(L 4 1)4d+51p:3

j=@2F—i)Aur
ap (L DYDUE 4 ap (L4 D)D) (log(ur))* Lpms + ag® (L + D Du
+ a;?’(L + 1)4(d+1) log(uL)lp:3 + azl(L + 1)2(d+1)uLﬂ[(2L,i,1)/2] .

Next summing on i and taking into account the choice of uy, and that ay > (L 4 1)4*!, we get that
2k ur—1
S B (D (SicrFui1)-H20) — O B(D2 g, (Secr+Fss2:)) BT 10V Lyciamsony o]
i=1 j=1

< alL*p(L—i— 1)P(d+1)2L +a£3(L+ 1)4(d+1)2L (2L(3—p) +L1p:3). (6.71)

Hence, starting from (6.39) and considering the upper bounds (6.44) and (6.50) together with the fact

that ay > (L + 1)%!, we get that
2 2 wup—1
> E(A2inl9) =) E(D?g % ¢ay (Si—1 + Tit2;))-E(Vi @ ViL) Licir—it1)/2)
i=1 i=1 j=1

2L

1 S = ok
=5 2 E(D%g*¢a, (Sicr + Tirn))E(V;E?)
i=1
< ap P(L+ 1Pk 4 o 3(L 4 1)4 @Dk (2L6B-P) 4 17 5). (6.72)
Gathering (6.38) and (6.72), it follows that
2k 2k
> (E(ALin(9) —~E(A2iL(9) = Y Riv
i=1 i=1
< (L + 1)d+1 + aiﬁP(L + 1)p(d+1)2L + az2(L + 1)3d+42L1p:3 + aZS(L + 1)4(d+1)2L (2L(3—p) + L].p:3) ,
(6.73)
where
’U,Lfl
Rip= ) E(D*9%¢a, (Si-zj+ Tip1)) E(Vi; L @ VL) gy
j=1

ur,—1

= > E(D?gxa, (Sica + Tiva)) E(Viyp © Vi) g —ivnyja - (6.74)
j=1
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We get now an upper bound of Zf; R; 1. We first write that
]E(D g% Pay (§ ) D? g% Pa, (Si_2j + 'fi_,.l)).]E(‘_/;*_j L ® _'i*L)

+Tiy
/ g * (paL (S}',Qj —+ Ti+1 —+ t(g’ifl — §if2j))°Vnt7L X E(vi*—j,L X ‘ZTL))dt .

NM‘

Next
]E(DSQ *Pay, (gi—2j + 'f'z'+1 + t(§i—1 - §i—2j))"7’rjl,lz ® E(‘_}i*—j,L ® ‘_/;*L))

g * Pay, & 2 a 3 (K )
= Z Z Z E(8x(K,kK)8x(P,pp)8w(Q,qQ) (Siz2j + Tiv1 +1(Sic1 — Si95)) x V) )
K.kx Ppp Q,qQ

Using Lemma 7.4 with U = V(Pjp;),

3
_ 77(Q.4q) 0°g * Pa, S L S G ) DK
V= ];; QZ Vir E(ax(K,kmax(P,pp)ax(Q,qQ) (Si—gj + Tir +8(Sim1 = Siv2j)) ¥ Voo £ ) '
SR &,9Q

U=0ct <i+2F—34),V=0(0), r=1and s = co, we get that we get that there exists a
U-measurable random variable by (i + 2L) such that

‘]E(Dgg * Par, (§i—2j + Ti—i—l + t(gi—l - §i_2j)).V* L ®E(V —j,L X V ))‘
<2 3 2 BV buli+25) Vi

pPezitt ppeefty

Using Lemma 7.3 and the fact that 3", >, ‘V ’qQ)V (X, kK ‘ < 4(L + 1)24+D)  we derive that

»4dQ
[V]oo < ap?(L 4 1)264+D

~(P, )
On the other hand, Zpezg+1 prESﬁfé |Vz(7j’p;)| < 2(L+1)%! and E(bu(z + 2L)) < B;. Therefore

‘IE(D?’g * QPar (§i72j + 'f‘i+1 + t(§¢71 — §i72j)) Vm L ® ]E(V L ® VfL)) ‘ < CLZQ(L + 1)3(d+1)ﬁj .

So overall,
’U,Lfl . . . . . .
Z ‘E(D29 * Qay (Sic1 + Tig1) — D*gx 0a, (Si—2j + Ti1))-E(V' . ® V:L)’
=1

ur
ap?(L+ 1N 58, (6.75)

j=1
On the other hand, setting A; ; = §i+j71 =+ ’f‘i+j+1 — §i,1 — ’f‘i+2j, we write that that
E(D?g % ¢ay (Sivj—1 + Tirj1) = D*g# pa, (Sica + Tivey) ) E(Vi L © ViTp)

1+j—1
Z/ Dgg*cpaL(Si 1+ Tigoj +tAi5). (Vi — Nivirn) ®E(Vi, L @ Vi ))

By the previous computations,

iti—1
> |E(DPg 5 Gun (Si1 + Tivay + t4i5) Vi L @B (Vi @ V1) )| < ag(L 4+ 12405

m=¢
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On the other hand, using (6.45) together with (6.15), we derive that

E<D39*WaL (Sz 1+Tz+23 +tAzJ) m+1L®E(V+3L®ViTL)>
i+J
= > / (1= DE(D*g % Pay, Par, (Sic1 + Tiya; +14i)) E(Viiy , @ Vip) @E(Vi, L, @ Vi)

m=1i+1
Hence by Lemma 7.5, it follows that

i+7—1

Z ‘E(Di"g % ay (Sic1 + Tipaj + 1A 5) N L ®E(V, L © V;‘L)’ <a(L+ 1M, 6,
>0

So overall, since 3,5, 8¢ < 0o and ar, > (L + 1)+t

uL—l

> ‘E(DZQ % Qay (Sivjo1 + Tirji1) — D*g % ¢a, (Sic1 + Tige;)) - E(Vi, L ® V;,*L)‘

ur
<ap®(L+1)°@N"58,. (6.76)
j=1

Starting from (6.74) and considering the upper bounds (6.75) and (6.76) together with the assumption
that B, = O(k'~P) for p €]2,3] and the choice of uz, we derive that

L

‘ S (i — Ei,L)’ < a P(L 4 1)PEEDRL 4 g2 (L 4 1)3d ol (6.77)
i=1
where
_ ’U,Lfl
R = Z E(D?*g * ¢a, (Si—1 + Tiy1))-E(V L @ Vi) <y
=1
ur—1

= Y E(D*0x pay (Sivjo1 + Tijin) E (Vi © Vi) L<qer—ivnyz - (6.78)

Observe now that

ur,—1

ZRM => Z E(D?g * ¢a, (Si—1 + Tis1))-E(V;, L @ Vip)

J=1 i=2L 2542

up—1 2j—1
- Z Z E(D2g * Par (Si—l + T¢+1)).E(Viij7L ® Vz*L) .
J=1 i=j+1

Hence by Lemma 7.5, the assumption that 8 = O(k'~P) for p €]2, 3] and the choice of uy,, it follows that

2L
’ZRM‘« ar( L+12<d+1)216 < a2 P(L4 1) 4 g7l 4 1)2d+3,_y (6.79)
j=1

Starting from (6.18) and considering the upper bounds (6.73), (6.77) and (6.79), the inequality (4.46)
follows for SUPgeLip(ct,,,) ;. Far) E(g(Szyd +Wr)) —E(9(N} 4+ W;L)) This ends the proof of the lemma.
U

6.2 Proof of Lemma 5.1
Recall that

E(C(d-l,-l)L(gL,d + éaqu,d + éizL)) = WC(d+1)L(P§ . * P@a’NCL,d * Péa) .
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As in the proof of Lemma 4.2 we shall use the Lindeberg method. With this aim, we consider a sequence
of independent centered Gaussian vectors (]\7i7L)1<i<2L of R2“""" independent of Fo Vo (n;,i € Z) such
that
E(Ne,oNip) = eniéf L ®]E(ﬁ1(?L)( 1(2) ) =E(VeLViir)-
Defining
ﬁL,d = NI,L + N2,L +---+ NQL,L )

we notice that ﬁ(fL,d) = E(NL’d). Let now W;L be a random vector in R2“""" with law N(0,a2 Iyasnr)

independent of Foo V o(N; 1,1 <i < 25)Vo(n;,i € Z). Let W,, = P%(dH)W;L. With these notations,
we can write that

WC(dH)L(PS"L.d * Péa7NCL,d * Pé'a) = ) sup (]E(f(glz,d + WGL)) - E(f(NL,d + WGL))) .
' feLip(cay1yr)

Using the notations (6.7) and setting
fr=foPPUt (6.80)

we get overall that

E(c(asnr(Sp.a+Gay, Tra+Gh,)) = sup (E(f*(ggdjLW;L)) —E(f*(]\_fidﬁ—l/f/;))).
feLip(cat+1yr)

Using Notation 6.2, we then write that

E(c(asnr (SLd+GaL7TLd+G )

= sup ZE( *(paL 1+V;L+T'L+1) f**(paL(gifl—’—A_fi*,L—i_Ti*Fl))
feLip(cat1yL) 5—1

< SE(F i i) P e ).
feLip(ca+nyn) j—1

Recall Definition 6.2 and for any i € {1,...,2L}, let

B . B 1 B .
A (f) = F* % ay (Sic1 +Viw) = f* % 0ay (Sic1) — 5D f* % @a(Sic1) V52,

2
and
Doit(f) = " *ay (Sict + N7 ) = f* * ¢a,, (Sic1) — %sz % 0q (Siz1)- ]\7:%2-
With these notations, it follows that
oL
E(C(d+1)L(§L,d + Gy Troa + @;L)) < sup Z (E(A1i(f) = E(A2:(f))) - (6.81)

feLip(cat+1yL) 5—1

By using Taylor’s integral formula, independence and noticing that E(]\?j%g) =0, we get

E(A1i,(f)) —E(Az2L(f)))
Ya—-v? , La—t? ., . . L
:E/ 5 D f**(paL(Sz 1+t z*L) V*® +E/ TD f**(paL(Sifl—i_tN;:L)‘N;% .
0 0
(6.82)

Notice first that by the properties of the convolution product,
|ED3f* * Pay, (Sz 1+t z*L) V*®3 |]E( Df*(- ) L * D? ‘PaL( ) %*FQ)(SZ 1 +t‘7;TL))|

< E(Slip |Df*(z)V:L| /Rz(d+1)L DQ(paL (z)sz‘?de> .
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But

Df*(2).Vip, = Df(PF V(). PEYIVE < sup |DF(u)Vin| < earnyn(0, Vi) < 1.

Z7
uer2HDE

In addition, according to Lemma 5.4 in Dedecker, Merlevede and Rio (2012), there exists a constant ¢
not depending on d nor on L such that

E/Rz(dH)L DQSD‘ZL (Z)VZT?QCZZ = CaZQHVivLH%d,L

where ~
WVilBar= > S (VRO <o(r 4 1yt
KE{0,.. LY+ g g gD
So overall,
[E(D3f* % ¢a, (Sic1 + Vi) ViE®) | < ag2(L + 1) 120 (6.83)

We deal now with the second term in the right hand side of (6.82). With this aim, we notice that (6.80)
together with (6.6) imply that if f € Lip(c(q41)z) then f* € Lip(c’{dH)L) where ¢{; ), is defined in
Definition 6.1. Therefore

sup |E(D*f* % ¢q,, (§i_1 + tZ\?l*L)Z\_fl*%‘*)’ < sup |E(D*g * ¢a, (§¢_1 + t]\_f;L).N;%‘l)‘ :
feLip(cas1yr) gELip(cyp 1))

Applying Lemma 7.2 as we did to get (6.44), we infer that, for any i € {1,...,2} and any g €
Lip(C?d+l)L),

= N N ~ 2
|E(D4g*<paL(Si_1+tNl-fL).N:%4)|<<az3(L+1)(d“)/2( DS E((N}f’“‘))?)). (6.84)

KeZit kreeltth
Since E(]\_’QLZ\_UL) = E(‘_/;L‘_/;tL), we get that

Sy BWERYY = SN BV R < 2L+ 1y

KeIj™ kel KeIit kel

Therefore, starting from (6.84), we derive that for any i € {1,...,2%}, any g € Lip(cZ‘dH)L) and any
t e [0,1],

|E(D*g * @a, (Sic1 + N7 L).N;$Y| < ap®(L+1)D/2 < ap(L+1)30D/2 (6.85)

Starting from (6.81) and considering (6.82) together with the upper bounds (6.83) and (6.85), the lemma
follows. [

7 Appendix B

This section is devoted to various technical lemmas.

7.1 Upper bounds for the partial derivatives

We gather now some lemmas concerning the upper bounds for partial derivatives. Their proofs are omitted
since they are based on the same arguments as those used in Appendix A in Dedecker, Merlevede and
Rio (2012).
In what follows d and L are nonnegative integers and K = (K, ..., Ky) € {0,..., L}{4T). We shall
denote for any i =0, ...,d,
E(LKy) ={1,...,2L" K n (2N + 1),

and
d

£ = [Tew K.



Therefore the notation ki € éﬁzl) means that kx = (kk,,...,kk,) € H?:()g(L»Ki)~

(d+1)L

Let z and y be two column vectors of R with coordinates

d+1 t d+1 t
T = ((x(K’kK)ka = 51€,K ))Ke{U,...,L}(d+1)) and  y = ((y(K’kK)7kK = 51%,1( ))KG{O,...,L}(d+1)> .

Let f be a function from R2¢FV*

Definition 6.1. This means that

[f(@) = fly)l < > sup |aFOR) — Uk
Ke{o,..., L+ k€ ELTY

into R that is Lipschitz with respect to the distance C?dﬂ)L defined in

Let a > 0 and ¢, be the density of a centered Gaussian law of R4+ DL with covariance a®Tysz (Inatiyz

being the identity matrix on RQ(HI)L). Let also
1/2
2]l co.a.r = 3 sup 2B and  allaar = ( 3 3 (m(K,kK)p) .
Kefo,..., L}a+D kxe ELLY Ke{0,..., L}(#+1) ¢ gla+)

For the statements of the next lemmas, we refer to Definition 6.2.
Lemma 7.1 The partial derivatives of f exist almost everywhere and the following inequality holds:

Sl(ldpDL (d Msup ’Df(y)U| =t
yeRr2(4t ueRr2(4T s Nulloo,d,L <1

In addition y
o 7(@/)] <1. (7.1)
Ke{o,...,L}d+D) Z(d+1) O (K kK)
kxe€ &k

Lemma 7.2 Let X and Y be two random variables with values in R2“"". For any positive integer m

and any t € [0, 1], there exists a positive constant v,, depending only on m such that
‘E(Dmf % alY + tX).X@’m)( < %,Lal’m]li(HXHOO,d,L x HX||;'jdj;) .
Lemma 7.3 For any integer m > 1, there exists a positive constant k., depending only on m such that

—m

Sup H a'ffL(pa
(K (i) ke ) i1, | [ Lo QoK)

< KEma@

!

In addition, for any integer m > 1 and any y € RQ(d#—l)L’

O™ f * pq

m

swp | ey )] < Rera”
(K(1),kk(i)),i=1,...,m Hi:l K @D-kx@)
The supremum above are taken over all the indexes K (i) € {0,..., L}tV and kr@y € Séd;tz).) for any

1=1,...,m.

7.2 Covariance inequalities

We first recall the following covariance inequality due to Delyon (1990) (see also Theorem 1.4 in Rio
(2000)).

Lemma 7.4 Let r and s in [1,00] such that r=' + s™' = 1. Let U and V be real random variables
respectively in L™ and LL°, that are respectively U and V measurable. Then there exist two random

variables by and by with values in [0, 1], measurable respectively with respect to U and to V, such that
E(by) = E(by) = BU, V) and

ICov(U, V)| < 2(E(|U|"bu))l/r (E(|V\sbv))l/s .
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Notice that if U = f(X,n) and V = ¢(Y,0) where X,7,Y,d are random variables such that (X,Y) is
independent of (1,d) and 7 is independent of §, then the random variables by, and by, satisfy E(by) =

E(by) = B(o(X),o(Y)).

For the next lemma, we refer to Definition 6.2.

Lemma 7.5 Let Z be a random variable with values in R2“™"" . Let (‘_/;TL)i be the random wvariables

in R2TVE defined in (6.11) and (Be)e>0 the sequence of absolutely reqular coefficients associated to the
strictly stationary sequence (X;)iez. Let m be a positive integer, (k;)i>1 and (¢;)i>1 two sequences of
integers. Then, there exists a positive constant 7, depending only on m such that

’E(Dng % o (Z ) ®E Vk L& Ve L ‘ < Ypa' TE(L A 1)2mdHD H/Buc —0 -

i=1

Proof of Lemma 7.5. We use the notation (6.12) and write
E(D*"g ¢a(Z))- QE(Vi L © V! 1)
i=1

P, Q, 0? . L iy
= > Y (WG R (axwmp)ax@,q@)DQ 2+ 0alZ). QE(Vi L ©Viir)))
1=2

Ppp Q,qq

We apply now Lemma 7.4 with U = ‘N/k(ffp), U=0(Yy 12z),

82 — 7 S 7k 7%
V= Z VZ(Q B (aaj(Pva)ax(Q,QQ) D¥" g pa(2)- ®E(Vki’L © VEL)) ’
Q.qQ i=2

V =0(Yy,4or), 7 =1 and s = co. Hence, we derive that there exists a U-measurable random variable
by (¢1 + 2%) such that

(X)s

‘E(Dng * ¢ (Z ) E( th.,L ® %*L)‘

Il
-

l

¥ ()

82 2 = = .
X sup ’E( D= g*<Pa(Z)- E(Vi L ®V[:7L)>’.
(P.pp),(Q,qq) 9z (FPr)0z(@e) i=2

’p”)|b (& +2L) HZ|VQqQ)|H

7QQ

Since E(by (£1 +2")) < Bjg,—¢, and Y-, o ‘VZ(Q’qQ | <2(L+ 1), we get that

m
‘]E<D2m9 * Qg (Z)> . ®E(‘7ﬁL ® VZL)’
i=1

o2 Lo ;
B(L+ 1) B, gy X sup E( (ng %9 @a(Z). kL @ Ve, L))‘ .
1 1 (Pva)v(quQ) 8x(PaPP)8x(QyQQ) g ’ ’

Next, if m > 2, we write that

0 2m—2 S S Vi Vo
E(axwmp)ax(@,qm D*"2g % 0o (Z). QE(Vi, 1 ® Vei,L))
=2

o7 (M, (R,
X E( T
Mmn R,rr
o4 ) . X - _
m— * *
X ]E(@x(P,pp>ax(Q,qmag;(M,mmax(R,rR) D" g x (). @E(Vkil ® V&vb))) '
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Applying Lemma 7.4 with U = V (M, mM), U=0(Yg,12r),

4 m
7 (R, TR) 0 2m—4 ~ 7k Tk )
V= RZ: Vém (8x(P,pP)ax(Q,QQ)aI(M,mN[)ax(R,T‘R) D 9% ¢a(Z)- @E(thL ® V&:,L) )
TR 1=

V =0(Yy,40t), 7 =1and s = 0o, we get that there exists a U-measurable random variable by (¢ + 2%)
such that

0 2m—2 oS T (7 *
(Pre)@aa) E(axmpp)az(@,m) D2 x o0 (2)- QE(VE, 1 ® V‘%L))’

=2
<2 > ]E(‘VkaM)|bu(52+2L ) H Z Ve ™ |H

M, m g &
64 m
2m— 7 Tk Tk
" on) () E(gyrrmigr@magtimggir D 9% ¢a@)-G SE(V%L@VM))"
(Q,aqQ) (R,rR) =

Since E(by(fa +2")) < Bjry s, and Y 0 ‘V(Q QQ)‘ < 2(L+1)%! we get that

> Zm=2 . VE (T % 2(d+1
Sub E( DT g 0a(Z). QQE(Vi, L ® Vi 1 )‘ < 8(L+ 125,
(Pop)(@uaq) | N0x(PPP)Qx(Qaq) @ ( ) ko —La|

X sup  sup
(P,pp) (M,mpr)
(Q.aQ) (R,rR)

84 2m—4 S
E(8x(P1PP)8;5(@4]@)8;5(MamM)8x(Rﬂ"R) D 9% ¢a(Z @ Vk L VZ L)> ’

The lemma follows after m — 2 additional steps by using Lemma 7.3 at the end of the procedure. O
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