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Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws

Introduction

The aim of this paper is to provide an a priori error estimate for time-explicit finite volume approximation on unstructured meshes of strong solutions to hyperbolic systems of conservation laws. Our proof relies on the control of perturbations coming from the discretization in the uniqueness proof proposed by R. J. DiPerna [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF] and C. M. Dafermos [START_REF] Dafermos | The second law of thermodynamics and stability[END_REF] (see also [START_REF]Hyperbolic conservation laws in continuum physics[END_REF]).

Numerous studies on error estimates for hyperbolic problems were published in the last decades. Let us first highlight some optimal convergence rates that are established in the literature. Classical first-order finite difference methods on cartesian grids for the approximation of smooth solutions of linear equations can be directly studied by estimating the truncation error, leading to an O(h) error estimate, where the length h is the characteristic size of the grid. Adapting S. N. Kruzhkov's doubling variable technique [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF], N. N. Kuznetsov proved in [START_REF] Kuznetsov | The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation[END_REF] that finite difference schemes for nonlinear one-dimensional conservation laws converge towards the entropy weak solution with the optimal rate O(h 1/2 ) in the spacetime L 1 norm. The optimal rate O(h 1/2 ) has been recovered by B. Merlet and J. Vovelle [START_REF] Merlet | Error estimate for finite volume scheme[END_REF] and by F. Delarue and F. Lagoutière [START_REF] Delarue | Probabilistic analysis of the upwind scheme for transport equations[END_REF] for weak solutions to the linear transport equation approximated by the upwind finite volume scheme on unstructured grids. The rate O(h 1/2 ) appears to stay optimal when strong solutions to linear transport equations are approximated on two-dimensional unstructured grids as shown by C. Johnson and J. Piktäranta in [START_REF] Johnson | An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF]. Since linear transport enters our framework, we cannot expect a better a priori error estimate than O(h 1/2 ). However, if one restricts to dimensional one, an estimate in O(h) can be derived even for nonlinear systems of conservation laws, see D. Bouche et al. [START_REF] Bouche | An optimal error estimate for upwind finite volume methods for nonlinear hyperbolic conservation laws[END_REF].

Many studies exist when considering entropy weak solutions, based on nonlinear techniques which extend in some sense N. N. Kuznetsov's article [START_REF] Kuznetsov | The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation[END_REF]. These works focus on the multidimensional case with unstructured meshes, for scalar conservation laws [START_REF] Champier | Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh[END_REF][START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF][START_REF] Vila | Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes[END_REF][START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF]. They mainly use the notion of error measures, see for instance [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF], and lead the an error estimate in O(h 1/4 ) (recall that the convergence has been initially addressed by A. Szepessy [START_REF] Szepessy | Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions[END_REF]). The key-point in these multidimensional studies is the control of the BV semi-norm. For unstructured meshes, one can only prove that it grows as h -1/2 (even in the linear scalar case, cf. [START_REF] Després | An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids[END_REF]), which actually is the main barrier to obtain a better rate of convergence. Similar tools allowed V. Jovanovic and C. Rohde to propose error estimates [START_REF] Jovanović | Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates[END_REF] for the finite volume approximation of the solution to Friedrich's systems (i.e., linear symmetric hyperbolic systems)

As mentioned above, we are interested in multidimensional systems of conservation laws. The solutions to such systems may develop discontinuities in finite time and, since the pioneering work of P. D. Lax [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF], entropy conditions are added to select physical/admissible solutions. Recently, it has been shown by C. De Lellis and L. Székelyhidi Jr. in [START_REF] Lellis | The Euler equations as a differential inclusion[END_REF][START_REF]On admissibility criteria for weak solutions of the Euler equations[END_REF] that such a criterion is not sufficient in the multidimensional case. Nonetheless, it is known since several decades (see in particular [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF][START_REF] Dafermos | The second law of thermodynamics and stability[END_REF]) that if a strong solution exists, then there exists a unique entropy weak solution corresponding to the same initial data, and that it coincides with this strong solution. Moreover, it can be shown that entropy weak solutions are stable with respect to strong solutions. Since error estimates of any approximation are based on the stability properties of the model, we restrict this study to strong solutions which are known to exist, in finite time, and to be unique [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF][START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF]Hyperbolic conservation laws in continuum physics[END_REF]. As in [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF], we use the notion of relative entropy to compare the approximate solution with a smooth solution. The mathematical techniques are basically the same as in the scalar case (we follow in particular [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF]): weak-BV estimates and error measures. The main result of this paper is an a priori error estimate of order O(h 1/4 ) in the space-time L 2 norm for first-order time-explicit finite volume schemes under classical assumptions on the numerical fluxes [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF]Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[END_REF]. One key ingredient is an extension to the system case of the so-called weak-BV estimate introduced in the scalar case in [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF]. As in the scalar, it relies on a quantification of the numerical dissipation and requires a slightly reduced CFL condition. We finally obtain an error estimate in O(h 1/4 ), and simplify the framework of a study of V. Jovanovic and C. Rohde [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF] where time-implicit methods are considered and the weak-BV estimate is assumed).

Concerning higher order methods, let us mention the result [START_REF]Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF] of C. Chainais-Hillairet who proved an error estimate or order O(h 1/4 ) for the time-explicit second order finite volume discretization with flux limiters [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF] of nonlinear scalar conservations laws. The strategy exploited in [START_REF]Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF] consists in showing that the solution to the second order remains close to the solution to the monotone scheme without limiters. Such a strategy might be adapted in our framework but provides very under-optimal estimates. High order time-implicit discontinuous Galerkin methods have also been analyzed in details by Hiltebrand and Mishra in [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]. Using appropriate weak-BV estimates, they prove convergence towards entropy measured-valued solutions of multidimensional systems of conservation laws. No error estimate has been derived yet up to our knowledge. Remark 1.1. As it is well known, solutions to hyperbolic nonlinear systems of conservation laws may develop discontinuities after a finite time. However, the occurence of such discontinuities is prohibited when appropriate relaxation terms are added to the systems [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF][START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF] (we then have hyperbolic balance laws instead of hyperbolic conservation laws). By adapting the analysis carried out by V. Jovanovic and C. Rohde in [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF], such terms can be considered in the analysis. A time explicit treatment of the source terms would lead to a reduced CFL. Therefore, in the case of stiff relaxation terms, an implicit treatment of the source terms is relevant. We refer to the work [START_REF] Chainais-Hillairet | Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate[END_REF] of C. Chainais-Hillairet and S. Champier for an error estimate in the case of a scalar balance law.

1.1. Hyperbolic systems of conservation laws.

1.1.1. Strong, weak, and entropy weak solutions. We consider a system of m conservation laws (1)

∂ t u(x, t) + d α=1 ∂ α f α (u)(x, t) = 0.
System (1) is set on the whole space x ∈ R d , and for any time t ∈ [0, T ], T > 0. We assume that there exists a convex bounded subset of R m , denoted by Ω and called set of the admissible states such that

(2) u(x, t) ∈ Ω, ∀(x, t) ∈ R d × [0, T ].
System (1) is complemented with the initial condition

(3) u(x, 0) = u 0 (x) ∈ Ω, ∀x ∈ R d .
We assume for all α ∈ {1, . . . , d} the functions f α : R m → R m to belong to C 2 (Ω; R m ), and be such that Df α are diagonalizable with real eigenvalues, where D denotes the differential with respect to the variables u.

System (1) is endowed with a uniformly convex entropy η ∈ C 2 (Ω; R) such that there exists

β 1 ≥ β 0 > 0 so that (4) spec D 2 η(u) ⊂ [β 0 ; β 1 ], ∀u ∈ Ω,
and the corresponding entropy flux ξ ∈ C 2 (Ω; R d ) satisfies for all α ∈ {1, . . . , d}

(5) Dξ α (u) = Dη(u)Df α (u), ∀u ∈ Ω.
Without loss of generality, we assume that η(u) ≥ 0 for all u ∈ Ω. The existence of the entropy flux ξ amounts to assume the integrability condition (see e.g. [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF])

(6) D 2 η(u)Df α (u) = Df α (u) T D 2 η(u), ∀u ∈ Ω.
Let us introduce the quantity L f by ( 7)

L f = sup α∈{1,...,d} sup (u,v)∈Ω 2 sup w∈R m \{0} w T D 2 η(v)Df α (u)w w T D 2 η(v)w .
Remark 1.2. Notice that, in view of (6), the matrix Df α (u) is self-adjoint for the scalar product w, v u = w T D 2 η(u)v. Therefore, the Rayleigh quotient

(8) sup w∈R m \{0} w T D 2 η(u)Df α (u)w w T D 2 η(u)w = sup w∈R m \{0}
w, Df α (u)w u w, w u provides exactly the largest eigenvalue in absolute value of Df α (u). The situation in [START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF] is more intricate than in (8) since u might be different of v, but the quantity L f is bounded in view of the boundedness of Ω and of the regularity of f α and η.

Despite it is well-known that even for smooth initial data u 0 , the solutions of ( 1)-(3) may develop discontinuities after a finite time, our study is restricted to the approximation of smooth solutions u ∈ W 1,∞ (R d ×R + ; Ω) to (1)- [START_REF] Berthelin | From kinetic equations to multidimensional isentropic gas dynamics before shocks[END_REF]. Such solutions are called strong solutions, and they satisfy the conservation of the entropy [START_REF] Chainais-Hillairet | Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate[END_REF] ∂ t η(u)

+ d α=1 ∂ α ξ α (u) = 0 in R d × R + .
We refer for instance to [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF][START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF]Hyperbolic conservation laws in continuum physics[END_REF] for specific results on strong solutions of systems of conservation laws.

Assuming that u 0 ∈ L ∞ (R d ; Ω), a function u ∈ L ∞ (R d × R + ; Ω) is said to be a weak solution to (1)-(3) if, for all φ ∈ C 1 c (R d × R + ; R n ), one has (10) 
R d ×R+ u∂ t φ dxdt + R d u 0 φ(•, 0) dx + R d ×R+ d α=1 f α (u)∂ α φ dxdt = 0.
Moreover, u is said to be an entropy weak solution to (1)-( 3) if u is a weak solution, i.e., u satisfies [START_REF] Champier | Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh[END_REF], and if, for all

ψ ∈ C 1 c (R d × R + ); R + ), it satisfies (11) 
R d ×R+ η(u)∂ t ψdxdt+ R d η(u 0 )ψ(•, 0)dx+ R d ×R+ d α=1 ξ α (u)∂ α ψdxdt ≥ 0.
1.1.2. Relative entropy. In [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF], Kruzhkov is able to compare two entropy weak solutions using the doubling variable technique. In [START_REF] Kuznetsov | The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation[END_REF], such method has been extended in order to compare an entropy weak solution with an approximate solution. In the case of systems of conservation laws, these techniques no longer work. Basically, the family of entropy-entropy flux pairs (η, ξ) is not sufficiently rich to control the difference between two solutions. Nevertheless, let us assume that one of these solutions is a strong solution, u in the sequel, and introduce:

Definition 1.1 (Relative entropy). Let u, v ∈ Ω. The relative entropy of v w.r.t. u is defined by H(v, u) = η(v) -η(u) -Dη(u)(v -u),
and the corresponding relative entropy fluxes

Q : Ω × Ω → R d are Q α (v, u) = ξ α (v) -ξ α (u) -Dη(u)(f α (v) -f α (u)), ∀α ∈ {1, . . . , d}.
The notion of relative entropy for systems of conservation laws goes back to the early works of DiPerna and Dafermos (see [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF], [START_REF] Dafermos | The second law of thermodynamics and stability[END_REF] and the condensed presentation in [START_REF]Hyperbolic conservation laws in continuum physics[END_REF]). It has also been extensively used for the study of hydrodynamic limits of kinetic equations (see the first works [START_REF] Yau | Relative entropy and hydrodynamics of Ginzburg-Landau models[END_REF] and [START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF], but also [START_REF] Saint-Raymond | Hydrodynamic limits: some improvements of the relative entropy method[END_REF] for more recent results). For systems of conservation laws, one can check that, given a strong solution u and an entropy weak solution v with respective initial data u 0 and v 0 , one has [START_REF] Coquel | Relaxation of fluid systems[END_REF] ∂ t H(v, u)

+ d α=1 ∂ α Q α (v, u) ≤ - d α=1 (∂ α u) T Z α (v, u)
in the weak sense, where

(13) Z α (v, u) = D 2 η(u) f α (v) -f α (u) -Df α (u)(v -u) .
On the other hand, it follows from the definition of H that ( 14)

H(v, u) = 1 0 θ 0 (v -u) T D 2 η(u + γ(v -u))(v -u) dγdθ,
which, together with (4), leads to (15)

β 0 2 |v -u| 2 ≤ H(v, u) ≤ β 1 2 |v -u| 2 , ∀u, v ∈ Ω.
If u is assumed to be a strong solution, its first derivative is bounded and by a classical localization procedure à la Kruzhkov and a Gronwall lemma, one obtains a L 2 loc stability estimate for any r > 0 (16)

|x|<r |v(x, T ) -u(x, T )| 2 dx ≤ C(T, u) |x|<r+L f T |v 0 (x) -u 0 (x)| 2 dx,
where the dependence of C on u reflect the needs of smoothness on u (C blows up when u becomes discontinuous). This inequality, rigorously proved in [START_REF]Hyperbolic conservation laws in continuum physics[END_REF], provides a weak-strong uniqueness result. Similar (but more sophisticated) ideas have been applied to other fluid systems, see for instance [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF] and [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] for more recent developments.

Remark 1.3. In [START_REF] Tzavaras | Relative entropy in hyperbolic relaxation[END_REF], Tzavaras studies the comparison of solutions of a hyperbolic system with relaxation with solutions of the associated equilibrium system of conservation laws. He also makes use of the relative entropy for strong solutions. Very similar questions have been addressed in [START_REF] Berthelin | From kinetic equations to multidimensional isentropic gas dynamics before shocks[END_REF][START_REF] Berthelin | From discrete velocity Boltzmann equations to gas dynamics before shocks[END_REF] for the convergence of kinetic equations towards the system of gas dynamics. Here again, only strong solutions of the Euler equations are considered. To finish the bibliographical review, let us mention the work by Leger and Vasseur [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF] where the reference solution may include some particular discontinuities.

Remark 1.4. For general conservation laws, the relative entropy is not symmetric, i.e, H(u, v) = H(v, u) and Q(u, v) = Q(v, u). In the very particular case of Friedrichs systems, i.e. when there exist symmetric matrices

A α ∈ R m×m (α ∈ {1, . . . , d}) such that f α (u) = A α u, then u → |u| 2 is an entropy and the corresponding entropy flux ξ is ξ α (u) = u T A α u, (α ∈ {1, . . . , d}). It is then easy to check that H(v, u) = H(v, u) = |u -v| 2 , Q α (v, u) = Q α (u, v) = (v -u) T A α (v -u),
and

Z α (v, u) = 0 for all (u, v) ∈ R m . As a consequence, inequality (12) becomes ∂ t H(v, u) + d α=1 ∂ α Q α (v, u) ≤ 0,
even if u is only a weak solution. This allows to make use of the doubling variable technique [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] to compare u to v, recovering the classical uniqueness result for Friedrichs systems [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF].

Our aim is to replace the entropy weak solution v in ( 12) by an approximate solution provided by finite volume schemes on unstructured meshes. Following the formalism introduced in [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF], this makes appear in [START_REF] Coquel | Relaxation of fluid systems[END_REF] bounded Radon measures which can be controlled, leading to error estimates in h 1/4 between a strong solution and its finite volume approximation, h being the characteristic size of the cells of the mesh. The purpose of the following section is to define the finite volume scheme and to recall some classical properties required on the numerical fluxes.

1.2. Definition of the time-explicit finite volume scheme.

1.2.1. Space and time discretizations. Let T be a mesh of R d , defined as a family fo disjoint polygonal (or polyhedral) connected subsets of R d , such that R d is the union of the closure of the elements of T . We denote h = sup{diam(K), K ∈ T } < ∞, and assume without loss of generality that 0 < h ≤ 1. For all K ∈ T , we denote by |K| its d-dimensional Lebesgue measure, and by N (K) the set of its neighboring cells. For L ∈ N (K), the common interface (called edge) between K and L is denoted by σ KL and |σ KL | is its (d -1)-Lebesgue measure. We denote by E the set of all the edges and assume that there exists a > 0 such that [START_REF]On admissibility criteria for weak solutions of the Euler equations[END_REF] |K| ≥ ah d and |∂K| :=

L∈N (K) |σ KL | ≤ h d-1 a , ∀K ∈ T .
The unit normal vector to σ KL from K to L is denoted n KL . Note that the elements we consider are not necessarily simplices. Let ∆t > 0 be the time step and we set t n = n∆t, ∀n ∈ N. Let T > 0 be a given time, we introduce N T = max{n ∈ N, n ≤ T /∆t + 1}. Since we consider time-explicit methods, the time step ∆t will be subject to a CFL condition which will be given later.

Remark 1.5. In order to avoid some additional heavy notations, we have chosen to deal with a uniform time discretization and a space discretization that does not depend on time. Nevertheless, it is possible, following the path described in [START_REF] Kröner | A posteriori error estimates for upwind finite volume schemes[END_REF], to adapt our study to the case of time-dependent space discretizations and to nonuniform time discretizations. This would be mandatory for considering a dynamic mesh adaptation procedure based on the a posteriori numerical error estimators that can be derived from our study.

Since we will consider weak formulations and compactly supported test functions in the next sections, we introduce local sets of cells and interfaces: let r > 0, we introduce the sets

(18) T r = {K ∈ T | K ⊂ B(0, r)}, E r = {σ KL ∈ E | (K, L) ∈ (T r ) 2 , L ∈ N (K)}, ∂T r = {σ KL ∈ E | K ∈ T r , L ∈ N (K), L ∈ T r }.
In particular,

{σ KL ∈ E | K ∈ T r , L ∈ N (K)} = E r ∪ ∂T r and E r ∩ ∂T r = ∅.
1.2.2. Numerical flux and finite volume schemes. For all (K, L) ∈ T 2 , L ∈ N (K), we consider numerical fluxes G KL , which are Lipschitz continuous functions from Ω 2 to R m . We assume that these numerical fluxes are conservative, i.e.,

G KL (u, v) = -G LK (v, u), ∀(u, v) ∈ Ω 2 , (19) 
We also assume that the numerical fluxes fulfill the following consistency condition:

(20) G KL (u, u) = f (u) • n KL , ∀u ∈ Ω,
which implies ( 21)

L∈N (K) |σ KL |G KL (u, u) = 0, ∀u ∈ R m , ∀K ∈ T .
Following [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF], we assume that the numerical flux ensures the preservation of the convex set of admissible states Ω at each interface. More precisely, we assume that there exists λ ⋆ > 0 such that, for all λ > λ ⋆ , for all K ∈ T , and for all L ∈ N (K),

(22) u - 1 λ (G KL (u, v) -f (u) • n KL ) ∈ Ω, ∀(u, v) ∈ Ω 2 .
In order to ensure the nonlinear stability of the scheme, we also require the existence of a numerical entropy flux. More precisely, we assume that for all (K, L) ∈ E, there exist Lipschitz continuous functions ξ KL : Ω × Ω → R which are conservative, i.e., [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] 

ξ KL (u, v) = -ξ LK (v, u), ∀(u, v) ∈ Ω 2 ,
and satisfy the interfacial entropy inequalities: for all λ ≥ λ ⋆ > 0, for all (u, v)

∈ Ω 2 , ( 24 
) ξ KL (u, v) -ξ(u) • n KL ≤ -λ η u - 1 λ G KL (u, v) -f (u) • n KL -η(u) .
In what follows, and before strengthening it in [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF], we assume that the following CFL condition is fulfilled:

(25) ∆t |K| λ ⋆ L∈N (K) |σ KL | ≤ 1, ∀K ∈ T .
Note that the regularity of the mesh [START_REF]On admissibility criteria for weak solutions of the Euler equations[END_REF] implies that (25) holds if [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF] ∆t ≤ a 2 λ ⋆ h. We have now introduced all the necessary material to define the time-explicit numerical scheme we will consider. Definition 1.2 (Finite volume scheme). The finite volume scheme is defined by the discrete unknowns u n K , K ∈ T and n ∈ {0, . . . , N T }, which satisfy

(27) u n+1 K -u n K ∆t |K| + L∈N (K) |σ KL |G KL (u n K , u n L ) = 0
together with the initial condition

(28) u 0 K = 1 |K| K u 0 (x)dx, ∀K ∈ T ,
under assumptions (19)-( 24) on the numerical flux G KL and under the CFL condition [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF]. The approximate solution u h : R d × R + → R m provided by the finite volume scheme (27)-( 28) is defined by

(29) u h (x, t) = u n K , for x ∈ K, t n ≤ t < t n+1 , K ∈ T , n ∈ {0, . . . , N T }.
Remark 1.6. Let us provide some examples of numerical fluxes which satisfy assumptions [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] and (24). The most classical example is the Godunov flux [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF], which writes

G KL (u, v) = f (U KL (0; u, v))
• n KL where U KL (x/t; u, v) stands for the solution of the Riemann problem for the system of conservation laws (1) in the one-dimensional direction n KL , with initial data u and v. If λ ⋆ is greater than all the wave speeds in the Riemann problems, then one can prove [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] and [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF], with the numerical entropy flux

ξ KL (u, v) = ξ(U KL (0; u, v)) • n KL .
Another classical example is the Rusanov scheme [START_REF] Rusanov | Calculation of interaction of non-steady shock waves with obstacles[END_REF], which is the finite volume extension of the Lax-Friedrichs scheme. It reads

G KL (u, v) = 1 2 (f (u) + f (v)) • n KL - c 2 (v -u)
where c > 0 is a parameter (which can be defined by interface). The associated numerical entropy flux is

ξ KL (u, v) = 1 2 X KL (u, v) -X LK (v, u)
where

X KL (u, v) = ξ(u) • n KL + Dη(u)(G KL (u, v) -f (u) • n KL ) (this function
will also be introduced hereafter for the computation of weak-BV estimates). Once again, if c is greater than all the wave speeds, one can prove that this numerical entropy flux satisfies [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF]. Proving Assumption [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] is more difficult and overall model dependent. For the shallow-water equations, the positivity of the height of water is directly obtained (see for instance [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF]). The case of Euler equations is more intricate, in particular for proving the positivity of the specific energy. This can be done using the structure of the system, see for instance [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF]. For details on the proofs, more explicit CFL conditions, or for other admissible numerical fluxes, the reader can refer for instance to [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], [START_REF] Coquel | Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics[END_REF], [START_REF]Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[END_REF], [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF], [START_REF] Coquel | Relaxation of fluid systems[END_REF].

1.3. Error estimate and organization of the paper. Our aim is to provide an error estimate of the the form

u -u h L 2 (Γ) ≤ Ch 1/4
, for all compact subsets Γ of R d × R + , where u stands for the unique strong solution to (1), (3) and u h for the numerical solution ( 27)- [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]. The rigorous statement is given in Theorem 2.7. This estimate extends to the system case the contributions of [START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF][START_REF] Vila | Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes[END_REF][START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF] on the scalar case. In [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF], which also deals with strong solutions of nonlinear systems, the assumptions are less classical than ours, in particular we do not need any 'inverse' CFL condition of the form C ≤ ∆t/h (see also [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] for a similar comment in the scalar case).

The proof of this estimate relies on a so-called weak-BV estimate, that is

NT n=0 ∆t (K,L)∈Er |σ KL ||G KL (u n K , u n L ) -f (u n K ) • n KL | ≤ C √ h ,
where E r is defined in [START_REF] Delarue | Probabilistic analysis of the upwind scheme for transport equations[END_REF]. The rigorous statement of this estimate and its proof are gathered in §2.2. Up to the authors' knowledge, this estimate is new for timeexplicit finite volume schemes: in [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF], only time-implicit methods are considered (see also [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]).

Let us now present the outline of the paper. In Section 2 we first briefly recall some classical properties of the finite volume scheme. Then we address the proof of the weak-BV property by introducing a new flux which depicts the entropy dissipation through the edges. Straightforward consequences are then derived.

The next two sections address the proof of the error estimate. In order to compare the discrete solution u h with the strong solution u, we write continuous weak and entropy formulations for u h in Section 3, so that we can adapt the uniqueness proof proposed in [START_REF]Hyperbolic conservation laws in continuum physics[END_REF]. Nevertheless, the discrete solution u h is obviously not a weak entropy solution. Therefore, some error terms coming from the discretization have to be taken into account in the formulation, which take the form of positive locally bounded Radon measures, following [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF]. A large part of Section 3 consists in making these measures explicit and in bounding them with quantities which tend to 0 with the discretization size. In Section 4, we make use of the weak and entropy weak formulations for the discrete solution (and of their corresponding error measures) to derive the error estimate. The distance between the strong solution u and the discrete solution u h is quantified thanks to the relative entropy H(u h , u) introduced in Definition 1.1.

Nonlinear stability

2.1. Preservation of admissible states and discrete entropy inequality. We first give two classical properties of the numerical scheme [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] which are direct consequences of the assumptions we made in §1.2.2. We refer to [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF] for the proofs.

Lemma 2.1. Assume that the initial condition satisfies (3) and that assumption [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] and the CFL condition (25) hold, then, for all K ∈ T , for all n ∈ {0, . . . , N T }, u n K belong to Ω.

Following once again the procedure detailed in [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF], we can derive entropy properties on the numerical scheme from [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF].

Proposition 2.2. The numerical entropy flux ξ KL is consistent with ξ, i.e.

(30) ξ KL (u, u) = ξ(u) • n KL , ∀u ∈ Ω.
Moreover, under the CFL condition [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF], the discrete solution u h satisfies the discrete entropy inequalities: ∀K ∈ T , ∀n ≥ 0,

(31) |K| ∆t (η(u n+1 K ) -η(u n K )) + L∈N (K) |σ KL |ξ KL (u n K , u n L ) ≤ 0.
Note that the consistency (30) of the entropy fluxes ξ KL ensures that (32)

L∈N (K) |σ KL |ξ KL (u, u) = 0, ∀u ∈ Ω.
2.2. Weak-BV inequality for systems of conservation laws. For all (K, L) ∈ T 2 , L ∈ N (K), we introduce the flux

(33) X KL (u, v) := ξ(u) • n KL + Dη(u)(G KL (u, v) -f (u) • n KL ), ∀(u, v) ∈ Ω 2 .
Let us remark that it is neither symmetric nor conservative. Such a quantity may provide the connection between fully discrete and semi-discrete entropy satisfying schemes, but also between entropy-conservative and entropy-stable schemes. It is in particular shown in [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF] (see also [START_REF] Tadmor | The numerical viscosity of entropy stable schemes for systems of conservation laws[END_REF][START_REF]Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[END_REF]) that the fluxes

X KL for (K, L) ∈ E verify (34) -X LK (v, u) ≤ ξ KL (u, v) ≤ X KL (u, v), ∀(u, v) ∈ Ω 2 .
Actually, inequalities (34) can be specified by quantifying the entropy dissipation across the edges.

Proposition 2.3. For all σ KL ∈ E and all (u, v) ∈ Ω 2 , one has

(35) X KL (u, v) -ξ KL (u, v) ≥ β 0 2λ ⋆ |G KL (u, v) -f (u) • n KL | 2
, where β 0 is defined in (4) and λ ⋆ has to be such that [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] and (24) hold.

Proof. We rewrite the left-hand side of Ineq. [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF] for λ = λ ⋆ using the definition [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF] of the flux X KL in order to obtain [START_REF] Kuznetsov | The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation[END_REF] 

X KL (u, v) -ξ KL (u, v) -Dη(u)(G KL (u, v) -f (u) • n KL ) ≥ λ ⋆ η(u - 1 λ ⋆ (G KL (u, v) -f (u) • n KL )) -η(u) .
The uniform convexity (4) of η ensures that 36) and (37) leads to [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF].

(37) λ ⋆ η(u - 1 λ ⋆ (G KL (u, v) -f (u) • n KL )) -η(u) ≥ -Dη(u)(G KL (u, v) -f (u) • n KL ) + 1 2 β 0 λ ⋆ |G KL (u, v) -f (u) • n KL | 2 . Combining (
Thanks to the specified version [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] of the classical inequalities (34), we are now in position for proving a new stability estimate for time-explicit finite volume scheme, namely the weak-BV inequality. This inequality is obtained by quantifying the numerical diffusion of the numerical scheme. As in the scalar case (see [START_REF] Champier | Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh[END_REF][START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF][START_REF] Vila | Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes[END_REF][START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF]), such an equality requires a strengthened CFL condition. In our system case, we require the existence of some ζ ∈ (0, 1) such that [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF] ∆t ≤ β 0 β 1 a 2 λ ⋆ (1ζ)h holds, where β 0 and β 1 are defined by (4), a and h are the mesh parameters [START_REF]On admissibility criteria for weak solutions of the Euler equations[END_REF], and where λ ⋆ appears in the condition [START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF] and [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF]. Note that the strengthened CFL condition [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF] implies the classical CFL condition [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF]. We are now able to obtain the following local estimate, using the notations (18). Proposition 2.4. Assume that the strengthened CFL condition (38) holds, then there exists C depending only on T, r, a, η, ξ, Ω and ζ (but neither on h nor on ∆t) such that

(39) NT n=0 ∆t (K,L)∈Er |σ KL | |G KL (u n K , u n L ) -f (u n K ) • n KL | 2 ≤ C.
Proof. Multiplying the numerical scheme ( 27) by ∆tDη(u n K ) and summing over n ∈ {0, . . . N T } and K ∈ T r provides [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF] A + B = 0, where

A = NT n=0 K∈Tr Dη(u n K )(u n+1 K -u n K )|K|, B = NT n=0 ∆t K∈Tr Dη(u n K ) L∈N (K) |σ KL |G KL (u n K , u n L ).
The concavity of u → η(u) -β1 2 |uu n K | 2 together with the definition (27) of the numerical scheme and property [START_REF]Measure-valued solutions to conservation laws[END_REF] provide that

A ≥ K∈Tr η(u NT +1 K )|K| - K∈Tr η(u 0 K )|K| - β 1 2 NT n=0 ∆t 2 K∈Tr 1 |K| L∈N (K) |σ KL | (G KL (u n K , u n L ) -f (u n K ) • n KL ) 2 .
Using the Jensen inequality, we get

K∈Tr η(u 0 K )|K| ≤ |x|≤B(0,R+h) η(u 0 (x))dx =: C 1 .
The positivity of the entropy η yields K∈Tr η(u NT +1

K

)|K| ≥ 0. Moreover, Cauchy-Schwarz inequality ensures that for all K ∈ T r and all n ∈ {0, . . . , N T }, one has

L∈N (K) |σ KL | (G KL (u n K , u n L ) -f (u n K ) • n KL ) 2 ≤ L∈N (K) |σ KL | L∈N (K) |σ KL | |G KL (u n K , u n L ) -f (u n K ) • n KL | 2 .
Then it follows from the regularity assumption ( 17) on the mesh that

(41) A ≥ -C 1 - β 1 ∆t 2a 2 h NT n=0 ∆t K∈Tr L∈N (K) |σ KL | |G KL (u n K , u n L ) -f (u n K ) • n KL | 2 .
Concerning the term B, we use the definition (33) of the entropy flux X KL to get

B = NT n=0 ∆t K∈Tr L∈N (K) |σ KL |(X KL (u n K , u n L ) -ξ(u n K ) • n KL + Dη(u n K )f (u n K ) • n KL ).
Using the property L∈N (K) |σ KL |n KL = 0 for all K ∈ T , we can reorganize the term B into (42)

B = B 1 + B 2 ,
where

B 1 = NT n=0 ∆t K∈Tr L∈N (K) |σ KL |(X KL (u n K , u n L ) -ξ KL (u n K , u n L )), B 2 = NT n=0 ∆t (K,L)∈∂Tr |σ KL |ξ KL (u n K , u n L ).
Since ξ KL is a continuous function of bounded quantities, B 2 can be bounded using the regularity of the mesh [START_REF]On admissibility criteria for weak solutions of the Euler equations[END_REF]. More precisely, one gets

(43) |B 2 | ≤ max (K,L)∈∂Tr ξ KL L ∞ (Ω 2 ) NT n=0 ∆t (K,L)∈∂Tr |σ KL | ≤ C 2
for some C 2 > 0 depending only on T , r, a, ξ and Ω. On the other hand, it follows from Proposition 2.3 that

(44) B 1 ≥ β 0 2λ ⋆ NT n=0 ∆t K∈Tr L∈N (K) |σ KL | |G KL (u n k , u n L ) -f (u n K ) • n KL | 2 .
Combining ( 41)-( 44) into (40) leads to

β 0 2λ ⋆ - β 1 ∆t 2a 2 h NT n=0 ∆t K∈Tr L∈N (K) |σ KL ||G KL (u n k , u n L ) -f (u n K ) • n KL | 2 ≤ C 1 + C 2 .
The CFL condition [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF] has been strengthened so that

β 0 2λ ⋆ - β 1 ∆t 2a 2 h ≥ ζβ 0 2λ ⋆
remains uniformly bounded away from 0. Estimate (39) follows.

We state now a straightforward consequence of Proposition 2.4. Its proof relies on the Cauchy-Schwarz inequality and is left to the reader.

Corollary 2.5. Assume that (38) holds, then there exists C BV depending only on T , r, a, ξ, η, u 0 , Ω and ζ such that 

(45) NT n=0 ∆t (K,L)∈Er |σ KL | |G KL (u n K , u n L ) -f (u n K ) • n KL | ≤ C BV √ h .
|σ KL | |ξ KL (u n K , u n L ) -ξ(u K ) • n KL | ≤ Dη ∞ C BV √ h , ( 46 
) NT n=0 K∈Tr |K||u n+1 K -u n K | ≤ C BV √ h , ( 47 
) NT n=0 K∈Tr |K||η(u n+1 K ) -η(u n K )| ≤ Dη ∞ C BV √ h . ( 48 
)
Proof. Using the Lipschitz continuity of η in [START_REF] Friedrichs | Symmetric hyperbolic linear differential equations[END_REF], one obtains inequality [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF]. Thanks to definition [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] of the scheme and thanks to the divergence free property [START_REF]Measure-valued solutions to conservation laws[END_REF], one has for all K ∈ T and all n ∈ N

|u n+1 K -u n K ||K| ≤ ∆t L∈N (K) |σ KL | |G KL (u n K , u n L ) -f (u n K ) • n KL | .
Summing over K ∈ T r and n ∈ {0, . . . , N T } and using [START_REF] Tadmor | The numerical viscosity of entropy stable schemes for systems of conservation laws[END_REF] provides [START_REF] Tzavaras | Relative entropy in hyperbolic relaxation[END_REF]. Inequality [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF] then follows from the Lipschitz continuity of η.

We now state our main result, that consists in an a priori error estimate between a strong solution u and a discrete solution u h . Theorem 2.7. Assume that u 0 ∈ W 1,∞ (R d ) and that the solution u of the Cauchy problem (1)-( 3) belongs to W 1,∞ (R d × [0, T ]). Let u h , with 0 < h ≤ 1, defined by the numerical scheme ( 27)-( 29) and assume that the strengthened CFL condition (38) holds. Then, for all r > 0 and T > 0 there exist C depending only on T, r, Ω, a, λ ⋆ , u 0 , G KL , η and f , such that

T 0 B(0,r+L f (T -t)) |u -u h | 2 dxdt ≤ C √ h.

Continuous weak and entropy formulations for the discrete solution

In order to obtain the error estimate of Theorem 2.7, we aim at using the relative entropy of u h w.r.t. u. Since u h is only an approximate solution, it neither satisfies exactly the weak formulation [START_REF] Champier | Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh[END_REF] nor the entropy weak formulation [START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF]. Some numerical error terms appear in these formulations, and thus also appear the inequality of the relative entropy [START_REF] Vila | Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes[END_REF] ∂ t H(u h , u)

+ d α=1 ∂ α Q α (u h , u) ≤ - d α=1 (∂ α u) T Z α (u h , u)
+ numerical error terms.

As usual, these terms may be described by Radon measures, see for instance [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF][START_REF] Eymard | Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme[END_REF][START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF][START_REF] Kröner | A posteriori error estimates for upwind finite volume schemes[END_REF][START_REF] Jovanović | Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates[END_REF][START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF]. Note that for nonlinear systems of conservation laws, a function which satisfies the entropy inequality [START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF] is not necessarily a weak solution [START_REF] Champier | Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh[END_REF]. This leads us to introduce error measures for both the entropy inequality [START_REF] Cockburn | An error estimate for finite volume methods for multidimensional conservation laws[END_REF] and the weak formulation (10) of u h . Let us first begin with the entropy formulation and the related measures. For X = R d or X = R d × R + , we denote by M(X) the set of locally bounded Radon measures on X, i.e., M(X) = (C c (X)) ′ where C c (X) is the set of continuous compactly supported functions on X. If µ ∈ M(X) we set µ, ϕ = X ϕdµ for all ϕ ∈ C c (X).

Definition 3.1. For ψ ∈ C c (R d ), ϕ ∈ C c (R d × R + ), we define µ 0 ∈ M(R d ) and µ ∈ M(R d × R + ) by µ 0 , ψ = R d |η(u 0 (x)) -η(u h (x, 0))|ψ(x)dx, µ, ϕ = µ T , ϕ + ∞ n=0 ∆t (K,L)∈Er |σ KL | |ξ KL (u n K , u n L ) -ξ KL (u n K , u n K )| µ KL , ϕ + ∞ n=0 ∆t (K,L)∈Er |σ KL | |ξ KL (u n K , u n L ) -ξ KL (u n L , u n L )| µ LK , ϕ ,
where

µ T , ϕ = ∞ n=0 K∈Tr |η(u n+1 K ) -η(u n K )| t n+1 t n K ϕ(x, t)dxdt, µ KL , ϕ = 1 |K| |σ KL | (∆t) 2 × t n+1 t n K t n+1 t n σKL 1 0 (h + ∆t)ϕ(γ + θ(x -γ), s + θ(t -s))dθdxdtdγds, µ LK , ϕ = 1 |K| |σ KL | (∆t) 2 × t n+1 t n L t n+1 t n σKL 1 0 (h + ∆t)ϕ(γ + θ(x -γ), s + θ(t -s))dθdxdtdγds.
As it will be highlighted by Proposition 3.3 later on, the measures µ and µ 0 describe the approximation error in the entropy formulation satisfied by u h . Let us first estimate them on compact sets. Lemma 3.2. Assume that the strengthened CFL condition (38) holds, then, for all r > 0 and T > 0 there exist C µ0 > 0, depending only on u 0 , Dη ∞ , and r, and C µ > 0, depending only on T, r, a, λ ⋆ , u 0 , G KL and η such that, for all h < r,

(50) µ 0 (B(0, r)) ≤ C µ0 h and µ(B(0, r) × [0, T ]) ≤ C µ √ h .
Proof. The regularity of u 0 : R d → R m yields

µ 0 (B(0, r)) ≤ h Dη ∞ B(0,r+h) |∇u 0 |dx.
For r > 0 and T > 0 the measure µ T satisfies

µ T (B(0, r) × [0, T ]) = T 0 B(0,r) NT n=0 K∈Tr |η(u n+1 K ) -η(u n K )|1 K×[t n ,t n+1 ] dxdt.
Then, using the time-BV estimate [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF],

µ T (B(0, r) × [0, T ]) ≤ ∆t NT n=0 K∈Tr |K||η(u n+1 K ) -η(u n K )| ≤ ∆t Dη ∞ C BV √ h .
Since ∆t satisfies the CFL condition [START_REF] Leger | Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations[END_REF], one has

(51) µ T (B(0, r) × [0, T ]) ≤ C µT √ h,
where

C µT := a 2 Dη ∞ λ ⋆ C BV .
The measures µ KL and µ LK satisfy:

µ KL (R d × R + ) ≤ h + ∆t, µ LK (R d × R + ) ≤ h + ∆t. Therefore, µ(B(0, r) × [0, T ]) ≤ C µT √ h + (h + ∆t) NT n=0 ∆t (K,L)∈Er |σ KL | |ξ KL (u n K , u n L ) -ξ KL (u n K , u n K )| +(h + ∆t) NT n=0 ∆t (K,L)∈Er |σ KL | |ξ KL (u n K , u n L ) -ξ KL (u n L , u n L )| .
Hence, using Lemma 2.6, the CFL condition [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF] and the bound (51) provides

µ(B(0, r) × [0, T ]) ≤ C µ √ h,
where

C µ = C µT + 2 1 + a 2 λ ⋆ Dη ∞ C BV .
Proposition 3.3. Let µ and µ 0 be the measures introduced in Definition 3.1, then, for all

ϕ ∈ C 1 c (R d × R + ; R + ), one has (52) 
R d ×R+ η(u h )∂ t ϕ(x, t) + d α=1 + R d η(u 0 (x))ϕ(x, 0)dxξ α (u h )∂ α ϕ(x, t)dxdt ≥ - R d ×R+ (|∇ϕ| + |∂ t ϕ|) dµ(x, t) - R d ϕ(x, 0)dµ 0 (x). Proof. Let ϕ ∈ C 1 c (R d × R + ; R + ).
Let T > 0 and r > 0 such that supp ϕ ⊂ B(0, r) × [0, T ). Let us multiply (31) by

t n+1
t n K ϕ(x, t)dxdt and sum over the control volumes K ∈ T r and n ≤ N T . It yields

(53) T 1 + T 2 ≤ 0,
where

T 1 = NT n=0 K∈Tr 1 ∆t (η(u n+1 K ) -η(u n K )) t n+1 t n K ϕ(x, t)dxdt, (54) 
T 2 = NT n=0 K∈Tr 1 |K| t n+1 t n K ϕ(x, t)dxdt L∈N (K) |σ KL |ξ KL (u n K , u n L ). (55) 
The term T 1 corresponds to the discrete time derivative of η(u h ) and T 2 to the discrete space derivative of ξ(u h ). The proof relies on the comparison firstly between T 1 and T 10 and secondly between T 2 and T 20 , where T 10 and T 20 denote respectively the temporal and spatial term in (52):

T 10 = - R d ×R+ η(u h )∂ t ϕ(x, t)dxdt - R d η(u 0 (x))ϕ(x, 0)dx, T 20 = - R d ×R+ d α=1 ξ α (u h )∂ α ϕ(x, t)dxdt.
Let us first focus on T 10 . Following its definition [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF], the approximate solution u h is piecewise constant, then so does η(u h ). Therefore, we can rewrite

T 10 = NT n=0 K∈Tr (η(u n+1 K ) -η(u n K ))
1 ∆t

t n+1 t n K ϕ(x, t n+1 )dxdt - R d (η(u 0 (x)) -η(u h (x, 0)))ϕ(x, 0)dx.
It is now easy to verify that

|T 1 -T 10 | ≤ NT n=0 K∈Tr |η(u n+1 K ) -η(u n K )| t n+1 t n K |∂ t ϕ|dxdt + R d |η(u 0 (x)) -η(u h (x, 0))|ϕ(x, 0)dx.
Then, accounting from Definition 3.1, the inequality reads

(56) |T 1 -T 10 | ≤ R d ×R+ |∂ t ϕ|dµ T (x, t) + R d ϕ(x, 0)dµ 0 (x).
We now consider the terms T 2 and T 20 . Performing a discrete integration by parts by reorganizing the sum, and using the properties [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF] and ( 23) lead to (57)

T 2 = T 2,1 + T 2,2 , with T 2,1 = NT n=0 (K,L)∈Er |σ KL | |K| t n+1 t n K ϕ(x, t)(ξ KL (u n K , u n L ) -ξ KL (u n K , u n K ))dxdt, T 2,2 = NT n=0 (K,L)∈Er |σ KL | |L| t n+1 t n L ϕ(x, t)(ξ LK (u n L , u n K ) -ξ LK (u n L , u n L ))dxdt.
Gathering terms of T 20 by edges yields

T 20 = T 20,1 + T 20,2 ,
where, thanks to [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF], we have set

T 20,1 = NT n=0 (K,L)∈Er t n+1 t n σKL (ξ KL (u n K , u n L ) -ξ(u n K ) • n KL ) ϕ(γ, t)dγdt, T 20,2 = NT n=0 (K,L)∈Er t n+1 t n σKL (ξ LK (u n L , u n K ) -ξ(u n L ) • n LK ) ϕ(γ, t)dγdt.
It is easy to verify

T 2,1 -T 20,1 = NT n=0 ∆t (K,L)∈Er |σ KL | (ξ KL (u n K , u n L ) -ξ KL (u n K , u n K )) × 1 |K||σ KL |(∆t) 2 t n+1 t n K t n+1
t n σKL (ϕ(x, t)ϕ(γ, s))dγdsdxdt.

Then using the definition of µ KL in Definition 3.1, we obtain the following estimate:

(58) |T 2,1 -T 20,1 | ≤ NT n=0 ∆t (K,L)∈Er |σ KL | |ξ KL (u n K , u n L ) -ξ KL (u n K , u n K )| µ KL , |∇ϕ| + |∂ t ϕ| .
Similarly, one obtains 56), (57), ( 58) and ( 59), one has

(59) |T 2,2 -T 20,2 | ≤ NT n=0 ∆t (K,L)∈Er |σ KL | |ξ LK (u n L , u n K ) -ξ LK (u n L , u n L )| µ LK , |∇ϕ| + |∂ t ϕ| , the measure µ LK ∈ M(R d × R + )
-T 10 -T 20 ≥ - R d ×R+ (|∇ϕ| + |∂ t ϕ|)dµ(x, t) - R d ϕ(x, 0)dµ 0 (x),
which concludes the proof of Proposition 3.3.

Similar calculations can be used to estimate how close u h is to a weak solution. For that purpose we define the following measures.

Definition 3.4. For ψ ∈ C c (R d ) and ϕ ∈ C c (R d × R + ), we set µ 0 , ψ = R d |u 0 (x) -u h (x, 0)|ψ(x)dx, µ, ϕ = µ T , ϕ + ∞ n=0 ∆t (K,L)∈Er |σ KL ||G KL (u n K , u n L ) -G KL (u n K , u n K )| µ KL , ϕ + ∞ n=0 ∆t (K,L)∈Er |σ KL ||G KL (u n K , u n L ) -G KL (u n L , u n L )| µ LK , ϕ , where µ T , ϕ = ∞ n=0 K∈Tr |u n+1 K -u n K | t n+1 t n K ϕ(x, t)dxdt, µ KL , ϕ = 1 |K||σ KL |∆t 2 × t n+1 t n K t n+1 t n σKL 1 0 (h + ∆t)ϕ(γ + θ(x -γ), s + θ(t -s))dθdxdtdγds, µ LK , ϕ = 1 |L||σ KL |∆t 2 × t n+1 t n L t n+1 t n σKL 1 0 (h + ∆t)ϕ(γ + θ(x -γ), s + θ(t -s))dθdxdtdγds. R + ; R + ), one has (61) R d ×R+ H(u h , u)∂ t ϕ(x, t) + d α=1 Q α (u h , u)∂ α ϕ(x, t) dxdt ≥ - R d ×R+ (|∇ϕ| + |∂ t ϕ|) dµ(x, t) - R d ϕ(x, 0)dµ 0 (x) - R d ×R+ (|∇ [ϕDη(u)] | + |∂ t [ϕDη(u)] |) dµ(x, t) - R d [ϕDη(u)](x, 0)dµ 0 (x) + R d ×R+ ϕ d α=1 ∂ α u T Z α (u h , u)dxdt,
where

Z α (u h , u) = D 2 η(u)(f α (u h ) -f α (u) -(Df α (u)) (u h -u)).
Proof. Let ϕ be any nonnegative Lipschitz continuous test function with compact support in R d × [0, T ]. Since u is a classical solution of ( 1)-( 3), it satisfies

R d ×R+ η(u)∂ t ϕ(x, t) + d α=1 ξ α (u)∂ α ϕ(x, t)dxdt + R d η(u 0 )ϕ(x, 0)dx = 0.
Subtracting this identity to (52) yields (62)

R d ×R+ (η(u h ) -η(u))∂ t ϕ(x, t) + d α=1 (ξ α (u h ) -ξ α (u))∂ α ϕ(x, t)dxdt -≥ R d ×R+ (|∇ϕ| + |∂ t ϕ|)dµ(x, t) - R d ϕ(x, 0)dµ 0 (x).
We now exhibit the relative entropy-relative entropy flux pair in the inequality (62) and obtain (63)

R d ×R+ H(u h , u)∂ t ϕ + d α=1 Q α (u h , u)∂ α ϕ dxdt ≥ - R d ×R+ |∇ϕ| + |∂ t ϕ|dµ(x, t) - R d ϕ(x, 0)dµ 0 (x) - R d ×R+ (Dη(u)) T (u h -u)∂ t ϕ + d α=1 (f α (u h ) -f α (u))∂ α ϕ dxdt.
Since u is a strong solution of (1)-(3), it satisfies the following weak identity, ∀ψ ∈

C c (R d × R + ; R m ) (64) R d ×R+ u∂ t ψ(x, t) + d α=1 f α (u)∂ α ψ(x, t) dxdt + R d u 0 (x)ψ(x, 0)dx = 0.
Then we combine Proposition 3.6 with (64), so that using the Lipschitz continuous vector field [ϕDη(u)] as test function leads to (65) -

R d ×R+ (Dη(u)) T (u h -u)∂ t ϕ + d α=1 (f α (u h ) -f α (u))∂ α ϕ dxdt ≥ - R d ×R+ |∇[ϕDη(u)]| + |∂ t [ϕDη(u)]|dµ(x, t) - R d [ϕDη(u)](x, 0)dµ 0 (x) + R d ×R+ (u h -u)ϕ∂ t (Dη(u)) + d α=1 (f α (u h ) -f α (u))ϕ∂ α (Dη(u))dxdt.
Moreover identity (6) together with (1) gives

(66) ∂ t (Dη(u)) = ∂ t u T D 2 η(u) = - d α=1 ∂ α (f α (u)) T D 2 η(u) = - d α=1 ∂ α u T Df α (u) T D 2 η(u) = - d α=1 ∂ α u T D 2 η(u)Df α (u).
Injecting ( 65) and ( 66) into (63) leads to the conclusion.

Lemma 4.2. There exists C Z depending only on f, η and Ω such that, for all α ∈ {1, . . . , d},

|Z α (u h , u)| ≤ C Z |u h -u| 2 . (67) 
Proof. For M : Ω → R m×m and Υ : Ω → L(R m ; R m×m ), we set 

M ∞,∞ = sup u∈Ω |M (u)| ∞ , Υ ∞,2 = sup
f α (u h ) -f α (u) -(Df α (u)) (u h -u) ≤ 1 2 D 2 f α ∞,2 |u h -u| 2 , then, estimate (67) holds for C Z = 1 2 D 2 η ∞,∞ D 2 f α ∞,2 .
We now prove the following lemma on the finite speed of propagation.

Lemma 4.3. Let L f be defined by [START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF], then, for all s ≥ L f , one has

(68) sH(u h , u) + d α=1 x α |x| Q α (u h , u) ≥ 0.
Proof. Denote by w h := u hu, then it follows from the characterization ( 14) of the relative entropy H that (69)

H = 1 0 θ 0 (w h ) T D 2 u η(u + γw h )w h dγdθ.
Denoting by A γ the symmetric definite positive matrix D 2 u η(u + γw h ), and by On the other hand, it follows from the definition (5) of the entropy flux ξ that

• , • Aγ the scalar product on R n defined by v 1 , v 2 Aγ = v T 1 A γ v 2 ,
Q α = 1 0 Dη(u + θw h ) -Dη(u) Df α (u + θw h ) T w h dθ = 1 0 θ 0 w h , Df α (u + θw h ) T w h Aγ dγdθ
for all α ∈ {1, . . . , d}. The quantity L f introduced in (7) has been designed so that

w h , Df α (u + θw h ) T w h Aγ ≤ L f w h , w h Aγ . Therefore, we obtain (71) |Q α | ≤ L f 1 0 θ 0 w h , w h Aγ dγdθ = L f H.
The fact that (68) holds is a straightforward consequence of (71).

4.2.

End of the proof of Theorem 2.7. We now have at hand all the tools needed for comparing u h to u via the relative entropy H(u h , u). Let δ ∈ (0, T ) be a parameter to be fixed later on, and, for k ∈ N, we define the nonincreasing Lipschitz continuous function θ k : R + → [0, 1] by

θ k (t) = min 1, max 0, (k + 1)δ -t δ , ∀t ≥ 0.
Let us also introduce the Lipschitz continuous function ψ : R d × R + → [0, 1] defined by ψ(x, t) = 1min (1, max (0, |x|r -L f (Tt) + 1)) , where L f is defined by [START_REF] Chainais-Hillairet | Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate[END_REF]. The function ϕ k : (x, t) ∈ R d × R + → θ k (t)ψ(x, t) ∈ [0, 1] can be considered as a test function in (61). Indeed, denoting by Thanks to Lemma 4.3, one has (72)

I δ k = [kδ, (k + 1)δ], C r,T (t) = {(x, t) | |x| ∈ [r + L f (T -t), r + L f (T -t) + 1]} , one has ∂ t ϕ k (x, t) = - 1 δ 1 I δ k (t)ψ(x, t) -L f θ k (t)1 Cr,T (t) (x), ∇ϕ k (x, t) = - x |x| θ k (t)
1 δ I δ k R d Hψdxdt + T 0 θ k (t) R d d α=1 ∂ α u T Z α (u h , u) ψdxdt ≤ R 1 + R 2 + R 3 + R 4 .
The definition of ϕ k ensures that

ϕ k ∞ = 1, ∇ϕ k ∞ ≤ 1, ∂ t ϕ k ∞ ≤ 1 δ + L f and supp(ϕ k ) ⊂ t∈[0, (k+1)δ] 
B(0, r + L f (Tt) + 1) × {t}, This leads to

R 1 ≤ 1 δ + L f + 1 µ(supp(∇ϕ k ) ∪ supp(∂ t ϕ k )).
Thanks to Lemma 3.2, we obtain that there exists C k µ (depending on k, r, T , δ, L f , a, λ ⋆ , u 0 , G KL and η) such that (73)

R 1 ≤ C k µ 1 δ + L f + 1 √ h.
It follows from similar arguments that there exists C k µ0 (depending on k η, u 0 , r, L f , T and δ) such that (74) R 2 ≤ C k µ0 h, and, thanks to Lemma 3.5, we obtain that there exists C k µ 0 (depending on k, r, u 0 , L f , T and δ) such that (75) R 4 ≤ C k µ 0 Dη(u 0 ) ∞ h. Similarly, there exists C k µ (depending on k, T, r, L f , a, λ ⋆ , u 0 , G KL and δ) such that

(76) R 3 ≤ C k µ Dη(u) ∞ 1 δ + L f + 1 + D 2 η ∞,∞ ( ∂ t u ∞ + ∇u ∞ ) √ h.
By using Lemma 4.2 and 0 ≤ θ k (t) ≤ 1, we obtain (77)

T 0 θ k (t) R d d α=1 ∂ α u T Z α (u h , u) ψdxdt ≥ -C Z ∇u ∞ R d ×[0,(k+1)δ]
|u h (x, t)u(x, t)| 2 ψ(x, t)dxdt.

Since the entropy η is supposed to be β 0 -convex, we have (78) H(x, t) ≥ β 0 2 |u h (x, t)u(x, t)| 2 .

Putting (73)-(78) together with (72) provides (79)

β 0 2δ -C Z ∇u ∞ I δ k R d |u h -u| 2 ψ dxdt ≤ C Z ∇u ∞ R d ×[0,kδ] |u h -u| 2 ψ dxdt + C k √ h,
where (recall that h ≤ 1)

C k =C k µ 1 δ + L f + 1 + C k µ0 + C k µ 0 Dη(u 0 ) ∞ + C k µ Dη(u) ∞ 1 δ + L f + 1 + D 2 η ∞,∞ ( ∂ t u ∞ + ∇u ∞ ) . Choose now δ = T p ⋆ +1 with p ⋆ = min p ∈ N ⋆ | T p+1 ≤ β0 2CZ ∇u ∞ +2
(note that neither δ nor p ⋆ depend on h), so that (79) becomes We conclude the proof using (81) in (82).

Conclusion

We analyzed the convergence of first order finite volume schemes entering the framework detailed in [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF] and summarized in §1.2.2. In §2.2, we derived a socalled weak-BV estimate based on the quantification of the numerical entropy dissipation. This estimate is new in the case of time-explicit finite volume schemes. It allows to prove some error estimate between a numerical solution and a strong solution of order h 1/4 in the space-time L 2 -norm. Let us also mention that one could use the weak-BV estimate to prove to convergence to entropy measure-valued solutions, following [START_REF]Measure-valued solutions to conservation laws[END_REF] (see also [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]). On the other hand, strong solutions are global if one adds some suitable entropy-dissipating relaxation term [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF][START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF]), and our work could be extended to this situation without any major difficulty by mixing our result with the one proposed in [START_REF]Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws[END_REF].
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 326 Consequences of the weak-BV estimate. The weak-BV estimate (45) implies a similar control on entropy fluxes and the time variations of u h . Assume that the strengthened CFL condition (38) holds, then

  being given by Definition 3.1. Bearing in mind the definition of µ ∈ M(R d × R + ) given in Definition 3.1, inequalities (53), (

v| 2 ,

 2 where | • | 2 and | • | ∞ denote the usual matrix 2-and ∞-norms respectively. Using the Taylor expansion of f α around u, we get that

1 ∂x α |x| dxdt + R 1 + R 2 + R 3 + R 4 , where R 1 = 3 =

 1123413 Cr,T (t) (x), so that both ∂ t ϕ k and |∇ϕ k | belong to the set E defined in Remark 3.1. Then taking ϕ k as test function in (α u T Z α (u h , u) ψdxdtR d ×[0,T ] (|∇ϕ k (x, t)| + |∂ t ϕ k (x, t)|)dµ(x, t), R 2 = R d ψ(x, 0)dµ 0 (x), R R d ×[0,T ] |Dη(u)|(|∇ϕ k (x, t)| + |∂ t ϕ k (x, t)|)dµ(x, t) + R d ×[0,T ] ϕ k (x, t)|D 2 η(u)(x, t)| ∞ (|∂ t u| + |∇u|) dµ(x, t), R 4 = R d ψ(x, 0)|Dη(u 0 )|dµ 0 (x).

C k ( 1 +

 1 wheree k = I δ k R d |u h -u| 2 ψ dxdt and ω = C Z ∇u ∞ .Hence, a few algebraic calculations allow us to claim that ω) p ⋆ -k+1ω .Noticing that ψ(x, t) = 1 if x ∈ B(0, r + L f (Tt)), and that ψ(x, t) ≥ 0 for all (x, t) ∈ R d × (0, T ), one finally has (82)T 0 B(0,r-st) |uu h | 2 dxdt ≤ T 0 R d |uu h | 2 ψ(x, t)dxdt = p ⋆ k=0 e k .
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Remark 3.1. It follows from the definitions of the measures µ and µ that they can be extended (in a unique way) into continuous linear forms defined on the set

Indeed, any ϕ ∈ E admit a unique trace on σ KL , so that the quantities µ KL , ϕ , µ LK , ϕ , µ KL , ϕ and µ LK , ϕ are well defined. Moreover, one has

We now state a lemma and a proposition whose proofs are left to the reader, since they are similar to the proofs of Lemma 3.2 and Proposition 3.3 respectively as one uses the estimates ( 45) and ( 47) instead of ( 46) and ( 48). Lemma 3.5. Let u h defined by ( 27)- [START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]. Assume that (38) holds, then, for all r > 0 and T > 0 there exist C µ 0 > 0, depending only on u 0 and r, and C µ > 0, depending only on T, r, a, λ ⋆ , u 0 , G KL such that, for all h < r,

where

We are now in position to provide the approximate weak formulation satisfied by u h . In the statement below, ϕ is a vector-valued function, and we adopted the notation |∇ϕ| = max α∈{1,...,d} |∂ α ϕ|. The proof of Proposition 3.6 follows the same guidelines as the proof of Proposition 3.3 and is left to the reader. Proposition 3.6. Let µ and µ 0 be the measures introduced in Definition 3.1, then, for all

Error estimate using the relative entropy

With the error measures µ, µ 0 , µ, and µ 0 at hand, we are now in position to precise inequality (49) satisfied by the relative entropy H(u h , u) and then to conclude the proof of Theorem 2.7.