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ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME
APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF
CONSERVATION LAWS

CLEMENT CANCES, HELENE MATHIS, AND NICOLAS SEGUIN

ABSTRACT. We study the finite volume approximation of strong solutions to
nonlinear systems of conservation laws. We focus on time-explicit schemes
on unstructured meshes, with entropy satisfying numerical fluxes. The nu-
merical entropy dissipation is quantified at each interface of the mesh, which
enables to prove a weak—BV estimate for the numerical approximation under
a strengthened CFL condition. Then we derive error estimates in the multidi-
mensional case, using the relative entropy between the strong solution and its
finite volume approximation. The error terms are carefully studied, leading to
a classical O(h1/4) estimate in L2 under this strengthened CFL condition.

Keywords. Hyperbolic systems, finite volume scheme, relative entropy, error estimate

AMS subjects classification. 35L65, 656M08, 65M12, 656M15

1. INTRODUCTION

The aim of this paper is to provide an a priori error estimate for time-explicit fi-
nite volume approximation on unstructured meshes of strong solutions to hyperbolic
systems of conservation laws. Our proof relies on the control of perturbations com-
ing from the discretization in the uniqueness proof proposed by R. J. DiPerna [20]
and C. M. Dafermos [14] (see also [15]).

Numerous studies on error estimates for hyperbolic problems were published
in the last decades. Let us first highlight some optimal convergence rates that
are established in the literature. Classical first-order finite difference methods on
cartesian grids for the approximation of smooth solutions of linear equations can
be directly studied by estimating the truncation error, leading to an O(h) error
estimate, where the length h is the characteristic size of the grid. Adapting S. N.
Kruzhkov’s doubling variable technique [35], N. N. Kuznetsov proved in [36] that
finite difference schemes for nonlinear one-dimensional conservation laws converge
towards the entropy weak solution with the optimal rate O(h'/2?) in the space-
time L' norm. The optimal rate O(h'/?) has been recovered by B. Merlet and
J. Vovelle [41] and by F. Delarue and F. Lagoutiere [18] for weak solutions to
the linear transport equation approximated by the upwind finite volume scheme on
unstructured grids. The rate O(hl/ 2) appears to stay optimal when strong solutions
to linear transport equations are approximated on two-dimensional unstructured
grids as shown by C. Johnson and J. Piktaranta in [30]. Since linear transport enters
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2 CLEMENT CANCES, HELENE MATHIS, AND NICOLAS SEGUIN

our framework, we cannot expect a better a priori error estimate than O(h'/?).
However, if one restricts to dimensional one, an estimate in O(h) can be derived
even for nonlinear systems of conservation laws, see D. Bouche et al. [4].

Many studies exist when considering entropy weak solutions, based on nonlinear
techniques which extend in some sense N. N. Kuznetsov’s article [36]. These works
focus on the multidimensional case with unstructured meshes, for scalar conserva-
tion laws [10, 11, 49, 22, 7]. They mainly use the notion of error measures, see
for instance [6], and lead the an error estimate in O(h'/*) (recall that the conver-
gence has been initially addressed by A. Szepessy [44]). The key-point in these
multidimensional studies is the control of the BV semi-norm. For unstructured
meshes, one can only prove that it grows as h~1/? (even in the linear scalar case,
cf. [19]), which actually is the main barrier to obtain a better rate of convergence.
Similar tools allowed V. Jovanovic and C. Rohde to propose error estimates [31] for
the finite volume approximation of the solution to Friedrich’s systems (i.e., linear
symmetric hyperbolic systems)

As mentioned above, we are interested in multidimensional systems of conser-
vation laws. The solutions to such systems may develop discontinuities in finite
time and, since the pioneering work of P. D. Lax [37], entropy conditions are added
to select physical/admissible solutions. Recently, it has been shown by C. De Lel-
lis and L. Székelyhidi Jr. in [16, 17] that such a criterion is not sufficient in the
multidimensional case. Nonetheless, it is known since several decades (see in par-
ticular [20, 14]) that if a strong solution exists, then there exists a unique entropy
weak solution corresponding to the same initial data, and that it coincides with
this strong solution. Moreover, it can be shown that entropy weak solutions are
stable with respect to strong solutions. Since error estimates of any approximation
are based on the stability properties of the model, we restrict this study to strong
solutions which are known to exist, in finite time, and to be unique [33, 39, 15]. As
in [32], we use the notion of relative entropy to compare the approximate solution
with a smooth solution. The mathematical techniques are basically the same as in
the scalar case (we follow in particular [22, 7]): weak-BV estimates and error mea-
sures. The main result of this paper is an a priori error estimate of order O(h'/%)
in the space-time L? norm for first-order time-explicit finite volume schemes un-
der classical assumptions on the numerical fluxes [5, 46]. One key ingredient is an
extension to the system case of the so-called weak—BV estimate introduced in the
scalar case in [22, 7]. As in the scalar, it relies on a quantification of the numerical
dissipation and requires a slightly reduced CFL condition. We finally obtain an
error estimate in O(h'/*), and simplify the framework of a study of V. Jovanovic
and C. Rohde [32] where time-implicit methods are considered and the weak-BV
estimate is assumed).

Concerning higher order methods, let us mention the result [8] of C. Chainais-
Hillairet who proved an error estimate or order O(h'/4) for the time-explicit second
order finite volume discretization with flux limiters [48] of nonlinear scalar conser-
vations laws. The strategy exploited in [8] consists in showing that the solution
to the second order remains close to the solution to the monotone scheme without
limiters. Such a strategy might be adapted in our framework but provides very
under-optimal estimates. High order time-implicit discontinuous Galerkin methods
have also been analyzed in details by Hiltebrand and Mishra in [29]. Using appropri-
ate weak-BV estimates, they prove convergence towards entropy measured-valued
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solutions of multidimensional systems of conservation laws. No error estimate has
been derived yet up to our knowledge.

Remark 1.1. As it is well known, solutions to hyperbolic nonlinear systems of
conservation laws may develop discontinuities after a finite time. However, the
occurence of such discontinuities is prohibited when appropriate relaxation terms
are added to the systems [27, 51| (we then have hyperbolic balance laws instead of
hyperbolic conservation laws). By adapting the analysis carried out by V. Jovanovic
and C. Rohde in [32], such terms can be considered in the analysis. A time explicit
treatment of the source terms would lead to a reduced CFL. Therefore, in the case
of stiff relaxation terms, an implicit treatment of the source terms is relevant. We
refer to the work [9] of C. Chainais-Hillairet and S. Champier for an error estimate
in the case of a scalar balance law.

1.1. Hyperbolic systems of conservation laws.

1.1.1. Strong, weak, and entropy weak solutions. We consider a system of m con-
servation laws

d
(1) Oru(,t) + > Oafalu)(z,t) =0.

System (1) is set on the whole space z € R?, and for any time ¢t € [0,T], T > 0. We
assume that there exists a convex bounded subset of R™, denoted by 2 and called
set of the admissible states such that

(2) u(z,t) €Q, V(z,t) € R x [0,T].
System (1) is complemented with the initial condition
(3) u(z,0) = up(x) €Q, Ve R

We assume for all « € {1,...,d} the functions f, : R™ — R™ to belong to
C?(Q;R™), and be such that Df, are diagonalizable with real eigenvalues, where
D denotes the differential with respect to the variables .

System (1) is endowed with a uniformly convex entropy 1 € C?(Q; R) such that
there exists 81 > By > 0 so that

(4) spec (DQU(U)) - [507 ﬂl]v Vu € ﬁa
and the corresponding entropy flux ¢ € C2?(Q;R?) satisfies for all o« € {1,...,d}
(5) D¢ (u) = Dn(u)D fo(u), Yu € .

Without loss of generality, we assume that 7(u) > 0 for all u € Q. The existence of
the entropy flux £ amounts to assume the integrability condition (see e.g. [25])

(6) D?n(u)D fo(u) = Dfo(uw)' D?n(u),  Yu € Q.
Let us introduce the quantity Ly by

w?' D?n(v) D fo (u)w .

(7) Ly= sup sup sup o Dp(o)w

ae{l,....d} (u,v)€Q? weR™\{0}
Remark 1.2. Notice that, in view of (6), the matriz D f,(u) is self-adjoint for the
scalar product (w,v), = w! D*n(u)v. Therefore, the Rayleigh quotient
T D2p(u)DF, Df,(ww),
. wp [EDHODL | G Dfo(u)u)
weR™\ {0} wT D2n(u)w weRm\{0} (W, W)y
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provides exactly the largest eigenvalue in absolute value of D f,(u). The situation
in (7) is more intricate than in (8) since u might be different of v, but the quantity
Ly is bounded in view of the boundedness of 2 and of the regularity of fo and 7.

Despite it is well-known that even for smooth initial data ug, the solutions of (1)—
(3) may develop discontinuities after a finite time, our study is restricted to the
approximation of smooth solutions u € W1 (R xR ; Q) to (1)—(3). Such solutions
are called strong solutions, and they satisfy the conservation of the entropy

d
9) On(u) + Z Daba(u) =0 inRYxR,.
a=1

We refer for instance to [33, 39, 15] for specific results on strong solutions of systems
of conservation laws.

Assuming that ug € L>=(R%; Q), a function v € L>=(R? x R ;) is said to be a
weak solution to (1)—(3) if, for all ¢ € C(R? x R, ;R"), one has

(10) //}Rdx]R+ Db ddt + /R wod(-,0) dar + //R zdj Fo(0)0u dadt = 0.

d
xRt =1

Moreover, u is said to be an entropy weak solution to (1)—(3) if u is a weak solution,
i.e., u satisfies (10), and if, for all ¢ € CL(R? x R, ); R, ), it satisfies

(11) //]RMR+ n(u)@twd:cdt—i—/Rd n(uo)w(-,o)d:v—i—//Rd zdjfa(u)c’)awdxdt > 0.

xRt q=1

1.1.2. Relative entropy. In [35], Kruzhkov is able to compare two entropy weak
solutions using the doubling variable technique. In [36], such method has been
extended in order to compare an entropy weak solution with an approximate solu-
tion. In the case of systems of conservation laws, these techniques no longer work.
Basically, the family of entropy—entropy flux pairs (n,€) is not sufficiently rich to
control the difference between two solutions. Nevertheless, let us assume that one
of these solutions is a strong solution, u in the sequel, and introduce:

Definition 1.1 (Relative entropy). Let u,v € Q. The relative entropy of v w.r.t.
u s defined by

H(v,u) = n(v) —n(u) — Dn(u)(v — u),
and the corresponding relative entropy fluzes Q :  x Q — R are

Qa(vau) = €a(v) - ga(u) - DU(U)(fa(U) - fa(u))a Va € {1’ e ’d}

The notion of relative entropy for systems of conservation laws goes back to the
early works of DiPerna and Dafermos (see [20], [14] and the condensed presentation
in [15]). It has also been extensively used for the study of hydrodynamic limits of
kinetic equations (see the first works [50] and [1], but also [43] for more recent
results). For systems of conservation laws, one can check that, given a strong
solution u and an entropy weak solution v with respective initial data ug and vy,
one has

d d
(12) O H (v, u) + Z D0Qa(v,u) < =Y (9qu)’ Zo(v,u)

a=1 a=1
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in the weak sense, where

(13) Zoz(va u) = D277(u) (foz(v) - fa(u) - Dfoz(u)(v - u))
On the other hand, it follows from the definition of H that

1,0

(14) H(v,u) = / / (v —w) T D*n(u+y(v —u))(v — u) dvyde,

o Jo
which, together with (4), leads to
Po b
2 2
If u is assumed to be a strong solution, its first derivative is bounded and by a
classical localization procedure a la Kruzhkov and a Gronwall lemma, one obtains
a L2 _stability estimate for any 7 > 0

loc

(16) /| - lv(x, T) — u(x, T)|*dx < C(T,u)/ lvg () — ug(x)|?dz,

|z|<r+LsT

(15) lv—ul? < Hv,u) < =|v—ul?, Yu,ve.

where the dependence of C on w reflect the needs of smoothness on u (C blows
up when u becomes discontinuous). This inequality, rigorously proved in [15],
provides a weak—strong uniqueness result. Similar (but more sophisticated) ideas
have been applied to other fluid systems, see for instance [40] and [23] for more
recent developments.

Remark 1.3. In [47], Tzavaras studies the comparison of solutions of a hyperbolic
system with relaxation with solutions of the associated equilibrium system of con-
servation laws. He also makes use of the relative entropy for strong solutions. Very
similar questions have been addressed in [3, 2] for the convergence of kinetic equa-
tions towards the system of gas dynamics. Here again, only strong solutions of the
Euler equations are considered. To finish the bibliographical review, let us mention
the work by Leger and Vasseur [38] where the reference solution may include some
particular discontinuities.

Remark 1.4. For general conservation laws, the relative entropy is not symmet-
ric, i.e, H(u,v) # H(v,u) and Q(u,v) # Q(v,u). In the very particular case
of Friedrichs systems, i.e. when there exist symmetric matrices A, € R™*™
(a € {1,...,d}) such that fo(u) = Anu, then u s |u|® is an entropy and the
corresponding entropy fluz € is €4 (u) = ul Aqu, (o € {1,...,d}). It is then easy to
check that

H(v,u) = H(v,u) = |u—v|?, Qu(v,u) = Qalu,v) = (v —u)T Ay (v — u),

and Zq(v,u) =0 for all (u,v) € R™. As a consequence, inequality (12) becomes

d
OcH (v,u) + Z 00Qa(v,u) <0,
a=1
even if u is only a weak solution. This allows to make use of the doubling vari-
able technique [35] to compare u to v, recovering the classical uniqueness result for
Friedrichs systems [24].

Our aim is to replace the entropy weak solution v in (12) by an approximate
solution provided by finite volume schemes on unstructured meshes. Following the
formalism introduced in [22], this makes appear in (12) bounded Radon measures
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which can be controlled, leading to error estimates in h'/* between a strong solution
and its finite volume approximation, h being the characteristic size of the cells of
the mesh. The purpose of the following section is to define the finite volume scheme
and to recall some classical properties required on the numerical fluxes.

1.2. Definition of the time-explicit finite volume scheme.

1.2.1. Space and time discretizations. Let T be a mesh of R, defined as a family fo
disjoint polygonal (or polyhedral) connected subsets of R?, such that R is the union
of the closure of the elements of 7. We denote h = sup{diam(K), K € T} < o0,
and assume without loss of generality that 0 < h < 1. For all K € T, we denote by
|K| its d-dimensional Lebesgue measure, and by N'(K) the set of its neighboring
cells. For L € N(K), the common interface (called edge) between K and L is
denoted by ok, and |okr| is its (d — 1)-Lebesgue measure. We denote by & the
set of all the edges and assume that there exists a > 0 such that
hdfl
(17) K| >ah® and [0K|:= Y |oki|< , VKeT.
LeN(K) a

The unit normal vector to o i, from K to L is denoted ng . Note that the elements
we consider are not necessarily simplices. Let At > 0 be the time step and we set
t" = nAt, Yn € N. Let T > 0 be a given time, we introduce Ny = max{n €
N,n < T/At+ 1}. Since we consider time-explicit methods, the time step At will
be subject to a CFL condition which will be given later.

Remark 1.5. In order to avoid some additional heavy notations, we have chosen
to deal with a uniform time discretization and a space discretization that does not
depend on time. Nevertheless, it is possible, following the path described in [34],
to adapt our study to the case of time-dependent space discretizations and to non-
uniform time discretizations. This would be mandatory for considering a dynamic
mesh adaptation procedure based on the a posteriori numerical error estimators that
can be derived from our study.

Since we will consider weak formulations and compactly supported test functions
in the next sections, we introduce local sets of cells and interfaces: let r > 0, we
introduce the sets

T.={KeT|KcB(0,r)}
(18) E ={okxr €& | (K,L) e (T,)% LeNK)},
87;:{0KL€5|KE7;, LEN(K), LQ'TT}

In particular, {oxr, € £ | K € T,, L e N(K)} = &, U 9T, and &. N AT, = 0.
1.2.2. Numerical fluz and finite volume schemes. For all (K, L) € T2, L € N(K),

we consider numerical fluxes Gxr, which are Lipschitz continuous functions from
02 to R™. We assume that these numerical fluxes are conservative, i.e.,

(19) Grr(u,v) = —Gri(v,u), VY(u,v) € Q2
We also assume that the numerical fluxes fulfill the following consistency condition:

(20) Grr(u,u) = f(u) -nkgr, YueQ,
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which implies
(21) > lokelGrr(u,u) =0, VueR™ VK €T,
LeN(K)
Following [5], we assume that the numerical flux ensures the preservation of the

convex set of admissible states €2 at each interface. More precisely, we assume that
there exists A* > 0 such that, for all A > \*, for all K € T, and for all L € N(K),
1

(22) u—X(GKL(u,U)—f(u)-nKL)GQ, V(u,v) € Q%

In order to ensure the nonlinear stability of the scheme, we also require the existence
of a numerical entropy flux. More precisely, we assume that for all (K, L) € £, there
exist Lipschitz continuous functions £k, :  x 8 — R which are conservative, i.e.,

(2?’) gKL (ua ’U) = 7§LK (’U, u); V(u, ’U) € QQv

and satisfy the interfacial entropy inequalities: for all A > \* > 0, for all (u,v) € 2,
1

(24)  &rer(uv) = €(u) -nxr < =A(n(w = 3 (Grrlu,v) = f(u)- nir)) —n(u)).

In what follows, and before strengthening it in (38), we assume that the following
CFL condition is fulfilled:

At
(25) mx > lokcl<1, VKeT.
LEN(K)
Note that the regularity of the mesh (17) implies that (25) holds if
2
a
(26) At < Fh'

We have now introduced all the necessary material to define the time-explicit
numerical scheme we will consider.

Definition 1.2 (Finite volume scheme). The finite volume scheme is defined by
the discrete unknowns u%, K € T and n € {0, ..., Nrp}, which satisfy

uie "t — uj
(27) Bl > lokrlGrr(uf, uf) =0
LeN(K)
together with the initial condition
1
(28) ul = —/ up(x)dz, VK €T,
K| Jx

under assumptions (19)—(24) on the numerical flur Gxr and under the CFL con-
dition (26). The approzimate solution u" : R? x Ry — R™ provided by the finite
volume scheme (27)—(28) is defined by

(29) uh(z,t) =ul, forzeK, t"<t<t""' KT, ne{0,...,Nr}.

Remark 1.6. Let us provide some examples of numerical fluxes which satisfy as-
sumptions (22) and (24). The most classical example is the Godunov fluz [26],
which writes

GKL(U,’U) == f(UKL(O;u, ’U)) *NKIL
where U ,(z/t; u,v) stands for the solution of the Riemann problem for the system
of conservation laws (1) in the one-dimensional direction nyr, with initial data u
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and v. If X* is greater than all the wave speeds in the Riemann problems, then one
can prove (22) and (24), with the numerical entropy flux

§rr(u,v) = UKL (0;u,v)) - nkL.
Another classical example is the Rusanov scheme [42], which is the finite volume
extension of the Laxz—Friedrichs scheme. It reads

Grer s 0) = 5(F() + F(0)) et~ 50— u)

where ¢ > 0 is a parameter (which can be defined by interface). The associated
numerical entropy flux is

fKL(’U,,’U) = %(XKL(U,’U> — XLK(’L),’(,L))

where Xkr(u,v) = &(u) - nxr + Dn(u)(Grr(u,v) — f(u) - nxr) (this function
will also be introduced hereafter for the computation of weak-BV estimates). Once
again, if ¢ is greater than all the wave speeds, one can prove that this numerical
entropy flur satisfies (24). Proving Assumption (22) is more difficult and overall
model dependent. For the shallow-water equations, the positivity of the height of
water is directly obtained (see for instance [5]). The case of Euler equations is
more intricate, in particular for proving the positivity of the specific energy. This
can be done using the structure of the system, see for instance [5]. For details on
the proofs, more explicit CFL conditions, or for other admissible numerical fluzes,
the reader can refer for instance to [28], [13], [46], [5], [12].

1.3. Error estimate and organization of the paper. Our aim is to provide an
error estimate of the the form

Hu — uh||L2(p) < Ch1/4,

for all compact subsets I of R? x R, where u stands for the unique strong solution
to (1), (3) and wuy, for the numerical solution (27)—(29). The rigorous statement is
given in Theorem 2.7. This estimate extends to the system case the contributions
of [11, 49, 22, 7] on the scalar case. In [32], which also deals with strong solutions
of nonlinear systems, the assumptions are less classical than ours, in particular we
do not need any ’inverse’ CFL condition of the form C' < At/h (see also [22] for a
similar comment in the scalar case).
The proof of this estimate relies on a so-called weak-BV estimate, that is

Nt
C
doar > |UKL||GKL(U?(,U7£)*J"(U’%)'nKL|ST,

n=0 (K,L)e&, h

where &, is defined in (18). The rigorous statement of this estimate and its proof
are gathered in §2.2. Up to the authors’ knowledge, this estimate is new for time-
explicit finite volume schemes: in [32], only time-implicit methods are considered
(see also [29]).

Let us now present the outline of the paper. In Section 2 we first briefly recall
some classical properties of the finite volume scheme. Then we address the proof
of the weak—BV property by introducing a new flux which depicts the entropy
dissipation through the edges. Straightforward consequences are then derived.

The next two sections address the proof of the error estimate. In order to com-
pare the discrete solution u” with the strong solution u, we write continuous weak
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and entropy formulations for u” in Section 3, so that we can adapt the uniqueness
proof proposed in [15]. Nevertheless, the discrete solution u" is obviously not a
weak entropy solution. Therefore, some error terms coming from the discretization
have to be taken into account in the formulation, which take the form of positive
locally bounded Radon measures, following [22]. A large part of Section 3 consists
in making these measures explicit and in bounding them with quantities which tend
to 0 with the discretization size. In Section 4, we make use of the weak and en-
tropy weak formulations for the discrete solution (and of their corresponding error
measures) to derive the error estimate. The distance between the strong solution
u and the discrete solution u” is quantified thanks to the relative entropy H (u”,u)
introduced in Definition 1.1.

2. NONLINEAR STABILITY

2.1. Preservation of admissible states and discrete entropy inequality.
We first give two classical properties of the numerical scheme (27) which are direct
consequences of the assumptions we made in §1.2.2. We refer to [5] for the proofs.

Lemma 2.1. Assume that the initial condition satisfies (3) and that assumption
(22) and the CFL condition (25) hold, then, for all K € T, for alln € {0,..., N},
u'y belong to 1.

Following once again the procedure detailed in [5], we can derive entropy prop-
erties on the numerical scheme from (24).

Proposition 2.2. The numerical entropy flur £k is consistent with &, i.e.

(30) Exr(u,u) = &(u) -nkr, Yu € Q.

Moreover, under the CFL condition (26), the discrete solution u" satisfies the dis-
crete entropy inequalities: VK € T, ¥n > 0,

K
6y Mo nein s Y loxslenluoup) <0
LeN(K)

Note that the consistency (30) of the entropy fluxes £k, ensures that

(32) Z lok | (u,u) =0, Yu € Q.
LeN(K)

2.2. Weak—BV inequality for systems of conservation laws. For all (K, L) €
T2, L € N(K), we introduce the flux

(33) Xgr(u,v):=E(w) ngr + Dn(u)(Grr(u,v) — f(u) -nkr), Y(u,v) e Q.

Let us remark that it is neither symmetric nor conservative. Such a quantity may
provide the connection between fully discrete and semi-discrete entropy satisfying
schemes, but also between entropy-conservative and entropy-stable schemes. It is
in particular shown in [5] (see also [45, 46]) that the fluxes Xy, for (K,L) € &
verify

(34) —Xrx(v,u) < éxr(u,v) < Xgp(u,v), Y(u,v) € Q2

Actually, inequalities (34) can be specified by quantifying the entropy dissipation
across the edges.
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Proposition 2.3. For all ok € £ and all (u,v) € Q2, one has

(35) Xrrn(u,v) —Exr(u,v) > f)?* |Grr(u,v) — f(u) -ngrl?

where By is defined in (4) and X* has to be such that (22) and (24) hold.

Proof. We rewrite the left-hand side of Ineq. (24) for A = \* using the definition (33)
of the flux Xk, in order to obtain

(36) Xxr(u,v) = Exr(u,v) = Dn(u)(Grr(u,v) = f(u)-nxr)

> X = 5 (Gren,0) — F) - mgen)) — )

The uniform convexity (4) of n ensures that

(37) X [ — 55 (Gren () = f(u) - nace)) = n(a)
2 —Dn(u)(Grr(u,v) = f(u) -nkL) + %%|GKL(UaU) — f(u) - gl
Combining (36) and (37) leads to (35). O

Thanks to the specified version (35) of the classical inequalities (34), we are
now in position for proving a new stability estimate for time-explicit finite volume
scheme, namely the weak-BV inequality. This inequality is obtained by quantifying
the numerical diffusion of the numerical scheme. As in the scalar case (see [10, 11,
49, 22, 7]), such an equality requires a strengthened CFL condition. In our system
case, we require the existence of some ¢ € (0, 1) such that

Bo a®
(38) Ab< G (1= O
holds, where 8y and (3 are defined by (4), a and h are the mesh parameters (17),
and where \* appears in the condition (22) and (24). Note that the strengthened
CFL condition (38) implies the classical CFL condition (26). We are now able to

obtain the following local estimate, using the notations (18).

Proposition 2.4. Assume that the strengthened CFL condition (38) holds, then
there exists C' depending only on T,r,a,n,&,Q and ¢ (but neither on h nor on At)
such that

Nt
(39) oAt > Jokwl [Grr(uf,u}) = flul) -nkr]* < C.

n=0 (K,L)e&,
Proof. Multiplying the numerical scheme (27) by AtDn(u’) and summing over
n € {0,...Nr} and K € 7, provides
(40) A+ B =0,

where

Nt
A=Y Dnlui) (i — ug) K],

n=0KeT,

Nt
B= At Z Dn(u) Z lox |G rr(uf,ul).
0 KeT, LeN(K)

n=
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The concavity of u — n(u) — %|u — u?|? together with the definition (27) of the
numerical scheme and property (21) provide that

Az nlugm K= Y n(u) K]

KeT, KeT,

et 1
) ;Aﬁ > =

KeT,

2

Z loxr] (Grr(uy,ul) — f(uk) -nkr)
LeN(K)

Using the Jensen inequality, we get

Z n(uk)|K| < / n(ug(x))dz =: C;.

KeT. || <B(0,R+h)

The positivity of the entropy 7 yields Z n(u%T+1)|K | > 0. Moreover, Cauchy—

KeT,
Schwarz inequality ensures that for all K € 7, and all n € {0,..., N7}, one has

2

> loxr| (Grr(uf,uf) — flul) -niL)

LeN(K)
§< > |UKL|>< > |UKL||GKL(U?<,U?)f(u}?)'nKLf)-

LeN(K) LEN(K)

Then it follows from the regularity assumption (17) on the mesh that

(41) A> -Cy — lAtZ ty > |UKL||GKL(UK’UL) flul) -nxrl®.

n=0 KeT, LeN(K

Concerning the term B, we use the definition (33) of the entropy flux Xk, to get

B = ZNZ > loknl(Xrr(uhk, uf) = §(up) -nir + Dn(uf) f (wi) - nir).

KET, LEN(K)

Using the property ZLEJ\/(K) loxr|nkr =0 for all K € T, we can reorganize the
term B into

(42) B =B + By,

where

ZNZ S Jowel(Xuen (u, uf) — xcn (e, uf)),

KeT, LeEN(K)

By :ZAt Z lokLlérr (U, ur).

n=0  (K,L)edT,

Since i1, is a continuous function of bounded quantities, By can be bounded using
the regularity of the mesh (17). More precisely, one gets

(43) |BQ|< max ||5KL|\LW(Q2)ZN > lokLl £ Co
n=0 (K,L)€dT,
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for some C > 0 depending only on T, r, a, £ and §2. On the other hand, it follows
from Proposition 2.3 that

(44) > 2)\* ZN Yo D lowel Grrlup,ut) — fuf) -nkrl

KeT, LeEN(K)

Combining (41)—(44) into (40) leads to

At
(26;* ﬁ;%)z&z > lokillGrr(up,up) = f(uf) - nkrl* < Cr+Cs.

= KeT, LEN(K)

The CFL condition (38) has been strengthened so that

Bo _ Bt _ (o
20 2a2h ) T 2X*

remains uniformly bounded away from 0. Estimate (39) follows. O

We state now a straightforward consequence of Proposition 2.4. Its proof relies
on the Cauchy—Schwarz inequality and is left to the reader.

Corollary 2.5. Assume that (38) holds, then there exists Cpy depending only on
T,r,a, & n, uy, Q and ¢ such that

Nt
C
(45) Soar Y |oKL||GKL<u;z,uz>—f(u;z)-nms%.
n=0 (K,L)EE, h

2.3. Consequences of the weak—BV estimate. The weak—BV estimate (45)
implies a similar control on entropy fluxes and the time variations of u”.

Lemma 2.6. Assume that the strengthened CFL condition (38) holds, then

Cpv

Nt
(46) doat > okl lExr(uf,ut) — E(uk) - nirl < [ Dnlle—= T

n=0  (K,L)EE,

Cpv
(47) Z > IE |t — | < ==,
n=0KeT, \/E

Cpv
(48) (K [[n(uf™) = n(ug)] < 11Dnllce—==-
3 3 it "

Proof. Using the Lipschitz continuity of n in (24), one obtains inequality (48).
Thanks to definition (27) of the scheme and thanks to the divergence free prop-
erty (21), one has for all K € T and alln € N

it — il |K| < At > okl [Grr(uf,up) — f(uf)  nLl.
LEN(K)
Summing over K € 7, and n € {0,..., Ny} and using (45) provides (47). Inequal-
ity (48) then follows from the Lipschitz continuity of 7. O

We now state our main result, that consists in an a prior:i error estimate between

a strong solution u and a discrete solution u”.
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Theorem 2.7. Assume that ug € WH>°(R?) and that the solution u of the Cauchy
problem (1)~(3) belongs to WH*(R? x [0,T]). Let u”, with 0 < h < 1, defined
by the numerical scheme (27)—(29) and assume that the strengthened CFL condi-
tion (38) holds. Then, for all r > 0 and T > 0 there exist C' depending only on
T,r,Q,a, \*,up, Gkr,n and f, such that

T
/ / lu — u"dedt < CVh.
0 JBOr+Ly(T—1t))

3. CONTINUOUS WEAK AND ENTROPY FORMULATIONS FOR THE DISCRETE
SOLUTION

In order to obtain the error estimate of Theorem 2.7, we aim at using the rel-
ative entropy of u” w.r.t. u. Since u” is only an approximate solution, it neither
satisfies exactly the weak formulation (10) nor the entropy weak formulation (11).
Some numerical error terms appear in these formulations, and thus also appear the
inequality of the relative entropy

d d
OH (u", 1) + 3 0aQa(uu) < =Y (Oau)" Za(u",u)
a=1 a=1

+ numerical error terms.

(49)

As usual, these terms may be described by Radon measures, see for instance [6,
22,7, 34, 31, 32]. Note that for nonlinear systems of conservation laws, a function
which satisfies the entropy inequality (11) is not necessarily a weak solution (10).
This leads us to introduce error measures for both the entropy inequality (11) and
the weak formulation (10) of u”. Let us first begin with the entropy formulation
and the related measures.

For X = R% or X = R? x R*, we denote by M(X) the set of locally bounded
Radon measures on X, i.e., M(X) = (C.(X)) where C.(X) is the set of continuous
compactly supported functions on X. If p € M(X) we set (i, p) = [ pdp for all
v € Co(X).

Definition 3.1. For ¢ € C.(R%), ¢ € C.(R? x RY), we define py € M(R?) and
pw € M(R? x RT) by

() = [ In(uol)) =l .0l (a)da,

{0y =(ur, o)+ Y At Y orllrn(uh, up) — Exr(uh, ui)| (nxL, @)
n=0 (K,L)EE,

+Y At D ownléxn i ut) — Exn (@l ul)| (pnk, @),
n=0 (K,L)EE,
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where
o0 tn+l
Gree) =3 Y Wi =auio) [ [ etatdadt,
n=0 KeT, L
HKL,¥ |K| |UKL| At
gttt
/ / / / / (h+ At)o(y + 0(x — ), s + 0(t — s))dOdzdtdyds,
OKL
(Lrx, 90>

|K| |UKL| (At)?

x/ // / / (h+ At)p(y + 0(z — ), s + 0(t — s))d0dzdtdyds.
tm L Jtm OKL

As it will be highlighted by Proposition 3.3 later on, the measures p and pg
describe the approximation error in the entropy formulation satisfied by u”. Let us
first estimate them on compact sets.

Lemma 3.2. Assume that the strengthened CFL condition (38) holds, then, for all
r >0 and T > 0 there exist C,,, > 0, depending only on uo, || Dn||,, and r, and
Cyu >0, depending only on T',r,a, \*,uo, Gk, and n such that, for all h <,

C

(50) po(B(0,7)) < Cuohand  u(B(0,r) x [0,T]) < \/—*i

Proof. The regularity of ug : R — R™ yields

po(BO) < kDl [ |Vudlda.
T+

)

For r > 0 and T' > 0 the measure p1 satisfies

( (O T 0 T / / Z |7] n+1 (U}L(”]_Kx[tn,thrl]dl'dt.
B

(0,7) n=0 KeT,

Then, using the time-BV estimate (48),

n n c
(B0 % [0.7) < ALY S Kl lnu) - niu)] < 2t 2
n=0KeT, h

Since At satisfies the CFL condition (38), one has
(51) pr(B(0,7) x [0,T]) < Cpur VA,
where C),, 1= %CBV. The measures prr and prx satisfy:

prr(RTXRY) <h+At,  prx(R? xRY) < h+ At
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Therefore,

w(B(0,7) x [0,T7)

Nt
<CupVht (h+A)Y At Y okr| €k (uf,uf) — Exrn(ufe, ul))|

n=0  (K,L)€&,

Nt
Hh+A)Y At > Joko| €xn(ul, ut) — Exn(ul,ul)|.

n=0  (K,L)EE,
Hence, using Lemma 2.6, the CFL condition (26) and the bound (51) provides
u(B(0,7) x [0,T]) < C,Vh,

where C,, = C,,, + 2 (1 + ;—) D7l ocCrv. O

Proposition 3.3. Let y and ug be the measures introduced in Definition 3.1, then,
for all p € CH(R? x R*;RY), one has

(52) //}Rdx]R+ Gtap xz,t) + Z / (uo(x))p(z, 0)daéy (u ) Oap(x, t)dadt
2 [[ (56 o) dutet) — [ ot 0duote)

Proof. Let ¢ € CL(R? x R*;R*). Let T > 0 and 7 > 0 such that supp ¢ C

tn+1

B(0,r) x [0,T). Let us multiply (31) by / / (x,t)dzdt and sum over the
{n K
control volumes K € 7, and n < Np. It yields
(53) T+ T <0,
where
Nt 1 1 g+l
— n+
(54) T, = Z Z E(n Y / / (x,t)dzdt,
n=0KeT,
tn+1

n= OKeT LeN(K)

The term T} corresponds to the discrete time derivative of n(u®) and Ty to the
discrete space derivative of £(u"). The proof relies on the comparison firstly between
Ty and T and secondly between To and Tsg, where T1g and T3y denote respectively
the temporal and spatial term in (52):

To-- [[ ., M0 )t~ | twata)ete.o)da,

Tho = / Z Ea(u)Dno(, t)dxdt.

RdX]R+ a=1
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Let us first focus on Tg. Following its definition (29), the approximate solution
u” is piecewise constant, then so does n(u”). Therefore, we can rewrite

tn+1

Nt
To=)_ ) (n(U?(“)—n(U%))é/tn /ch(:c,t”“)dxdt

n=0KeT,
- [ (uota)) = (@,0))e(,0)d.

It is now easy to verify that

Nt
Ti=Tl <3 ¥ i) =il [ [ tocidoa

n=0KeT,
+ [ ntun(o) = ntu (@, 0)le(z 01
R
Then, accounting from Definition 3.1, the inequality reads

(56) Ty — Tho| < // Orpldur (. 1) + / o, 0)dpio ().
RixR Rd

We now consider the terms T5 and T5y. Performing a discrete integration by
parts by reorganizing the sum, and using the properties (32) and (23) lead to
(57) Ty =151 + Tz,
with

Nt ot
OKL n ,n no,mn
=Y ¥ [ e 06t u) - €l ugdod

n=0 (K,L)€&, K|
- joxcel [
Ta=Y. Y S5 o, ) (i (uf, ufe) — Eor (uf, up))dudt.
L] Jin
n=0 (K,L)€&, e L

Gathering terms of T5y by edges yields

Too = T20,1 +T20,2,

where, thanks to (23), we have set

tn+1

.

n=0 (K,L)e&, ”?

.

n=0 (K,L)e&, "

/ (Excn(ul,u) — (k) - nicr) ol )y,

tn+1

| Cnctuug) = €up) - nuse) ol idrt.
OKL
It is easy to verify

Nt
Toy—Toon=y At Y loxrl(Exr(uh,uf) = & (uf, ui)
n=0  (K,L)E&.
t'n.+l t'n.+l

- m /tn /K /tn /O_KL(‘P(xvt) — (v, s))dydsdzdt.
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Then using the definition of px 1, in Definition 3.1, we obtain the following estimate:

(58) T2 — Too,1

Nt
<A Y lownlnn (e ul) — Exnluk k)] urcr [Vl + o).
n=0 (K,L)EE,

Similarly, one obtains

(59)  |T2,2 — Tao,2|

Nt
<Y AL > Jokrlénr (Ul ul) — S (Wi, ul)| (e, [Vl + (0ie]),
(K,L)e&,

the measure purx € M(R? x RT) being given by Definition 3.1. Bearing in mind
the definition of u € M(RY x R*) given in Definition 3.1, inequalities (53), (56),
(57), (58) and (59), one has

o — Ty > — // (V| + el £) — / o, 0)dpio(2),
RE xR, Rd

which concludes the proof of Proposition 3.3. O

Similar calculations can be used to estimate how close u" is to a weak solution.
For that purpose we define the following measures.

Definition 3.4. For ¢ € C.(R?) and ¢ € C.(R? x RT), we set

(Tl /|U0 — (2, 0) | ()

(B ) = (A, ¢ +2At > lokil|Grr(ule, ut) — Grp(uhe, wh) | (Fgcr,, @)

(K,L)e&,
+ Z At > lokrl|Grr(ul,up) — Grr(uf, uf)[(TiL k. ©),
(K,L)e&,
where
tntt
(B, e Z Z |l —uK|/ / x, t)dxdt,
n=0KeT,
Hrr,¥ |K||O'KL|At2
tn+1
/ / / / / (h+ At)p(y + 0(x — v), s + 0(t — s))dOdxdtdvyds,
tTL
(Trx, ) = W

tn+1 tn+1

/ / / / (h+ At)p(y + 0(x —7),s + 0(t — s))dOdxdtdyds.
tn tn
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Remark 3.1. It follows from the definitions of the measures u and 1 that they can
be extended (in a unique way) into continuous linear forms defined on the set

E = {(p € L®(R? x R*;R) | supp(p) is compact, and Vo € Li (R? x R+)d} :

Indeed, any ¢ € E admit a unique trace on ok, so that the quantities (uxr,,p),
(uri, ), (Brr,e) and (G, ) are well defined. Moreover, one has

(s o) < el Lo n({e # 0}), (7o) < llellp-m{e #0}),  VYpeE.

We now state a lemma and a proposition whose proofs are left to the reader,
since they are similar to the proofs of Lemma 3.2 and Proposition 3.3 respectively
as one uses the estimates (45) and (47) instead of (46) and (48).

Lemma 3.5. Let u” defined by (27)-(29). Assume that (38) holds, then, for all
r >0 and T > 0 there exist Cz, > 0, depending only on ug and r, and Cz > 0,
depending only on T',r,a, \*, ug, Gxr such that, for all h < r,

(60) Tio(B(0,7)) < Cy b and F(B(0,7) x [0,T]) < CuVh,

where Cy, = Cuuy /| Dnl|oo and Ci = Cu/|| D1l (see the proof of Lemma 3.2).
We are now in position to provide the approximate weak formulation satisfied

by u”. In the statement below, ¢ is a vector-valued function, and we adopted the

notation |Ve| = maxaeqi,....a} |Oatp|. The proof of Proposition 3.6 follows the same

guidelines as the proof of Proposition 3.3 and is left to the reader.

Proposition 3.6. Let i and ug be the measures introduced in Definition 3.1, then,
for all p € CHR? x RY;R™), one has

‘//Rd R [ ) Orp(a, 1) + Zfa Tatp(z, t)] dadt + ()T p(x,0)dz

e
</ / o, 91 itz 0+ [ ot O (@)

4. ERROR ESTIMATE USING THE RELATIVE ENTROPY

With the error measures p, po, #, and 7y at hand, we are now in position
to precise inequality (49) satisfied by the relative entropy H(u",u) and then to
conclude the proof of Theorem 2.7.

4.1. Relative entropy for approximate solutions.

Proposition 4.1. Let p and g be the measures introduced in Definition 3.1, and
let i and Jig be the measures introduced in Definition 3.4, then, for all p € C1(R? x
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RT;R"), one has

a=1

*// (IVel + 10wel) dp(a, 1) - / (. 0)dpo (x)
RIXR 4 Rd
- //]RdX]R (IV [eDn(w)] | + [0 [ Dn(u)] |) di(z, t)

f/Rd[chn( (@ //RdX]R+ :18 T Zo (u, w)dadt,

(03

d
o Jf <H<uh,u>atsa<z,t>+2Qa<uh,u>aaw<z,t>> dvd >

where Zo(u",u) = D*n(u)(fa(u") = fa(u) = (Dfa(u)) (u* —u)).

Proof. Let ¢ be any nonnegative Lipschitz continuous test function with compact
support in R? x [0, T]. Since u is a classical solution of (1)—(3), it satisfies

Rd

d
//}Rdx]R+ n(u)dpp(x,t) + Z Ea(w)Dup(x, t)dxdt —|—/ n(uo)p(z,0)dz = 0.

Subtracting this identity to (52) yields

d
(62) //]Rd . (n(u") = n(u)dpp(z,t) + Z(ga(uh) € () Bl 1)t
== [[ (el +aehdutat) = [ pla0)do(a)

We now exhibit the relative entropy-relative entropy flux pair in the inequality (62)
and obtain

(63) // < u VO + ZQ”‘ U u)8a<p> dxdt >
R xRy

a=1

[ o, [ gl )~ [, #la.00duo(a)

d
- //]Rde (DW(U))T ((Uh —u)Op + Z(fa(uh) — fa(u))aa50> dadt.

a=1

Since u is a strong solution of (1)—(3), it satisfies the following weak identity, Vi) €
C.(R¢ x R*;R™)

d
(64) //RdX]R+ [u@tz/}(x,t) + Z fa(u)aaz/}(x,t)l dxdt + /Rd uo(x)(x,0)dr = 0.

a=1
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Then we combine Proposition 3.6 with (64), so that using the Lipschitz continuous
vector field [pDn(u)] as test function leads to

-/ o, (D7)

- / / VoD ()] + 04l Dn(w)]|dp(z, £) — / oD ()], 0)dFio ()
Re xR

d
(u" —u)dpp + Z(fa(uh) - fa(u))aacp] dxdt >

a=1

d

+//Rd><]R+(Uh 7u)<,08t Dn Z ))(,08 ( ( ))dzdt.

Moreover identity (6) together with (1) gives

d
(66) 0y(Dn(u)) = dyu’ D*n(u Z T D%(u)
:—ZGuTD u) T D?n( Z(’)uTDQ w) D fo(u).
Injecting (65) and (66) into (63) leads to the conclusion. O

Lemma 4.2. There exists Cz depending only on f,n and Q such that, for all
a€e{l,...,d},

(67) | Zo(u",u)| < Czlu —ul?.
Proof. For M : Q — R™*™ and T : Q — L(R™; R™*™), we set
[ Ml 00 =sup [M(u)l, [T ] =sup ( sup |1 (u) 'U|2> :
ue) u€ \ veR™,|v|=1

where | - |2 and | - |, denote the usual matrix 2- and co-norms respectively. Using
the Taylor expansion of f, around u, we get that

[Fal?) = fulw) = (Dfalw) (" — )| < 5| D*fa |

then, estimate (67) holds for Cz = & || D HOO’OO | D% fa Hoo,z ) O

Oo2|u —ul?,

We now prove the following lemma on the finite speed of propagation.

Lemma 4.3. Let L; be defined by (7), then, for all s > Ly, one has

(68) (ul u+z Qau u) > 0.

Proof. Denote by w" := u” — u, then it follows from the characterization (14) of

the relative entropy H that

(69) H = // D2n(u + yw")wh dydo.

Denoting by A, the symmetric definite positive matrix Dun(u + ywh), and by
(-, -)a, the scalar product on R™ defined by (v1,v2)a, = vi A,vs, the relation (69)
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can be rewritten

1 6
(70) H= / / (W, W)y dvydf.
0 0

On the other hand, it follows from the definition (5) of the entropy flux £ that
1
Qo 7/ (Dn(u+ fuh) — Dn(u)) (Dfa(u+ Hwh))T w'df

/ / (D fa(u+ 6w )) w4, dydf

for all & € {1,...,d}. The quantity Ly introduced in (7) has been designed so that
‘(wh, (Dfalu+ Hwh))T wh>Aw’ < Ly{w",w"), . Therefore, we obtain

1,0
(71) 1Qa| < Lf/ / (w", W), dydd = LyH.
o Jo
The fact that (68) holds is a straightforward consequence of (71). O

4.2. End of the proof of Theorem 2.7. We now have at hand all the tools
needed for comparing u” to u via the relative entropy H (u”, u).

Let § € (0,T) be a parameter to be fixed later on, and, for k € N, we define the
nonincreasing Lipschitz continuous function 0y : RT™ — [0, 1] by

0r(t) = min <1,max <0, %)) , Vt>0.

Let us also introduce the Lipschitz continuous function 1 : R x R, — [0,1] de-
fined by ¥ (x,t) = 1 —min (1, max (0, |z| —r — Ly(T —t) + 1)), where L is defined
by (7). The function ¢y, : (x,t) € RY x RY — ()1 (x,t) € [0, 1] can be considered
as a test function in (61). Indeed, denoting by

T = [k6, (k+1)8]), Crr(t)={(2,t)||x] € [r+Ly(T —t),r+Ls(T —1t)+1]},

one has

Orpr(z,t) = — %112 (t)p(z,t) = Lybr(t) e, 1) (),

X
Vor(z,t) = — m9k(t)1cT,T(t)($)a

so that both Oipr and |Veg| belong to the set E defined in Remark 3.1. Then
taking ¢y as test function in (61) yields

1
= Hydzdt O ( Za dxdt
5/1;2 g Ydx +/0 k( /Zau (ul, u) Ydx

T
g—/ Hk(t)/ (LfHJrZQa |>dxdt+R1+R2+R3+R4,
0 CT,T(t)
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where

= //Rdx[o,ﬂ(mpk(x’m + 0cor (1)) dp(z, 1),
e :/Rd b, 0)dpo (),
R3 //Rdx[(m |Dn(w)|(|Veor (2, )| + |0vpr (z, 1)) dfi(x, t)
+ //Rd o on(z, )| D*n(u)(z, t)| . (|0wu] + |Vul) di(z, t),

Ri= [ 0(e.0)[Dauo) dFio(z).

Thanks to Lemma 4.3, one has
(72)

i),
0Jz
The definition of ¢, ensures that x|, = 1, [Verlle < 1, 0okl < 5+ Ly
and

T d
Hypdzdt + / O (t) / > Oau” Zo(uP, u) pdadt < Ry + Ry + Rs + Ry.
0 i —

5 d
» YR

supp(ox) € | B(O,r+ Le(T —t) +1) x {t},
tel0,(k+1)0]
This leads to

1
R, < (5 + Ly + 1) p(supp(Vepr,) U supp(drpr)).-

Thanks to Lemma 3.2, we obtain that there exists Cl’f (depending on k, r, T, 6, Ly,
a, \*, ug, Gk, and 1) such that

1
(73) Ry <Ch <5+Lf+1> Vh.

It follows from similar arguments that there exists C,Llio (depending on k 7, ug, 7,
Ly, T and §) such that

k
(74) Ry <} h,

and, thanks to Lemma 3.5, we obtain that there exists CLEO (depending on k,
r,ug, Ly, T and ) such that

(75) Ry < CF ||Dn(uo)|| 1 -

Similarly, there exists Cg (depending on k, T, 7, Ly, a, \*, ug, G, and §) such that
1

(16) o < (1Dl (5 + L5 1) + 1D (00l + 190l ) V.

By using Lemma 4.2 and 0 < ;(¢t) < 1, we obtain
T d
(77) / 0 (1) / > Oau” Zo (", u) pdadt
0 iRt

> ~Cz|vall,, [ (2, 8) — (e, P4, €t
R x [0, (k+1)6]
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Since the entropy 7 is supposed to be §p-convex, we have

(78) H(z,t) > % ul(x,t) — u(z, t)]?.

Putting (73)—(78) together with (72) provides

(79) (5—202|Vu||00> /I2 /Rd |uh — | dedt

< C2|Vull, // i~ dedt + CyV,
R4 x[0,kd)

where (recall that h < 1)
1

O =} (5 +Ls+1) + Cf, + Gl IDn(u)
1
+08 (10l (54 L5 +1) + 101l 00l + 1¥))

T
P
neither § nor p* depend on h), so that (79) becomes

Choose now § = with p* = min {p € N* | }% < %‘zHVBW} (note that

k-1
(80) er < WZQ +Ck\/ﬁ,
i=0
where e =[5 [pa [u" — ul?¢ dadt and w = Cz||Vu| .. Hence, a few algebraic
k
calculations allow us to claim that

(81) Zek < \/EZC% ((1 +w)p*7k+1—w).
k=0 k=0

Noticing that ¢(x,t) = 1 if € B(0,r + Ly(T —t)), and that ¢(x,t) > 0 for all
(z,t) € R? x (0,T), one finally has

T T P
(82) / / lu — u"[Pdadt < / / lu — ul|?e(x, t)dedt = Z ek
0 B(0,r—st) 0 R4 k=0

We conclude the proof using (81) in (82).

5. CONCLUSION

We analyzed the convergence of first order finite volume schemes entering the
framework detailed in [5] and summarized in §1.2.2. In §2.2, we derived a so-
called weak-BV estimate based on the quantification of the numerical entropy dis-
sipation. This estimate is new in the case of time-explicit finite volume schemes. It
allows to prove some error estimate between a numerical solution and a strong so-
lution of order /4 in the space-time L2-norm. Let us also mention that one could
use the weak-BV estimate to prove to convergence to entropy measure-valued solu-
tions, following [21] (see also [29]). On the other hand, strong solutions are global
if one adds some suitable entropy-dissipating relaxation term [27, 51]), and our
work could be extended to this situation without any major difficulty by mixing
our result with the one proposed in [32].
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