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ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME
APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF

CONSERVATION LAWS∗

CLÉMENT CANCÈS†‡ , HÉLÈNE MATHIS§ , AND NICOLAS SEGUIN†‡

Abstract. We study the finite volume approximation of strong solutions to nonlinear systems
of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy
satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of
the mesh, which enables to prove a weak–BV estimate for the numerical approximation under a
strengthen CFL condition. Then we derive error estimates in the multidimensional case, using the
relative entropy between the strong solution and its finite volume approximation. The error terms
are carefully studied, leading to a classical h1/4 estimate in L2 under this strengthen CFL condition.
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1. Introduction. This paper deals with error estimates of the finite volume ap-
proximation of hyperbolic systems of conservation laws. The solutions to such systems
may develop discontinuities in finite time and, since the pioneering work of Lax [32],
entropy conditions are added to select physical/admissible solutions. However, it has
been shown by De Lellis and Székelyhidi Jr in [12, 13] that such a criterion is not
sufficient in the multidimensional case. Nonetheless, it is known since several decades
(see in particular [15, 10]) that if a strong solution exists, then there exists a unique
entropy solution corresponding to the same initial data, and that it coincides with
this strong solution. Moreover, it can be shown that entropy solutions are stable with
respect to strong solutions. Since error estimates of any approximation is based on
the stability properties of the model, we restrict this study to strong solutions which
are known to exist, in finite time, and to be unique.

The well-posedness of the scalar case has been proved by Kruzhkov in [29], in
several dimensions. The first error estimate for finite volume methods on cartesian
grids has been obtained by Kuznetsov [30], who provides an estimate in h1/2 (h
being the characteristic size of the grid) for initial data of bounded variations. The
multidimensional case for scalar conservation laws is much more tricky as soon as
unstructured meshes are considered [8, 9, 40, 18, 7]. These works use the DiPerna’s
uniqueness theorem [17] and lead to an h1/4 error estimate.

In the case of nonlinear systems, only few results exist (the linear case, or more
precisely the case of Friedrichs systems, are been studied in [41] and [25]). In one
space dimension, the first convergence study is due to DiPerna in [16]. In the mul-
tidimensional case, if arbitrary times are considered, the convergence can be reached
only towards measure-valued solutions (due to the lack of uniqueness of entropy weak
solutions mentioned above), see [24] where space-time discontinuous Galerkin meth-
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ods are analyzed. On the other hand, an h1/4 error estimate between approximate
and strong solution has been proved in [26] for time-implicit finite volume schemes.

The key-point in all the multidimensional studies is the control of the BV semi-
norm. For unstructured meshes, one can only proves that it grows as h−1/2 (even in
the scalar case, cf. [14]), which actually is the main barrier to obtain expected rate of
convergence. Here, we prove for first-order time-explicit finite volume schemes such
an estimate, under classical assumptions on the numerical flux (see for instance [5]
and [38]). As in the scalar case, this so-called weak–BV estimate requires a slightly
reduced CFL condition, in order to ensure a sufficient amount of numerical entropy
dissipation (see for instance [19]). We also simplify the framework of [26] and prove
an error estimate in h1/4.

Remark 1.1. Let us also stress that, in the one-dimensional case, more accurate
results may exist. In [4], the authors prove the optimal rate of convergence in the case
of strong solutions. On the other hand, Laforest in [31] is able to obtain a posteriori
estimates for front-tracking methods.

1.1. Hyperbolic systems of conservation laws.

1.1.1. Strong, weak, and entropy weak solutions. We consider a system of
m conservation laws

(1.1) ∂tu(x, t) +

d∑
α=1

∂αfα(u)(x, t) = 0.

System (1.1) is set on the whole space x ∈ Rd, and for any time t ∈ [0, T ], T > 0. We
assume that there exists a convex bounded subset of Rm, denoted by Ω and called set
of the admissible states such that

(1.2) u(x, t) ∈ Ω, ∀(x, t) ∈ Rd × [0, T ].

System (1.1) is complemented with the initial condition

(1.3) u(x, 0) = u0(x) ∈ Ω, ∀x ∈ Rd.

We assume for all α ∈ {1, . . . , d} the functions fα : Rm → Rm to belong to
C2(Ω;Rm), and be such that Dfα are diagonalizable with real eigenvalues, where D
denotes the differential with respect to the variables u.

System (1.1) is endowed with a uniformly convex entropy η ∈ C2(Ω;R) such that
there exists β1 ≥ β0 > 0 so that

(1.4) spec
(
D2η(u)

)
⊂ [β0;β1], ∀u ∈ Ω,

and the corresponding entropy flux ξ ∈ C2(Ω;Rd) satisfies for all α ∈ {1, . . . , d}

(1.5) Dξα(u) = Dη(u)Dfα(u), ∀u ∈ Ω.

Without loss of generality, we assume that η(u) ≥ 0 for all u ∈ Ω. The existence of
the entropy flux ξ amounts to assume the integrability condition (see e.g. [22])

(1.6) D2η(u)Dfα(u) = Dfα(u)TD2η(u), ∀u ∈ Ω.

Let us introduce the quantity Lf by

(1.7) Lf = sup
α∈{1,...,d}

sup
(u,v)∈Ω2

sup
w∈Rm\{0}

∣∣∣∣wTD2η(v)Dfα(u)w

wTD2η(v)w

∣∣∣∣ .
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Remark 1.2. Notice that, in view of (1.6), the matrix Dfα(u) is self-adjoint for
the scalar product 〈w, v〉u = wTD2η(u)v. Therefore, the Rayleigh quotient

(1.8) sup
w∈Rm\{0}

∣∣∣∣wTD2η(u)Dfα(u)w

wTD2η(u)w

∣∣∣∣ = sup
w∈Rm\{0}

〈w,Dfα(u)w〉u
〈w,w〉u

provides exactly the largest eigenvalue in absolute value of Dfα(u). The situation
in (1.7) is more intricate than in (1.8) since u might be different of v, but the quantity
Lf is bounded in view of the boundedness of Ω and of the regularity of fα and η.

Despite it is well-known that even for smooth initial data u0, the solutions
of (1.1)–(1.3) may develop discontinuities after a finite time, our study is restricted
to the approximation of smooth solutions u ∈W 1,∞(Rd×R+; Ω) to (1.1)–(1.3). Such
solutions are called strong solutions, and they satisfy the conservation of the entropy

(1.9) ∂tη(u) +
d∑

α=1

∂αξα(u) = 0 in Rd × R+.

We refer for instance to [27, 34, 11] for specific results on strong solutions of systems
of conservation laws.

Assuming that u0 ∈ L∞(Rd; Ω), a function u ∈ L∞(Rd × R+; Ω) is said to be a
weak solution to (1.1)–(1.3) if, for all φ ∈ C1

c (Rd × R+;Rn), one has

(1.10)

∫∫
Rd×R+

u∂tφ dxdt+

∫
Rd
u0φ(·, 0) dx+

∫∫
Rd×R+

d∑
α=1

fα(u)∂αφ dxdt = 0.

Moreover, u is said to be an entropy weak solution to (1.1)–(1.3) if u is a weak solution,
i.e., u satisfies (1.10), and if, for all ψ ∈ C1

c (Rd × R+);R+), it satisfies

(1.11)

∫∫
Rd×R+

η(u)∂tψdxdt+

∫
Rd
η(u0)ψ(·, 0)dx+

∫∫
Rd×R+

d∑
α=1

ξα(u)∂αψdxdt ≥ 0.

1.1.2. Relative entropy. In the scalar case, the comparison of two entropy
weak solutions lies on the Kruzhkov’s paper [29], which has been extended to the
comparison of an entropy weak solution with an approximate solution by Kuznetsov
[30]. In the case of systems of conservation laws, these techniques no longer work.
Basically, the family of entropy–entropy flux pairs (η, ξ) is not sufficiently rich to
control the difference between two solutions. Nevertheless, let us assume that one of
these solutions is a strong solution, u in the sequel, and introduce:

Definition 1.1 (Relative entropy). Let u, v ∈ Ω. The relative entropy of v w.r.t.
u is defined by

H(v, u) = η(v)− η(u)−Dη(u)(v − u),

and the corresponding relative entropy fluxes Q : Rn × Rn → Rd are

Qα(v, u) = ξα(v)− ξα(u)−Dη(u)(fα(v)− fα(u)), ∀α ∈ {1, . . . , d}.

The notion of relative entropy for systems of conservation laws goes back to the
early works of DiPerna and Dafermos (see [15], [10] and the condensed presentation in
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[11]). It has also been extensively used for the study of hydrodynamic limits of kinetic
equations (see the first works [42] and [1], but also [36] for more recent results). For
systems of conservation laws, one can check that, given a strong solution u and an
entropy weak solution v with respective initial data u0 and v0, one has

(1.12) ∂tH(v, u) +

d∑
α=1

∂αQα(v, u) ≤ −
d∑

α=1

(∂αu)TZα(v, u)

in the weak sense, where

(1.13) Zα(v, u) = D2η(u)
(
fα(v)− fα(u)−Dfα(u)(v − u)

)
.

On the other hand, it follows from the definition of H that

(1.14) H(v, u) =

∫ 1

0

∫ θ

0

(v − u)TD2η(u+ γ(v − u))(v − u) dγdθ,

which, together with (1.4), leads to

(1.15)
β0

2
|v − u|2 ≤ H(v, u) ≤ β1

2
|v − u|2, ∀u, v ∈ Ω.

If u is assumed to be a strong solution, its first derivative is bounded and by a
classical localization procedure à la Kruzhkov and a Gronwall lemma, one obtains a
L2

loc stability estimate for any r > 0

(1.16)

∫
|x|<r

|v(x, T )− u(x, T )|2dx ≤ C(T, u)

∫
|x|<r+LfT

|v0(x)− u0(x)|2dx,

where the dependence of C on u reflect the needs of smoothness on u (C blows up when
u becomes discontinuous). This inequality, rigorously proved in [11], provides a weak–
strong uniqueness result. Similar (but more sophisticated) ideas have been applied to
other fluid systems, see for instance [35] and [20] for more recent developments.

Remark 1.3. In [39], Tzavaras studies the comparison of solutions of a hy-
perbolic system with relaxation with solutions of the associated equilibrium system of
conservation laws. He also makes use of the relative entropy for strong solutions. Very
similar questions have been addressed in [3, 2] for the convergence of kinetic equations
towards the system of gas dynamics. Here again, only strong solutions of the Euler
equations are considered. To finish the bibliographical review, let us mention the work
by Leger and Vasseur [33] where the reference solution may include some particular
discontinuities.

Remark 1.4. For general conservation laws, the relative entropy is not sym-
metric, i.e, H(u, v) 6= H(v, u) and Q(u, v) 6= Q(v, u). In the very particular case
of Friedrichs systems, i.e. when there exist symmetric matrices Aα ∈ Rm×m (α ∈
{1, . . . , d}) such that fα(u) = Aαu, then u 7→ |u|2 is an entropy and the corresponding
entropy flux ξ is ξα(u) = uTAαu, (α ∈ {1, . . . , d}). It is then easy to check that

H(v, u) = H(v, u) = |u− v|2, Qα(v, u) = Qα(u, v) = (v − u)TAα(v − u),

and Zα(v, u) = 0 for all (u, v) ∈ Rm. As a consequence, inequality (1.12) becomes

∂tH(v, u) +

d∑
α=1

∂αQα(v, u) ≤ 0,
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even if u is only a weak solution. This allows to make use of the doubling variable tech-
nique [29] to compare u to v, recovering the classical uniqueness result for Friedrichs
systems [21].

Our aim is to replace the entropy weak solution v in (1.12) by an approximate
solution provided by finite volume schemes on unstructured meshes. Following the
formalism introduced in [18], this makes appear in (1.12) bounded Radon measures
which can be controlled, leading to error estimates in h1/4 between a strong solution
and its finite volume approximation, h being the characteristic size of the cells of the
mesh. The purpose of the following section is to define the finite volume scheme and
to recall some classical properties required on the numerical fluxes.

1.2. Definition of the time-explicit finite volume scheme.

1.2.1. Space and time discretizations. Let T be a mesh of Rd such that Rd
is the union of the closure of the elements of T . We denote h = sup{diam(K), K ∈
T } <∞, and assume without loss of generality that h ≤ 1. For all K ∈ T , we denote
by |K| its d–dimensional Lebesgue measure, and by N (K) the set of its neighboring
cells. For L ∈ N (K), the common interface (called edge) between K and L is denoted
by σKL and |σKL| is its (d− 1)–Lebesgue measure. We denote by E the set of all the
edges and assume that there exists a > 0 such that

(1.17) |K| ≥ ahd and |∂K| :=
∑

L∈N (K)

|σKL| ≤
hd−1

a
, ∀K ∈ T .

The unit normal vector to σKL from K to L is denoted nKL. Let ∆t > 0 be the
time step and we set tn = n∆t, ∀n ∈ N. Let T > 0 be a given time, we introduce
NT = max{n ∈ N, n ≤ T/∆t+ 1}. Since we consider time-explicit methods, the time
step ∆t will be subject to a CFL condition which will be given later.

Remark 1.5. In order to avoid some additional heavy notations, we have chosen
to deal with an uniform time discretization and a space discretization that does not
depend on time. Nevertheless, it is possible, following the path described in [28],
to adapt our study to the case of time depending space discretizations and to non-
uniform time discretizations. This would be mandatory for considering a dynamic
mesh adaptation procedure based on the a posteriori numerical error estimators that
can be derived from our study.

Since we will consider weak formulations and compact supported test functions in
the next sections, we introduce local sets of cells and interfaces: let r > 0, we denote

(1.18)

Tr = {K ∈ T | K ⊂ B(0, r)},
Er = {σKL ∈ E | (K,L) ∈ (Tr)2, L ∈ N (K)},
∂Tr = {σKL ∈ E | K ∈ Tr, L ∈ N (K), L 6∈ Tr}.

In particular, {σKL ∈ E | K ∈ Tr, L ∈ N (K)} = Er ∪ ∂Tr and Er ∩ ∂Tr = ∅.

1.2.2. Numerical flux and finite volume schemes. For all (K,L) ∈ T 2, L ∈
N (K), we consider numerical fluxes GKL, which are Lipschitz continuous functions
from Ω2 to Rm. We assume that these numerical fluxes are conservative, i.e.,

(1.19) GKL(u, v) = −GLK(v, u), ∀(u, v) ∈ Ω2,

We also assume that the numerical fluxes fulfill the following consistency condition:

(1.20) GKL(u, u) = f(u) · nKL, ∀u ∈ Ω,
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which implies

(1.21)
∑

L∈N (K)

|σKL|GKL(u, u) = 0, ∀u ∈ Rm, ∀K ∈ T .

Following [5], we also assume that they preserve the admissible states by interface.
More precisely, we assume that there exists λ? > 0 such that, for all λ > λ?, for all
K ∈ T , and for all L ∈ N (K),

(1.22) u− 1

λ
(GKL(u, v)− f(u) · nKL) ∈ Ω, ∀(u, v) ∈ Ω2.

In order to ensure the nonlinear stability of the scheme, we also require the existence
of a numerical entropy flux. More precisely, we assume that for all (K,L) ∈ E , there
exist Lipschitz continuous functions ξKL : Ω× Ω→ R which are conservative, i.e.,

(1.23) ξKL(u, v) = −ξLK(v, u), ∀(u, v) ∈ Ω2,

and satisfy the interfacial entropy inequalities: for all λ ≥ λ? > 0, for all (u, v) ∈ Ω2,

(1.24) ξKL(u, v)− ξ(u) · nKL ≤ −λ
(
η
(
u− 1

λ

(
GKL(u, v)− f(u) · nKL

))
− η(u)

)
.

In what follows, and before strengthening it in (2.9), we assume that the following
CFL condition is fulfilled:

(1.25)
∆t

|K|
λ?

∑
L∈N (K)

|σKL| ≤ 1, ∀K ∈ T .

Note that the regularity of the mesh (1.17) implies that (1.25) holds if

(1.26) ∆t ≤ a2

λ?
h.

We have now introduced all the necessary material to define the time-explicit
numerical scheme we will consider.

Definition 1.2 (Finite volume scheme). The finite volume scheme is defined by
the discrete unknowns unK , K ∈ T and n ∈ {0, . . . , NT }, which satisfy

(1.27)
un+1
K − unK

∆t
|K|+

∑
L∈N (K)

|σKL|GKL(unK , u
n
L) = 0

together with the initial condition

(1.28) u0
K =

1

|K|

∫
K

u0(x)dx, ∀K ∈ T ,

under assumptions (1.19)–(1.24) on the numerical flux GKL and under the CFL con-
dition (1.26). The approximate solution uh : Rd × R+ → Rm provided by the finite
volume scheme (1.27)–(1.28) is defined by

(1.29) uh(x, t) = unK , for x ∈ K, tn ≤ t < tn+1, K ∈ T , n ∈ {0, . . . , NT }.
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1.3. Error estimate and organization of the paper. Our aim is to provide
an error estimate of the the form

‖u− uh‖L2(Γ) ≤ Ch1/4,

for all compact subset Γ of Rd × R+, where u stands for the unique strong solution
to (1.1), (1.3) and uh for the numerical solution (1.27)–(1.29). The rigorous statement
is given in Theorem 2.7. This estimate extends to the system case the contributions
of [9, 40, 18, 7] on the scalar case. In [26], which also deals with strong solutions of
nonlinear systems, the assumptions are less classical than ours, in particular we do
not need any ’inverse’ CFL condition of the form C ≤ ∆t/h (see also [18] for a similar
comment in the scalar case).

The proof of this estimate relies on a so-called weak–BV estimate, that is

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL||GKL(unK , u
n
L)− f(unK) · nKL| ≤

C√
h
,

where Er is defined in (1.18). The rigorous statement of this estimate and its proof
are gathered in §2.2. Up to the authors’ knowledge, this estimate is new for time-
explicit finite volume schemes: in [26], only time-implicit methods are considered (see
also [24]).

Let us now present the outline of the paper. In Section 2 we first briefly recall
some classical properties of the finite volume scheme. Then we address the proof of
the weak–BV property by introducing a new flux which depicts the entropy dissi-
pation through the edges. Straightforward consequences are then derived. The next
two sections address the proof of the error estimate. In order to compare the dis-
crete solution uh with the strong solution u, we write continuous weak and entropy
formulations for uh in Section 3, so that we can adapt the uniqueness proof proposed
in [11]. Nevertheless, the discrete solution uh is obviously not a weak entropy solu-
tion. Therefore, some error terms coming from the discretization have to be taken into
account in the formulation, which take the form of positive locally bounded Radon
measures, following [18]. A large part of Section 3 consists in making these measures
explicit and in bounding them with quantities which tend to 0 with the discretiza-
tion size. In Section 4, we make use of the weak and entropy weak formulations for
the discrete solution (and of their corresponding error measures) to derive the error
estimate. The distance between the strong solution u and the discrete solution uh is
quantified thanks to the relative entropy H(uh, u) introduced in Definition 1.1.

2. Nonlinear stability.

2.1. Preservation of admissible states and discrete entropy inequality.
We first give two classical properties of the numerical scheme (1.27) which are di-
rect consequences of the assumptions we made in §1.2.2: preservation of the set of
admissible states and discrete cell-entropy inequalities. We refer to [5] for the proofs.

Lemma 2.1. Assume that the initial condition satisfies (1.3) and that the as-
sumption of preservation of the admissible states by interface (1.22) and the CFL
condition (1.25) hold, then, for all K ∈ T , for all n ∈ {0, . . . , NT }, unK belong to Ω.

Following once again the procedure detailed in [5], we can derive entropy proper-
ties on the numerical scheme from (1.24).

Proposition 2.2. The numerical entropy flux ξKL is consistent with ξ, i.e.

(2.1) ξKL(u, u) = ξ(u) · nKL, ∀u ∈ Ω.
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Moreover, under the CFL condition (1.26), the discrete solution uh satisfies the dis-
crete entropy inequalities: ∀K ∈ T , ∀n ≥ 0,

(2.2)
|K|
∆t

(η(un+1
K )− η(unK)) +

∑
L∈N (K)

|σKL|ξKL(unK , u
n
L) ≤ 0.

Note that the consistency (2.1) of the entropy fluxes ξKL ensures that

(2.3)
∑

L∈N (K)

|σKL|ξKL(u, u) = 0, ∀u ∈ Ω.

2.2. Weak–BV inequality for systems of conservation laws. For all (K,L) ∈
T 2, L ∈ N (K), we introduce the flux

(2.4) XKL(u, v) := ξ(u) · nKL +Dη(u)(GKL(u, v)− f(u) · nKL), ∀(u, v) ∈ Ω2.

Let us remark that it is neither symmetric nor conservative. Such a quantity may
provide the connection between fully discrete and semi-discrete entropy satisfying
schemes, but also between entropy-conservative and entropy-stable schemes. It is in
particular shown in [5] (see also [37, 38]) that the fluxes XKL for (K,L) ∈ E verify

(2.5) −XLK(v, u) ≤ ξKL(u, v) ≤ XKL(u, v), ∀(u, v) ∈ Ω2.

Actually, inequalities (2.5) can be specified by quantifying the entropy dissipation
across the edges.

Proposition 2.3. For all σKL ∈ E and all (u, v) ∈ Ω2, one has

(2.6) XKL(u, v)− ξKL(u, v) ≥ β0

2λ?
|GKL(u, v)− f(u) · nKL|2,

where β0 is defined in (1.4) and λ? has to be such that (1.22) and (1.24) hold.
Proof. We rewrite the left-hand side of Ineq. (1.24) for λ = λ? using the defini-

tion (2.4) of the flux XKL in order to obtain

(2.7) XKL(u, v)− ξKL(u, v)−Dη(u)(GKL(u, v)− f(u) · nKL)

≥ λ?
[
η(u− 1

λ?
(GKL(u, v)− f(u) · nKL))− η(u)

]
.

The uniform convexity (1.4) of η ensures that

(2.8) λ?
[
η(u− 1

λ?
(GKL(u, v)− f(u) · nKL))− η(u)

]
≥ −Dη(u)(GKL(u, v)− f(u) · nKL) +

1

2

β0

λ?
|GKL(u, v)− f(u) · nKL|2.

Combining (2.7) and (2.8) leads to (2.6).
Thanks to the specified version (2.6) of the classical inequalities (2.5), we are

now in position for proving a new stability estimate for time-explicit finite volume
scheme, namely the weak-BV inequality. This inequality is obtained by quantifying
the numerical diffusion of the numerical scheme. As in the scalar case (see [8, 9, 40,
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18, 7]), such an equality requires a strengthen CFL condition. In our system case, we
require the existence of some ζ ∈ (0, 1) such that

(2.9) ∆t ≤ β0

β1

a2

λ?
(1− ζ)h

holds, where β0 and β1 are defined by (1.4), a and h are the mesh parameters (1.17),
and where λ? appears in the condition (1.22) and (1.24). Note that the strengthen
CFL condition (2.9) implies the classical CFL condition (1.26). We are now able to
obtain the following local estimate, using the notations (1.18).

Proposition 2.4. Assume that the strengthen CFL condition (2.9) holds, then
there exists C depending only on T, r, a, η, ξ,Ω and ζ (but neither on h nor on ∆t)
such that

(2.10)

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |GKL(unK , u
n
L)− f(unK) · nKL|2 ≤ C.

Proof. Multiplying the numerical scheme (1.27) by ∆tDη(unK) and summing over
n ∈ {0, . . . NT } and K ∈ Tr provides

(2.11) A+B = 0,

where

A =

NT∑
n=0

∑
K∈Tr

Dη(unK)(un+1
K − unK)|K|,

B =

NT∑
n=0

∆t
∑
K∈Tr

Dη(unK)
∑

L∈N (K)

|σKL|GKL(unK , u
n
L).

The concavity of u 7→ η(u) − β1

2 |u − u
n
K |2 together with the definition (1.27) of the

numerical scheme and property (1.21) provide that

A ≥
∑
K∈Tr

η(uNT+1
K )|K| −

∑
K∈Tr

η(u0
K)|K|

− β1

2

NT∑
n=0

∆t2
∑
K∈Tr

1

|K|

∣∣∣∣ ∑
L∈N (K)

|σKL| (GKL(unK , u
n
L)− f(unK) · nKL)

∣∣∣∣2.
Using the Jensen inequality, we get∑

K∈Tr

η(u0
K)|K| ≤

∫
|x|≤B(0,R+h)

η(u0(x))dx =: C1.

The positivity of the entropy η yields
∑
K∈Tr

η(uNT+1
K )|K| ≥ 0. Moreover, Cauchy–

Schwarz inequality ensures that for all K ∈ Tr and all n ∈ {0, . . . , NT }, one has∣∣∣∣ ∑
L∈N (K)

|σKL| (GKL(unK , u
n
L)− f(unK) · nKL)

∣∣∣∣2
≤
( ∑
L∈N (K)

|σKL|
)( ∑

L∈N (K)

|σKL| |GKL(unK , u
n
L)− f(unK) · nKL|2

)
.
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Then it follows from the regularity assumption (1.17) on the mesh that

(2.12) A ≥ −C1 −
β1∆t

2a2h

NT∑
n=0

∆t
∑
K∈Tr

∑
L∈N (K)

|σKL| |GKL(unK , u
n
L)− f(unK) · nKL|2 .

Concerning the term B, we use the definition (2.4) of the entropy flux XKL to get

B =

NT∑
n=0

∆t
∑
K∈Tr

∑
L∈N (K)

|σKL|(XKL(unK , u
n
L)− ξ(unK) · nKL +Dη(unK)f(unK) · nKL).

Using the property
∑
L∈N (K) |σKL|nKL = 0 for all K ∈ T , we can reorganize the

term B into

(2.13) B = B1 +B2,

where

B1 =

NT∑
n=0

∆t
∑
K∈Tr

∑
L∈N (K)

|σKL|(XKL(unK , u
n
L)− ξKL(unK , u

n
L)),

B2 =

NT∑
n=0

∆t
∑

(K,L)∈∂Tr

|σKL|ξKL(unK , u
n
L).

Since ξKL is a continuous function of bounded quantities, B2 can be bounded using
the regularity of the mesh (1.17). More precisely, one gets

(2.14) |B2| ≤ max
(K,L)∈∂Tr

‖ξKL‖L∞(Ω2)

NT∑
n=0

∆t
∑

(K,L)∈∂Tr

|σKL| ≤ C2

for some C2 > 0 depending only on T , r, a, ξ and Ω. On the other hand, it follows
from Proposition 2.3 that

(2.15) B1 ≥
β0

2λ?

NT∑
n=0

∆t
∑
K∈Tr

∑
L∈N (K)

|σKL| |GKL(unk , u
n
L)− f(unK) · nKL|2 .

Combining (2.12)–(2.15) into (2.11) leads to(
β0

2λ?
− β1∆t

2a2h

) NT∑
n=0

∆t
∑
K∈Tr

∑
L∈N (K)

|σKL||GKL(unk , u
n
L)− f(unK) · nKL|2 ≤ C1 + C2.

The CFL condition (2.9) has been strengthen so that(
β0

2λ?
− β1∆t

2a2h

)
≥ ζβ0

2λ?

remains uniformly bounded away from 0. Estimate (2.10) follows.
We state now a straightforward consequence of Proposition 2.4. Its proof relies

on Cauchy–Schwarz inequality and is left to the reader.
Corollary 2.5. Assume that (2.9) holds, then there exists CBV depending only

on T , r, a, ξ, η, u0, Ω and ζ such that

(2.16)

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |GKL(unK , u
n
L)− f(unK) · nKL| ≤

CBV√
h
.
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2.3. Consequences of the weak–BV estimate. The weak–BV estimate (2.16)
implies a similar control on entropy fluxes and the time variations of uh.

Lemma 2.6. Assume that the strengthen CFL condition (2.9) holds, then

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξ(uK) · nKL| ≤ ‖Dη‖∞

CBV√
h
,(2.17)

NT∑
n=0

∑
K∈Tr

|K||un+1
K − unK | ≤

CBV√
h
,(2.18)

NT∑
n=0

∑
K∈Tr

|K||η(un+1
K )− η(unK)| ≤ ‖Dη‖∞

CBV√
h
.(2.19)

Proof. Inequality (2.19) is a direct consequence of (1.24) in which the Lipschitz
continuity of η has been taken into account. Thanks to definition (1.27) of the scheme
and thanks to the divergence free property (1.21), one has for all K ∈ T and all n ∈ N

|un+1
K − unK ||K| ≤ ∆t

∑
L∈N (K)

|σKL| |GKL(unK , u
n
L)− f(unK) · nKL| .

Summing over K ∈ Tr and n ∈ {0, . . . , NT } and using (2.16) provides (2.18). Inequal-
ity (2.19) then follows from the Lipschitz continuity of η.

We now state our main result, that consists in an a priori error estimate between
a strong solution u and a discrete solution uh.

Theorem 2.7. Assume that u0 ∈ W 1,∞(Rd) and that the solution u of the
Cauchy problem (1.1)–(1.3) belongs to W 1,∞([0, T ]×Rd). Let uh defined by the numer-
ical scheme (1.27)–(1.29) and assume that the strengthen CFL condition (2.9) holds.
Then, for all r > 0 and T > 0 there exist C depending only on T, r,Ω, a, λ?, u0, GKL, η
and f , such that ∫ T

0

∫
B(0,r+Lf (T−t))

|u− uh|2dxdt ≤ C
√
h.

3. Continuous weak and entropy formulations for the discrete solution.
In order to obtain the error estimate of Theorem 2.7, we aim at using the relative
entropy of uh w.r.t. u. Since uh is only an approximate solution, it neither sat-
isfies exactly the weak formulation (1.10) nor the entropy weak formulation (1.11).
Some numerical error terms appear in these formulations, and thus also appear the
inequality of the relative entropy

(3.1)
∂tH(uh, u) +

d∑
α=1

∂αQα(uh, u) ≤ −
d∑

α=1

(∂αu)TZα(uh, u)

+ numerical error terms.

As usual, these terms may be described by Radon measures, see for instance [6, 18,
7, 28, 25, 26]. Note that for nonlinear systems of conservation laws, a function which
satisfies the entropy inequality (1.11) is not necessarily a weak solution (1.10). This
leads us to introduce error measures for both the entropy inequality (1.11) and the
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weak formulation (1.10) of uh. Let us first begin with the entropy formulation and
the related measures.

For X = Rd or X = Rd×R+, we denoteM(X) the set of locally bounded Radon
measures on X, i.e.,M(X) = (Cc(X))

′
where Cc(X) is the set of continuous compact

supported functions on X. If µ ∈M(X) we set 〈µ, ϕ〉 =
∫
X
ϕdµ for all ϕ ∈ Cc(X).

Definition 3.1. For ψ ∈ Cc(Rd), ϕ ∈ Cc(Rd×R+), we define µ0 ∈M(Rd) and
µ ∈M(Rd × R+) by

〈µ0, ψ〉 =

∫
Rd
|η(u0(x))− η(uh(x, 0))|ψ(x)dx,

〈µ, ϕ〉 =〈µT , ϕ〉+

∞∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξKL(unK , u

n
K)| 〈µKL, ϕ〉

+

∞∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξKL(unL, u

n
L)| 〈µLK , ϕ〉,

where

〈µT , ϕ〉 =

∞∑
n=0

∑
K∈Tr

|η(un+1
K )− η(unK)|

∫ tn+1

tn

∫
K

ϕ(x, t)dxdt,

〈µKL, ϕ〉 =
1

m(K)m(σKL)(∆t)2

×
∫ tn+1

tn

∫
K

∫ tn+1

tn

∫
σKL

∫ 1

0

(h+ ∆t)ϕ(γ + θ(x− γ), s+ θ(t− s))dθdxdtdγds,

〈µLK , ϕ〉 =
1

m(L)m(σKL)(∆t)2

×
∫ tn+1

tn

∫
L

∫ tn+1

tn

∫
σKL

∫ 1

0

(h+ ∆t)ϕ(γ + θ(x− γ), s+ θ(t− s))dθdxdtdγds.

As it will be highlighted by Proposition 3.3 later on, the measures µ and µ0

describe the approximation error in the entropy formulation satisfied by uh. Let us
first estimate them on compact sets.

Lemma 3.2. Assume that the strengthen CFL condition (2.9) holds, then, for all
r > 0 and T > 0 there exist Cµ0 > 0, depending only on u0, ‖Dη‖∞, and r, and
Cµ > 0, depending only on T, r, a, λ?, u0, GKL and η such that, for all h < r,

(3.2) µ0(B(0, r)) ≤ Cµ0
h and µ(B(0, r)× [0, T ]) ≤ Cµ√

h
.

Proof. The regularity of u0 : Rd → Rm yields

µ0(B(0, r)) ≤ h ‖Dη‖∞
∫
B(0,r+h)

|∇u0|dx.

For r > 0 and T > 0 the measure µT satisfies

µT (B(0, r)× [0, T ]) =

∫ T

0

∫
B(0,r)

NT∑
n=0

∑
K∈Tr

|η(un+1
K )− η(unK)|1K×[tn,tn+1]dxdt.
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Then, using the time–BV estimate (2.19),

µT (B(0, r)× [0, T ]) ≤ ∆t

NT∑
n=0

∑
K∈Tr

|K||η(un+1
K )− η(unK)| ≤ ∆t‖Dη‖∞

CBV√
h
.

Since ∆t satisfies the CFL condition (2.9), one has

(3.3) µT (B(0, r)× [0, T ]) ≤ CµT

√
h,

where CµT := a2‖Dη‖∞
λ? CBV . The measures µKL and µLK satisfy:

µKL(Rd × R+) ≤ h+ ∆t, µLK(Rd × R+) ≤ h+ ∆t.

Therefore,

µ(B(0, r)× [0, T ])

≤ CµT

√
h+ (h+ ∆t)

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξKL(unK , u

n
K)|

+(h+ ∆t)

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξKL(unL, u

n
L)| .

Hence, using Lemma 2.6, the CFL condition (1.26) and the bound (3.3) provides

µ(B(0, r)× [0, T ]) ≤ Cµ
√
h,

where Cµ = CµT + 2
(

1 + a2

λ?

)
‖Dη‖∞CBV .

Proposition 3.3. Let µ and µ0 be the measures introduced in Definition 3.1,
then, for all ϕ ∈ C1

c (Rd × R+;R+), one has

(3.4)

∫∫
Rd×R+

η(uh)∂tϕ(x, t) +

d∑
α=1

+

∫
Rd
η(u0(x))ϕ(x, 0)dxξα(uh)∂αϕ(x, t)dxdt

≥ −
∫∫

Rd×R+

(|∇ϕ|+ |∂tϕ|) dµ(x, t)−
∫
Rd
ϕ(x, 0)dµ0(x).

Proof. Let ϕ ∈ C1
c (Rd × R+;R+). Let T > 0 and r > 0 such that supp ϕ ⊂

B(0, r) × [0, T ). Let us multiply (2.2) by

∫ tn+1

tn

∫
K

ϕ(x, t)dxdt and sum over the

control volumes K ∈ Tr and n ≤ NT . It yields

(3.5) T1 + T2 ≤ 0,

where

T1 =

NT∑
n=0

∑
K∈Tr

1

∆t
(η(un+1

K )− η(unK))

∫ tn+1

tn

∫
K

ϕ(x, t)dxdt,(3.6)

T2 =

NT∑
n=0

∑
K∈Tr

1

|K|

∫ tn+1

tn

∫
K

ϕ(x, t)dxdt
∑

L∈N (K)

|σKL|ξKL(unK , u
n
L).(3.7)
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The term T1 corresponds to the discrete time derivative of η(uh) and T2 to the discrete
space derivative of ξ(uh). The proof relies on the comparison firstly between T1 and
T10 and secondly between T2 and T20, where T10 and T20 denote respectively the
temporal and spatial term in (3.4):

T10 = −
∫∫

Rd×R+

η(uh)∂tϕ(x, t)dxdt−
∫
Rd
η(u0(x))ϕ(x, 0)dx,

T20 = −
∫∫

Rd×R+

d∑
α=1

ξα(uh)∂αϕ(x, t)dxdt.

Let us first focus on T10. Following its definition (1.29), the approximate solution
uh is piecewise constant, then so does η(uh). Therefore, we can rewrite

T10 =

NT∑
n=0

∑
K∈Tr

(η(un+1
K )− η(unK))

1

∆t

∫ tn+1

tn

∫
K

ϕ(x, tn+1)dxdt

−
∫
Rd

(η(u0(x))− η(uh(x, 0)))ϕ(x, 0)dx.

It is now easy to verify that

|T1 − T10| ≤
NT∑
n=0

∑
K∈Tr

|η(un+1
K )− η(unK)|

∫ tn+1

tn

∫
K

|∂tϕ|dxdt

+

∫
Rd
|η(u0(x))− η(uh(x, 0))|ϕ(x, 0)dx.

Then, accounting from Definition 3.1, the inequality reads

(3.8) |T1 − T10| ≤
∫∫

Rd×R+

|∂tϕ|dµT (x, t) +

∫
Rd
ϕ(x, 0)dµ0(x).

We now consider the terms T2 and T20. Performing a discrete integration by parts
by reorganizing the sum, and using the properties (2.3) and (1.23) lead to

(3.9) T2 = T2,1 + T2,2,

with

T2,1 =

NT∑
n=0

∑
(K,L)∈Er

|σKL|
|K|

∫ tn+1

tn

∫
K

ϕ(x, t)(ξKL(unK , u
n
L)− ξKL(unK , u

n
K))dxdt,

T2,2 =

NT∑
n=0

∑
(K,L)∈Er

|σKL|
|L|

∫ tn+1

tn

∫
L

ϕ(x, t)(ξLK(unL, u
n
K)− ξLK(unL, u

n
L))dxdt.

Gathering terms of T20 by edges yields

T20 = T20,1 + T20,2,
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where, thanks to (1.23), we have set

T20,1 =

NT∑
n=0

∑
(K,L)∈Er

∫ tn+1

tn

∫
σKL

(ξKL(unK , u
n
L)− ξ(unK) · nKL)ϕ(γ, t)dγdt,

T20,2 =

NT∑
n=0

∑
(K,L)∈Er

∫ tn+1

tn

∫
σKL

(ξLK(unL, u
n
K)− ξ(unL) · nLK)ϕ(γ, t)dγdt.

It is easy to verify

T2,1 − T20,1 =

NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| (ξKL(unK , u
n
L)− ξKL(unK , u

n
K))

× 1

|K||σKL|(∆t)2

∫ tn+1

tn

∫
K

∫ tn+1

tn

∫
σKL

(ϕ(x, t)− ϕ(γ, s))dγdsdxdt.

Then using the definition of µKL in Definition 3.1, we obtain the following estimate:

(3.10) |T2,1 − T20,1|

≤
NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξKL(unK , u
n
L)− ξKL(unK , u

n
K)| 〈µKL, |∇ϕ|+ |∂tϕ|〉.

Similarly, one obtains

(3.11) |T2,2 − T20,2|

≤
NT∑
n=0

∆t
∑

(K,L)∈Er

|σKL| |ξLK(unL, u
n
K)− ξLK(unL, u

n
L)| 〈µLK , |∇ϕ|+ |∂tϕ|〉,

the measure µLK ∈M(Rd × R+) being given by Definition 3.1. Bearing in mind the
definition of µ ∈ M(Rd × R+) given in Definition 3.1, inequalities (3.5), (3.8), (3.9),
(3.10) and (3.11), one has

−T10 − T20 ≥ −
∫∫

Rd×R+

(|∇ϕ|+ |∂tϕ|)dµ(x, t)−
∫
Rd
ϕ(x, 0)dµ0(x),

which concludes the proof of Proposition 3.3.
Similar calculations can be used to estimate how close uh is to a weak solution.

For that purpose we define the following measures.
Definition 3.4. For ψ ∈ Cc(Rd) and ϕ ∈ Cc(Rd × R+), we set

〈µ0, ψ〉 =

∫
Rd
|u0(x)− uh(x, 0)|ψ(x)dx,

〈µ, ϕ〉 = 〈µT , ϕ〉+

∞∑
n=0

∆t
∑

(K,L)∈Er

|σKL||GKL(unK , u
n
L)−GKL(unK , u

n
K)|〈µKL, ϕ〉

+

∞∑
n=0

∆t
∑

(K,L)∈Er

|σKL||GKL(unK , u
n
L)−GKL(unL, u

n
L)|〈µLK , ϕ〉,
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where

〈µT , ϕ〉 =

∞∑
n=0

∑
K∈Tr

|un+1
K − unK |

∫ tn+1

tn

∫
K

ϕ(x, t)dxdt,

〈µKL, ϕ〉 =
1

|K||σKL|∆t2
×∫ tn+1

tn

∫
K

∫ tn+1

tn

∫
σKL

∫ 1

0

(h+ ∆t)ϕ(γ + θ(x− γ), s+ θ(t− s))dθdxdtdγds,

〈µLK , ϕ〉 =
1

|L||σKL|∆t2
×∫ tn+1

tn

∫
L

∫ tn+1

tn

∫
σKL

∫ 1

0

(h+ ∆t)ϕ(γ + θ(x− γ), s+ θ(t− s))dθdxdtdγds.

Remark 3.1. It follows from the definitions of the measures µ and µ that they
can be extended (in a unique way) into continuous linear forms defined on the set

E :=
{
ϕ ∈ L∞(Rd × R+;R) | supp(ϕ) is compact, and ∇ϕ ∈ L1

loc(Rd × R+)
d
}
.

Indeed, any ϕ ∈ E admit a unique trace on σKL, so that the quantities 〈µKL, ϕ〉,
〈µLK , ϕ〉, 〈µKL, ϕ〉 and 〈µLK , ϕ〉 are well defined. Moreover, one has

|〈µ, ϕ〉| ≤ ‖ϕ‖L∞µ({ϕ 6= 0}), |〈µ, ϕ〉| ≤ ‖ϕ‖L∞µ({ϕ 6= 0}), ∀ϕ ∈ E.

We now state a lemma and a proposition whose proofs are left to the reader, since
they are similar to the proofs of Lemma 3.2 and Proposition 3.3 respectively as one
uses the estimates (2.16) and (2.18) instead of (2.17) and (2.19).

Lemma 3.5. Let uh defined by (1.27)–(1.29). Assume that (2.9) holds, then, for
all r > 0 and T > 0 there exist Cµ0

> 0, depending only on u0 and r, and Cµ > 0,
depending only on T, r, a, λ?, u0, GKL such that, for all h < r,

(3.12) µ0(B(0, r)) ≤ Cµ0
h and µ(B(0, r)× [0, T ]) ≤ Cµ

√
h,

where Cµ0
= Cµ0/‖Dη‖∞ and Cµ = Cµ/‖Dη‖∞ (see the proof of Lemma 3.2).

We are now in position to provide the approximate weak formulation satisfied
by uh. In the statement below, ϕ is a vector-valued function, and we adopted the
notation |∇ϕ| = maxα∈{1,...,d} |∂αϕ|. The proof of Proposition 3.6 follows the same
guidelines as the proof of Proposition 3.3 and is left to the reader.

Proposition 3.6. Let µ and µ0 be the measures introduced in Definition 3.1,
then, for all ϕ ∈ C1

c (Rd × R+;Rm), one has∣∣∣∣∣
∫∫

Rd×R+

[
(uh)T∂tϕ(x, t) +

d∑
α=1

fα(uh)T∂αϕ(x, t)

]
dxdt+

∫
Rd
u0(x)Tϕ(x, 0)dx

∣∣∣∣∣
≤
∫∫

Rd×R+

(|∇ϕ|+ |∂tϕ|)dµ(x, t) +

∫
Rd
|ϕ(x, 0)|dµ0(x).



ERROR ESTIMATE FOR EXPLICIT FV SCHEMES 17

4. Error estimate using the relative entropy. With the error measures µ,
µ0, µ, and µ0 at hand, we are now in position to precise inequality (3.1) satisfied by
the relative entropy H(uh, u) and then to conclude the proof of Theorem 2.7.

4.1. Relative entropy for approximate solutions. Proposition 4.1. Let µ
and µ0 be the measures introduced in Definition 3.1, and let µ and µ0 be the measures
introduced in Definition 3.4, then, for all ϕ ∈ C1

c (Rd × R+;R+), one has

(4.1)

∫∫
Rd×R+

(
H(uh, u)∂tϕ(x, t) +

d∑
α=1

Qα(uh, u)∂αϕ(x, t)

)
dxdt ≥

−
∫∫

Rd×R+

(|∇ϕ|+ |∂tϕ|) dµ(x, t)−
∫
Rd
ϕ(x, 0)dµ0(x)

−
∫∫

Rd×R+

(|∇ [ϕDη(u)] |+ |∂t [ϕDη(u)] |) dµ(x, t)

−
∫
Rd

[ϕDη(u)](x, 0)dµ0(x) +

∫∫
Rd×R+

ϕ

d∑
α=1

∂αu
TZα(uh, u)dxdt,

where Zα(uh, u) = D2η(u)(fα(uh)− fα(u)− (Dfα(u)) (uh − u)).
Proof. Let ϕ be any nonnegative Lipschitz continuous test function with compact

support in Rd × [0, T ]. Since u is a classical solution of (1.1)–(1.3), it satisfies∫∫
Rd×R+

η(u)∂tϕ(x, t) +

d∑
α=1

ξα(u)∂αϕ(x, t)dxdt+

∫
Rd
η(u0)ϕ(x, 0)dx = 0.

Subtracting this identity to (3.4) yields

(4.2)

∫∫
Rd×R+

(η(uh)− η(u))∂tϕ(x, t) +

d∑
α=1

(ξα(uh)− ξα(u))∂αϕ(x, t)dxdt

− ≥
∫∫

Rd×R+

(|∇ϕ|+ |∂tϕ|)dµ(x, t)−
∫
Rd
ϕ(x, 0)dµ0(x).

We now exhibit the relative entropy-relative entropy flux pair in the inequality (4.2)
and obtain

(4.3)

∫∫
Rd×R+

(
H(uh, u)∂tϕ+

d∑
α=1

Qα(uh, u)∂αϕ

)
dxdt ≥

−
∫∫

Rd×R+

|∇ϕ|+ |∂tϕ|dµ(x, t)−
∫
Rd
ϕ(x, 0)dµ0(x)

−
∫∫

Rd×R+

(Dη(u))
T

(
(uh − u)∂tϕ+

d∑
α=1

(fα(uh)− fα(u))∂αϕ

)
dxdt.

Since u is a strong solution of (1.1)–(1.3), it satisfies the following weak identity,
∀ψ ∈ Cc(Rd × R+;Rm)

(4.4)

∫∫
Rd×R+

[
u∂tψ(x, t) +

d∑
α=1

fα(u)∂αψ(x, t)

]
dxdt+

∫
Rd
u0(x)ψ(x, 0)dx = 0.
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Then we combine Proposition 3.6 with (4.4), so that using the Lipschitz continuous
vector field [ϕDη(u)] as test function leads to

(4.5) −
∫∫

Rd×R+

(Dη(u))
T

[
(uh − u)∂tϕ+

d∑
α=1

(fα(uh)− fα(u))∂αϕ

]
dxdt ≥

−
∫∫

Rd×R+

|∇[ϕDη(u)]|+ |∂t[ϕDη(u)]|dµ(x, t)−
∫
Rd

[ϕDη(u)](x, 0)dµ0(x)

+

∫∫
Rd×R+

(uh − u)ϕ∂t(Dη(u)) +

d∑
α=1

(fα(uh)− fα(u))ϕ∂α(Dη(u))dxdt.

Moreover identity (1.6) together with (1.1) gives

(4.6) ∂t(Dη(u)) = ∂tu
TD2η(u) = −

d∑
α=1

∂α (fα(u))
T
D2η(u)

= −
d∑

α=1

∂αu
TDfα(u)TD2η(u) = −

d∑
α=1

∂αu
TD2η(u)Dfα(u).

Injecting (4.5) and (4.6) into (4.3) leads to conclusion.
Lemma 4.2. There exists CZ depending only on f, η and Ω such that, for all

α ∈ {1, . . . , d},

(4.7) |Zα(uh, u)| ≤ CZ |uh − u|2.

Proof. For M : Ω→ Rm×m and Υ : Ω→ L(Rm;Rm×m), we set

‖M ‖∞,∞ = sup
u∈Ω
|M(u)|∞ , ‖Υ ‖∞,2 = sup

u∈Ω

(
sup

v∈Rm,|v|=1

|Υ(u) · v|2

)
,

where | · |2 and | · |∞ denote the usual matrix 2- and ∞-norms respectively. Using the
Taylor expansion of fα around u, we get that∣∣fα(uh)− fα(u)− (Dfα(u)) (uh − u)

∣∣ ≤ 1

2

∥∥D2fα
∥∥
∞,2 |u

h − u|2,

then, estimate (4.7) holds for CZ = 1
2

∥∥D2η
∥∥
∞,∞

∥∥D2fα
∥∥
∞,2 .

We now prove the following lemma on the finite speed of propagation.
Lemma 4.3. Let Lf be defined by (1.7), then, for all s ≥ Lf , one has

(4.8) sH(uh, u) +

d∑
α=1

xα
|x|
Qα(uh, u) ≥ 0.

Proof. Denote by wh := uh − u, then it follows from the characterization (1.14)
of the relative entropy H that

(4.9) H =

∫ 1

0

∫ θ

0

(wh)
T
D2
uη(u+ γwh)whdγdθ.
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Denoting by Aγ the symmetric definite positive matrix D2
uη(u+γwh), and by 〈· , ·〉Aγ

the scalar product on Rn defined by 〈v1, v2〉Aγ = vT1 Aγv2, the relation (4.9) can be
rewritten

(4.10) H =

∫ 1

0

∫ θ

0

〈wh, wh〉Aγdγdθ.

On the other hand, it follows from the definition (1.5) of the entropy flux ξ that

Qα =

∫ 1

0

(
Dη(u+ θwh)−Dη(u)

) (
Dfα(u+ θwh)

)T
whdθ

=

∫ 1

0

∫ θ

0

〈wh,
(
Dfα(u+ θwh)

)T
wh〉Aγdγdθ

for all α ∈ {1, . . . , d}. The quantity Lf introduced in (1.7) has been designed so that∣∣∣〈wh, (Dfα(u+ θwh)
)T
wh〉Aγ

∣∣∣ ≤ Lf 〈wh, wh〉Aγ . Therefore, we obtain

(4.11) |Qα| ≤ Lf
∫ 1

0

∫ θ

0

〈wh, wh〉Aγdγdθ = LfH.

The fact that (4.8) holds is a straightforward consequence of (4.11).

4.2. End of the proof of Theorem 2.7. We now have at hand all the tools
needed for comparing uh to u via the relative entropy H(uh, u).

Let δ ∈ (0, T ) be a parameter to be fixed later on, and, for k ∈ N, we define the
nonincreasing Lipschitz continuous function θk : R+ → [0, 1] by

θk(t) = min

(
1,max

(
0,

(k + 1)δ − t
δ

))
, ∀t ≥ 0.

Let us also introduce the Lipschitz continuous function ψ : Rd×R+ → [0, 1] defined by
ψ(x, t) = 1 −min (1,max (0, |x| − r − Lf (T − t) + 1)) , where Lf is defined by (1.7).
The function ϕk : (x, t) ∈ Rd × R+ 7→ θk(t)ψ(x, t) ∈ [0, 1] can be considered as a test
function in (4.1). Indeed, denoting by

Iδk = [kδ, (k + 1)δ], Cr,T (t) = {(x, t) | |x| ∈ [r + Lf (T − t), r + Lf (T − t) + 1]} ,

one has

∂tϕk(x, t) =− 1

δ
1Iδk(t)ψ(x, t)− Lfθk(t)1Cr,T (t)(x),

∇ϕk(x, t) =− x

|x|
θk(t)1Cr,T (t)(x),

so that both ∂tϕk and |∇ϕk| belong to the set E defined in Remark 3.1. Then taking
ϕk as test function in (4.1) yields

1

δ

∫
Iδk

∫
Rd
Hψdxdt+

∫ T

0

θk(t)

∫
Rd

d∑
α=1

∂αu
TZα(uh, u) ψdxdt

≤ −
∫ T

0

θk(t)

∫
Cr,T (t)

(
LfH +

d∑
α=1

Qα
xα
|x|

)
dxdt+R1 +R2 +R3 +R4,
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where

R1 =

∫∫
Rd×[0,T ]

(|∇ϕk(x, t)|+ |∂tϕk(x, t)|)dµ(x, t),

R2 =

∫
Rd
ψ(x, 0)dµ0(x),

R3 =

∫∫
Rd×[0,T ]

|Dη(u)|(|∇ϕk(x, t)|+ |∂tϕk(x, t)|)dµ(x, t)

+

∫∫
Rd×[0,T ]

ϕk(x, t)|D2η(u)(x, t)|∞ (|∂tu|+ |∇u|) dµ(x, t),

R4 =

∫
Rd
ψ(x, 0)|Dη(u0)|dµ0(x).

Thanks to Lemma 4.3, one has
(4.12)

1

δ

∫
Iδk

∫
Rd
Hψdxdt+

∫ T

0

θk(t)

∫
Rd

d∑
α=1

∂αu
TZα(uh, u) ψdxdt ≤ R1 +R2 +R3 +R4.

The definition of ϕk ensure that ‖ϕk‖∞ = 1, ‖∇ϕk‖∞ ≤ 1, ‖∂tϕk‖∞ ≤
1
δ + Lf and

supp(ϕk) ⊂
⋃

t∈[0,(k+1)δ]

B(0, r + Lf (T − t) + 1)× {t},

This leads to

R1 ≤
(

1

δ
+ Lf + 1

)
µ(supp(∇ϕk) ∪ supp(∂tϕk)).

Thanks to Lemma 3.2, we obtain that there exists Ckµ (depending on k, r, T , δ, Lf ,
a, λ?, u0, GKL and η) such that

(4.13) R1 ≤ Ckµ
(

1

δ
+ Lf + 1

)√
h.

It follows from similar arguments that there exists Ckµ0
(depending on k η, u0, r, Lf ,

T and δ) such that

(4.14) R2 ≤ Ckµ0
h,

and, thanks to Lemma 3.5, we obtain that there exists Ckµ0
(depending on k, r, u0, Lf , T

and δ) such that

(4.15) R4 ≤ Ckµ0
‖Dη(u0)‖∞h.

Similarly, there exists Ckµ (depending on k, T, r, Lf , a, λ
?, u0, GKL and δ) such that

(4.16) R3 ≤ Ckµ
(
‖Dη(u)‖∞

(
1

δ
+ Lf + 1

)
+ ‖D2η‖∞,∞(‖∂tu‖∞ + ‖∇u‖∞)

)√
h.
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By using Lemma 4.2 and 0 ≤ θk(t) ≤ 1, we obtain

(4.17)

∫ T

0

θk(t)

∫
Rd

d∑
α=1

∂αu
TZα(uh, u) ψdxdt

≥ −CZ‖∇u‖∞
∫∫

Rd×[0,(k+1)δ]

|uh(x, t)− u(x, t)|2ψ(x, t)dxdt.

Since the entropy η is supposed to be β0-convex, we have

(4.18) H(x, t) ≥ β0

2
|uh(x, t)− u(x, t)|2.

Putting (4.13)–(4.18) together with (4.12) provides

(4.19)

(
β0

2δ
− CZ‖∇u‖∞

)∫
Iδk

∫
Rd
|uh − u|2ψ dxdt

≤ CZ‖∇u‖∞
∫∫

Rd×[0,kδ]

|uh − u|2ψ dxdt+ Ck
√
h,

where (recall that h ≤ 1)

Ck =Ckµ

(
1

δ
+ Lf + 1

)
+ Ckµ0

+ Ckµ0
‖Dη(u0)‖∞

+ Ckµ

(
‖Dη(u)‖∞

(
1

δ
+ Lf + 1

)
+ ‖D2η‖∞,∞(‖∂tu‖∞ + ‖∇u‖∞)

)
.

Choose now δ = T
p?+1 with p? = min

{
p ∈ N? | T

p+1 ≤
β0

2CZ‖∇u‖∞+2

}
(note that nei-

ther δ nor p? depend on h), so that (4.19) becomes

(4.20) ek ≤ ω
k−1∑
i=0

ei + Ck
√
h,

where ek =
∫
Iδk

∫
Rd |u

h−u|2ψ dxdt and ω = CZ‖∇u‖∞. Hence, few algebraic calcula-

tions allow us to claim that

(4.21)

p?∑
k=0

ek ≤
√
h

p?∑
k=0

Ck

(
(1 + ω)p

?−k+1 − ω
)
.

Noticing that ψ(x, t) = 1 if x ∈ B(0, r + Lf (T − t)), and that ψ(x, t) ≥ 0 for all
(x, t) ∈ Rd × (0, T ), one finally has

(4.22)

∫ T

0

∫
B(0,r−st)

|u− uh|2dxdt ≤
∫ T

0

∫
Rd
|u− uh|2ψ(x, t)dxdt =

p?∑
k=0

ek.

We conclude the proof using (4.21) in (4.22).
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5. Conclusion. We analyzed the convergence of first order finite volume schemes
entering the framework detailed in [5] and summarized in §1.2.2. In §2.2, we derived
a so-called weak-BV estimate based on the quantification of the numerical entropy
dissipation. This estimate is new in the case of time-explicit finite volume schemes.
It allows to prove some error estimate between a numerical solution and a strong
solution of order h1/4 in the space-time L2-norm. Let us also mention that one
could use the weak-BV estimate to prove to convergence to entropy measure-valued
solutions, following [17] (see also [24]). On the other hand, strong solutions are global
if one adds some suitable entropy-dissipating relaxation term [23, 43]), and our work
could be extended to this situation without any major difficulty by mixing our result
with the one proposed in [26].
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[37] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation
laws. I, Math. Comp., 49 (1987), pp. 91–103.

[38] , Entropy stability theory for difference approximations of nonlinear conservation laws
and related time-dependent problems, Acta Numer., 12 (2003), pp. 451–512.

[39] A. E. Tzavaras, Relative entropy in hyperbolic relaxation, Commun. Math. Sci., 3 (2005),
pp. 119–132.

[40] J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimen-
sional scalar conservation laws. I. Explicit monotone schemes, RAIRO Modl. Math. Anal.
Numr., 28 (1994), pp. 267–295.

[41] J.-P. Vila and P. Villedieu, Convergence of an explicit finite volume scheme for first order
symmetric systems, Numer. Math., 94 (2003), pp. 573–602.

[42] H.-T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math.
Phys., 22 (1991), pp. 63–80.

[43] W.A. Yong, Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech.
Anal., 172 (2004), pp. 247–266.


