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Abstract

We prove a strong approximation result with rates for the empirical process associated to an ab-
solutely regular stationary sequence of random variables with values in Rd. As soon as the absolute
regular coefficients of the sequence decrease more rapidly than n1−p for some p ∈]2, 3], we show that the
error of approximation between the empirical process and a two-parameter Gaussian process is of order
n1/p(log n)λ(d) for some positive λ(d) depending on d, both in L1 and almost surely. The power of n
being independent of the dimension, our results are even new in the independent setting, and improve
earlier results. In addition, for absolutely regular sequences, we show that the rate of approximation is
optimal up to the logarithmic term.

1 Introduction

Let (Xi)i∈Z be a strictly stationary sequence of random variables in Rd equipped with the usual product
order, with common distribution function F . Define the empirical process of (Xi)i∈Z by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ Rd , t ∈ R+ . (1.1)

In this paper we are interested in extensions of the results of Kiefer for the process RX to absolutely
regular processes. Let us start by recalling the known results in the case of independent and identically
distributed (iid) random variables Xi. Kiefer (1972) obtained the first result in the case d = 1. He
constructed a continuous centered Gaussian process KX with covariance function

E
(
KX(s, t)KX(s′, t′)

)
= (t ∧ t′)(F (s ∧ s′)− F (s)F (s′))

in such a way that

sup
(s,t)∈R×[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(an) almost surely, (1.2)

with an = n1/3(log n)2/3. The two-parameter Gaussian process KX is known in the literature as the Kiefer
process. Csörgö and Révész (1975a) extended Kiefer’s result to the multivariate case. For iid random
variables with the uniform distribution over [0, 1]d, they obtained (1.2) with an = n(d+1)/(2d+4)(log n)2.
Next they extended this result to iid random variables in Rd with a density satisfying some smoothness
conditions (see Csörgö and Révész (1975b)).

In the univariate case, a major advance was made by Komlós, Major and Tusnády (1975): they
obtained (1.2) with an = (log n)2 (we refer to Castelle and Laurent-Bonvalot (1998) for a detailed proof)
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via a new method of construction of the Gaussian process. Concerning the strong approximation by a
sequence of Gaussian processes in the case d = 2, Tusnády (1977) proved that when the random variables
Xi are iid with uniform distribution over [0, 1]2, then one can construct a sequence of centered continuous
Gaussian processes (Gn)n≥1 in R2 with covariance function

Cov(Gn(s), Gn(s′)) = n((s1 ∧ s′1)(s2 ∧ s′2)− s1s2s′1s′2) ,

with s = (s1, s2) and s′ = (s′1, s
′
2), such that

sup
s∈[0,1]2

|RX(s, n)−Gn(s)| = O(log2 n) almost surely. (1.3)

Adapting the dyadic method of Komlós, Major and Tusnády (sometimes called Hungarian construc-
tion), several authors obtained new results in the multivariate case. For iid random variables in Rd with
distribution with dependent components (without regularity conditions on the distribution), Borisov
(1982) obtained the almost sure rate of approximation O(n(d−1)/(2d−1) log n) in the Tusnády strong ap-
proximation. Next, starting from the result of Borisov (1982), Csörgö and Horváth (1988) obtained the
almost sure rate O(n(2d−1)/(4d)(log n)3/2) for the strong approximation by a Kiefer process. Up to our
knowledge, this result has not yet been improved in the case of general distributions with dependent
components. For d ≥ 3 and Tusnády’s type results, Rio (1994) obtained the rate O

(
n(d−1)/(2d)(log n)1/2

)
for random variables with the uniform distribution or more generally with smooth positive density on the
unit cube (see also Massart (1989) in the uniform case). Still in the uniform case, concerning the strong
approximation by a Kiefer process, Massart (1989) obtained the almost sure rate O

(
nd/(2d+2)(log n)2

)
for

any d ≥ 2, which improves the results of Csörgö and Révész (1975a). In fact the results of Massart (1989)
and Rio (1994) also apply to Vapnik-Chervonenkis classes of sets with uniformly bounded perimeters,
such as the class of Euclidean balls. In that case, Beck (1985) proved that the error term cannot be
better than n(d−1)/(2d). Consequently the result of Rio (1994) for Euclidean balls is optimal, up to the
factor

√
log n. However, there is a gap in the lower bounds between the class of Euclidean balls and

the class of orthants, which corresponds to the empirical distribution function. Indeed, concerning the
lower bounds in Tusnády’s type results, Beck (1985) showed that the rate of approximation cannot be
less than cd(log n)(d−1)/2 where cd is a positive constant depending on d. To be precise, he proved (see
his Theorem 2) that when the random variables Xi are iid with the uniform distribution over [0, 1]d, then
for any sequence of Brownian bridges (Gn)n≥1 in Rd,

P
(

sup
s∈[0,1]d

|RX(s, n)−Gn(s)| ≤ cd(log n)(d−1)/2
)
< e−n .

Beck’s result implies in particular that, for any n ≥ 2,

(log n)(1−d)/2E
(

sup
s∈[0,1]d

|RX(s, n)−Gn(s)|
)
≥ cd/2 . (1.4)

The results of Beck (1985) motivated new research in the multivariate case. For the empirical distribution
function and Tusnády type results, Rio (1996) obtained the rate O

(
n5/12(log n)c(d)

)
for random variables

with the uniform distribution, where c(d) is a positive constant depending on the dimension d, without
the help of Hungarian construction. Here the power of n does not depend on the dimension: consequently
this result is better than the previous results if d ≥ 7. It is worth noticing that, although this subject
has been treated intensively, up to now, the best known rates for the strong approximation by a Kiefer
process in the multivariate case are of the order n1/3 for d = 2, up to some power of log n, even in the
uniform case. Furthermore these rates depend on the dimension, contrary to the result of Rio (1996) for
Tusnády type approximations.

We now come to the weakly dependent case. Contrary to the iid case, there are only few results
concerning the rate of approximation. Up to our knowledge, when (Xi)i∈Z is a geometrically strongly
mixing (in the sense of Rosenblatt (1956)) strictly stationary sequence of random variables in Rd, the
best known result concerning rates of convergence, is due to Doukhan and Portal (1987) stating that
one can construct a sequence of centered continuous Gaussian processes (Gn)n≥1 in Rd with common
covariance function

Λ(s, s′) =
∑
k∈Z

Cov(1X0≤s,1Xk≤s′) ,
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such that the Ky-Fan distance between {n−1/2RX(s, n), s ∈ Rd} and {Gn(s), s ∈ Rd} is o(n−a) for any
a < 1/(15d + 12). In their paper, they also give some rates in case of polynomial decay of the mixing
coefficients. Concerning the strong approximation by a Kiefer process in the stationary and strongly
mixing case, Theorem 3 in Dhompongsa (1984) yields the rate O(n1/2(log n)−λ) for some positive λ,
under the strong mixing condition αn = O(n−a) for some a > 2 + d, improving slightly previous results
of Phillip and Pinzur (1980) (here λ depends on a and d).

Strong mixing conditions seem to be too poor to get optimal rates of convergence. Now recall that,
for irreducible, aperiodic and positively recurrent Markov chains, the coefficients of strong mixing and
the coefficients of absolute regularity are of the same order (see for example Rio (2000), chap. 9). Since
absolute regularity is a stronger condition, it is more convenient to consider absolute regularity, at least
in the case of irreducible Markov chains. Let

β(A,B) =
1

2
sup

{∑
i∈I

∑
j∈J
|P(Ai ∩Bj)− P(Ai)P(Bj)|

}
,

the maximum being taken over all finite partitions (Ai)i∈I and (Bi)i∈J of Ω respectively with elements
in A and B. For a strictly stationary sequence (Xk)k∈Z, let F0 = σ(Xi, i ≤ 0) and Gk = σ(Xi, i ≥ k).
The sequence (Xk)k∈Z is said to be absolutely regular in the sense of Rozanov and Volkonskii (1959) or
β-mixing if

βn = β(F0,Gn)→ 0 , as n→∞ .

Concerning the strong approximation by a Kiefer process in the stationary and β-mixing case, Theorem 1
in Dhompongsa (1984) yields the rate O(n(1/2)−λ) for some positive λ, under the assumption βn = O(n−a)
for some a > 2 + d. Nevertheless this mixing condition is clearly too restrictive and λ is not explicit.

We now come to our results. For absolutely regular sequences, the finite dimensional convergence of
{n−1/2RX(s, n) : s ∈ Rd} to a Gaussian process holds under the summability condition

∑
k≥0 βk < ∞,

and this condition is sharp. Rio (1998) proved that this summability condition also implies the functional
central limit theorem for {n−1/2RX(s, n) : s ∈ Rd} in the sense of Dudley (1978) for any d ≥ 1. Assume
now that the stronger β-mixing condition

βn = O(n1−p) for some p > 2 (1.5)

holds true. In Section 2, we shall prove that, in the case d = 1, one can construct a stationary absolutely
regular Markov chain satisfying (1.5), whose marginals are uniformly distributed over [0, 1], and such
that, for any construction of a sequence (Gn)n>0 of continuous Gaussian processes on [0, 1],

lim inf
n→∞

(n log n)−1/pE
(

sup
s∈(0,1]

|RX(s, n)−Gn(s)|
)
> 0 .

Concerning the upper bound, Dedecker, Merlevède and Rio (2012) obtain a strong approximation by
a Kiefer process under a weak dependence condition which is implied by the above condition, with a
power-type rate O(n(1/2)−δ) for some positive δ depending on p. Nevertheless their result holds only for
d = 1 and the value of δ is far from the optimal value (1/2) − (1/p). This gap motivates the present
work. In Section 3, we prove that, if (Xi)i∈Z is a strictly stationary sequence of random variables in Rd
satisfying (1.5) for p ∈]2, 3], there exists a two-parameter continuous (with respect to the pseudo metric
defined by (3.1)) Kiefer type process KX such that

E
(

sup
s∈Rd,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])|
)

= O(n1/p(log n)λ(d)) .

We also prove that, for another Kiefer process KX ,

sup
s∈Rd
k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(log n)λ(d)+ε+1/p) almost surely, for any ε > 0 .

More precisely, the covariance function ΓX of KX is given by

ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′) where ΛX(s, s′) =
∑
k∈Z

Cov(1X0≤s,1Xk≤s′) . (1.6)
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Our proofs can be adapted to iid random variables with values in Rd and arbitrary distribution
function, for any d ≥ 2, yielding the error term in the strong approximation O(n1/3(log n)ε+(2d+4)/3) in
the almost sure strong approximation by a Kiefer process. This result improves the results of Csörgö and
Horváth (1988) for general distributions as soon as d ≥ 2 and the result of Massart (1989) concerning the
specific case of the uniform law as soon as d ≥ 3 (recall that Massart’s rate is O(n1/3(log n)2) for d = 2
and O(n3/8(log n)2) for d = 3).

We now describe our methods of proofs. We shall apply the conditional version of the transport
theorem of Kantorovich and Rubinstein to the trajectories to get a bound on the error. However, in
the dependence setting, we do not apply the transport theorem directly. Indeed, we start by approxi-
mating the initial process RX by a Gaussian process with the same covariance structure as RX , using
the conditional Kantorovich-Rubinstein theorem applied in the space of trajectories, together with the
Lindeberg method. Next, we use a martingale method to approximate the Gaussian process by the Kiefer
process. This step is due to the fact that the Lindeberg method in the space of trajectories applies only to
processes with the same covariance structure. In all these steps the error terms can be bounded by n1/p

up to some power of log n, which leads to the (nearly) optimal rates of convergence for absolutely regular
sequences. Note that the Lindeberg method in the space of trajectories was introduced by Sakhanenko
(1987) in the real case to bound up the Prokhorov distance between the partial sum process and the
Brownian motion. This result was then extended to random vectors in Banach spaces by Bentkus and
Lyubinskas (1987) using smoothing techniques introduced by the first author in his doctoral dissertation.
Later, Sakhanenko (2000) improved the results of Bentkus and Lyubinskas (1987) in the specific case
of the L∞-norm, yielding efficient estimates under some assumptions on the moments of order two and
three of the Euclidean norms of the random vectors. Sakhanenko (1988, 2000) also gives some results for
martingale differences under very restrictive assumptions on the conditional moments of order two. In
our opinion, the smoothing technique used in Sakhanenko (2000) is not suitable in the dependent case.
Indeed the assumption on the conditional moments cannot be relaxed.

Our paper is organized as follows. In Section 2 we give an example of absolutely regular process for
which we can derive lower bounds for the rates of approximation by any continuous Gaussian processes.
In Section 3 we formulate our main results concerning the upper bounds for the rates of approximation
both in the dependent setting and in the independent one. The proofs of these results are given in
Sections 4 and 5. Section 6 is devoted to the very technical proofs of key intermediate lemmas leading to
our main results. Finally, in Section 7 we collect some auxiliary assertions and general facts.

2 Lower bounds for the rate of approximation

In this section, we give an example of a stationary absolutely regular Markov chain with state space [0, 1]
and absolute regularity coefficients βk of the order of k1−p for p > 2 which has the following property:
with probability one, the error in the strong approximation by Gaussian processes is bounded from below
by (n log n)1/p, for any construction of a sequence of continuous Gaussian processes, whereas the L1-error
is bounded from below by n1/p.

Theorem 2.1 For any p > 2, there exists a stationary Markov chain (Xi)i∈Z of random variables with
uniform distribution over [0, 1] and β-mixing coefficients (βn)n>0, such that:

(i) 0 < lim infn→+∞ np−1βn ≤ lim supn→+∞ np−1βn <∞ .

(ii) There exists a positive constant C such that, for any construction of a sequence (Gn)n>0 of continuous
Gaussian processes on [0, 1]

(a) lim inf
n→∞

n−1/pE
(

sup
s∈(0,1]

|RX(s, n)−Gn(s)|
)
≥ C .

Furthermore

(b) lim sup
n→∞

(n log n)−1/p sup
s∈(0,1]

|RX(s, n)−Gn(s)| > 0 almost surely.

Before proving this result, we give a second theorem, which proves that the strong approximation of
partial sums of functionals of the chain holds with the same error term.
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Theorem 2.2 Let (Xi)i∈Z be the stationary Markov chain defined in Theorem 2.1 and let f be a map
from [0, 1] to R, with continuous and strictly positive derivative f ′ on [0, 1]. Let

Sn(f) =

n∑
k=1

f(Xk)− n
∫ 1

0

f(t)dt .

Then the series Var f(X0) + 2
∑
k>0 Cov(f(X0), f(Xk)) is absolutely convergent to some nonnegative

σ2(f). Furthermore, for 2 < p < 3 and any positive ε, one can construct a sequence of iid Gaussian
random variables (g′k)k>0 with law N(0, σ2(f)) such that

(a) Sn(f)−
n∑
k=1

g′k = o(n1/p
√

log n(log log n)(1+ε)/p) almost surely.

In addition, for any p > 2 and any stationary and Gaussian centered sequence (gk)k∈Z with convergent
series of covariances,

(b) lim sup
n→∞

(n log n)−1/p
∣∣∣Sn(f)−

n∑
k=1

gk

∣∣∣ > 0 almost surely.

Note that Part (a) of this theorem was proved in Merlevède and Rio (2012). Part (b) proves that
the result in Merlevède and Rio (2012) is optimal up to the factor (log n)(1/2)−(1/p)(log log n)(1+ε)/p. It
is worth noticing that the power of the logarithm in the loss tends to 0 as p tends to 2.

Proof of Theorem 2.1. The sequence (Xi)i∈Z is defined from a strictly stationary Markov chain (ξi)i∈Z
on [0, 1] as in Rio (2000), Section 9.7. Let λ be the Lebesgue measure, a = p−1 and ν = (1 +a)xa1[0,1]λ.
The conditional distribution Π(x, .) of ξn+1, given (ξn = x), is defined by

Π(x, .) = Π(δx, .) = (1− x)δx + xν ,

where δx is the Dirac measure at point x. Then the β-mixing coefficients (βn)n>0 of the stationary
chain (ξi)i∈Z with transition probability Π(x, .) satisfy (i) of Theorem 2.1 (see Rio (2000), Section 9.7).
Moreover, the stationary distribution π has distribution function F (x) = xa, and consequently setting
Xi = ξai we obtain a stationary Markov chain (Xi)i∈Z of random variables with uniform distribution over
[0, 1] and adequate rate of β-mixing. Define then the empirical measure Pn by

Pn = n−1
n∑
i=1

δXi
.

The regeneration times (Tk)k of the Markov chain (ξi)i∈Z are defined by induction as follows: T0 =
inf{n > 0 : ξn 6= ξn−1} and Tk = inf{n > Tk−1 : ξn 6= ξn−1}. Let τk = Tk+1 − Tk. It follows that the
empirical measure at time Tk − 1 satisfies the equality

(Tk − 1)PTk−1 = (T0 − 1)δX0
+

k−1∑
j=0

τjδXTj
. (2.1)

Consequently, for n ≥ Tk − 1 the maximal jump of RX(s, n) is greater than

∆k = max
j∈[0,k−1]

τj .

Next, from the continuity of Gn, for n ≥ Tk − 1,

Dn := sup
s∈(0,1]

|RX(s, n)−Gn(s)| ≥ ∆k/2 . (2.2)

Now the sequence (∆k)k is a nondecreasing sequence of positive integers. Notice that the random vari-
ables (ξTk

, τk) are independent and identically distributed. Moreover ξTk
has the distribution ν and the

conditional distribution of τk given (ξTk
= x) is the geometric distribution G(x). Hence,

P(∆k ≤ m) = (P(τ0 ≤ m))k ,
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and

P(τ0 > m) = (1 + a)m−1−a
∫ m

0

(1− y/m)myady ∼ (1 + a)Γ(1 + a)m−1−a as m ↑ ∞ . (2.3)

From the above facts, it follows that

E(∆k) =
∑
m≥0

P(∆k > m) ≥ cpk1/p . (2.4)

In the same way, one can prove that

‖∆k‖(2+a)/2 ≤ Cpk1/p . (2.5)

Here cp and Cp are positive constants depending only on p.

Now, by the strong law of large numbers Tk/k converges to E(τ0) almost surely, and therefore in
probability. Consequently, for k = kn = [n/(2E(τ0))],

lim
n→∞

P(n < Tkn − 1) = 0 .

Now
2E(Dn) ≥ E(∆kn1n≥Tkn−1) ≥ E(∆kn)− ‖∆kn‖ 2+a

2
(P(n < Tkn − 1))

a
2+a .

From (2.5), (2.4) and the above inequality, we get that, there exists some positive constant C (depending
on p) such that, for n large enough, E(Dn) ≥ Cn1/p, which completes the proof of (a) of Theorem 2.1.

To prove (b), we note that, by (2.3) ,

P(τk > (k ln k)1/p) ∼ cp/(k log k) . (2.6)

Since the regeneration times τk are independent, by the converse Borel-Cantelli lemma, it follows that

P(τk > (k log k)1/p infinitely often ) = 1 . (2.7)

Hence, by (2.2),
lim sup

n
(n lnn)−1/pDTn−1 ≥ (1/2) almost surely.

Both this inequality and the strong law of large numbers for Tn then imply (b) of Theorem 2.1.

Proof of Theorem 2.2. Let b be a real in ]0, 1] such that f(b) <
∫ 1

0
f(t)dt (note that such a positive b

exists). With the same notations as in the proof of the previous theorem, the random variables (XTk
, τk)

are independent and identically distributed, and

P(τ0 > m,XT0 < b) = (1 + a)m−1−a
∫ mb1/a

0

(1− y/m)myady ∼ (1 + a)Γ(1 + a)m−1−a as m ↑ ∞.

Consequently, by the converse Borel-Cantelli lemma,

P(τk > (k log k)1/p and XTk
< b infinitely often ) = 1. (2.8)

Since Tn/n converges to E(τ0) almost surely, it follows that, for some positive constant c depending on
E(τ0),

lim sup
n

n+[c(n logn)1/p]∑
i=n+1

(f(b)− f(Xi)) ≥ 0 almost surely. (2.9)

Consider now a stationary and Gaussian centered sequence (gk)k∈Z with convergent series of covariances.
If follows from both the Borel-Cantelli lemma and the usual tail inequality for Gaussian random variables
that, for any positive θ,

lim inf
n

n+[c(n logn)1/p]∑
i=n+1

(gi + θ) ≥ 0 almost surely.

Taking θ = (
∫ 1

0
f(t)dt − f(b))/2 in the above inequality, we then infer from the two above inequalities

that

lim sup
n→∞

1

[c(n log n)1/p]

n+[c(n logn)1/p]∑
i=n+1

(
gi +

∫ 1

0

f(t)dt− f(Xi)
)
≥ θ almost surely,

which implies Theorem 2.2.
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3 Upper bounds for the rate of approximation

In this section, we state the main result of this paper, which is a Kiefer type approximation theorem
for absolutely regular sequences. In all this section, we assume that the underlying probability space
(Ω,A,P), is rich enough to contain a sequence (Ui)i∈Z = (ηi, δi, υi, εi)i∈Z of iid random variables with
uniform distribution over [0, 1]4, independent of (Xi)i∈Z.

Theorem 3.1 Let (Xi)i∈Z be a strictly stationary sequence of random variables in Rd. Let Fj be the
distribution function of the j-th marginal of X0. Assume that the absolutely regular coefficients of (Xi)i∈Z
are such that βn = O(n1−p) for some p ∈]2, 3]. Then

1. for all (s, s′) in R2d, the series ΛX(s, s′) defined by (1.6) converges absolutely.

2. For any (s, s′) ∈ R2d and (t, t′) in R+ × R+, let ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′). There exists a
centered Gaussian process KX with covariance function ΓX , whose sample paths are almost surely
uniformly continuous with respect to the pseudo metric

d((s, t), (s′, t′)) = |t− t′|+
d∑
j=1

|Fj(sj)− Fj(s′j)| , (3.1)

and such that

(a) E
(

sup
s∈Rd, k≤n

|RX(s, k)−KX(s, k)|
)

= O(n1/p(log n)λ(d)) .

Furthermore, one can construct another centered Gaussian process KX with the above covariance
function in such a way that

(b) sup
s∈Rd, k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(log n)λ(d)+ε+1/p) almost surely, for any ε > 0

In both items λ(d) =
(
3d
2 + 2− 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3.

From the above theorem, in the independent setting, the error in the L1 approximation is bounded
up by n1/3(log n)2+4d/3, whereas the almost sure error is bounded up by n1/3(log n)ε+(9+4d)/3, for any
ε > 0. However, in that case, the powers of log n can be improved as follows.

Theorem 3.2 Let (Xi)i∈Z be a sequence of independent and identically distributed random variables in
Rd. Then one can construct a centered Gaussian process KX with covariance function

ΓX(s, s′, t, t′) = min(t, t′)(F (s ∧ s′)− F (s)F (s′)) where s ∧ s′ = (min(s1, s
′
1), . . . ,min(sd, s

′
d)) ,

whose sample paths are almost surely uniformly continuous with respect to the pseudo metric d defined in
(3.1), and such that

(a) E
(

sup
s∈Rd, k≤n

|RX(s, k)−KX(s, k)|
)

= O(n1/3(log n)(2d+3)/3) .

Furthermore, one can construct another centered Gaussian process KX with the above covariance function
in such a way that

(b) sup
s∈Rd, k≤n

|RX(s, k)−KX(s, k)| = O(n1/3(log n)ε+(2d+4)/3) almost surely, for any ε > 0 .

Recently, Merlevède and Rio (2012) obtained efficient strong approximation results for partial sums
of real-valued random variables. In the bounded case, under the mixing condition βn = O(n1−p), they
obtain in their Theorem 2.1 (see Item 1(b)) the rate of almost sure approximation O(n1/p(log n)(1/2)+ε).
According to the results of Section 2, the power of n cannot be improved, contrary to the previous papers
on the same subject. Starting from Theorem 3.1, we can derive an extension of this result to partial sums
of random vectors in Rd, in the same way as Borisov (1983) derives strong approximation of partial sums
from the strong Kiefer approximation of Komlós, Major and Tusnády.
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Corollary 3.1 Let (Xi)i∈Z be a strictly stationary and absolutely regular sequence of bounded random
vectors in Rd. Assume that its absolutely regular coefficients are such that βn = O(n1−p) for some
p ∈]2, 3]. Then the series of covariance matrices

∑
k∈Z Cov(X0, Xk) is convergent to a non-negative

definite symmetric matrix Γ. Furthermore, there exists a sequence (Zi)i≥1 of iid random vectors with law

N(0,Γ) such that, setting ∆k =
∑k
i=1(Xi − E(Xi)− Zi),

(a) E
(
sup
k≤n
‖∆k‖

)
= O(n1/p(log n)λ(d)) .

In addition, there exists another sequence (Zi)i≥1 of iid random vectors with law N(0,Γ) such that, for
any positive ε,

(b) sup
k≤n
‖∆k‖ = o(n1/p(log n)λ(d)+ε+1/p) almost surely.

In both items, λ(d) is defined in Theorem 3.1.

Proof of Corollary 3.1. Adding some constant vector to the initial random vectors if necessary, we
may assume that the components of the random vectors Xi are non-positive. For each integer i, we set

Xi = (X
(1)
i , X

(2)
i , . . . , X

(d)
i ). From our assumptions, there exists some positive constant M such that, for

any integer i and any Xi belongs to [−M, 0]d. Then, for any j in [1, d],

X
(j)
i = −

∫ 0

−M
1
X

(j)
i ≤t

dt .

Let then K
(j)
X (t, k) = KX((1, . . . , 1, t, 1, . . . , 1), k), where t is the j-th component. Define the random

vectors Zk for any positive integer k by

Z
(j)
k = −

∫ 0

−M

(
K

(j)
X (t, k)−K(j)

X (t, k − 1)
)
dt for any j ∈ [1, d] .

Then the so defined sequence (Zk)k>0 is a Gaussian sequence (this means that, for any positive integer n,
(Z1, . . . , Zn) is a Gaussian vector) and, from the definition of the covariance of KX , the random vectors
Zk are not correlated. It follows that (Zk)k>0 is a sequence of independent Gaussian random vectors.
Now, from the definition of Zk,

Cov(Z
(j)
k , Z

(i)
k ) =

∑
m∈Z

∫ 0

−M

∫ 0

−M
Cov(1

X
(i)
0 ≤t

,1
X

(j)
m ≤s

)dtds .

Hence, interverting the summation and the integral in the above formula, we get that

Cov(Z
(j)
k , Z

(i)
k ) =

∑
m∈Z

Cov(X
(i)
0 , X(j)

m ) = Γij ,

which implies that Zk has the prescribed covariance. Next

X
(j)
k − E(X

(j)
k )− Z(j)

k =

∫ 0

−M

(
K

(j)
X (t, k)−K(j)

X (t, k − 1) + P(X
(j)
k ≤ t)− 1

X
(j)
k ≤t

)
dt .

Let then ∆
(j)
k denote the j-th component of ∆k and R

(j)
X (t, k) = RX((1, . . . , 1, t, 1, . . . , 1), k), where t is

the j-th component. From the above identity,

∆
(j)
k =

∫ 0

−M
(K

(j)
X (t, k)−R(j)

X (t, k))dt .

It follows that, for any integer j in [1, d],

sup
k≤n
|∆(j)

k | ≤M sup
s∈Rd
k≤n

|RX(s, k)−KX(s, k)| .

Part (a) (resp. Part (b)) of Corollary 3.1 follows then from both these inequalities and Part (a) (resp.
Part (b)) of Theorem 3.1.
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4 Proof of Theorem 3.1

In this section we shall sometimes use the notation an � bn to mean that there exists a numerical
constant C not depending on n such that an ≤ Cbn, for all positive integers n. We shall also use the
notations Fk = σ(Xj , j ≤ k) and F∞ =

∨
k∈Z Fk.

For any (s, s′) ∈ R2d, by using Lemma 7.4 with U = 1X0≤s, V = 1Xk≤s′ , r = 1 and s = ∞, we get
that

|Cov(1X0≤s,1Xk≤s′)| ≤ 2βk .

Since
∑
k≥0 βk <∞, Item 1 of Theorem 3.1 follows.

To prove Item 2, we first transform the random variables Xi. With this aim, for any k in Z and any j

in {1, . . . , d}, we denote by X
(j)
k the j-th marginal of Xk. By Lemma 7.4 applied with p = 1 and q =∞,

there exists some non-negative random variable b(x, k) with values in [0, 1] such that, for any functions
f : Rd → R and g : Rd → [−1, 1],

Cov(f(X0), g(Xk)) ≤ 2E(b(X0, k)|f(X0)|) and E(b(X0, k)) ≤ βk . (4.1)

Let then
bj(X0, k) = E(b(X0, k) | X(j)

0 ) .

We now introduce another probability on Ω. Let P∗0,j be the probability on Ω whose density with respect
to P is

C−1j
(
1 + 4

∞∑
k=1

bj(X0, k)
)

with Cj = 1 + 4

∞∑
k=1

E(bj(X0, k)) . (4.2)

Let Pj be the law of X
(j)
0 . Notice then that the image measure P ∗j of P∗0,j by X

(j)
0 is absolutely continuous

with respect to Pj with density

C−1j
(
1 + 4

∞∑
k=1

bj(x, k)
)
. (4.3)

Let FP∗j be the distribution function of P ∗j , and let FP∗j (x−0) = supz<x FP∗j (z). Let (ηi)i∈Z be a sequence

of iid random variables with uniform distribution over [0, 1], independent of the initial sequence (Xi)i∈Z.
Define then

Y
(j)
i = FP∗j (X

(j)
i − 0) + ηi(FP∗j (X

(j)
i )− FP∗j (X

(j)
i − 0)) and Yi =

(
Y

(1)
i , . . . , Y

(d)
i

)t
. (4.4)

Note that (Yi)i∈Z forms a strictly stationary sequence of random variables with values in [0, 1]d whose
β-mixing coefficients are also of order βn = O(n1−p). In addition, it follows from Lemma F.1. in Rio

(2000) that X
(j)
i = F−1P∗j

(Y
(j)
i ) almost surely, where F−1P∗j

is the generalized inverse of the cadlag function

FP∗j . Hence

RX(·, ·) = RY
(
(FP∗1 (·), . . . , FP∗d (·)), ·

)
almost surely ,

where
RY (s, t) =

∑
1≤k≤t

(
1Yk≤s − E(1Yk≤s)

)
, s ∈ [0, 1]d , t ∈ R+ .

Furthermore
P(Y

(j)
0 ∈ [a, b]) ≤ CjP∗0,j(Y

(j)
0 ∈ [a, b]) = Cj(b− a) (4.5)

where the last inequality comes from the fact that the random variables Y
(j)
0 are uniformly distributed

on [0, 1] under P∗0,j (see Item 1 of Lemma 5.1 in Dedecker, Merlevède and Rio (2012)). Hence Y
(j)
0 has a

density with respect to the Lebesgue measure uniformly bounded by Cj .

For a strictly stationary sequence (Zi)i∈Z of random variables with values in Rd, let GZ be a two
parameters Gaussian process with covariance function ΓZ defined as follows: for any (s, s′) ∈ R2d and
(t, t′) ∈ (R+)2

ΓZ(s, s′, t, t′) = min(t, t′)ΛZ(s, s′) where ΛZ(s, s′) =
∑
k∈Z

Cov(1Z0≤s,1Zk≤s′) , (4.6)
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provided that ΛZ is well defined.
Let us now give an upper bound on the variance of GY . Below, we prove that, for any u = (u1, . . . , ud)

and v = (v1, . . . , vd) in [0, 1]d and any positive integer n,

Var
(
GY (u, n)−GY (v, n)

)
≤ nC(β)

d∑
i=1

|ui − vi| , where C(β) = 1 + 4
∑
k>0

βk . (4.7)

Note that, if (u1, . . . , ud) = (FP∗1 (s1), . . . , FP∗d (sd)) and (v1, . . . , vd) = (FP∗1 (s′1), . . . , FP∗d (s′d)), then
the following equalities hold in distribution: GY (u, n) = GX(s, n) and GY (v, n) = GX(s′, n). Hence

Var
(
GY (u, n)−GY (v, n)

)
= Var

(
GX(s, n)−GX(s′, n)

)
.

Now, by definition of the covariance of GX ,

n−1Var
(
GX(s, n)−GX(s′, n)

)
= lim
N→∞

N−1Var
(
RX(s,N)−RX(s′, N)

)
.

Hence, by (4.1) and Corollary 1.4 in Rio (2000),

n−1Var
(
GX(s, n)−GX(s′, n)

)
≤ E

(
|1X0≤s′ − 1X0≤s|(1 + 4

∑
k>0

b(X0, k)
)
.

Now

|1X0≤s′ − 1X0≤s| ≤
d∑
j=1

|1
X

(j)
0 ≤s′j

− 1
X

(j)
0 ≤sj

| .

Taking into account the definition of P∗0,j , it follows that

Var
(
GX(s, n)−GX(s′, n)

)
≤ n

d∑
j=1

CjP∗0,j
(
|1
X

(j)
0 ≤s′j

− 1
X

(j)
0 ≤sj

|
)
.

Now, by definition of P∗j ,

P∗0,j
(
|1
X

(j)
0 ≤s′j

− 1
X

(j)
0 ≤sj

|
)

= P∗j (] min(sj , s
′
j),max(sj , s

′
j)]) = |ui − vi| ,

whence

Var
(
GX(s, n)−GX(s′, n)

)
≤ n

d∑
j=1

Cj |uj − vj | ≤ nC(β)

d∑
i=1

|ui − vi| ,

which completes the proof of (4.7) .

We shall prove in what follows that the conclusion of Theorem 3.1 holds for the stationary sequence
(Yi)i∈Z and the associated continuous Gaussian process KY with covariance function ΓY defined by (4.6).
This will imply Theorem 3.1 by taking for s = (s1, . . . , sd),

KX(s, t) = KY

(
(FP∗1 (s1), . . . , FP∗d (sd)), t

)
,

since for any (s, s′) =
(
(s1, . . . , sd), (s

′
1, . . . , s

′
d)
)
∈ R2d,

ΓX(s, s′, t, t′) = ΓY
(
(FP∗1 (s1), . . . , FP∗d (sd)), (FP∗1 (s′1), . . . , FP∗d (s′d)), t, t

′) .
We start by a reduction to a grid and a discretization.

4.1 Reduction to a grid

In this section, we consider a strictly stationary sequence of random variables Zi in Rd with marginal
distributions with support included in [0, 1] and bounded densities. Our aim is to compare the maximal
deviation over the unit cube with the maximal deviation over a grid. Let An denote the set of x in [0, 1]d

10



such that nx is a multivariate integer. The main result of the section is that, if the marginal densities
are each bounded by M , then, for any integer k ≤ n,

sup
s∈[0,1]d

|RZ(s, k)−GZ(s, k)| ≤ sup
s∈An

|RZ(s, k)−GZ(s, k)|+dM+ sup
‖s−s′‖∞≤1/n

|GZ(s, k)−GZ(s′, k)| , (4.8)

where we recall that GZ is a two parameters Gaussian process with covariance function ΓZ defined by
(4.6).

We now prove the above inequality. For each s = (s1, . . . , sd), we set π−(s) = n−1([ns1], . . . , [nsd])
and π+(s) = π−(s) + n−1(1, . . . , 1). From the monotonicity of the multivariate distribution function F
and the empirical distribution function Fk,

kFk(π−(s))− kF (π+(s)) ≤ RZ(s, k) ≤ kFk(π+(s))− kF (π−(s)) .

Next let Fi denote the distribution function of the i-th coordinate of Z0. From our assumption

Fi(t)− Fi(s) ≤M |t− s| .

Now, for any s = (s1, . . . sd) and t = (t1, . . . , td) with s ≤ t,

0 ≤ F (t)− F (s) ≤
d∑
i=1

(Fi(ti)− Fi(si)) ,

which, together with the above inequality, ensures that

0 ≤ kF (π+(s))− kF (π−(s)) ≤ k(Md/n) ≤Md

since k ≤ n. Hence
RZ(π−(s), k)− dM ≤ RZ(s, k) ≤ RZ(π+(s), k) + dM .

Let then
DZ(k, n) = sup

‖s−s′‖∞≤1/n
|GZ(s, k)−GZ(s′, k)| .

Clearly
−GZ(π−(s), k)−DZ(k, n) ≤ −GZ(s, k) ≤ −GZ(π+(s), k) +DZ(k, n) .

Let ∆Z = RZ −GZ . Adding the two above inequalities, we now get that

∆Z(π−(s), k)− dM −DZ(k, n) ≤ ∆Z(s, k) ≤ ∆Z(π+(s), k) + dM +DZ(k, n) ,

which implies immediately (4.8).

4.2 Discretization

We now apply the inequality (4.8) to our problem. Let N ∈ N∗ and let k ∈]1, 2N+1]. We first notice that
for any construction of a Kiefer process GY with covariance function ΓY defined by (4.6),

sup
1≤k≤2N+1

sup
s∈[0,1]d

∣∣RY (s, k)−GY (s, k)
∣∣ ≤ sup

s∈[0,1]d

∣∣RY (s, 1)−GY (s, 1)
∣∣+

N∑
L=0

DL(GY ) . (4.9)

where
DL(GY ) := sup

2L<`≤2L+1

sup
s∈[0,1]d

∣∣(RY (s, `)−RY (s, 2L))− (GY (s, `)−GY (s, 2L))
∣∣ . (4.10)

Let then
D′L(GY ) = sup

2L<`≤2L+1

sup
s∈A2L

|RY (s, `)−RY (s, 2L)− (GY (s, `)−GY (s, 2L))| , (4.11)

where we recall that A2L is the set of x in [0, 1]d such that 2Lx is a multivariate integer. Applying
Inequality (4.8) with n = 2L to the variables Zi = Yi+2L and taking into account (4.5), we get that

DL(GY ) ≤ D′L(GY ) + dC(β) + sup
2L<`≤2L+1

‖s−s′‖∞≤2−L

|(GY (s, `)−GY (s, 2L))− (GY (s′, `)−GY (s′, 2L))| . (4.12)
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4.3 Construction of the Kiefer process

We shall construct in this section a Kiefer process KY with covariance function ΓY defined by (4.6) in
such a way that for GY = KY , the terms involved in (4.12) can be suitably handled.

We start with some notations and definitions.

Definition 4.1 For two positive integers m and n, let Mm,n(R) be the set of real matrices with m lines
and n columns. The Kronecker product (or Tensor product) of A = [ai,j ] ∈ Mm,n(R) and B = [bi,j ] ∈
Mp,q(R) is denoted by A⊗B and is defined to be the block matrix

A⊗B =

 a1,1B · · · a1,nB
...

...
am,1B · · · am,nB

 ∈Mmp,nq(R) .

For any positive integer k, the k-th Kronecker power A⊗k is defined inductively by: A⊗1 = A and
A⊗k = A

⊗
A⊗(k−1), and

⊗k
i=1Ai = A1

⊗(⊗k
i=2Ai

)
.

We denote by At the transposed matrix of A.

Let L ∈ N. For any k ∈ Z and any ` ∈ {1, . . . , d}, let ~Zk,`,L be the column vector of R2L defined by

~Zk,`,L =
((

1Yk+2L∈[0,1]`−1×[0,j2−L]×[0,1]d−`

)
j=1,...,2L

)t
. (4.13)

Let now ~Uk,L and ~U
(0)
k,L be the column vectors of R2dL defined by

~Uk,L =

d⊗
`=1

~Zk,`,L and ~U
(0)
k,L = ~Uk,L − E(~Uk,L) . (4.14)

For any k ∈ {1, . . . , 2L}, let ~ek,L be the column vector of R2L defined by

~ek,L =
((

1k≤m
)
m=1,...,2L

)t
, (4.15)

and let ~SL,d the column vector of R2(d+1)L

defined by

~SL,d =

2L∑
k=1

~ek,L ⊗ ~U
(0)
k,L :=

2L∑
k=1

~Vk,L . (4.16)

Let CL,d be the covariance matrix of ~SL,d. It is then the matrix of M2(d+1)L,2(d+1)L(R) defined by

CL,d = E
(
~SL,d ~S

t
L,d

)
. (4.17)

Let us now continue with some other definitions.

Definition 4.2 Let m be a positive integer. Let P1 and P2 be two probabilities on (Rm,B(Rm)). Let c
be a distance on Rm associated to a norm. The Wasserstein distance of order 1 between P1 and P2 with
respect to the distance c is defined by

Wc(P1, P2) = inf{E(c(X,Y )), (X,Y ) such that X ∼ P1, Y ∼ P2} = sup
f∈Lip(c)

(P1(f)− P2(f)) ,

where Lip(c) is the set of functions from Rm into R that are Lipschitz with respect to c; namely for any
x and y of Rm, |f(x)− f(y)| ≤ c(x, y).

Definition 4.3 Let m be a positive integer. For x =
(
x(1), . . . , x(2

m)
)t

and y =
(
y(1), . . . , y(2

m)
)t

two

vectors of R2m , we define the following distance

cm(x, y) = sup
j∈{1,...,2m}

|x(j) − y(j)| .
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Let K ∈ {0, . . . , L} and define the following set of integers

E(L,K) = {1, . . . , 2L−K} ∩ (2N + 1) , (4.18)

meaning that if k ∈ E(L,K) then k is an odd integer in [1, 2L−K ].
For K ∈ {0, . . . , L} and k ∈ E(L,K), define

BK,k =
] (k − 1)2K

2L
,
k2K

2L

]
.

Notice that for any m ∈ {1, . . . , 2L},

]0,m] = 2L
L∑

K=0

∑
kK∈E(L,K)

bK,kK (m)BK,k , (4.19)

with bK,kK (m) = 0 or 1. This representation is unique in the sense that, for m fixed, there exists only
one vector

(
b(K,kK)(m), kK ∈ E(L,K)

)
K∈{0,...,L} satisfying (4.19). In addition, for any K ∈ {0, . . . , L},∑

k∈E(L,K) bK,k(m) ≤ 1. Let ~b(m,L) be the column vector of R2L defined by

~b(m,L) =
((
bK,kK (m), kK ∈ E(L,K)

)
K∈{0,...,L}

)t
and PL =

(
~b(1, L), b(2, L), . . . ,~b(2L, L)

)t
. (4.20)

PL has the following property: it is a square matrix of R2L with determinant equal to 1. Let us denote by
P−1L its inverse. Notice also that for any positive integer m, (P⊗mL )−1 = (P−1L )⊗m (see Corollary 4.2.11
in Horn and Johnson (1991)).

Let P~SL,d|F2L
be the conditional law of ~SL,d given F2L and NCL,d

denote the N (0, CL,d)-law. Let

now (aL)L≥0 be a sequence of positive reals and (~G∗aL)L≥0 be a sequence of independent random vec-

tors in R2(d+1)L

with respective laws N (0, a2LI2(d+1)L) (here I2(d+1)L is the identity matrix on R2(d+1)L

),

and independent of F∞ ∨ σ(ηi, i ∈ Z). Let ~GaL = P
⊗(d+1)
L

~G∗aL . Recall that the probability space
is assumed to be large enough to contain a sequence (δi)i∈Z of iid random variables uniformly dis-
tributed on [0, 1], independent of the sequences (Xi)i∈Z and (ηi)i∈Z. According to Rüschendorf (1985)
(see also Theorem 2 in Dedecker, Prieur and Raynaud de Fitte (2006)), there exists a random vector

~WL,d =
(
W

(1)
L,d, . . . ,W

(2L(d+1))
L,d

)t
in R2(d+1)L

with law NCL,d
∗ P~GaL

that is measurable with respect to

σ(δL) ∨ σ(~SL,d + ~GaL) ∨ F2L , independent of F2L and such that

E
(
c(d+1)L(~SL,d + ~GaL ,

~WL,d)
)

= E
(
Wc(d+1)L

(P~SL,d|F2L
∗ P~GaL

,NCL,d
∗ P~GaL

)
(4.21)

= E sup
f∈Lip(c(d+1)L)

(
E
(
f(~SL,d + ~GaL)|F2L

)
− E(f( ~WL,d))

)
.

Here and in what follows ∗ stands for the usual convolution product. Recall that the probability space is
assumed to be large enough to contain a sequence (υi)i∈Z of iid random variables uniformly distributed
on [0, 1], independent of the sequences (Xi)i∈Z and (ηi, δi)i∈Z. By the Skorohod lemma (1976), there

exists a measurable function h from R2(d+1)L × [0, 1] into R2(d+1)L × R2(d+1)L

such that

h
(
~WL,d, υL

)
=
(
~G′aL ,

~TL,d
)

satisfies ~G′aL + ~TL,d = ~WL,d a.s. and L
(
~G′aL ,

~TL,d
)

= P~GaL
⊗NCL,d

. (4.22)

Hence we have constructed a sequence of centered Gaussian random variables (~TL,d)L∈N in R2(d+1)L

such that E
(
~TL,d ~T

t
L,d

)
= CL,d, and that are mutually independent. The approximating Kiefer process is

then constructed from this Gaussian process as we explain in what follows.
Let us write

~TL,d =
(
T

(1)
1,L, . . . , T

(2dL)
1,L , T

(1)
2,L, . . . , T

(2dL)
2,L , . . . , T

(1)

2L,L
, . . . , T

(2dL)

2L,L

)t
,

so that for k ∈ {1, . . . , 2L} and i ∈ {1, . . . , 2dL}, T (i)
k,L is the ((k − 1)2dL + i)-th coordinate of the vector

~TL,d. Now, for any k ∈ {1, . . . , 2L} and any i ∈ {1, . . . , 2dL}, we set

g
(i)
k,L = T

(i)
k,L − T

(i)
k−1,L and ~gk,L = (g

(1)
k,L, . . . , g

(2dL)
k,L )t . (4.23)
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Notice that since E
(
~TL,d ~T

t
L,d

)
= E

(
~SL,d~S

t
L,d

)
, one can easily verify that for any (k, `) ∈ {1, . . . , 2L}2 and

any (i, j) ∈ {1, . . . , 2dL}2

Cov
(
g
(i)
k,L, g

(j)
`,L

)
= Cov

(
u
(i)
k,L, u

(j)
`,L

)
, (4.24)

where u
(i)
k,L is the i-th coordinate of the vector ~Uk,L. For any k ∈ {1, . . . , 2L}, we define now the following

Gaussian vectors in R2(d+1)L

,
~Gk,L = ~ek,L ⊗ ~gk,L , (4.25)

where we recall that ~ek,L is defined in (4.15). We observe that

~TL,d =

2L∑
k=1

~Gk,L . (4.26)

We want to extend now the Gaussian vector (~g tk,L)k∈{1,...,2L} = (g
(1)
k,L, . . . , g

(2dL)
k,L )k∈{1,...,2L} of R2(d+1)L

into

a Gaussian vector of (R2dL)Z denoted by (~g tk,L)k∈Z = (g
(1)
k,L, . . . , g

(2dL)
k,L )k∈Z in such a way that (~g tk,L)k∈Z

is independent of F2L and that for any (k, `) ∈ Z2 and any (i, j) ∈ {1, . . . , 2dL}2, the property (4.24)
holds. With this aim, we first notice that by the Kolmogorov extension theorem, there exists a sequence

denoted by (B
(1)
k , . . . , B

(2dL)
k )k∈Z of centered Gaussian random variables such that Cov

(
B

(i)
k , B

(j)
`

)
=

Cov
(
u
(i)
k,L, u

(j)
`,L

)
, and we recall that the probability space is assumed to be large enough to contain a

sequence (εi)i∈Z of iid random variables uniformly distributed on [0, 1], independent of the sequences
(Xi)i∈Z and (ηi, δi, υi)i∈Z introduced before. By the Skorohod lemma (1976) (see also Lemma 2.11 of

Dudley and Philipp (1983) and its proof), since (R2dL)Z is a Polish space, there exists a measurable

function h from R2(d+1)L × [0, 1] into (R2dL)Z such that

h
(
(~g tk,L)k∈{1,...,2L}, εL

)
= (~g tk,L)k∈Z\{1,...,2L} (4.27)

satisfies (B
(1)
k , . . . , B

(2dL)
k )k∈Z = (~g tk,L)k∈Z in law. Therefore the vector (~g tk,L)k∈Z of (R2dL)Z constructed

by the relation (4.27) has the desired property and is such that the random variables
(
(~g tk,L)k∈Z

)
L∈N are

mutually independent.
We use now the following notations: for any k ∈ Z,

Gk = σ
(
(~g t`,L)`≤k

)
, G−∞ =

∨
k∈Z
Gk and Pk(·) = E

(
· |Gk

)
− E

(
· |Gk−1

)
.

Let us prove that, for any k ∈ Z and any i ∈ {1, . . . , 2dL}, the random variable

d
(i)
k,L =

∑
`≥k

Pk(g
(i)
`,L) (4.28)

is well defined in L2. Notice first that by stationarity,
∑
`≥k ‖Pk(g

(i)
`,L)‖2 =

∑
`≥0 ‖P0(g

(i)
`,L)‖2. Next using

the computations page 1615 in Peligrad and Utev (2006), we get that, for any integer m ≥ 0,

∑
`≥2m

‖P0(g
(i)
`,L)‖2 �

∑
`≥m

‖E
(
g
(i)
`,L|G0

)
‖2

(`+ 1)1/2
. (4.29)

We denote now Hk = span(1, (~g t`,L)`≤k) (where the closure is taken in L2) and Jk = span(1, (~ut`,L)`≤k)

where ~uk,L = (u
(1)
k,L, . . . , u

(2dL)
k,L )t, with u

(i)
k,L the i-th coordinate of the vector ~Uk,L. We denote by ΠHk

(·)
the orthogonal projection on Hk and by ΠJk

(·) the orthogonal projection on Jk. Since (~g tk,L)k∈Z is a
Gaussian process, for any ` ≥ 0,

E
(
g
(i)
`,L|G0

)
= ΠH0

(
g
(i)
`,L

)
a.s. and in L2 .

Since the property (4.24) holds for any (k, `) ∈ Z2, we observe that

‖ΠH0

(
g
(i)
`,L

)
‖2 = ‖ΠJ0

(
u
(i)
`,L − E(u

(i)
`,L)
)
‖2 .
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Moreover, for any ` ≥ 0, we have that

‖ΠJ0

(
u
(i)
`,L − E(u

(i)
`,L)
)
‖2 ≤ ‖E

(
u
(i)
`,L − E(u

(i)
`,L)|F2L

)
‖2 .

So, overall, for any ` ≥ 0,

‖E
(
g
(i)
`,L|G0

)
‖2 ≤ ‖E

(
u
(i)
`,L − E(u

(i)
`,L)|F2L

)
‖2 . (4.30)

Next, notice that ‖E
(
u
(i)
`,L − E(u

(i)
`,L)|F2L

)
‖2 ≤ supZ∈B2(F2L ) Cov(Z, u

(i)
`,L) where B2(F2L) is the set of

F2L-measurable random variables such that ‖Z‖2 ≤ 1. Observe that u
(i)
`,L is σ(Y`+2L)-measurable and

such that |u(i)`,L| ≤ 1. Therefore, by applying Lemma 7.4 with r =∞ and s = 1, we get that there exists

a F2L-measurable random variable bF2L
(`+ 2L) such that

‖E
(
u
(i)
`,L − E(u

(i)
`,L)|F2L

)
‖2 ≤ 2 sup

Z∈B2(F2L )

E
(
|Z|bF2L

(`+ 2L)
)
≤ 2
(
E
(
bF2L

(`+ 2L)
))1/2

= 2β
1/2
` . (4.31)

Hence, starting from (4.30) and considering (4.31), we get that, for any ` ≥ 0,

‖E
(
g
(i)
`,L|G0

)
‖2 ≤ 2β

1/2
` . (4.32)

Therefore, starting from (4.29) and taking into account (4.32), it follows that

∑
`≥0

‖P0(g
(i)
`,L)‖2 �

∑
`≥0

β
1/2
`

(`+ 1)1/2
,

implying that the series in (4.28) is well defined in L2 since by our condition on (βk),
∑
`≥1 `

−1/2β
1/2
` <∞.

We define now

~dk,L = (d
(1)
k,L, . . . , d

(2dL)
k,L )t , ~Dk,L = ~ek,L ⊗ ~dk,L and ~ML,d =

2L∑
k=1

~Dk,L . (4.33)

Since the random vectors ( ~Dk,L)k≥1 are orthogonal, E( ~ML,d
~M t
L,d) =

∑2L

k=1 E( ~Dk,L
~Dt
k,L), and then, by

the property of the tensor product (see for instance Lemma 4.2.10 in Horn and Johnson (1991)),

E( ~ML,d
~M t
L,d) =

2L∑
k=1

~ek,L~e
t
k,L ⊗ E

(
~dk,L ~d

t
k,L

)
. (4.34)

Let us prove now that for any integer k and any (i, j) ∈ {1, . . . , 2dL}2,

E(d
(i)
k,Ld

(j)
k,L) =

∑
`∈Z

Cov(u
(i)
0,L, u

(j)
`,L) , (4.35)

which, together with (4.34), will imply that

E( ~ML,d
~M t
L,d) =

2L∑
k=1

Λk,L,d , (4.36)

where Λk,L,d :=
∑
`∈Z ~ek,L~e

t
k,L⊗E

(
~U
(0)
0,L(~U

(0)
`,L)t

)
=
∑
`∈Z E

(
(~ek,L⊗ ~U (0)

0,L)(~ek,L⊗(~U
(0)
`,L)t)

)
(by the property

of the tensor product).

To prove (4.35), we first notice that the following decomposition is valid: g
(i)
m,L =

∑m
k=−∞ Pk(g

(i)
m,L) (to

see this, it suffices to notice that (4.32) implies that E
(
g
(i)
m,L|G−∞

)
= 0 a.s.). Hence, using the fact that

the property (4.24) holds for any (k, `) ∈ Z2, we derive by orthogonality followed by stationarity that

Cov(u
(i)
0,L, u

(j)
`,L) = E(g

(i)
0,Lg

(j)
`,L) =

0∧∑̀
k=−∞

E
(
Pk(g

(i)
0,L)Pk(g

(j)
`,L)
)

=

∞∑
k=0∨(−`)

E
(
P0(g

(i)
k,L)P0(g

(j)
`+k,L)

)
.
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Whence ∑
`∈Z

Cov(u
(i)
0,Lu

(j)
`,L) =

∑
m≥0

∑
k≥0

E
(
P0(g

(i)
m,L)P0(g

(j)
k,L)

)
. (4.37)

On the other hand, by the definition (4.28) of d
(i)
k,L and stationarity, we have that

E(d
(i)
k,Ld

(j)
k,L) =

∑
`≥k

∑
m≥k

E
(
Pk(g

(i)
`,L)Pk(g

(j)
m,L)

)
=
∑
`≥0

∑
m≥0

E
(
P0(g

(i)
`,L)P0(g

(j)
m,L)

)
. (4.38)

Considering the equalities (4.37) and (4.38), (4.35) follows.

Hence we have constructed Gaussian random variables ( ~ML,d)L∈N in R2(d+1)L

that are mutually in-
dependent and such that, according to (4.36), for `,m ∈ {1, . . . , 2L} and sL,j = (j12−L, . . . , jd2

−L) with
j = (j1, . . . , jd) ∈ {1, . . . , 2L}d and sL,k = (k12−L, . . . , kd2

−L) with k = (k1, . . . , kd) ∈ {1, . . . , 2L}d,

Cov
(
( ~ML,d)(`−1)2dL+

∑d
i=1(ji−1)2(d−i)L+1, (

~ML,d)(m−1)2dL+
∑d

i=1(ki−1)2(d−i)L+1

)
(4.39)

= inf(`,m)
∑
t∈Z

Cov(1Y0≤sL,j
,1Yt≤sL,k

) = ΓY (sL,j , sL,k, `,m) .

Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer process KY with
covariance function ΓY defined by (4.6) such that

KY (sL,j , `+ 2L)−KY (sL,j , 2
L) =

(
~ML,d

)
(`−1)2dL+

∑d
i=1(ji−1)2(d−i)L+1

. (4.40)

Thus our construction is now complete. In addition recalling the notation (4.11) and the definition 4.3,
we have that for any L ∈ N,

D′L(KY ) = c(d+1)L(~SL,d, ~ML,d)

≤ c(d+1)L(~SL,d + ~GaL ,
~TL,d + ~G′aL) + c(d+1)L(~TL,d, ~ML,d) + c(d+1)L(~0, ~GaL) + c(d+1)L(~0, ~G′aL) . (4.41)

4.4 Gaussian approximation

Proposition 4.1 Let L ∈ N, KY defined by (4.40) and D′L(KY ) by (4.11). Under the assumptions of
Theorem 3.1 the following inequality holds: there exists a positive constant C depending on p and d but
not depending on L, such that

E
(
D′L(KY )) ≤ C(L+ 1)3(d+1) + C2L/p(L+ 1)

3d
2 +2− 2+d

2p 1p∈]2,3[ + C2L/3(L+ 1)2+4d/31p=3 .

Proposition 4.2 Let L ∈ N∗, KY defined by (4.40) and D′L(KY ) by (4.11). Assume that the assumptions
of Theorem 3.1 holds. Then there exists a positive constant C(d, p) depending on d and p such that for any
L ≥ C(d, p) and any positive real xL ∈ [2L(3−p)/(4−p)L2+3d/2, 2LL−d/2], the following inequality holds:

P
(
D′L(KY ) ≥ xL

)
≤ exp

(
− κ1L

)
+ κ2 x

−1
L (L+ 1)d+1 + κ2 x

−p
L 2L

Lp(3d/2+2)

L(2+d)/2
+ κ2 x

−3
L 2LL4d+61p=3 ,

where κ1 and κ2 depend on p and d but not on L.

Proof of Proposition 4.1. We shall bound up E(D′L(KY )) with the help of Inequality (4.41). So, for
any sequence of positive reals (aL)L≥0,

E(D′L(KY )) ≤ 2E
(
c(d+1)L(~GaL ,~0)

)
+E
(
c(d+1)L(~TL,d, ~ML,d)

)
+E
(
c(d+1)L(~SL,d+ ~GaL ,

~TL,d+ ~G′aL)
)
. (4.42)

We start by giving an upper bound for E
(
c(d+1)L(~GaL ,~0)

)
. With this aim we first recall that ~GaL =(

G
(1)
aL , . . . , G

(2(d+1)L)
aL

)t
is a centered Gaussian vector with covariance matrix a2L

(
PLPt

L

)⊗(d+1)
where PL is

defined in (4.20) (indeed, notice that by Lemma 4.2.10 in Horn and Johnson (1991), P
⊗(d+1)
L (P

⊗(d+1)
L )t =(

PLPt
L

)⊗(d+1)
). Therefore, for each m ∈ {1, . . . , 2(d+1)L}, if we denote by v2aL,m the variance of G

(m)
aL , it

follows from the definition of the tensor product that there exists j = (j1, . . . , jd+1) in {1, . . . , 2L}(d+1)

such that

v2aL,m = a2L

d+1∏
i=1

( L∑
K=0

∑
kK∈E(L,K)

bK,kK (ji)
)
, (4.43)

16



where we recall that the notations bK,kK (ji) and E(L,K) have been respectively introduced in (4.19) and
(4.18). According to the inequality (3.6) in Ledoux and Talagrand (1991),

E
(
c(d+1)L(~GaL ,~0)

)
= E

(
max

m=1,...,2(d+1)L
|G(m)

aL |
)
≤
(

2 + 3(log(2(d+1)L))1/2
)

max
m=1,...,2(d+1)L

vaL,m .

Since v2aL,m ≤ a
2
L(L+ 1)d+1, we then get that

E
(
c(d+1)L(~GaL ,~0)

)
≤ 5 aL(d+ 1)1/2 (L+ 1)1+d/2 . (4.44)

To bound up now the second and third terms in the right hand side of (4.42), we shall use the two
following lemmas. The proof of the second lemma being very technical, it is postponed to Appendix A.

Lemma 4.1 Let L ∈ N. Under the assumptions of Theorem 3.1 and the notations of Section 4.3, the
following inequality holds: there exists a positive constant C1 not depending on (L, d), such that

E
(
c(d+1)L(~TL,d, ~ML,d)

)
≤ C1d

1/2(L+ 1)1/2(L1/2 + 2(3−p)L/2) . (4.45)

Lemma 4.2 Let L ∈ N. Under the assumptions of Theorem 3.1 and the notations of Section 4.3, the
following inequality holds: for any aL ∈ [(L + 1)d+1, 2L(L + 1)d+1], there exists a positive constant C2

depending on p but not on (L, d), such that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)

≤ C2

(
(L+ 1)d+1 + a1−pL (L+ 1)p(d+1)2L + a−3L (L+ 1)4(d+1)2L

(
2L(3−p) + (L+ 1)1p=3

)
+ a2−pL (L+ 1)(5−p)(d+1) + a−1L (L+ 1)2d+31p=3 + a−2L (L+ 1)3d+42L1p=3

)
. (4.46)

Starting from (4.42) and considering the upper bound (4.44) and the two above lemmas, the proof of
Proposition 4.1 is then achieved by selecting

aL = (L+ 1)d+1 ∨
(
2L/p(L+ 1)d+1−(2+d)/(2p)1p∈]2,3[ + 2L/3(L+ 1)1+5d/61p=3

)
in the bounds (4.44) and (4.46). �

Proof of Lemma 4.1. Notice that by construction, ~TL,d − ~ML,d is a Gaussian vector of R2(d+1)L

.
Therefore, according to the inequality (3.6) in Ledoux and Talagrand (1991),

E
(
c(d+1)L(~TL,d, ~ML,d)

)
≤
(

2 + 3(log(2(d+1)L))1/2
)

sup
i=1,...,2(d+1)L

k≤2L

‖
k∑
`=1

(g
(i)
`,L − d

(i)
`,L)‖2 .

Using stationarity and Theorem 1(ii) in Wu (2007) followed by Inequality (4.29), we derive that

‖
k∑
`=1

(g
(i)
`,L − d

(i)
`,L)‖22 �

k∑
j=1

(∑
`≥j

P0(g
(i)
`,L)
)2
�

k∑
j=1

( ∑
`≥[j/2]

‖E(g
(i)
`,L|G0)‖2
`1/2

)2

.

Next using (4.32), followed by the fact that βk = O(k1−p) for p ∈]2, 3], we get that

‖
k∑
`=1

(g
(i)
`,L − d

(i)
`,L)‖22 = O(ln k + k3−p1p 6=3) . (4.47)

So overall, (4.45) follows. This ends the proof of the lemma. �

Proof of Proposition 4.2. Let yL = xL/7. Starting from the inequality (4.41), we derive that for any
sequence of positive reals (aL)L≥0,

P
(
D′L(KY ) ≥ xL

)
≤ P

(
c(d+1)L(~TL,d, ~ML,d) ≥ 2yL

)
+ P

(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL) ≥ yL
)

+ 2P
(
c(d+1)L(~GaL ,~0) ≥ 2yL

)
. (4.48)
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Recalling Inequality (4.44), we then derive that if we select

aL =
xL

35(d+ 1)1/2(L+ 1)1+d/2
, (4.49)

then
P
(
c(d+1)L(~GaL ,~0) ≥ 2yL

)
≤ P

(
c(d+1)L(~GaL ,~0)− E

(
c(d+1)L(~GaL ,~0)

)
≥ yL

)
.

Applying the often-called Cirel’son-Ibragimov-Sudakov inequality (1976), we then infer that for any
sequence of positive reals (aL)L∈N satisfying (4.49),

P
(
c(d+1)L(~GaL ,~0) ≥ 2yL

)
≤ exp

( −y2L
2σ2

aL,d

)
,

where σ2
aL,d

= sup1≤m≤2(d+1)L v2aL,m and v2aL,m is defined in (4.43). Since v2aL,m ≤ a
2
L(L+1)d+1, it follows

that for any sequence of positive reals (aL)L∈N satisfying (4.49),

P
(
c(d+1)L(~GaL ,~0) ≥ 2yL

)
≤ exp

(
− dL

)
. (4.50)

Let now C1 be the constant defined in Lemma 4.1. Due to the restriction on xL, there exists a positive
constant C1(d, p) depending only on p and d, such that for L ≥ C1(d, p), yL ≥ C1d

1/2(L + 1)1/2(L +
2(3−p)L/2). Whence, for L ≥ C1(d, p),

P
(
c(d+1)L(~TL,d, ~ML,d) ≥ 2yL

)
≤ P

(
c(d+1)L(~TL,d, ~ML,d)− E

(
c(d+1)L(~TL,d, ~ML,d))

)
≥ yL

)
.

By construction, ~TL,d − ~ML,d is a Gaussian vector of R2(d+1)L. Therefore, applying again the Cirel’son-
Ibragimov-Sudakov inequality (1976), we then infer that

P
(
c(d+1)L(~TL,d, ~ML,d) ≥ 2yL

)
≤ exp

( −y2L
2u2L,d

)
,

where

u2L,d = sup
i=1,...,2(d+1)L

k≤2L

∥∥ k∑
`=1

(g
(i)
`,L − d

(i)
`,L)
∥∥2
2
.

Using (4.47), it follows that u2L,d = O(L + 2L(3−p)1p 6=3). Hence, there exists a positive constant κ(d)
depending on d such that, for L ≥ C2(d, p) where C2(d, p) is a positive constant depending only on p and
d,

P
(
c(d+1)L(~TL,d, ~ML,d) ≥ 2yL

)
≤ exp

(
− κ(d)L

)
. (4.51)

Notice now that by the conditions on xL, the choice of aL given in (4.49) implies that aL belongs to
[(L+ 1)d+1, 2L(L+ 1)d+1] for L larger than a constant depending on d and p. Therefore applying Lemma
4.2, it follows that there exists a positive constant κ2 not depending on L, such that, for L ≥ C(d, p),

P
(
c(d+1)L(~SL,d+ ~GaL ,

~TL,d+ ~G′aL) ≥ yL
)
≤ κ2 y−1L (L+1)d+1+κ2 y

−p
L

Lp(3d/2+2)2L

L(2+d)/2
+κ2 y

−3
L 2LL4d+61p=3 .

(4.52)
Starting from (4.48) and considering the upper bounds (4.50), (4.51) and (4.52), the proposition follows.
�

4.5 End of the proof of Theorem 3.1

We start by proving Item 1. Let KY defined by (4.40). Starting from (4.9) with GY = KY , we get that

E
(

sup
1≤k≤2N+1

sup
s∈[0,1]d

∣∣RY (s, k)−KY (s, k)
∣∣) ≤ E

(
sup

s∈[0,1]d

∣∣RY (s, 1)−KY (s, 1)
∣∣)+

N∑
L=0

E(DL(KY )) , (4.53)

where DL(KY ) is defined by (4.10).
Notice first that

sup
s∈[0,1]d

|RY (s, 1)−KY (s, 1)| ≤ 1 + sup
s∈[0,1]d

|KY (s, 1)| .
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Now, from (4.7), the Gaussian process KY (., 1) has a continuous version. Therefore, according to Theorem
11.17 in Ledoux and Talagrand (1991), there exists a positive constant c(d) depending on d, such that

E( sup
s∈[0,1]d

|KY (s, 1)|) ≤ c(d) ,

implying that
E
(

sup
s∈[0,1]d

∣∣RY (s, 1)−KY (s, 1)
∣∣) ≤ c(d) + 1 . (4.54)

We bound now the terms E(DL(KY )) in (4.53). With this aim, we start with the inequality (4.12) with
GY = KY . By definition of ΛY , the Gaussian processes Bk defined by

Bk(s) = KY (s, k + 1)−KY (s, k)

are independent and identically distributed, with common covariance function ΛY . Hence, by (4.7), for
any integers k and ` with k ≤ `,

Var(KY (s, `)−KY (s, k))− (KY (s′, `)−KY (s′, k)) ≤ (`− k)C(β)‖s− s′‖1 .

Therefrom, starting from Theorem 11.17 in Ledoux and Talagrand (1991), one can prove that there exists
a positive constant C(d) depending on d, such that

E
(

sup
2L<`≤2L+1

‖s−s′‖∞≤2−L

|(KY (s, `)−KY (s, 2L))− (KY (s′, `)−KY (s′, 2L))|
)
≤ C(d)

√
L . (4.55)

Hence starting from Inequality (4.12) with GY = KY , we derive that there exists some positive constant
c′(d) such that

E(DL(KY )) ≤ E(D′L(KY )) + c′(d)
√
L , (4.56)

where D′L(KY ) is defined by (4.11). Starting from (4.53) and considering (4.54) and (4.56) together with
the upper bound given in Proposition 4.1, Item 1 of Theorem 3.1 then follows.

We turn now to the proof of Item 2. Starting from (4.9) with GY = KY , and considering the upper
bound (4.54), we infer that Item 2 of Theorem 3.1 will hold true provided that we can show that for L
large enough,

DL(KY ) = O(2L/pLλ(d)+ε+1/p) almost surely, for any ε > 0 , (4.57)

where λ(d) =
(
3d
2 + 2 − 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3 and DL(KY ) is defined by (4.10). Starting from

Inequality (4.12) with GY = KY and considering the upper bound (4.55), we infer that (4.57) will hold
true provided that one can prove that for L large enough,

D′L(KY ) = O(2L/pLλ(d)+ε+1/p) almost surely, for any ε > 0 , (4.58)

where D′L(KY ) is defined by (4.10). But by using Proposition 4.2, we derive that for L large enough,
there exist two positive constants κ1 and κ2 depending on p and d but not on L, such that

P
(
D′L(KY ) ≥ 2L/pLλ(d)+ε+1/p

)
� exp

(
− κ1L

)
+ κ2

1

L1+εp
,

which proves (4.58) by using Borel-Cantelli Lemma. This ends the proof of Item 2 and then of the
theorem. �

5 Proof of Theorem 3.2

As in the beginning of the proof of Theorem 3.1, we first transform the random variables Xi. The
transformation in the iid case is more direct since we do not need to introduce another probability. So,

for any k in Z and any j in {1, . . . , d}, we still denote by X
(j)
k the j-th marginal of Xk and by Pj the law

of X
(j)
0 . Let FPj be the distribution function of Pj , and let FPj (x− 0) = supz<x FPj (z). Let (ηi)i∈Z be a

sequence of iid random variables with uniform distribution over [0, 1], independent of the initial sequence
(Xi)i∈Z. Define then

Y
(j)
i = FPj

(X
(j)
i − 0) + ηi(FPj

(X
(j)
i )− FPj

(X
(j)
i − 0)) and Yi =

(
Y

(1)
i , . . . , Y

(d)
i

)t
. (5.1)
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Note that (Yi)i∈Z forms a sequence of iid random variables with values in [0, 1]d. In addition the marginals

of Yi are uniformly distributed on [0, 1] and X
(j)
i = F−1Pj

(Y
(j)
i ) almost surely, where F−1Pj

is the generalized

inverse of the cadlag function FPj
(see Lemma F.1. in Rio (2000)). Hence

RX(·, ·) = RY
(
(FP1

(·), . . . , FPd
(·)), ·

)
almost surely,

where
RY (s, t) =

∑
1≤k≤t

(
1Yk≤s − E(1Yk≤s)

)
, s ∈ [0, 1]d , t ∈ R+ .

Therefore to prove Theorem 3.2, it suffices to prove that its conclusions hold for the iid sequence (Yi)i∈Z
defined above and the associated continuous Gaussian process KY with covariance function ΓY defined
as follows: for any (s, s′) ∈ [0, 1]2d and (t, t′) ∈ (R+)2d

ΓY (s, s′, t, t′) = min(t, t′)ΛY (s, s′) where ΛY (s, s′) = Cov(1Y0≤s,1Y0≤s′) . (5.2)

This will clearly imply Theorem 3.2 by taking for s = (s1, . . . , sd),

KX(s, t) = KY

(
(FP1

(s1), . . . , FPd
(sd)), t

)
,

since for any (s, s′) =
(
(s1, . . . , sd), (s

′
1, . . . , s

′
d)
)
∈ R2d,

ΓX(s, s′, t, t′) = ΓY
(
(FP1(s1), . . . , FPd

(sd)), (FP1(s′1), . . . , FPd
(s′d)), t, t

′) .
According to the proof of Theorem 3.1, the crucial point is to construct a Kiefer process KY with

covariance function ΓY defined by (5.2) in such a way that one can handle both the expectation and the
deviation probability of the quantity D′L(KY ) with (Yi)i∈Z defined by (5.1).

Construction of the Kiefer process. We shall use the same notations and definitions than in Section

4.3. Therefore ~SL,d denotes the column vector of R2(d+1)L

defined by (4.16) with (Yi)i∈Z defined by (5.1),

and CL,d the covariance matrix of ~SL,d. It is then the matrix of M2(d+1)L,2(d+1)L(R) defined by (4.17).
Notice that by independence and the properties of the tensor product (see Lemma 4.2.10 in Horn and
Johnson (1991)),

CL,d =

2L∑
k=1

~ek,L~e
t
k,L ⊗ E(~U

(0)
1,L(~U

(0)
1,L)t) . (5.3)

As in Section 4.3, to construct the Kiefer process, we consider a sequence (aL)L≥0 of positive reals and

a sequence (~G∗aL)L≥0 of independent random vectors in R2(d+1)L

with respective laws N (0, a2LI2(d+1)L)

(I2(d+1)L being the identity matrix on R2(d+1)L

), and independent of F∞ ∨ σ(ηi, i ∈ Z). Moreover we set
~GaL = P

⊗(d+1)
L

~G∗aL where PL has been defined in (4.20). Since the probability space has been assumed
to be large enough to contain a sequence (δi)i∈Z of iid random variables uniformly distributed on [0, 1],
independent of the sequences (Xi)i∈Z and (ηi)i∈Z, according to Rüschendorf (1985), there exists a random

vector ~WL,d =
(
W

(1)
L,d, . . . ,W

(2L(d+1))
L,d

)t
in R2(d+1)L

with law NCL,d
∗P~GaL

that is measurable with respect

to σ(δL) ∨ σ(~SL,d + ~GaL) ∨ F2L , independent of F2L , and such that

E
(
c(d+1)L(~SL,d + ~GaL ,

~WL,d)
)

= Wc(d+1)L
(P~SL,d

∗ P~GaL
,NCL,d

∗ P~GaL

)
(5.4)

= sup
f∈Lip(c(d+1)L)

(
E
(
f(~SL,d + ~GaL)

)
− E(f( ~WL,d))

)
,

where P~SL,d
and and NCL,d

respectively denote the law of ~SL,d and the N (0, CL,d)-law.

As in Section 4.3, using the Skorohod Lemma (1976), we infer that there exists a measurable function h

from R2(d+1)L × [0, 1] into R2(d+1)L × R2(d+1)L

such that

h
(
~WL,d, υL

)
=
(
~G′aL ,

~TL,d
)

satisfies ~G′aL + ~TL,d = ~WL,d a.s. and L
(
~G′aL ,

~TL,d
)

= P~GaL
⊗NCL,d

. (5.5)

Hence we have constructed a sequence of centered Gaussian random variables (~TL,d)L∈N in R2(d+1)L

that are mutually independent and such that E
(
~TL,d ~T

t
L,d

)
= CL,d. In particular, they satisfy for
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`,m ∈ {1, . . . , 2L} and sL,j = (j12−L, . . . , jd2
−L) with j = (j1, . . . , jd) ∈ {1, . . . , 2L}d and sL,k =

(k12−L, . . . , kd2
−L) with k = (k1, . . . , kd) ∈ {1, . . . , 2L}d,

Cov
(
(~TL,d)(`−1)2dL+

∑d
i=1(ji−1)2(d−i)L+1, (

~TL,d)(m−1)2dL+
∑d

i=1(ki−1)2(d−i)L+1

)
(5.6)

= inf(`,m) Cov(1Y0≤sL,j
,1Y0≤sL,k

) = ΓY (sL,j , sL,k, `,m) .

Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer process KY with
covariance function ΓY defined by (5.2) such that

KY (sL,j , `+ 2L)−KY (sL,j , 2
L) =

(
~TL,d

)
(`−1)2dL+

∑d
i=1(ji−1)2(d−i)L+1

. (5.7)

Thus our construction is now complete.

End of the proof. Following the proof of Theorem 3.1 (see Section 4.5), to complete the proof of
Theorem 3.2, it suffices to prove the following two propositions.

Proposition 5.1 Let L ∈ N, KY defined by (5.7) and D′L(KY ) by (4.11). Under the assumptions of
Theorem 3.2, the following inequality holds: there exists a positive constant C not depending on (L, d),
such that

E
(
D′L(KY )) ≤ C(d+ 1)1/3(L+ 1)1+2d/32L/3 .

Proposition 5.2 Let L ∈ N, KY defined by (5.7) and D′L(KY ) by (4.11). Assume that the assumptions
of Theorem 3.2 holds. Then, for any xL ≥ (L+ 1)d+3/2, the following inequality holds:

P
(
D′L(KY ) ≥ xL

)
≤ exp

(
− κ1L

)
+ κ2 x

−3
L (L+ 1)2d+32L ,

where κ1 and κ2 depend on d but not on L.

Proof of Proposition 5.1. Recalling the definition 4.3, we have that for any L ∈ N,

D′L(KY ) = c(d+1)L(~SL,d, ~TL,d)

≤ c(d+1)L(~SL,d + ~GaL ,
~TL,d + ~G′aL) + c(d+1)L(~0, ~GaL) + c(d+1)L(~0, ~G′aL) , (5.8)

where ~TL,d and ~G′aL have been defined in (5.5).
To bound up the expectation of the first term in the right hand side of (5.8), we shall use the following

lemma whose proof is postponed in Appendix A. The expectation of the two last terms is handled by
using (4.44).

Lemma 5.1 Let L ∈ N. Under the assumptions of Theorem 3.2 the following inequality holds: For any
sequence (aL)L≥0 of positive reals, there exists a positive constant C not depending on (L, d), such that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)
≤ Ca−2L (L+ 1)d+12L + Ca−3L (L+ 1)3(d+1)/22L . (5.9)

Starting from (5.8), taking the expectation and considering the upper bounds (4.44) and (5.9) by selecting
aL = (d+ 1)−1/6(L+ 1)d/62L/3, the proposition follows. �

Proof of Proposition 5.2. The proof of this proposition follows the lines of the one’s of Proposition
4.2 with obvious modifications. The term c(d+1)L(~TL,d, ~ML,d) is obviously equal to zero, Lemma 5.1 is
used instead of Lemma 4.2 and we select aL = xL

25(d+1)1/2(L+1)1+d/2 . �

6 Appendix A

This section is devoted to the proofs of Lemmas 4.1 and 5.1. We keep the same notations as those given
in Section 4.
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6.1 Proof of Lemma 4.2

We first recall that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)

= E
(
Wc(d+1)L

(P~SL,d|F2L
∗ P~Ga

,NCL,d
∗ P~Ga

)
)
, (6.1)

where NCL,d
is the law of ~TL,d =

∑2L

i=1
~Gi,L and

(
~Gt1,L, . . . ,

~Gt2L,L
)t

is a Gaussian vector of R2(d+2)L

such

that E(~Gi,L ~G
t
j,L) = E(~V ti,L

~V tj,L). We consider now a Gaussian vector
(
~N t
1,L, . . . ,

~N t
2L,L

)t
of R2(d+2)L

such
that (

~N t
1,L, . . . , ~N

t
2L,L

)t
=
(
~Gt1,L, . . . , ~G

t
2L,L

)t
in law , (6.2)

and (
~N t
1,L, . . . ,

~N t
2L,L

)t
is independent of F∞ ∨ σ(ηi, i ∈ Z) . (6.3)

Define
~NL,d = ~N1,L + ~N2,L + · · ·+ ~N2L,L .

Notice that we have in particular that

E( ~Ni,L ~N
t
j,L) = E(~V ti,L

~V tj,L) and E
(
~NL,d ~N

t
L,d

)
= E

(
~SL,d~S

t
L,d

)
. (6.4)

Let now ~W ∗aL be a random vector in R2(d+1)L

with law N (0, a2LI2(d+1)L) independent of F∞ ∨ σ( ~Ni,L, 1 ≤
i ≤ 2L) ∨ σ(ηi, i ∈ Z). Let ~WaL = P

⊗(d+1)
L

~W ∗aL . With these notations, we can write that

E
(
Wc(d+1)L

(P~SL,d|F2L
∗ P~Ga

,NCL,d
∗ P~Ga

)
)

= E sup
f∈Lip(c(d+1)L)

(
E
(
f(~SL,d + ~WaL)|F2L

)
− E(f( ~NL,d + ~WaL))

)
. (6.5)

We introduce now the following additional notations and definitions:

Notation 6.1 For any K = (K0, . . . ,Kd) ∈ {0, . . . , L}(d+1), we shall denote

E(d+1)
L,K =

d∏
i=0

E(L,Ki) ,

where the E(L,Ki)’s are defined in (4.18). Therefore the notation kK ∈ E(d+1)
L,K means that kK =

(kK0
, . . . , kKd

) ∈
∏d
i=0 E(L,Ki). In addition, we also denote

Id+1
L = {0, . . . , L}(d+1) .

So the notation
∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

means
∑L
K0=0 . . .

∑L
Kd=0

∑
kK0
∈E(L,K0)

. . .
∑
kKd
∈E(L,Kd)

and the

notation
∑
K∈Id+1

L
sup

kK∈E(d+1)
L,K

means
∑L
K0=0 . . .

∑L
Kd=0 supkK0

∈E(L,K0) . . . supkKd
∈E(L,Kd)

.

Definition 6.1 Let x and y be two vectors of R2(d+1)L

with coordinates

x =
((
x(K,kK), kK ∈ E(d+1)

L,K

)
K∈Id+1

L

)t
and

y =
((
y(K,kK), kK ∈ E(d+1)

L,K

)
K∈Id+1

L

)t
.

Let c∗(d+1)L be the following distance on R2(d+1)L

,

c∗(d+1)L(x, y) =
∑

K∈Id+1
L

sup
kK∈E(d+1)

L,K

|x(K,kK) − y(K,kK)| .

Let also Lip(c∗(d+1)L) be the set of functions from R2(d+1)L

into R that are Lipschitz with respect to c∗(d+1)L;

namely, |f(x)− f(y)| ≤
∑
K∈Id+1

L
sup

kK∈∈E(d+1)
L,K

|x(K,kK) − y(K,kK)|.
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Let x =
(
x(1), . . . , x(2

(d+1)L)
)t

and y =
(
y(1), . . . , y(2

(d+1)L)
)t

be two column vectors of R2(d+1)L

. Let now

u =
(
P
⊗(d+1)
L

)−1
x and v =

(
P
⊗(d+1)
L

)−1
y (recall that PL has been defined in (4.20), and since PL is

non singular so is P
⊗(d+1)
L ). The vectors u and v of R2(d+1)L

can be rewritten u =
((
u(K,kK), kK ∈

E(d+1)
L,K

)
K∈Id+1

L

)t
and v =

((
v(K,kK), kK ∈ E(d+1)

L,K

)
K∈Id+1

L

)t
. Notice now that if f ∈ Lip(c(d+1)L), then

|f(x)− f(y)| ≤ c(d+1)L(x, y) = sup
m∈{1,...,2(d+1)L}

|x(m) − y(m)| .

In addition, for any m ∈ {1, . . . , 2(d+1)L}, there exists an unique (j0, . . . , jd) ∈ {1, . . . , 2L}d+1 such that

m =

d∑
i=0

(ji − 1)2(d−i)L + 1 .

Therefore,

|x(m) − y(m)| =
∣∣∣(⊗di=0 b(ji, L)

)t
u−

(
⊗di=0 b(ji, L)

)t
v
∣∣∣ .

So overall,

|f(x)− f(y)|

≤ sup
(j0,...,jd)∈{1,...,2L}d+1

L∑
K0=0

∑
kK0
∈E(L,K0)

· · ·
L∑

Kd=0

∑
kKd
∈E(L,Kd)

bK0,kK0
(j0) · · · bKd,kKd

(jd)

×
∣∣u((K0,...,Kd),(kK0

,...,kKd
)) − v((K0,...,Kd),(kK0

,...,kKd
))
∣∣

≤ sup
(j0,...,jd)∈{1,...,2L}d+1

L∑
K0=0

∑
kK0
∈E(L,K0)

· · ·
L∑

Kd=0

∑
kKd
∈E(L,Kd)

bK0,kK0
(j0) · · · bKd,kKd

(jd)

× sup
(i0,...,id)∈

∏d
`=0 E(L,K`)

|u((K0,...,Kd),(i0,...,id)) − v((K0,...,Kd),(i0,...,id))| .

Since for any K ∈ {0, . . . , L} and any j ∈ {0, . . . , 2L},
∑
k∈E(L,K) bK,k(j) ≤ 1, it follows that if f ∈

Lip(c(d+1)L),

|f(x)− f(y)| = |f ◦P
⊗(d+1)
L (u)− f ◦P

⊗(d+1)
L (v)|

≤
L∑

K0=0

· · ·
L∑

Kd=0

sup
(i0,...,id)∈

∏d
`=0 E(L,K`)

|u((K0,...,Kd),(i0,...,id)) − v((K0,...,Kd),(i0,...,id))| .

Whence, if f ∈ Lip(c(d+1)L),
|f(x)− f(y)| ≤ c∗(d+1)L(u, v) . (6.6)

Starting from (6.5), considering (6.6), recalling that ~WaL = P
⊗(d+1)
L

~W ∗aL , and using the notations

~S∗L,d =
(
P
⊗(d+1)
L

)−1~SL,d and ~N∗L,d =
(
P
⊗(d+1)
L

)−1 ~NL,d , (6.7)

we get that

E
(
Wc(d+1)L

(P~SL,d|F2L
∗ P~Ga

,NCL,d
∗ P~Ga

)
)

≤ E sup
f∈Lip(c∗

(d+1)L
)

(
E
(
f(~S∗L,d + ~W ∗aL)|F2L

)
− E(f( ~N∗L,d + ~W ∗aL))

)
. (6.8)

Let now Lip(c∗(d+1)L,F2L) be the set of measurable functions g : R2(d+1)L × Ω → R wrt the σ-fields

B(R2(d+1)L

) ⊗ F2L and B(R), such that f(·, ω) ∈ Lip(c∗(d+1)L) and f(0, ω) = 0 for any ω ∈ Ω. For the

sake of brevity, we shall write g(x) in place of g(x, ω). From Point 2 of Theorem 1 in Dedecker, Prieur
and Raynaud de Fitte (2006), the following inequality holds:

E sup
f∈Lip(c∗

(d+1)L
)

(
E
(
f(~S∗L,d + ~W ∗aL)|F2L

)
− E(f( ~N∗L,d + ~W ∗aL))

)
= sup
g∈Lip(c∗

(d+1)L
,F2L )

E
(
g(~S∗L,d + ~W ∗aL)

)
− E

(
g( ~N∗L,d + ~W ∗aL)

)
. (6.9)
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To bound up the right-hand side term of the above equality, we shall use the Lindeberg method. Before
developing it, let us make some useful comments.

Recall that since PL is nonsingular, then so is P⊗dL , and
(
P⊗dL

)−1
=
(
P−1L

)⊗d
(see e.g. Corollary

2.2.11 in Horn and Johnson (1991)). Therefore, for any i ∈ Z, we can define the column vectors ~e ∗i,L, ~U∗i,L

and ~U
∗(0)
i,L by

~e ∗i,L =
(
PL

)−1
~ei,L , ~U

∗
i,L =

(
P⊗dL

)−1~Ui,L and ~U
∗(0)
i,L =

(
P⊗dL

)−1~U (0)
i,L . (6.10)

With these notations, we have that

~S∗L,d =

2L∑
i=1

~e ∗i,L ⊗ ~U
∗(0)
i,L :=

2L∑
i=1

~V ∗i,L . (6.11)

Clearly ~V ∗i,L =
(
P
⊗(d+1)
L

)−1
Vi,L where Vi,L is defined in (4.16). The vector ~V ∗i,L can be written as follows:

~V ∗i,L =
((
Ṽ

(K,kK)
i,L , kK = (kK1

, . . . , kKd
) ∈

d∏
i=1

E(L,Ki)
)
K=(K1,...,Kd)∈{0,...,L}d

)t
,

where

Ṽ
(K,kK)
i,L = 1i∈2LBK0,kK0

(
1Yi+2L∈BK1,kK1

×···×BKd,kKd
− E

(
1Yi+2L∈BK1,kK1

×···×BKd,kKd

))
. (6.12)

Notice now that

~N∗L,d =

2L∑
i=1

~N∗i,L where ~N∗i,L =
(
P
⊗(d+1)
L

)−1 ~Ni,L . (6.13)

In addition, the vector ~N∗i,L can be written as follows:

~N∗i,L =
((
Ñ

(K,kK)
i,L , kK = (kK1 , . . . , kKd

) ∈
d∏
i=1

E(L,Ki)
)
K=(K1,...,Kd)∈{0,...,L}d

)t
, (6.14)

and we have that
E(Ñ

(K,kK)
i,L Ñ

(Q,pQ)
j,L ) = E(Ṽ

(K,kK)
i,L Ṽ

(Q,pQ)
j,L ) , (6.15)

where Ṽ
(K,kK)
i,L is defined in (6.12).

Let us now introduce some notations useful to develop the Lindeberg method.

Notation 6.2 Let ϕaL be the density of ~W ∗aL and let for x =
((
x(K,kK), kK ∈ E(d+1)

L,K

)
K∈Id+1

L

)t
,

g ∗ ϕaL(x, ω) =

∫
g(x+ y, ω)ϕaL(y)dy .

For the sake of brevity, we shall write g ∗ ϕaL(x) instead of g ∗ ϕaL(x, ω) (the partial derivatives will be
taken wrt x). Let also

~S0 = ~0 and for j ≥ 1 , ~Sj =

j∑
i=1

~V ∗i,L ,

where the ~V ∗i,L’s are defined in (6.11), and

~T2L+1 = ~0 and for j ∈ {1, . . . , 2L} , ~Tj =

2L∑
i=j

~N∗i,L ,

where the ~N∗i,L’s are defined in (6.13).
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Let a ∈
[
(L + 1)(d+1), 2L(L + 1)(d+1)

]
. Starting from (6.1) and considering (6.5), (6.8) and (6.9), we

see that to prove (4.46) it suffices to prove the same bound for supg∈Lip(c∗
(d+1)L

,F2L ) E
(
g(~S∗L,d + ~W ∗aL)

)
−

E
(
g( ~N∗L,d+ ~W ∗aL)

)
. With this aim, we shall use the Lindeberg method combined with the so-called Stein’s

identity, as it is described and done in what follows (see also Neumann (2011) for the case of the partial
sums of real-valued random variables).

With the above notations, we write that

sup
g∈Lip(c∗

(d+1)L
,F2L )

E
(
g(~S∗L,d + ~W ∗aL)

)
− E

(
g( ~N∗L,d + ~W ∗aL)

)
≤ sup
g∈Lip(c∗

(d+1)L
,F2L )

2L∑
i=1

E
(
g ∗ ϕaL

(
~Si−1 + ~V ∗i,L + ~Ti+1

)
− g ∗ ϕaL

(
~Si−1 + ~N∗i,L + ~Ti+1

))
.

For any i ∈ {1, . . . , 2L}, let

∆1,i,L(g) = g ∗ ϕaL
(
~Si−1 + ~V ∗i,L + ~Ti+1

)
− g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
, (6.16)

and
∆2,i,L(g) = g ∗ ϕaL

(
~Si−1 + ~N∗i,L + ~Ti+1

)
− g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. (6.17)

With these notations, it follows that

sup
g∈Lip(c∗

(d+1)L
,F2L )

E
(
g(~S∗L,d + ~W ∗aL)

)
− E

(
g( ~N∗L,d + ~W ∗aL)

)
≤ sup
g∈Lip(c∗

(d+1)L
,F2L )

2L∑
i=1

(
E
(
∆1,i,L(g)

)
− E

(
∆2,i,L(g)

))
. (6.18)

Let us introduce the following definition:

Definition 6.2 Let m be a positive integer. If ∇ denotes the differentiation operator given by ∇ =(
∂
∂x1

, . . . , ∂
∂xm

)t
acting on the differentiable functions f : Rm → R, we define ∇⊗k in the same way as

in Definition 4.1. If f : Rm → R is k-times differentiable, for any x ∈ Rm, let Dkf(x) = ∇⊗kf(x), and

for any vector A of Rm, we define Dkf(x).A⊗k as the usual scalar product in Rmk

between Dkf(x) and
A⊗k. We write Df(x) in place of D1f(x).

We start by analyzing the term E
(
∆1,i,L(g)

)
. By Taylor’s integral formula,

∣∣E(∆1,i,L(g)
)
− E

(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.~V ∗i,L

)
− 1

2
E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.~V ∗⊗2i,L

)∣∣
≤
∣∣∣E ∫ 1

0

(1− t)2

2
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1 + t~V ∗i,L

)
.~V ∗⊗3i,L

∣∣∣ .
Applying Lemma 7.2 and using the fact that supkK∈Ed+1

L,K
|Ṽ (K,kK)
i,L | ≤ 2 and

∑
kK∈Ed+1

L,K
(Ṽ

(K,kK)
i,L )2 ≤ 2,

we get that∣∣E(∆1,i,L(g)
)
− E

(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.~V ∗i,L

)
− 1

2
E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.~V ∗⊗2i,L

)∣∣
� a−2L (L+ 1)2(d+1) . (6.19)

Let
∆(i, j)(g) = D2g ∗ ϕaL

(
~Si−j + ~Ti+1

)
−D2g ∗ ϕaL

(
~Si−j−1 + ~Ti+1

)
, (6.20)

and
uL =

[
aL(L+ 1)−(d+1)

]
. (6.21)

Clearly with the notation X(0) = X − E(X),

D2g ∗ ϕaL
(
~Si−1 + ~Ti+1

)
.(~V ∗⊗2i,L )(0)

=

(uL∧i)−1∑
j=1

∆(i, j)(g).(~V ∗⊗2i,L )(0) +D2g ∗ ϕaL
(
~Si−(uL∧i) + ~Ti+1

)
.(~V ∗⊗2i,L )(0) . (6.22)
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In the rest of the proof, to weaken the notations and when no confusion is possible, we write∑
K∈Id+1

L

∑
kK∈Ed+1

L,K

=
∑
K,kK

.

For any j ≤ (uL ∧ i)− 1, notice that

∆(i, j)(g).(~V ∗⊗2i,L )(0)

=
∑
K,kK

∑
P,pP

( ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j + ~Ti+1

)
− ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j−1 + ~Ti+1

))(
Ṽ

(K,kK)
i,L Ṽ

(P,pP )
i,L

)(0)
.

Using Lemma 7.4 with

U =
∂2g ∗ ϕaL

∂x(K,kK)∂x(P,pP )

(
~Si−j + ~Ti+1

)
− ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j−1 + ~Ti+1

)
,

V = Ṽ
(K,kK)
i,L Ṽ

(P,pP )
i,L , U = σ

(
(Y`, ` ≤ i + 2L − j), ~Ti+1

)
, V = σ(Yi+2L), r = ∞ and s = 1, we get that

there exists a V-measurable random variable bV(i+ 2L − j) such that∣∣E(∆(i, j)(g).(~V ∗⊗2i,L )(0)
)∣∣

≤ 2
{

sup
(K,kK)

sup
(P,pP )

∥∥∥ ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j + ~Ti+1

)
− ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞

}
×
∑
K,kK

∑
P,pP

E
(
bV(i+ 2L − j)

∣∣Ṽ (K,kK)
i,L Ṽ

(P,pP )
i,L

∣∣) .
Using the fact that

∑
K∈Id+1

L

∑
kK∈Ed+1

L,K
|Ṽ (K,kK)
i,L | ≤ 2(L + 1)d+1, and that E

(
bV(i + 2L − j)

)
≤ βj , it

follows that∣∣E(∆(i, j)(g).(~V ∗⊗2i,L )(0)
)∣∣� (L+ 1)2(d+1)βj

× sup
(K,kK)

sup
(P,pP )

∥∥∥ ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j + ~Ti+1

)
− ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞
. (6.23)

Next, using the property of the convolution product and Lemma 7.3, we derive that∥∥∥ ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j + ~Ti+1

)
− ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞

≤
∥∥∥ ∂2ϕaL
∂x(K,kK)∂x(P,pP )

∥∥∥
1

∥∥∥ sup
y∈R(d+1)L

∣∣g(~V ∗i−j,L + y)− g(y)
∣∣∥∥∥
∞

� a−2L

∥∥∥ sup
y∈R(d+1)L

∣∣g(~V ∗i−j,L + y)− g(y)
∣∣∥∥∥
∞
.

But, since g ∈ Lip(c∗(d+1)L,F2L),∣∣g(~V ∗i−j,L + y)− g(y)
∣∣ ≤ ∑

K∈Id+1
L

sup
kK∈∈E(d+1)

L,K

|Ṽ (K,kK)
i−j,L | ≤ 2(L+ 1)d+1 . (6.24)

So overall, we get that ∣∣E(∆(i, j)(g).(~V ∗⊗2i,L )(0)
)∣∣� a−2L (L+ 1)3(d+1)βj . (6.25)

On the other hand, using the same arguments as to get (6.23), we infer that∣∣E(D2g ∗ ϕaL
(
~Si−(uL∧i) + ~Ti+1

)
.(~V ∗⊗2i,L )(0)

)∣∣
� (L+ 1)2(d+1)βuL∧i sup

(K,kK)

sup
(P,pP )

∥∥∥ ∂2g ∗ ϕaL
∂x(K,kK)∂x(P,pP )

(
~Si−(uL∧i) + ~Ti+1

)∥∥∥
∞
.
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Therefore using Lemma 7.3,∣∣E(D2g ∗ ϕaL
(
~Si−(uL∧i) + ~Ti+1

)
.(~V ∗⊗2i,L )(0)

)∣∣� a−1L (L+ 1)2(d+1)βuL∧i . (6.26)

Hence, starting from (6.22) and taking into account (6.25), (6.26), the choice of uL, the fact that aL ≤
2L(L+ 1)d+1 and using that βk � k1−p for some p ∈]2, 3], we derive that

2L∑
i=1

E
(
D2g∗ϕaL

(
~Si−1+~Ti+1

)
.(~V ∗⊗2i,L )(0)

)
� 2La−1L (L+1)2(d+1)

( (L+ 1)(p−1)(d+1)

ap−1L

+
(L+ 1)d+1

aL

)
. (6.27)

We give now an estimate of the expectation of Dg ∗ ϕaL
(
~Si−1 + ~Ti+1

)
.~V ∗i,L. With this aim, we write

Dg ∗ ϕaL
(
~Si−1 + ~Ti+1

)
= Dg ∗ ϕaL

(
~Ti+1

)
+

i−1∑
j=1

(
Dg ∗ ϕaL

(
~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.

Hence

E
(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.~V ∗i,L

)
= E

(
Dg ∗ ϕaL

(
~Ti+1

)
.~V ∗i,L

)
+

i−1∑
j=1

E
((
Dg ∗ ϕaL

(
~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

)
. (6.28)

Notice that

E
(
Dg ∗ ϕaL

(
~Ti+1

)
.~V ∗i,L

)
=

∑
K∈Id+1

L

∑
kK∈Ed+1

L,K

E
( ∂g ∗ ϕaL
∂x(K,kK)

(
~Ti+1

)
Ṽ

(K,kK)
i,L

)
.

Since
∂g∗ϕaL

∂x(K,kK )

(
~Ti+1

)
is a F2L∨σ

(
~Ti+1

)
-measurable random variable, and ~Ti+1 is independent of Ṽ

(K,kK)
i,L ,

applying Lemma 7.4 with U =
∂g∗ϕaL

∂x(K,kK )

(
~Ti+1

)
, V = Ṽ

(K,kK)
i,L , U = F2L ∨ σ(~Ti+1), V = σ(Yi+2L), r = 1

and s =∞, we get that there exists a U-measurable random variable bU (i+ 2L) such that∣∣E(Dg ∗ ϕaL(~Ti+1

)
.~V ∗i,L

)∣∣� ∑
K∈Id+1

L

∑
kK∈Ed+1

L,K

E
(∣∣∣ ∂g ∗ ϕaL
∂x(K,kK)

(
~Ti+1

)∣∣∣bU (i+ 2L)
)
.

Notice now that by the inequality (7.1), for any K in Id+1
L ,

∑
kK∈Ed+1

L,K

∣∣∣ ∂g∗ϕaL

∂x(K,kK )

(
~Ti+1

)∣∣∣ ≤ 1. In addition

E
(
bU (i+ 2L)

)
≤ βi. Therefore,∣∣E(Dg ∗ ϕaL(~Ti+1

)
.~V ∗i,L

)∣∣� (L+ 1)(d+1)βi . (6.29)

We give now an estimate of
∑i−1
j=1 E

((
Dg ∗ϕaL

(
~Si−j + ~Ti+1

)
−Dg ∗ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

)
. For any

i ≥ j + 1, we first write that(
Dg ∗ ϕaL

(
~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

=
∑
K,kK

( ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j + ~Ti+1

)
− ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j−1 + ~Ti+1

))
Ṽ

(K,kK)
i,L .

Using Lemma 7.4 with

U =
∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j + ~Ti+1

)
− ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j−1 + ~Ti+1

)
,

V = Ṽ
(K,kK)
i,L , U = σ(Y`, ` ≤ i + 2L − j) ∨ σ(~Ti+1), V = σ(Yi+2L), r = ∞ and s = 1, we get that there

exists a V-measurable random variable bV(i+ 2L − j) such that∣∣E((Dg ∗ ϕaL(~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

)∣∣
≤ 2 sup

(K,kK)

∥∥∥ ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j + ~Ti+1

)
− ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞
×
∑
P,pP

E
(
bV(i+ 2L − j)

∣∣Ṽ (P,pP )
i,L

∣∣) .
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Using the fact that
∑
K∈Id+1

L

∑
kK∈Ed+1

L,K
|Ṽ (K,kK)
i,L | ≤ 2(L + 1)d+1, and that E

(
bV(i + 2L − j)

)
≤ βj , it

follows that∣∣E((Dg ∗ ϕaL(~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

)∣∣
� (L+ 1)d+1βj sup

(K,kK)

∥∥∥ ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j + ~Ti+1

)
− ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞
.

Next, using as the property of the convolution product, Lemma 7.3 and the upper bound (6.24), we derive
that ∥∥∥ ∂g ∗ ϕaL

∂x(K,kK)

(
~Si−j + ~Ti+1

)
− ∂g ∗ ϕaL
∂x(K,kK)

(
~Si−j−1 + ~Ti+1

)∥∥∥
∞

≤
∥∥∥ ∂ϕaL
∂x(K,kK)

∥∥∥
1

∥∥∥ sup
y∈R(d+1)L

∣∣g(~V ∗i−j,L + y)− g(y)
∣∣∥∥∥
∞
� a−1L (L+ 1)d+1 .

It follows that for any i ≥ j + 1,∣∣E((Dg ∗ ϕaL(~Si−j + ~Ti+1

)
−Dg ∗ ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L

)∣∣� a−1L (L+ 1)2(d+1)βj . (6.30)

From now on, we assume that j < i ∧ uL. Notice that(
Dg ∗ϕaL

(
~Si−j + ~Ti+1

)
−Dg ∗ϕaL

(
~Si−j−1 + ~Ti+1

))
.~V ∗i,L−D2g ∗ϕaL

(
~Si−j−1 + ~Ti+1

)
.(~V ∗i−j,L⊗ ~V ∗i,L)

=

∫ 1

0

(1− t)D3g ∗ ϕaL
(
~Si−j−1 + ~Ti+1 + t~V ∗i−j,L

)
.(~V ∗⊗2i−j,L ⊗ ~V ∗i,L)dt .

We first write that∣∣E(D3g ∗ ϕaL
(
~Si−j−1 + ~Ti+1 + t~V ∗i−j,L

)
.~V ∗⊗2i−j,L ⊗ ~V ∗i,L

)∣∣
= E

( ∑
K,kK

∑
P,pP

∑
Q,qQ

∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−j−1 + ~Ti+1 + t~V ∗i−j,L

)
× Ṽ (K,kK)

i−j,L Ṽ
(P,pP )
i−j,L Ṽ

(Q,qQ)
i,L

)
.

Let

W
(Q,qQ)
i−j,L =

∑
K,kK

∑
P,pP

∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−j−1 + ~Ti+1 + t~V ∗i−j,L

)
× Ṽ (K,kK)

i−j,L Ṽ
(P,pP )
i−j,L .

Using Lemma 7.4 with U = W
(Q,qQ)
i−j,L , V = Ṽ

(Q,qQ)
i,L , U = σ(Y`, ` ≤ i + 2L − j) ∨ σ(~Ti+1), V = σ(Yi+2L),

r = ∞ and s = 1, we get that we get that there exists a V-measurable random variable bV(i + 2L − j)
such that∑
Q∈Id+1

L

∑
qQ∈Ed+1

L,Q

∣∣E(W (Q,qQ)
i−j,L Ṽ

(Q,qQ)
i,L

)∣∣ ≤ 2
∑

Q∈Id+1
L

∑
qQ∈Ed+1

L,Q

∥∥W (Q,qQ)
i−j,L

∥∥
∞ × E

(
bV(i+ 2L − j)

∣∣Ṽ (Q,qQ)
i,L

∣∣) .
Using Lemma 7.3 and the fact that

∑
K,kK

∑
P,pP

∣∣Ṽ (K,kK)
i−j,L Ṽ

(P,pP )
i−j,L

∣∣ ≤ 4(L+ 1)2(d+1), we get that∣∣W (Q,qQ)
i−j,L

∣∣� a−2L (L+ 1)2(d+1) .

Hence,∑
Q∈Id+1

L

∑
qQ∈Ed+1

L,Q

∣∣E(W (Q,qQ)
i−j,L Ṽi,L

)∣∣� a−2L (L+ 1)2(d+1)
∑

Q∈Id+1
L

∑
qQ∈Ed+1

L,Q

E
(
bV(i+ 2L − j)

∣∣Ṽ (Q,qQ)
i,L

∣∣) .
Using the fact that

∑
Q∈Id+1

L

∑
qQ∈Ed+1

L,Q

∣∣Ṽ (Q,qQ)
i,L

∣∣ ≤ 2(L+ 1)d+1 and that E
(
bV(i+ 2L− j)

)
≤ βj , we get

overall that∣∣∣E(∫ 1

0

(1− t)D3g ∗ ϕaL
(
~Si−j−1 + ~Ti+1 + t~V ∗i−j,L

)
.~V ∗⊗2i−j,L ⊗ ~V ∗i,Ldt

)∣∣∣� a−2L (L+ 1)3(d+1)βj . (6.31)
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In order to estimate the term E
(
D2g ∗ϕaL

(
~Si−j−1 + ~Ti+1

)
.(~V ∗i−j,L⊗ ~V ∗i,L)

)
, we use the following decom-

position:

D2g ∗ ϕaL
(
~Si−j−1 + ~Ti+1

)
=

(j−1)∧(i−j−1)∑
l=1

(
D2g ∗ ϕaL

(
~Si−j−l + ~Ti+1

)
−D2g ∗ ϕaL

(
~Si−j−l−1 + ~Ti+1

))
+D2g ∗ ϕaL

(
~S(i−2j)∨0 + ~Ti+1

)
.

For any l ∈ {1, . . . , (j − 1) ∧ (i− j − 1)}, we notice that∣∣E((D2g ∗ ϕaL
(
~Si−j−l + ~Ti+1

)
−D2g ∗ ϕaL

(
~Si−j−l−1 + ~Ti+1

))
.~V ∗i−j,L ⊗ ~V ∗i,L

)∣∣
=
∣∣∣E(∫ 1

0

D3g ∗ ϕaL
(
~Si−j−l + ~Ti+1 + t~V ∗i−j−l,L

)
.~V ∗i−j−l,L ⊗ ~V ∗i−j,L ⊗ ~V ∗i,Ldt

)∣∣∣ ,
whence, using the same arguments as to get (6.31), we obtain that∣∣E((D2g∗ϕaL

(
~Si−j−l+~Ti+1

)
−D2g∗ϕaL

(
~Si−j−l−1+~Ti+1

))
.~V ∗i−j,L⊗~V ∗i,L

)∣∣� a−2L (L+1)3(d+1)βj . (6.32)

As a second step, we bound up
∣∣E(D2g ∗ϕaL

(
~S(i−2j)∨0 + ~Ti+1

)
.(~V ∗i−j,L⊗ ~V ∗i,L)(0)

)∣∣. Assume first that
j ≤ [i/2]. Clearly, using the notation (6.20),

D2g ∗ ϕaL
(
~Si−2j + ~Ti+1

)
=

(uL−1)∧(i−j−1)∑
l=j

∆(i, l + j)(g) +D2g ∗ ϕaL
(
~S(i−j−uL)∨0 + ~Ti+1

)
.

Now for any l ∈ {j, . . . , (uL − 1)∧ (i− j − 1)}, by using similar arguments as to get (6.25), we infer that∣∣E(∆(i, l + j).(~V ∗i−j,L ⊗ ~V ∗i,L)(0)
)
| � a−2L (L+ 1)3(d+1)βl . (6.33)

If j ≤ i− uL, with similar arguments,∣∣E(D2g ∗ ϕaL
(
~Si−j−uL

+ ~Ti+1

)
.(~V ∗i−j,L ⊗ ~V ∗i,L)(0)

)
| � a−1L (L+ 1)2(d+1)βuL

. (6.34)

Now if j > i− uL, we infer that∣∣E(D2g ∗ ϕaL
(
~Ti+1

)
.(~V ∗i−j,L ⊗ ~V ∗i,L)(0)

)
| � a−1L (L+ 1)2(d+1)βi−j � a−1L (L+ 1)2(d+1)β[i/2] , (6.35)

where we have use the fact that j ≤ [i/2], for the last inequality. Assume now that j ≥ [i/2] + 1. We
then get that∣∣E(D2g ∗ ϕaL

(
~Ti+1

)
.~V ∗i−j,L ⊗ ~V ∗i,L

∣∣� a−1L (L+ 1)2(d+1)βj � a−1L (L+ 1)2(d+1)β[i/2] . (6.36)

Starting from (6.28), adding the inequalities (6.29)-(6.36) and summing on j and l, we then obtain:

∣∣E(Dg ∗ ϕaL(~Si−1 + ~Ti+1

)
.~V ∗i,L

)
−
uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
1j≤[i/2]

∣∣
� (L+ 1)d+1βi + a−1L (L+ 1)2(d+1)

i∑
j=i∧uL

βj + a−1L (L+ 1)2(d+1)uLβuL

+ a−1L (L+ 1)2(d+1)uLβ[i/2] + a−2L (L+ 1)3(d+1)
uL∑
j=1

jβj .

Next summing on i and taking into account the fact that βk � k1−p for some p ∈]2, 3], and the choice of
uL, we get that

2L∑
i=1

∣∣∣E(Dg ∗ ϕaL(~Si−1 + ~Ti+1

)
.~V ∗i,L

)
−
uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
1j≤[i/2]

∣∣∣
� (L+ 1)d+1 + a1−pL (L+ 1)p(d+1)2L + a−2L (L+ 1)3(d+1)2L log(uL)1p=3 . (6.37)
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Hence, starting from (6.19) and considering the upper bounds (6.27) and (6.37) together with the fact
that aL ≥ (L+ 1)d+1, we get that

2L∑
i=1

E
(
∆1,i,L(g)

)
−

2L∑
i=1

uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
1j≤[i/2]

− 1

2

2L∑
i=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.E
(
~V ∗⊗2i,L

)
� (L+ 1)d+1 + a1−pL (L+ 1)p(d+1)2L + a−2L (L+ 1)3d+42L1p=3 . (6.38)

We analyze now the “Gaussian part” in (6.18), namely, the term E
(
∆2,i,L(g)

)
. By Taylor’s integral

formula,

E
(
∆2,i,L(g)

)
− E

(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗i,L

)
− 1

2
E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗2i,L

)
− 1

6
E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
=

1

6

∫ 1

0

(1− t)3E
(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)
dt . (6.39)

Applying Lemma 7.2, we derive that, for any i ∈ {1, . . . , 2L},∣∣E(D4g ∗ ϕaL
(
~Si−1 + ~Ti+1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣
� a−3L E

(( ∑
K∈Id+1

L

sup
kK∈E(d+1)

L,K

|Ñ (K,kK)
i,L |

)( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

(Ñ
(K,kK)
i,L )2

)3/2)

� a−3L

(
E
( ∑
K∈Id+1

L

sup
kK∈E(d+1)

L,K

|Ñ (K,kK)
i,L |

)4)1/4(
E
( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

(Ñ
(K,kK)
i,L )2

)2)3/4
. (6.40)

Notice that ∑
K∈Id+1

L

sup
kK∈E(d+1)

L,K

|Ñ (K,kK)
i,L | ≤ (L+ 1)(d+1)/2

( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

(Ñ
(K,kK)
1,L )2

)1/2
, (6.41)

and

E
( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

(Ñ
(K,kK)
i,L )2

)2
≤

( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

(
E(Ñ

(K,kK)
i,L )4

)1/2)2
≤ 3

( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

E((Ñ
(K,kK)
i,L )2)

)2
. (6.42)

Moreover by using (6.15), we get that∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

E((Ñ
(K,kK)
i,L )2) =

∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

E((Ṽ
(K,kK)
i,L )2) ≤ 2(L+ 1)d+1 . (6.43)

Therefore, starting from (6.40), taking into account (6.41), (6.42) and (6.43), we derive that for any
t ∈ [0, 1], ∣∣E(D4g ∗ ϕaL

(
~Si−1 + ~Ti+1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣� a−3L (L+ 1)3(d+1)/2 . (6.44)

We deal now with the term E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
. With this aim, we write that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
=
∑
K,kK

∑
P,pP

∑
Q,qQ

E
( ∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L Ñ
(P,pP )
i,L Ñ

(Q,qQ)
i,L

)
.
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We shall now use the so-called Stein’s identity for Gaussian vectors (see e.g. Lemma 1 in Liu (1994)): for
G = (G1, . . . , Gk)t a centered Gaussian vector of Rk and any function h : Rk → R such that its partial
derivatives exist almost everywhere and E

∣∣ ∂
∂xi

h(G)
∣∣ < ∞ for any i = 1, . . . , k, the following equality

holds true:

E
(
Gi h(G)

)
=

k∑
`=1

E
(
GiG`

)
E
( ∂h
∂x`

(G)
)

for any i ∈ {1, . . . , k} . (6.45)

Therefore using (6.45) and the fact that (Yj , j ∈ Z) is independent of ( ~N∗i , 1 ≤ i ≤ 2L), we derive that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
= 2

∑
K,kK

∑
P,pP

∑
Q,qQ

E
( ∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L

)
E
(
Ñ

(P,pP )
i,L Ñ

(Q,qQ)
i,L

)
+
∑
K,kK

∑
P,pP

∑
Q,qQ

∑
R,rR

E
( ∂4g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L Ñ
(P,pP )
i,L

)

×
2L∑

`=i+1

E
(
Ñ

(R,rR)
`,L Ñ

(Q,qQ)
i,L

)
. (6.46)

Using again (6.45) and the fact that (Yj , j ∈ Z) is independent of ( ~N∗i , 1 ≤ i ≤ 2L), we have that

E
( ∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L

)
=
∑
R,rR

E
( ∂4g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)

(
~Si−1 + ~Ti+1

))
×

2L∑
`=i+1

E
(
Ñ

(R,rR)
`,L Ñ

(K,kK)
i,L

)
. (6.47)

On the other hand, applying twice (6.45) and taking into account that (Yj , j ∈ Z) is independent of

( ~N∗i , 1 ≤ i ≤ 2L), we derive that

E
( ∂4g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L Ñ
(P,pP )
i,L

)
= E

( ∂4g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)

(
~Si−1 + ~Ti+1

))
E
(
Ñ

(K,kK)
i,L Ñ

(P,pP )
i,L

)
+
∑
M,mM

E
( ∂5g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)∂x(M,mM )

(
~Si−1 + ~Ti+1

)
× Ñ (K,kK)

i,L

)

×
2L∑

`=i+1

E
(
Ñ

(M,mM )
`,L Ñ

(P,pP )
i,L

)
= E

( ∂4g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)

(
~Si−1 + ~Ti+1

))
E
(
Ñ

(K,kK)
i,L Ñ

(P,pP )
i,L

)
+
∑
M,mM

∑
F,fF

E
( ∂6g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)∂x(R,rR)∂x(M,mM )∂x(F,fF )

(
~Si−1 + ~Ti+1

))

×
( 2L∑
k=i+1

E
(
Ñ

(F,fF )
k,L Ñ

(K,kK)
i,L

))( 2L∑
`=i+1

E
(
Ñ

(M,mM )
`,L Ñ

(P,pP )
i,L

))
. (6.48)
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Therefore gathering (6.46)-(6.48), using (6.15) and the definition of the tensor product to shorten the
notations, we derive that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
= 3

2L∑
`=i+1

E
(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.
(
E
(
~V ∗`,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗⊗2i,L

))

+

2L∑
`=i+1

2L∑
k=i+1

2L∑
j=i+1

E
(
D6g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.
(
E
(
~V ∗`,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗j,L ⊗ ~V ∗i,L

))
.

(6.49)

Using now Lemma 7.5, we get that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
≤ a−3L (L+ 1)4(d+1)

2L∑
`=1

β` + a−5L (L+ 1)6(d+1)
( 2L∑
`=1

β`

)3
.

Taking into account the condition on the β-coefficients and the fact that aL ≥ (L+ 1)d+1, it follows that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗3i,L

)
≤ a−3L (L+ 1)4(d+1) . (6.50)

We analyze now the second and third term in the left-hand side of equality (6.39). This will be done by
using similar decompositions as done when analyzing the corresponding terms to deal with E

(
∆1,i,L(g)

)
.

Let us first analyze E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗⊗2i,L

)
. Let

R(i, j)(g) = D2g ∗ ϕaL
(
~Si−1 + ~Ti+j

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

)
, (6.51)

and write

D2g ∗ ϕaL
(
~Si−1 + ~Ti+1

)
. ~N∗⊗2i,L

=

uL∧(2L−i)∑
j=1

R(i, j)(g). ~N∗⊗2i,L +D2g ∗ ϕaL
(
~Si−1 + ~Ti+(uL∧(2L−i))+1

)
. ~N∗⊗2i,L , (6.52)

where we recall that uL as been defined in (6.21). We shall use now several times (6.45) together with
(6.15) as we did to get (6.49). Therefore, for any 1 ≤ j ≤ uL ∧ (2L − i),

E
(
R(i, j)(g). ~N∗⊗2i,L

)
= E

(
R(i, j)(g)

)
.E
(
~V ∗⊗2i,L

)
+ E

(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+

2L∑
`=i+j+1

E
((
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
. (6.53)

Next,

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
= E

(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
. (6.54)

Writing that(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
=

∫ 1

0

D4g ∗ ϕaL
(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
,

where
~Ri,j,L(t) := ~Si−1 + ~Ti+j+1 + t ~N∗i+j,L , (6.55)
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we get

E
((
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
=

∫ 1

0

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

∫ 1

0

tE
(
D5g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
+

2L∑
k=i+j+1

∫ 1

0

E
(
D5g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
.

Whence,

E
((
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
=

∫ 1

0

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

∫ 1

0

t2 E
(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+1

∫ 1

0

tE
(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗k,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+1

∫ 1

0

tE
(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+1

2L∑
m=i+j+1

∫ 1

0

E
(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
.

(6.56)

Gathering (6.53)-(6.56), using Lemma 7.5 and taking into account the condition on the β coefficients, we
then derive that

∣∣∣ uL∧(2L−i)∑
j=1

E
(
R(i, j)(g).

(
~N∗⊗2i,L − E(~V ∗⊗2i,L )

))∣∣∣
� a−3L (L+ 1)4(d+1) + a−5L (L+ 1)6(d+1) + a−5L (L+ 1)6(d+1)

uL∧(2L−i)∑
j=1

( 2L−i∑
`=j+1

β`

)2

� a−3L (L+ 1)4(d+1) + a−5L (L+ 1)6(d+1)

uL∧(2L−i)∑
j=1

( 2L−i∑
`=j+1

β`

)2
, (6.57)

where for the last inequality we used the fact that aL ≥ (L+ 1)d+1. On the other hand, using once again
several times (6.45) together with (6.15) as we did to get (6.49), we derive that for i < 2L − uL,

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+uL+1

)
. ~N∗⊗2i,L

)
= E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+(uL∧(2L−i))

))
.E
(
~V ∗⊗2i,L

)
+

2L∑
`=i+(uL∧(2L−i))

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+uL+1

)
. ~N∗i,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
= E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+uL+1

))
.E
(
~V ∗⊗2i,L

)
+

2L∑
`=i+uL+1

2L∑
k=i+uL+1

E
(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+uL+1

))
.E
(
~V ∗m,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
.
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Hence, using Lemma 7.5, we obtain that for i < 2L − uL,

∣∣∣E(D2g ∗ ϕaL
(
~Si−1 + ~Ti+uL+1

)
.
(
~N∗⊗2i,L − E(~V ∗⊗2i,L )

)∣∣∣� a−3L (L+ 1)4(d+1)
( 2L−i∑
`=uL+1

β`

)2
. (6.58)

Assume now that i ≥ 2L − uL. Using the independence between ~Si−1 and ~N∗i,L, and the relation (6.15),
we then notice that

E
(
D2g ∗ ϕaL

(
~Si−1

)
. ~N∗⊗2i,L

)
= E

(
D2g ∗ ϕaL

(
~Si−1

))
.E
(
~V ∗⊗2i,L

)
. (6.59)

Therefore, starting from (6.52), considering (6.57), (6.58) and (6.59), and using that βk = O(k1−p) with
p ∈]2, 3], we get that

∣∣∣ 2L∑
i=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
.
(
~N∗⊗2i,L − E(~V ∗⊗2i,L )

)∣∣∣
� a−3L (L+ 1)4(d+1)2L + a−5L (L+ 1)6(d+1)2Lu3−pL .

Whence, taking into account the choice of uL, we get overall that

2L∑
i=1

∣∣∣E(D2g ∗ ϕaL
(
~Si−1 + ~Ti+1

)
.
(
~N∗⊗2i,L − E(~V ∗⊗2i,L )

)
� a−3L (L+ 1)4(d+1)2L + a−2−pL (L+ 1)(3+p)(d+1)2L . (6.60)

We analyze now the term E
(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗i,L

)
in the left-hand side of equality (6.39).

With this aim, we write

Dg ∗ ϕaL
(
~Si−1 + ~Ti+1

)
= Dg ∗ ϕaL

(
~Si−1

)
+

2L−i∑
j=1

(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−Dg ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
.

Using the independence between ~Si−1 and ~N∗i,L, we first notice that

E
(
Dg ∗ ϕaL

(
~Si−1

)
. ~N∗i,L

)
= E

(
Dg ∗ ϕaL

(
~Si−1

))
.E
(
~N∗i,L

)
= 0 .

Hence

E
(
Dg ∗ ϕaL

(
~Si−1 + ~Ti+1

)
. ~N∗i,L

)
=

2L−i∑
j=1

E
((
Dg ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−Dg ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L

)
. (6.61)

Notice now that

E
((
Dg ∗ ϕaL

(
~Si−1 + ~Ti+j

)
−Dg ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L

)
=

∫ 1

0

E
(
D2g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ ~N∗i,L

)
dt , (6.62)

where we recall that ~Ri,j,L(t) as been defined in (6.55). We use now several times (6.45) together with
(6.15) as we did to get (6.49). Hence,

E
(
D2g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ ~N∗i,L

)
= E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+1 + t ~N∗i+j,L

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
+ tE

(
D3g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+

2L∑
`=i+j+1

E
(
D3g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
.
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Next,

E
(
D2g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ ~N∗i,L

)
= E

(
D2g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
+ t2 E

(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+ t

2L∑
`=i+j+1

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗`,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))

+ t

2L∑
`=i+j+1

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))

+

2L∑
k=i+j+1

2L∑
`=i+j+1

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗k,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
.

Hence, starting from (6.62), the above equalities and using Lemma 7.5, we obtain that for 1 ≤ j ≤ 2L− i,∣∣∣E((Dg ∗ ϕaL(~Si−1 + ~Ti+j

)
−Dg ∗ ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L

)∣∣∣
� a−1L (L+ 1)2(d+1)βj + a−3L (L+ 1)4(d+1)βj

2L∑
`=1

β` + a−3L (L+ 1)4(d+1)
2L−1∑
`=j+1

β`

2L∑
k=1

βk

� a−1L (L+ 1)2(d+1)βj + a−3L (L+ 1)4(d+1)
2L−1∑
`=j+1

β` , (6.63)

where for the last inequality we have used that aL ≥ (L+ 1)d+1 and
∑
k≥1 βk <∞.

From now on we assume that j < (2L − i) ∧ uL. Recalling the notation (6.55), we first write that(
Dg ∗ϕaL

(
~Si−1 + ~Ti+j

)
−Dg ∗ϕaL

(
~Si−1 + ~Ti+j+1

))
. ~N∗i,L−D2g ∗ϕaL

(
~Si−1 + ~Ti+j+1

)
.( ~N∗i+j,L⊗ ~N∗i,L)

=

∫ 1

0

(1− t)D3g ∗ ϕaL
(
~Ri,j,L(t)

)
.( ~N∗⊗2i+j,L ⊗ ~N∗i,L)dt . (6.64)

Applying (6.45) together with (6.15), we derive that

E
(
D3g ∗ ϕaL

(
~Ri,j,L(t)

)
.( ~N∗⊗2i+j,L ⊗ ~N∗i,L)

)
= 2E

(
D3g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+ tE

(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
. ~N∗⊗2i+j,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+

2L∑
`=i+j+1

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
. ~N∗⊗2i+j,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
.

Next, applying again (6.45) together with (6.15), we get that

E
(
D3g ∗ ϕaL

(
~Ri,j,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
= tE

(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
,
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and

E
(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
. ~N∗⊗2i+j,L ⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

))
= E

(
D4g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+ t2 E

(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗⊗2i+j,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+ 2t

2L∑
k=i+j+1

E
(
D6g ∗ ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗⊗2i+j,L

)
E
(
~V ∗k,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗`,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+1

2L∑
m=i+j+1

∫ 1

0

E
(
D6g ∗ϕaL

(
~Ri,j,L(t)

))
.E
(
~V ∗m,L⊗ ~V ∗i+j,L

)
⊗E

(
~V ∗k,L⊗ ~V ∗i+j,L

)
⊗E

(
~V ∗`,L⊗ ~V ∗i,L

)
.

Gathering the previous equalities and using Lemma 7.5, we derive that

E
(∫ 1

0

(1− t)D3g∗ϕaL
(
~Ri,j,L(t)

)
.( ~N∗⊗2i+j,L ⊗ ~N∗i,L)dt

)
� a−3L (L+ 1)4(d+1)

2L∑
`=j

β` + a−5L (L+ 1)6(d+1)
2L∑

`=j+1

β`

(∑
k≥1

βk

)2

� a−3L (L+ 1)4(d+1)
2L∑
`=j

β` , (6.65)

where for the last inequality we have used that aL ≥ (L+ 1)d+1 and
∑
k≥1 βk <∞.

In order to estimate the term E
(
D2g ∗ϕaL

(
~Si−1 + ~Ti+j+1

)
.( ~N∗i+j,L⊗ ~N∗i,L)

)
in the right-hand side of

(6.64), we use the following decomposition:

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+1

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
=

(j−1)∧(2L−i−j)∑
l=1

E
((
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+l

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+l+1

))
. ~N∗i+j,L ⊗ ~N∗i,L

)
+ E

(
D2g ∗ ϕaL

(
~Si−1 + ~T(i+2j)∧(2L+1)

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
.

For any l ∈ {1, . . . , (j − 1) ∧ (2L − i− j)}, we write that∣∣∣E((D2g ∗ ϕaL
(
~Si−1 + ~Ti+j+l

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+l+1

))
. ~N∗i+j,L ⊗ ~N∗i,L

)∣∣∣
=
∣∣∣E(∫ 1

0

D3g ∗ ϕaL
(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ ~N∗i+j,L ⊗ ~N∗i,Ldt

)∣∣∣ ,
where

~Ri,j,l,L(t) := ~Si−1 + ~Ti+j+l+1 + t ~N∗i+j+l,L .

Applying (6.45) together with (6.15), we derive that

E
(
D3g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ ~N∗i+j,L ⊗ ~N∗i,L

= E
(
D3g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
+ E

(
D3g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i,L

))
+ tE

(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

)
). ~N∗i+j+l,L ⊗ ~N∗i+j,L ⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i,L

))
+

2L∑
k=i+j+l+1

E
(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ ~N∗i+j,L ⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
.
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Next, applying again (6.45) together with (6.15), we get that

E
(
D3g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
= tE

(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗⊗2i+j+l,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+l+1

E
(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗k,L ⊗ ~V ∗i+j+l,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
,

E
(
D3g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j,L ⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i,L

))
= tE

(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗i+j+l,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+l+1

E
(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗k,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i,L

)
,

and

E
(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ ~N∗i+j,L ⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
= E

(
D4g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗i+j+l,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
+ tE

(
D5g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ E

(
~V ∗i+j+l,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
+

2L∑
m=i+j+l+1

E
(
D5g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ E

(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
.

Next,

E
(
D5g ∗ ϕaL

(
~Ri,j,l,L(t)

)
. ~N∗i+j+l,L ⊗ E

(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
= tE

(
D6g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗⊗2i+j+l,L

)
⊗ E

(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
+

2L∑
r=i+j+l+1

E
(
D6g ∗ ϕaL

(
~Ri,j,l,L(t)

))
.E
(
~V ∗r,L ⊗ ~V ∗i+j+l,L

)
⊗ E

(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

)
.

So, gathering the previous equalities, using Lemma 7.5 and the fact that
∑
k≥1 βk < ∞, we get overall

that, for any l ∈ {1, . . . , (j − 1) ∧ (2L − i− j)},∣∣∣E((D2g ∗ ϕaL
(
~Si−1 + ~Ti+j+l

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+l+1

))
. ~N∗i+j,L ⊗ ~N∗i,L

)∣∣∣
� a−3L (L+ 1)4(d+1)βj + a−3L (L+ 1)4(d+1)βl

2L−i∑
k=j+l

βk + a−5L (L+ 1)6(d+1)
2L−i∑
k=j+l

βk

2L−i−j∑
m=l

βm .

Therefore, using again that
∑
k≥1 βk <∞,

(j−1)∧(2L−i−j)∑
l=1

∣∣∣E((D2g ∗ ϕaL
(
~Si−1 + ~Ti+j+l

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+l+1

))
. ~N∗i+j,L ⊗ ~N∗i,L

)∣∣∣
� a−3L (L+ 1)4(d+1)jβj +a−3L (L+ 1)4(d+1)

2L−i∑
k=j

βk +a−5L (L+ 1)6(d+1)

(j−1)∧(2L−i−j)∑
l=1

2L−i∑
k=j+l

βk

2L−i−j∑
m=l

βm .

(6.66)

We analyze now
∣∣E(D2g ∗ ϕaL

(
~Si−1 + ~T(i+2j)∧(2L+1)

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)∣∣. Assume first that j ≤
[(2L − i+ 1)/2]. Clearly, using the notation (6.51),

D2g ∗ ϕaL
(
~Si−1 + ~Ti+2j

)
=

(uL−1)∧(2L−i−j)∑
l=j

R(i, l + j)(g) +D2g ∗ ϕaL
(
~Si−1 + ~T(i+j+uL)∧(2L+1)

)
.
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Now for any l ∈ {j, . . . , (uL − 1) ∧ (i− j − 1)}, by (6.45) together with (6.15), we get that

E
(
R(i, l + j)(g).( ~N∗i+j,L ⊗ ~N∗i,L)

)
= E

(
R(i, l + j)(g)

)
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+l

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+l

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗k,L

))

−
2L∑

k=i+j+l+1

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+l+1

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗k,L

))
.

Therefore,

(uL−1)∧(2L−i−j)∑
l=j

(
E
(
R(i, l + j)(g).( ~N∗i+j,L ⊗ ~N∗i,L)

)
− E

(
R(i, l + j)(g)

)
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

))

=

2L∑
k=i+2j

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+2j

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗k,L

))

−
2L∑

k=(i+j+uL)∧(2L+1)

E
(
D3g ∗ ϕaL

(
~Si−1 + ~T(i+j+uL)∧(2L+1)

)
. ~N∗i,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗k,L

))
.

Whence, using again (6.45) together with (6.15),

(uL−1)∧(2L−i−j)∑
l=j

(
E
(
R(i, l + j)(g).( ~N∗i+j,L ⊗ ~N∗i,L)

)
− E

(
R(i, l + j)(g)

)
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

))

=

2L∑
k=i+2j

2L∑
m=i+2j

E
(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗m,L ⊗ ~V ∗i,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗k,L

)
−

2L∑
k=(i+j+uL)∧(2L+1)

2L∑
m=(i+j+uL)∧(2L+1)

E
(
D4g∗ϕaL

(
~Si−1+~T(i+j+uL)∧(2L+1)

))
.E
(
~V ∗m,L⊗~V ∗i,L

)
⊗E
(
~V ∗i+j,L⊗~V ∗k,L

)
.

Next, using Lemma 7.5 and the fact that
∑
k≥1 βk <∞, we get that

∣∣∣ (uL−1)∧(2L−i−j)∑
l=j

(
E
(
R(i, l + j)(g).( ~N∗i+j,L ⊗ ~N∗i,L)

)
− E

(
R(i, l + j)(g)

)
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

))∣∣∣
� a−3L (L+ 1)4(d+1)

∑
k≥j

βj + a−3L (L+ 1)4(d+1)
∑
k≥uL

βk . (6.67)

Still assuming that j ≤ [(2L − i+ 1)/2], let us analyze the following term:

E
(
D2g ∗ ϕaL

(
~Si−1 + ~T(i+j+uL)∧(2L+1)

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
.

Let us first consider the case where j ≤ 2L − i− uL + 1. By (6.45) together with (6.15), we get that

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
= E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
+

2L∑
k=i+j+uL

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

)
. ~N∗i+j,L ⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
.

Therefore using again (6.45) together with (6.15),

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
− E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
=

2L∑
k=i+j+uL

2L∑
m=i+j+uL

E
(
D4g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

))
.E
(
~V ∗m,L ⊗ ~V ∗i+j,L

)
⊗ E

(
~V ∗k,L ⊗ ~V ∗i,L

))
.
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Hence using Lemma 7.5 and the fact that
∑
k≥1 βk <∞, it follows that∣∣∣E(D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
− E

(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+j+uL

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)∣∣∣
� a−3L (L+ 1)4(d+1)

2L∑
k=uL

βk . (6.68)

Consider now the case where j > 2L − i− uL + 1. Notice then that by independence between ~Si−1 and

the random variables ~N∗i,L and ~N∗i+j,L, (6.15) entails that

E
(
D2g ∗ ϕaL

(
~Si−1

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

)
= E

(
D2g ∗ ϕaL

(
~Si−1

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
. (6.69)

Assume now that j > [(2L − i− 1)/2] + 1. Starting from (6.69) and using Lemma 7.5, we get that∣∣E(D2g ∗ ϕaL
(
~Si−1

)
.( ~N∗i+j,L ⊗ ~N∗i,L)

∣∣� a−1L (L+ 1)2(d+1)βj � a−1L (L+ 1)2(d+1)β[(2L−i−1)/2] . (6.70)

Starting from (6.61), summing the inequalities (6.63), (6.65), (6.66), (6.67), (6.68) and (6.70) in j,
adding them, and taking into account that βk = O(k1−p) with p ∈]2, 3], we then infer that∣∣E(Dg ∗ ϕaL(~Si−1 + ~Ti+1

)
. ~N∗i,L

)
−
uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
1j≤[(2L−i+1)/2]

∣∣
� a−1L (L+ 1)2(d+1)

2L−i∑
j=(2L−i)∧uL

j1−p + a−3L (L+ 1)4(d+1)2L(3−p) + a−3L (L+ 1)4d+51p=3

+ a−5L (L+ 1)6(d+1)u6−2pL + a−5L (L+ 1)6(d+1)(log(uL))21p=3 + a−3L (L+ 1)4(d+1)u3−pL

+ a−3L (L+ 1)4(d+1) log(uL)1p=3 + a−1L (L+ 1)2(d+1)uLβ[(2L−i−1)/2] .

Next summing on i and taking into account the choice of uL and that aL ≥ (L+ 1)d+1, we get that

2L∑
i=1

∣∣∣E(Dg∗ϕaL(~Si−1+~Ti+1

)
. ~N∗i,L

)
−
uL−1∑
j=1

E
(
D2g∗ϕaL

(
~Si−1+~Ti+2j

))
.E
(
~V ∗i+j,L⊗~V ∗i,L

)
1j≤[(2L−i+1)/2]

∣∣∣
� a1−pL (L+ 1)p(d+1)2L + a−3L (L+ 1)4(d+1)2L

(
2L(3−p) + L1p=3

)
. (6.71)

Hence, starting from (6.39) and considering the upper bounds (6.44) and (6.50) together with the fact
that aL ≥ (L+ 1)d+1, we get that

2L∑
i=1

E
(
∆2,i,L(g)

)
−

2L∑
i=1

uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
1j≤[(2L−i+1)/2]

− 1

2

2L∑
i=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.E
(
~V ∗⊗2i,L

)
� a1−pL (L+ 1)p(d+1)2L + a−3L (L+ 1)4(d+1)2L

(
2L(3−p) + L1p=3

)
. (6.72)

Gathering (6.38) and (6.72), it follows that

2L∑
i=1

(
E
(
∆1,i,L(g)

)
− E

(
∆2,i,L(g)

))
−

2L∑
i=1

Ri,L

� (L+ 1)d+1 + a1−pL (L+ 1)p(d+1)2L + a−2L (L+ 1)3d+42L1p=3 + a−3L (L+ 1)4(d+1)2L
(
2L(3−p) + L1p=3

)
,

(6.73)

where

Ri,L :=

uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
1j≤[i/2]

−
uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
1j≤[(2L−i+1)/2] . (6.74)
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We get now an upper bound of
∑2L

i=1Ri,L. We first write that

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

)
−D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
=

i−1∑
m=i−2j+1

∫ 1

0

E
(
D3g ∗ ϕaL

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
.~V ∗m,L ⊗ E

(
~V ∗i−j,L ⊗ ~V ∗i,L

))
dt .

Next

E
(
D3g ∗ ϕaL

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
.~V ∗m,L ⊗ E

(
~V ∗i−j,L ⊗ ~V ∗i,L

))
=
∑
K,kK

∑
P,pP

∑
Q,qQ

E
( ∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
× Ṽ (K,kK)

m,L

)
× E

(
Ṽ

(P,pP )
i−j,L Ṽ

(Q,qQ)
i,L

)
.

Using Lemma 7.4 with U = Ṽ
(P,pP )
i−j,L ,

V =
∑
K,kK

∑
Q,qQ

Ṽ
(Q,qQ)
i,L E

( ∂3g ∗ ϕaL
∂x(K,kK)∂x(P,pP )∂x(Q,qQ)

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
× Ṽ (K,kK)

m,L

)
,

U = σ(Y`, ` ≤ i + 2L − j), V = σ(Yi+2L), r = 1 and s = ∞, we get that we get that there exists a
U-measurable random variable bU (i+ 2L) such that∣∣∣E(D3g ∗ ϕaL

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
.~V ∗m,L ⊗ E

(
~V ∗i−j,L ⊗ ~V ∗i,L

))∣∣∣
≤ 2

∑
P∈Id+1

L

∑
pP∈Ed+1

L,Q

×E
(
Ṽ

(P,pP )
i−j,L bU (i+ 2L)

)
‖V ‖∞ .

Using Lemma 7.3 and the fact that
∑
K,kK

∑
Q,qQ

∣∣Ṽ (Q,qQ)
i,L Ṽ

(K,kK)
m,L

∣∣ ≤ 4(L+ 1)2(d+1), we derive that

‖V ‖∞ � a−2L (L+ 1)2(d+1) .

On the other hand,
∑
P∈Id+1

L

∑
pP∈Ed+1

L,Q
|Ṽ (P,pP )
i−j,L | ≤ 2(L+ 1)d+1 and E

(
bU (i+ 2L)

)
≤ βj . Therefore∣∣∣E(D3g ∗ ϕaL

(
~Si−2j + ~Ti+1 + t(~Si−1 − ~Si−2j)

)
.~V ∗m,L ⊗ E

(
~V ∗i−j,L ⊗ ~V ∗i,L

))∣∣∣ ≤ a−2L (L+ 1)3(d+1)βj .

So overall,

uL−1∑
j=1

∣∣∣E(D2g ∗ ϕaL
(
~Si−1 + ~Ti+1

)
−D2g ∗ ϕaL

(
~Si−2j + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)∣∣∣
� a−2L (L+ 1)3(d+1)

uL∑
j=1

jβj . (6.75)

On the other hand, setting Ai,j = ~Si+j−1 + ~Ti+j+1 − ~Si−1 − ~Ti+2j , we write that that

E
(
D2g ∗ ϕaL

(
~Si+j−1 + ~Ti+j+1

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
=

i+j−1∑
m=i

∫ 1

0

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+2j + tAi,j

)
.
(
~V ∗m,L − ~N∗m+1,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
dt .

By the previous computations,

i+j−1∑
m=i

∣∣∣E(D3g ∗ ϕaL
(
~Si−1 + ~Ti+2j + tAi,j

)
.~V ∗m,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))∣∣∣� a−2L (L+ 1)3(d+1)jβj .
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On the other hand, using (6.45) together with (6.15), we derive that

E
(
D3g ∗ ϕaL

(
~Si−1 + ~Ti+2j + tAi,j

)
. ~N∗m+1,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

))
=

i+j∑
m=i+1

∫ 1

0

(1− t)E
(
D4g ∗ ϕaLϕaL

(
~Si−1 + ~Ti+2j + tAi,j

))
.E
(
~V ∗m+1,L ⊗ ~V ∗`,L

)
⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)
.

Hence by Lemma 7.5, it follows that

i+j−1∑
m=i

∣∣∣E(D3g ∗ ϕaL
(
~Si−1 + ~Ti+2j + tAi,j

)
. ~N∗m+1,L ⊗ E

(
~V ∗i+j,L ⊗ ~V ∗i,L

)∣∣∣� a−3L (L+ 1)4(d+1)jβj
∑
`≥0

β` .

So overall, since
∑
`≥0 β` <∞ and aL ≥ (L+ 1)d+1,

uL−1∑
j=1

∣∣∣E(D2g ∗ ϕaL
(
~Si+j−1 + ~Ti+j+1

)
−D2g ∗ ϕaL

(
~Si−1 + ~Ti+2j

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)∣∣∣
� a−2L (L+ 1)3(d+1)

uL∑
j=1

jβj . (6.76)

Starting from (6.74) and considering the upper bounds (6.75) and (6.76) together with the assumption
that βk = O(k1−p) for p ∈]2, 3] and the choice of uL, we derive that

∣∣∣ 2L∑
i=1

(Ri,L − R̃i,L)
∣∣∣� a1−pL (L+ 1)p(d+1)2L + a−2L (L+ 1)3d+42L1p=3 , (6.77)

where

R̃i,L :=

uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
1j≤[i/2]

−
uL−1∑
j=1

E
(
D2g ∗ ϕaL

(
~Si+j−1 + ~Ti+j+1

))
.E
(
~V ∗i+j,L ⊗ ~V ∗i,L

)
1j≤[(2L−i+1)/2] . (6.78)

Observe now that

2L∑
i=1

R̃i,L =

uL−1∑
j=1

2L∑
i=2L−2j+2

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
−
uL−1∑
j=1

2j−1∑
i=j+1

E
(
D2g ∗ ϕaL

(
~Si−1 + ~Ti+1

))
.E
(
~V ∗i−j,L ⊗ ~V ∗i,L

)
.

Hence by Lemma 7.5, the assumption that βk = O(k1−p) for p ∈]2, 3] and the choice of uL, it follows that

∣∣∣ 2L∑
i=1

R̃i,L

∣∣∣� a−1L (L+ 1)2(d+1)
uL∑
j=1

jβj � a2−pL (L+ 1)(5−p)(d+1) + a−1L (L+ 1)2d+31p=3 . (6.79)

Starting from (6.18) and considering the upper bounds (6.73), (6.77) and (6.79), the inequality (4.46)

follows for supg∈Lip(c∗
(d+1)L

,F2L ) E
(
g(~S∗L,d+ ~W ∗aL)

)
−E
(
g( ~N∗L,d+ ~W ∗aL)

)
. This ends the proof of the lemma.

�

6.2 Proof of Lemma 5.1

Recall that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)

= Wc(d+1)L
(P~SL,d

∗ P~Ga
,NCL,d

∗ P~Ga
) .
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As in the proof of Lemma 4.2 we shall use the Lindeberg method. With this aim, we consider a sequence

of independent centered Gaussian vectors
(
~Ni,L

)
1≤i≤2L of R2(d+1)L

, independent of F∞∨σ(ηi, i ∈ Z) such

that
E( ~Nk,L ~N

t
k,L) = ~ek,L~e

t
k,L ⊗ E(~U

(0)
1,L(~U

(0)
1,L)t) = E(~Vk,L~V

t
k,L) .

Defining
~NL,d = ~N1,L + ~N2,L + · · ·+ ~N2L,L ,

we notice that L(~TL,d) = L( ~NL,d). Let now ~W ∗aL be a random vector in R2(d+1)L

with law N (0, a2LI2(d+1)L)

independent of F∞ ∨ σ( ~Ni,L, 1 ≤ i ≤ 2L) ∨ σ(ηi, i ∈ Z). Let ~WaL = P
⊗(d+1)
L

~W ∗aL . With these notations,
we can write that

Wc(d+1)L
(P~SL,d

∗ P~Ga
,NCL,d

∗ P~Ga
) = sup

f∈Lip(c(d+1)L)

(
E
(
f(~SL,d + ~WaL)

)
− E(f( ~NL,d + ~WaL))

)
.

Using the notations (6.7) and setting

f∗ = f ◦P
⊗(d+1)
L , (6.80)

we get overall that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)

= sup
f∈Lip(c(d+1)L)

(
E
(
f∗(~S∗L,d + ~W ∗aL)

)
− E(f∗( ~N∗L,d + ~W ∗aL))

)
.

Using Notation 6.2, we then write that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)

= sup
f∈Lip(c(d+1)L)

2L∑
i=1

E
(
f∗ ∗ ϕaL

(
~Si−1 + ~V ∗i,L + ~Ti+1

)
− f∗ ∗ ϕaL

(
~Si−1 + ~N∗i,L + ~Ti+1

))

≤ sup
f∈Lip(c(d+1)L)

2L∑
i=1

E
(
f∗ ∗ ϕaL

(
~Si−1 + ~V ∗i,L

)
− f∗ ∗ ϕaL

(
~Si−1 + ~N∗i,L

))
.

Recall Definition 6.2 and for any i ∈ {1, . . . , 2L}, let

∆1,i,L(f) = f∗ ∗ ϕaL
(
~Si−1 + ~V ∗i,L

)
− f∗ ∗ ϕaL

(
~Si−1

)
− 1

2
D2f∗ ∗ ϕa

(
~Si−1

)
.~V ∗⊗2i,L ,

and

∆2,i,L(f) = f∗ ∗ ϕaL
(
~Si−1 + ~N∗i,L

)
− f∗ ∗ ϕaL

(
~Si−1

)
− 1

2
D2f∗ ∗ ϕa

(
~Si−1

)
. ~N∗⊗2i,L .

With these notations, it follows that

E
(
c(d+1)L(~SL,d + ~GaL ,

~TL,d + ~G′aL)
)
≤ sup
f∈Lip(c(d+1)L)

2L∑
i=1

(
E(∆1,i,L(f))− E(∆2,i,L(f))

)
. (6.81)

By using Taylor’s integral formula, independence and noticing that E( ~N∗⊗3i,L ) = 0, we get

E(∆1,i,L(f))− E(∆2,i,L(f)))

= E
∫ 1

0

(1− t)2

2
D3f∗ ∗ ϕaL

(
~Si−1 + t~V ∗i,L

)
.~V ∗⊗3i,L + E

∫ 1

0

(1− t)3

6
D4f∗ ∗ ϕaL

(
~Si−1 + t ~N∗i,L

)
. ~N∗⊗4i,L .

(6.82)

Notice first that by the properties of the convolution product,∣∣ED3f∗ ∗ ϕaL
(
~Si−1 + t~V ∗i,L

)
.~V ∗⊗3i,L

∣∣ =
∣∣E((Df∗(·).~V ∗i,L ∗D2ϕaL(·).~V ∗⊗2i,L )(~Si−1 + t~V ∗i,L)

)∣∣
≤ E

(
sup
z

∣∣Df∗(z).~V ∗i,L∣∣ ∫
R2(d+1)L

D2ϕaL(z).~V ∗⊗2i,L dz
)
.
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But

Df∗(z).~V ∗i,L = Df
(
P
⊗(d+1)
L (z)

)
.P
⊗(d+1)
L

~V ∗i,L ≤ sup
u∈R2(d+1)L

∣∣Df(u).~Vi,L
∣∣ ≤ c(d+1)L(~0, ~Vi,L) ≤ 1 .

In addition, according to Lemma 5.4 in Dedecker, Merlevède and Rio (2012), there exists a constant c
not depending on d nor on L such that

E
∫
R2(d+1)L

D2ϕaL(z).~V ∗⊗2i,L dz ≤ c a−2L ‖~Vi,L‖
2
2,d,L

where
‖~Vi,L‖22,d,L =

∑
K∈{0,...,L}(d+1)

∑
kK∈E(d+1)

L,K

(Ṽ
(K,kK)
i,L )2 ≤ 2(L+ 1)d+1 .

So overall, ∣∣E(D3f∗ ∗ ϕaL
(
~Si−1 + t~V ∗i,L

)
.~V ∗⊗3i,L

)∣∣� a−2L (L+ 1)d+12L . (6.83)

We deal now with the second term in the right hand side of (6.82). With this aim, we notice that (6.80)
together with (6.6) imply that if f ∈ Lip(c(d+1)L) then f∗ ∈ Lip(c∗(d+1)L) where c∗(d+1)L is defined in
Definition 6.1. Therefore

sup
f∈Lip(c(d+1)L)

∣∣E(D4f∗ ∗ ϕaL
(
~Si−1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣ ≤ sup
g∈Lip(c∗

(d+1)L
)

∣∣E(D4g ∗ ϕaL
(
~Si−1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣ .
Applying Lemma 7.2 as we did to get (6.44), we infer that, for any i ∈ {1, . . . , 2L} and any g ∈
Lip(c∗(d+1)L),

∣∣E(D4g ∗ ϕaL
(
~Si−1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣� a−3L (L+ 1)(d+1)/2
( ∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

E
(
(Ñ

(K,kK)
i,L )2

))2
. (6.84)

Since E( ~Ni,L ~N
t
i,L) = E(~Vi,L~V

t
i,L), we get that∑

K∈Id+1
L

∑
kK∈E(d+1)

L,K

E((Ñ
(K,kK)
i,L )2) =

∑
K∈Id+1

L

∑
kK∈E(d+1)

L,K

E((Ṽ
(K,kK)
i,L )2) ≤ 2(L+ 1)d+1 .

Therefore, starting from (6.84), we derive that for any i ∈ {1, . . . , 2L}, any g ∈ Lip(c∗(d+1)L) and any

t ∈ [0, 1], ∣∣E(D4g ∗ ϕaL
(
~Si−1 + t ~N∗i,L

)
. ~N∗⊗4i,L

)∣∣� a−3L (L+ 1)(d+1)/2 � a−3L (L+ 1)3(d+1)/2 . (6.85)

Starting from (6.81) and considering (6.82) together with the upper bounds (6.83) and (6.85), the lemma
follows. �

7 Appendix B

This section is devoted to various technical lemmas.

7.1 Upper bounds for the partial derivatives

We gather now some lemmas concerning the upper bounds for partial derivatives. Their proofs are omitted
since they are based on the same arguments as those used in Appendix A in Dedecker, Merlevède and
Rio (2012).

In what follows d and L are nonnegative integers and K = (K0, . . . ,Kd) ∈ {0, . . . , L}(d+1). We shall
denote for any i = 0, . . . , d,

E(L,Ki) = {1, . . . , 2L−Ki} ∩ (2N + 1) ,

and

E(d+1)
L,K =

d∏
i=0

E(L,Ki) .
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Therefore the notation kK ∈ E(d+1)
L,K means that kK = (kK0 , . . . , kKd

) ∈
∏d
i=0 E(L,Ki).

Let x and y be two column vectors of R(d+1)L with coordinates

x =
((
x(K,kK), kK ∈ E(d+1)

L,K

)
K∈{0,...,L}(d+1)

)t
and y =

((
y(K,kK), kK ∈ E(d+1)

L,K

)
K∈{0,...,L}(d+1)

)t
.

Let f be a function from R2(d+1)L

into R that is Lipschitz with respect to the distance c∗(d+1)L defined in
Definition 6.1. This means that

|f(x)− f(y)| ≤
∑

K∈{0,...,L}(d+1)

sup
kK∈E(d+1)

L,K

|x(K,kK) − y(K,kK)| .

Let a > 0 and ϕa be the density of a centered Gaussian law of R(d+1)L with covariance a2I2(d+1)L (I2(d+1)L

being the identity matrix on R2(d+1)L

). Let also

‖x‖∞,d,L =
∑

K∈{0,...,L}(d+1)

sup
kK∈E(d+1)

L,K

|x(K,kK)| and ‖x‖2,d,L =
( ∑
K∈{0,...,L}(d+1)

∑
kK∈E(d+1)

L,K

(x(K,kK))2
)1/2

.

For the statements of the next lemmas, we refer to Definition 6.2.

Lemma 7.1 The partial derivatives of f exist almost everywhere and the following inequality holds:

sup
y∈R2(d+1)L

sup
u∈R2(d+1)L

, ‖u‖∞,d,L≤1

∣∣Df(y).u
∣∣ ≤ 1 .

In addition

sup
K∈{0,...,L}(d+1)

∑
kK∈E(d+1)

L,K

∣∣∣ ∂f

∂x(K,kK)
(y)
∣∣∣ ≤ 1 . (7.1)

Lemma 7.2 Let X and Y be two random variables with values in R2(d+1)L

. For any positive integer m
and any t ∈ [0, 1], there exists a positive constant γm depending only on m such that∣∣∣E(Dmf ∗ ϕa(Y + tX).X⊗m

)∣∣∣ ≤ γma1−mE
(
‖X‖∞,d,L × ‖X‖m−12,d,L

)
.

Lemma 7.3 For any integer m ≥ 1, there exists a positive constant κm depending only on m such that

sup
(K(i),kK(i)),i=1,...,m

∥∥∥ ∂mϕa∏m
i=1 ∂x

(Ki,kKi
)

∥∥∥
1
≤ κma−m .

In addition, for any integer m ≥ 1 and any y ∈ R2(d+1)L

,

sup
(K(i),kK(i)),i=1,...,m

∣∣∣ ∂mf ∗ ϕa∏m
i=1 ∂x

(K(i),kK(i))
(y)
∣∣∣ ≤ κm−1a1−m .

The supremum above are taken over all the indexes K(i) ∈ {0, . . . , L}(d+1) and kK(i) ∈ E
(d+1)
L,K(i) for any

i = 1, . . . ,m.

7.2 Covariance inequalities

We first recall the following covariance inequality due to Delyon (1990) (see also Theorem 1.4 in Rio
(2000)).

Lemma 7.4 Let r and s in [1,∞] such that r−1 + s−1 = 1. Let U and V be real random variables
respectively in Lr and Ls, that are respectively U and V measurable. Then there exist two random
variables bU and bV with values in [0, 1], measurable respectively with respect to U and to V, such that
E(bU ) = E(bV) = β(U ,V) and

|Cov(U, V )| ≤ 2
(
E
(
|U |rbU

))1/r(
E
(
|V |sbV

))1/s
.
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Notice that if U = f(X, η) and V = g(Y, δ) where X, η, Y, δ are random variables such that (X,Y ) is
independent of (η, δ) and η is independent of δ, then the random variables bU and bV satisfy E(bU ) =
E(bV) = β(σ(X), σ(Y )).

For the next lemma, we refer to Definition 6.2.

Lemma 7.5 Let ~Z be a random variable with values in R2(d+1)L

. Let (~V ∗i,L)i be the random variables

in R2(d+1)L

defined in (6.11) and (β`)`≥0 the sequence of absolutely regular coefficients associated to the
strictly stationary sequence (Xi)i∈Z. Let m be a positive integer, (ki)i≥1 and (`i)i≥1 two sequences of
integers. Then, there exists a positive constant γm depending only on m such that∣∣∣E(D2mg ∗ ϕa

(
~Z
))

.

m⊗
i=1

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)∣∣∣ ≤ γma1−2m(L+ 1)2m(d+1)
m∏
i=1

β|ki−`i| .

Proof of Lemma 7.5. We use the notation (6.12) and write

E
(
D2mg ∗ ϕa

(
~Z
))

.

m⊗
i=1

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)
=
∑
P,pP

∑
Q,qQ

E
(
Ṽ

(P,pP )
k1,L

Ṽ
(Q,qQ)
`1,L

E
( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)))
.

We apply now Lemma 7.4 with U = Ṽ
(P,pP )
k1,L

, U = σ(Yk1+2L),

V =
∑
Q,qQ

Ṽ
(Q,qQ)
`1,L

E
( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))
,

V = σ(Y`1+2L), r = 1 and s = ∞. Hence, we derive that there exists a U-measurable random variable
bU (`1 + 2L) such that∣∣∣E(D2mg ∗ ϕa

(
~Z
))

.

m⊗
i=1

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)∣∣∣
≤ 2

∑
P,pP

E
(∣∣Ṽ (P,pP )

k1,L

∣∣bU (`1 + 2L)
)
×
∥∥∥ ∑
Q,qQ

∣∣Ṽ (Q,qQ)
`1,L

∣∣∥∥∥
∞

× sup
(P,pP ),(Q,qQ)

∣∣∣E( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣ .
Since E(bU (`1 + 2L)) ≤ β|k1−`1| and

∑
Q,qQ

∣∣Ṽ (Q,qQ)
`1,L

∣∣ ≤ 2(L+ 1)d+1, we get that

∣∣∣E(D2mg ∗ ϕa
(
~Z
))

.

m⊗
i=1

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)∣∣∣
≤ 8(L+ 1)2(d+1)β|k1−`1| × sup

(P,pP ),(Q,qQ)

∣∣∣E( ∂2

∂x(P,pP )∂x(Q,qQ)

(
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣ .
Next, if m ≥ 2, we write that

E
( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))
=
∑
M,mM

∑
R,rR

E
(
Ṽ

(M,mM )
k2,L

Ṽ
(R,rR)
`2,L

× E
( ∂4

∂x(P,pP )∂x(Q,qQ)∂x(M,mM )∂x(R,rR)
D2m−4g ∗ ϕa(~Z).

m⊗
i=3

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

)))
.
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Applying Lemma 7.4 with U = Ṽ
(M,mM )
k2,L

, U = σ(Yk2+2L),

V =
∑
R,rR

Ṽ
(R,rR)
`2,L

E
( ∂4

∂x(P,pP )∂x(Q,qQ)∂x(M,mM )∂x(R,rR)
D2m−4g ∗ ϕa(~Z).

m⊗
i=3

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))
,

V = σ(Y`2+2L), r = 1 and s = ∞, we get that there exists a U-measurable random variable bU (`2 + 2L)
such that

sup
(P,pP ),(Q,qQ)

∣∣∣E( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣
≤ 2

∑
M,mM

E
(∣∣Ṽ (M,mM )

k2,L

∣∣bU (`2 + 2L)
)
×
∥∥∥ ∑
R,rR

∣∣Ṽ (R,rR)
`2,L

∣∣∥∥∥
∞

× sup
(P,pP )

(Q,qQ)

sup
(M,mM )

(R,rR)

∣∣∣E( ∂4

∂x(P,pP )∂x(Q,qQ)∂x(M,mM )∂x(R,rR)
D2m−4g ∗ ϕa(~Z).

m⊗
i=3

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣ .
Since E(bU (`2 + 2L)) ≤ β|k2−`2| and

∑
Q,qQ

∣∣Ṽ (Q,qQ)
`2,L

∣∣ ≤ 2(L+ 1)d+1, we get that

sup
(P,pP ),(Q,qQ)

∣∣∣E( ∂2

∂x(P,pP )∂x(Q,qQ)
D2m−2g ∗ ϕa(~Z).

m⊗
i=2

E
(
~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣ ≤ 8(L+ 1)2(d+1)β|k2−`2|

× sup
(P,pP )

(Q,qQ)

sup
(M,mM )

(R,rR)

∣∣∣E( ∂4

∂x(P,pP )∂x(Q,qQ)∂x(M,mM )∂x(R,rR)
D2m−4g ∗ ϕa(~Z).

m⊗
i=3

(
~V ∗ki,L ⊗ ~V ∗`i,L

))∣∣∣ .
The lemma follows after m− 2 additional steps by using Lemma 7.3 at the end of the procedure. �
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[33] Rüschendorf L. (1985), The Wasserstein Distance and Approximation Theorems. Z. Wahrsch. Verw.
Gebiete 70, 117-129.

[34] Sakhanenko A. I. (1988), Simple method of obtaining estimates in the invariance principle. Proba-
bility theory and mathematical statistics, 430-443, Lecture Notes in Math., 1299, Springer, Berlin.

[35] Sakhanenko A. I. (2000), A new way to obtain estimates in the invariance principle. High dimensional
probability II. Progr. Probab. 47, 223-245, Birkhäuser Boston.
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