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Abstract - In this paper we improve the rate function in the McDiarmid concentration inequality for

separately Lipschitz functions of independent random variables. In particular the rate function tends to

infinity at the boundary. We also prove that in some cases the usual normalization factor is not adequate

and may be improved.
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1. Introduction

Throughout the paper (E1, d1), . . . , (En, dn) is a finite sequence of separable metric spaces

with positive finite diameters ∆1, . . . ,∆n. Let En = E1× · · · ×En. A function f from En

into IR is said to be separately 1-Lipschitz if

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ d1(x1, y1) + · · ·+ dn(xn, yn).

Let (Ω, T , IP) be a probability space and X = (X1, . . . , Xn) be a random vector with

independent components, with values in En. Let f be any separately 1-Lipschitz function

from En into IR. Set Z = f(X). Let the McDiarmid diameter σn be defined by

(1.1) σ2
n = ∆2

1 + ∆2
2 + · · ·+ ∆2

n.

McDiarmid (1989, 1998) proved that, for any positive x,

(1.2) IP(Z − IE(Z) ≥ σnx) ≤ exp(−2x2).

This inequality is an extension of Theorem 2 in Hoeffding (1963). We refer to Devroye

and Lugosi (2001), Chapter 2, for more about concentration inequalities. Later Bentkus

(2007, paper submitted on August 17, 2001) and Pinelis (2006) replaced the upper bound

in (1.2) by a Gaussian tail function. They proved that

(1.3) IP(Z − IE(Z) ≥ σnx) ≤ c IP(Y ≥ 2x), with Y
D
= N(0, 1).
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The best known constant in (1.3) is c = 5.70, due to Pinelis (2006).

We now comment these results. Since f is separately 1-Lipschitz and the spaces Ei

have a finite diameter ∆i, the function f is uniformly bounded over En. Furthermore if

M = supEn f and m = infEn f , then

(1.4) m ≤ Z ≤M and M −m ≤ ∆1 + ∆2 + · · ·+ ∆n := Dn.

From (1.4) it follows that

(1.5) IP(Z − IE(Z) ≥ Dn) = IP(Z = M and IE(Z) = m) = 0.

Now (1.5) cannot be deduced from either (1.2) or (1.3). Hence it seems clear that the rate

function 2x2 in the Mc-Diarmid inequality (1.2) is suboptimal for large values of x. The

aim of this paper is to improve the rate function in (1.2). In Section 2, we give a more

efficient large deviations rate function in the case ∆1 = ∆2 = · · · = ∆n = 1. In particular

we prove that, for any x in [0, 1],

(1.6) IP
(
Z − IE(Z) ≥ n(1− x)

)
≤ xn(1−x2).

This inequality implies (1.2) and yields (1.5). Next, in Section 3, we extend the results

of Section 2 to the case of distinct diameters, for small values or large values of the

deviation. Let us recall the known lower bounds for large values of the deviations. Take

Ei = [0,∆i] and set ∆ = (∆1,∆2, . . . ,∆n). Let PMcD(z,∆) denote the maximal value of

IP(Z − IE(Z) ≥ z) over all the separately 1-Lipschitz functions and all the random vectors

X with values in E and with independent components. By Proposition 5.7 in Ohwadi et

al. (2012),

(1.7) PMcD(Dn − nx,∆) ≥ xn/(∆1∆2 . . .∆n) for any x ≤ min(∆1,∆2, . . . ,∆n).

In Theorem 3.2 of Section 3, we prove the converse inequality, with Dn−(56/67)nx instead

of Dn − nx. For small values of the deviation we obtain in Theorem 3.1 the following

extension of (1.6): for any x in [0, 1],

(1.8) IP
(
Z − IE(Z) ≥ Dn(1− x)

)
≤ x(1−x2)D2

n/σ
2
n .

This extension is also suitable for large values of the deviation when σ2
n ∼ D2

n/n. However,

as shown by the converse inequality (1.7), (1.8) has be improved when σn � n−1/2Dn. We
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give a first result in this direction in Section 3. The results of Sections 2 and 3 are proved

in Section 4. To conclude this paper, we give a more general inequality in Section 5. This

inequality, based on partitions of the set of diameters, provides better numerical estimates

than the results of Section 3 for intermediate values of the deviation.

2. The case ∆1 = ∆2 = · · · = ∆n

In this section we assume that ∆1 = ∆2 = · · · = ∆n = 1. Then (1.2) yields

(2.1) IP(Z − IE(Z) ≥ nx) ≤ exp
(
−nϕ(x)

)
with ϕ(x) = ϕ0(x) = 2x2.

From Theorem A in Rio (2001), (2.1) still holds true with the greater function ϕ(x) =

ϕ1(x) = 2((1 + x) log(1 + x) + (1 − x) log(1 − x)) (here log is the Neper logarithm).

Nevertheless ϕ1(1) = 4 log 2 < ∞ , so that this result still is suboptimal for x = 1. In

Theorem 2.1 below, we give a better large deviations rate function.

Theorem 2.1. For any positive t,

(a) n−1 log IE
(

exp(tZ − tIE(Z))
)
≤ (t− log t− 1) + t(et − 1)−1 + log(1− e−t) := `(t).

Let then ψ1(x) = 2x2 +(4x4/9) and ψ2(x) = (x2−2x) log(1−x), with the convention that

ψ2(1) = +∞. For any x in [0, 1],

(b) IP(Z − IE(Z) ≥ nx) ≤ exp
(
−nmax(ψ1(x), ψ2(x))

)
≤ (1− x)n(2x−x2).

Remark 2.1. Let `∗ denotes the Young transform of `. (b) follows from the fact that

(2.2) `∗(x) ≥ max(ψ1(x), ψ2(x)).

Note that ψ2(x) > 2x2. Consequently, the two upper bounds in Theorem 1.1(b) improve

McDiarmid’s result. Furthermore it can be proven that max(ψ1(x), ψ2(x)) > ϕ1(x) for

any x in ]0, 1] . Consequently (b) also improves Theorem A in Rio (2001).

By (1.7) and (2.2), − log(1− x) + (1− x)2 log(1− x) ≤ `∗(x) ≤ − log(1− x). It follows

that limx↑1 `
∗(x) + log(1− x) = 0, which gives the asymptotics of l∗ as x ↑ 1.

Remark 2.2. The expansion of ` at point 0 is `(t) = 1
8 t

2− 1
576 t

4 +O(t5). It follows that

`∗(x) = 2x2 + (4/9)x4 + O(x5) as x tends to 0. Hence ψ1 is the exact expansion of `∗ at

order 4.
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3. The general case : moderate and large deviations

Here we assume that the diameters ∆i do not satisfy ∆1 = ∆2 = · · · = ∆n. Let us

introduce the quantities below, which will be used to state our bounds:

(3.1) An = (Dn/n), Bn = n−1/2σn and Gn = (∆1∆2 . . .∆n)1/n.

Then Gn < An < Bn. Our first result is an extension of Theorem 3.1 below gives an

extension of Theorem 2.1, which preserves the variance factor σ2
n. This result is suitable

for moderate deviations. Here ` denotes the function already defined in Theorem 2.1(a)

and `∗ is the Young transform of `.

Theorem 3.1. For any positive t,

(a) log IE
(
exp(tZ − tIE(Z))

)
≤ (Dn/σn)2`(σ2

nx/Dn).

Consequently, for any x in [0, 1],

(b) IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
−(Dn/σn)2`∗(x)

)
.

Contrary to the McDiarmid inequality, the upper bound in Theorem 3.1(b) converges to

0 as x tends to 1. Now, by the Cauchy-Schwarz inequality, (Dn/σn)2 ≤ n in the general

case. However, in some cases (Dn/σn)2 = o(n) as n tends to ∞. In that case Theorem 3.2

below provides better results for large values of x. In order to state this result we need to

introduce a second rate function. This is done in Proposition 3.1. below.

Proposition 3.1. Let η(t) = `(t) − (t − log t − 1) and let t0 ' 1.5936 be the solution

of the equation 1 − e−t = t/2. Then η is concave and increasing on ]0, t0] and decreasing

on [t0,∞[. Define ηc by ηc(t) = η(t) for t ≤ t0 and ηc(t) = η(t0) for t ≥ t0. Let `c be

defined by `c(t) = (t − log t − 1) + ηc(t). Then `c is a convex continuously differentiable

and increasing function on IR+, and

(a) `∗c(x) = `∗(x) for x ≤ x0 = 1− t−1
0 and `∗c(x) = −η(t0)− log(1− x) for x ≥ x0.

The numerical value of η(t0) is η(t0) ' 0.17924 and x0 ' 0.3725. Furthermore

(b) `c(t) ≤ t2/8 for any t > 0 and `∗c(x) ≥ 2x2 for any x > 0.

We now state our second result

4



Theorem 3.2. For any positive t,

(a) n−1 log IE
(
exp(tZ − tIE(Z))

)
≤ log(An/Gn) + `c(Ant).

Consequently, for any x in [0, 1],

(b) IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
n log(An/Gn)− n`∗c(x)

)
.

Remark 3.1. Since the maximum value of η is η(t0), `c(t) ≤ t− log t− 1 + η(t0) for any

positive t. Hence, for any x in [0, 1],

(3.2) `∗c(x) ≤ η(t0)− log(1− x) ≤ log(56/67)− log(1− x).

It follows that, for any positive y,

(3.3) IP
(
Z − IE(Z) ≥ Dn − (56/67)ny

)
≤ yn/(∆1∆2 . . .∆n).

The factor 1/(∆1∆2 . . .∆n) appearing in (3.3) cannot be removed, as shown by (1.7),

For sake of completeness, we give here the proof of (1.7). let ∆1 ≥ ∆2 ≥ · · · ≥ ∆n be

positive reals and y be any positive real in [0,∆n]. Let b1, b2, . . . , bn be independent random

variables such that bk has the Bernoulli law b(y/∆k). Set Tn = ∆1b1 + ∆2b2 + · · ·+ ∆nbn.

Then IP(Tn − IE(Tn) ≥ Dn − ny) = yn/(∆1∆2 . . .∆n).

Example 3.1. Take n = 100, ∆1 = 49 and ∆k = 1 for k ≥ 2. Then σn = 50, Dn = 148

and An = 1.48. Let p = IP(Z− IE(Z) ≥ 75). The McDiarmid inequality (1.2) applied with

x = 3/2 yields p ≤ e−9/2 ' 1.1 10−2 and (1.3) yields p ≤ 7.7 10−3. Theorem 3.1(b) yields

p ≤ 8.6 10−3 and Theorem 3.2(b) yields p ≤ 2.7 10−8.

To conclude this section, we give an inequality, which is a byproduct of the proofs of

Theorems 3.1 and 3.2. In some cases this inequality provides better estimates.

Theorem 3.3. For k in [1, n], let the quantities σk, Dk, Ak and Gk be defined as in

(1.1), (1.4) and (3.1). Set D0 = 0 and σ0 = 0. Then, for any k in [0, n] and any positive u,

IP
(
Z − IE(Z) ≥ (Dn −Dk)`∗−1

( (σ2
n − σ2

k)u

(Dn −Dk)2

)
+Dk `

∗−1
c

(
log
(Ak
Gk

)
+
u

k

))
≤ e−u,

where `∗−1 and `∗−1
c denote the inverse functions of `∗ and `∗c . Furthemore, for k = 1, the

function `∗−1
c may be replaced by `∗−1 in the above inequality.
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Remark 3.2. For k = n, Theorem 3.3 is just an other formulation of Theorem 3.2. For

k = 0, Theorem 3.3 is an other formulation of Theorem 3.1.

We now give a ”ready to be used” inequality”. From (2.2), `∗−1(y) ≤ ψ−1
1 (y). Moreover

(3.4) ψ−1
1 (y) =

√
y
(
1 +

√
1 + (4/9)y

)−1/2
.

Now, from (3.2), `∗−1
c (y) ≤ 1− 56

67e
−y. Hence Theorem 3.3 yields

(3.5) IP
(
Z − IE(Z) ≥ (Dn −Dk)ψ−1

1

( (σ2
n − σ2

k)u

(Dn −Dk)2

)
+Dk − 56

67 kGke
−u/k

)
≤ e−u.

Example 3.1 (continued). Let p = e−9/2. Denote by Q the quantile function of

Z − IE(Z), which is the inverse of the tail function. The McDiarmid inequality yields

Q(p) ≤ 75. By Theorem 3.3 applied with k = 1 (the optimal choice), Q(p) ≤ 63.35. Next

Q(p) ≤ 73.05 by Theorem 3.1 and Q(p) ≤ 64.93 by Theorem 3.2.

4. Proofs of the results of Sections 2 and 3.

We start by proving an upper bound on the Laplace transform of Z which implies

Theorem 2.1(a) in the case ∆1 = ∆2 = . . . = ∆n.

Lemma 4.1. Let ` be the function already defined in Theorem 2.1(a). Then, for any

positive t, log IE
(
exp(tZ − tIE(Z))

)
≤ `(∆1t) + `(∆2t) + · · ·+ `(∆nt) := L(t).

Proof of Lemma 4.1. Let us briefly recall the martingale decomposition of Z. Let

F0 = {∅,Ω} and Fk = σ(X1, . . . , Xn). Set Zk = IE(Z | Fk). Then Z = Zn and Z0 = IE(Z).

Furthermore (Zk)k is a martingale sequence adapted to the above filtration. Now, set

Yk = Zk − Zk−1. Define the Fk−1-measurable random variable Wk−1 by

(4.1) Wk−1 = IE
(

inf
x∈Ek

f(X1, . . . Xk−1, x,Xk+1, . . . , Xn) | Fk−1

)
− Zk−1.

By (1.1),

(4.2) Wk−1 ≤ Yk ≤Wk−1 + ∆k.

From this inequality and the convexity of the exponential function,

∆ke
tYk ≤ (Yk −Wk−1)et(Wk−1+∆k) + (∆k +Wk−1 − Yk)etWk−1 .
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Hence, using the martingale property

(4.3) ∆kIE
(
etYk | Fk−1

)
≤ −Wk−1e

t(Wk−1+∆k) + (∆k +Wk−1)etWk−1 .

Set then

(4.4) γ(r, t) = log(1 + r(et − 1))− tr and rk−1 = −(Wk−1/∆k).

Since (Zk) is a martingale sequence, IE(Yk | Fk−1) = 0. Hence, from (4.2), Wk−1 ≤ 0 and

0 ≤Wk−1 + ∆k. Consequently rk−1 belongs to [0, 1]. Furthermore, by (4.3),

log IE
(
etYk | Fk−1

)
≤ γ(rk−1,∆kt).

Define now

(4.5) `(s) = sup
r∈[0,1]

γ(r, s) = sup
r∈]0,1[

(log(1 + r(et − 1))− tr).

From the above inequality

(4.6) log IE
(
etYk | Fk−1

)
≤ `(∆kt) almost surely ,

which implies Lemma 4.1 for the function ` defined in (4.5). It remains to prove that ` is

equal to the function already defined in Theorem 2.1(a). Now

∂γ

∂r
(r, t) =

et − t− 1− rt(et − 1)

1 + r(et − 1)
,

and consequently the function γ(r, t) has an unique maximum with respect to r in the

interval [0, 1]. This maximum is obtained for r = rt = (et − t− 1)/(t(et − 1)), whence

`(t) = log((et − 1)/t)− 1 + t/(et − 1) = (t− log t− 1) + t(et − 1)−1 + log(1− e−t).

We now prove (2.2) , and therefore Theorem 2.1(b). The first step is to compare the

functions ψ1 and ψ2.

Lemma 4.2. There exists an unique real x0 in [0.6670, 0.6675] such that ψ1(x) ≥ ψ(x)

for any x ≤ x0 and ψ1(x) < ψ2(x) for x > x0.

Proof of Lemma 4.2. For any x < 1, ψ2(x) = 2x2 + (x4/6) +
∑
k>4 akx

k with

ak = (k − 3)/(k2 − 3k + 2). Define now f by f(x) = x−4(ψ(x)− ϕ(x)). Then

f(x) := x−4(ψ(x)− ϕ(x)) = (−5/18) +
∑
k>4akx

k−4,
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which implies that f is increasing on [0, 1]. Lemma 4.2 follows then from the facts that

f(0.6670) < 0 and f(0.6675) > 0.

The second step is to prove that `∗(x) ≥ ψ1(x) for any x in [0, 1].

Lemma 4.3. `∗(x) ≥ ψ1(x) for any x in [0, 1].

Proof of Lemma 4.3. From (4.5), for any positive x,

(4.6) `∗(x) = inf
r∈]0,1[

γ∗r (x) with γ∗r (x) = sup
t>0

(tx− γ(r, x)).

Let the function h be defined by h(x) = (1 + x) log(1 + x)− x for x > −1, h(−1) = 1 and

h(x) = +∞ for x < −1. Since h(0) = h′(0) = 0 and h′′(x) = 1/(1 + x), the function h is

convex and nonnegative. Next

(4.7) γ∗r (x) = rh(x/r) + (1− r)h(−x/(1− r)) := hr(x).

Consequently γ∗r (x) = +∞ for r > 1 − x. Furthermore the above function is continuous

with respect to r for r in [0, 1−x], so that we may take the infimum over ]0, 1−x[ in (4.6).

Our way to prove Lemma 4.3 is consider hr as a function of ux = 2(r + x)− 1. Clearly

h′′r (x) = (x+ r)−1 + (1− x− r)−1 = 4/(1− u2
x) ≥ 4(1 + u2

x).

Now hr(0) = h′r(0) = 0. Consequently, by the Taylor integral formula,

(4.8) hr(x) =

∫ x

0

(x− y)h′′r (y)dy ≥ 4

∫ x

0

(1 + u2
y)(x− y)dy.

Some elementary calculations show that

(4.9) 4

∫ x

0

(1 + 4u2
y)(x− y)dy = 2x2 +

4

9
x4 + 2x2

(
2r − 1 + (2x/3)

)2
.

Both (4.6), (4.7), (4.8) and (4.9) then imply Lemma 4.3.

To complete the proof of Theorem 2.1(b), it remains to prove that `∗(x) ≥ ψ1(x) for

x ≥ x0.

Lemma 4.4. `∗(x) ≥ ψ1(x) for any x ≥ 2/3.

Proof of Lemma 4.4. Let tx = 1/(1 − x). By definition, `∗(x) ≥ xtx − `(tx). Define

the function η by

(4.10) η(t) = `(t)− (t− log t− 1) = t(et − 1)−1 + log(1− e−t).
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With this definition, xtx − `(tx) = log tx − η(tx) . Now, tx ≥ 3 for any x ≥ (2/3). Since

ψ2(x) = log tx − t−2
x log tx, the proof of Lemma 4.3 will be complete if we prove that

(4.11) t2η(t) ≤ log t for any t ≥ 3.

Since log 3 ≥ 1, it is enough to prove that t2η(t) ≤ 1. Now, by concavity of the logarithm,

t2η(t) ≤ t2(t(et − 1)−1 − e−t) = (t2 + (t3 − t2)et)/(e2t − et).

Hence the inequality t2η(t) ≤ 1 holds true if δ(t) := (et + t2 − t3 − 1)et − t2 ≥ 0 for t ≥ 3.

Let β(t) := et + t2 − t3 − 1. β is strictly convex on [3,∞[ and has an unique infimum

at t0 ' 3.1699. Now β(t0) ' 1.00137 > 1, whence δ(t) > et − t2 > 0 for t ≥ 3. Hence

t2η(t) ≤ 1 for t ≥ 3, which implies (4.11). Consequently Lemma 4.3 holds true. Inequality

(2.2) follows then from both Lemmas 4.2, 4.3 and 4.4. Theorem 2.1(b) Follows.

Proof of Theorem 3.1. The proof of Theorem 3.1 is based on the convexity property

below.

Lemma 4.5. The function `′ is concave on IR+.

Proof of Lemma 4.5. Set v = 1/(et − 1). Then `(t) = vt − log v − log t − 1. Since

v′ = −v(1 + v),

`′ = 1 + 2v − tv − tv2 − (1/t), `′′ = −3(v + v2) + tv(1 + v)(1 + 2v) + (1/t2)

and

−`′′′ = (2/t3)− 4v(1 + v)(1 + 2v) + tv(1 + v)(1 + 6v(1 + v)).

Let f(t) := −`′′′(t)/(tv2(1 + v)2). We prove that f ≥ 0. Since 2v(1 + v)(cosh t − 1) = 1,

the function f can be decomposed as follows:

f(t) = f1(t) + f2(t) with f1(t) = 8t−4(cosh t− 1)2 and f2(t) = 2 cosh t+ 4− 8(sinh t/t).

Now f1 and f2 are analytic. First f2(t) = −2−(t2/3)+
∑
k≥2 akt

2k, for positive coefficients

ak. More precisely ak = 2(2k−3)/(2k+1)!. Consequently f2(t) ≥ −2−(t2/3). And second

2(cosh t− 1) ≥ t2(1 + t2/12), whence

f1(t) + f2(t) ≥ 2(1 + t2/12)2 − 2− (t2/3) ≥ (t4/72) > 0.

Hence f(t) > 0 for any positive t, which ensures that `′ is concave.
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We now complete the proof of Theorem 3.1(a). According to Lemma 4.1, we have to

prove that

(4.12) L(t) := `(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ (Dn/σn)2`(σ2
nt/Dn).

Now

L(t) =

∫ t

0

L′(u)du =

∫ t

0

(
∆1`

′(∆1u) · · ·+ ∆n`
′(∆nu)

)
du.

Next, by Lemma 4.5,

∆1`
′(∆1u) · · ·+ ∆n`

′(∆nu) ≤ Dn `
′(σ2

nu/Dn).

Hence

L(t) ≤ ∆

∫ t

0

`′(σ2u/∆)du = (Dn/σn)2 `(σ2
nt/Dn).

Hence (4.12) holds, which implies Theorem 3.1(a). Theorem 3.1(b) follows from the usual

Chernoff calculation.

Proof of Proposition 3.1. With the notations of the proof of Lemma 4.5,

η′ = v(2− (1 + v)t) and η′′ = v(1 + v)(t(1 + 2v)− 3).

Therefrom η′(t) > 0 if and only if 2 > tet/(et − 1), which holds if and only t < t0.

Now η′′(t) < 0 if and only if t(et + 1) < 3(et − 1). This condition holds if and only if

t ≤ t1, where t1 is the unique positive solution of the equation t = 3 tanh(t/2). Since

t1 ' 2.5757 > 2 > t0, the first part of Proposition 3.1 holds true. Now, by definition `c

is continuous and convex and continuously differentiable on the two intervals [0, t0] and

[t0,∞]. Since η′(t0) = 0, the left derivative and the right derivative of `c at point t0 are

equal. Hence `c is convex and continuously differentiable on IR+.

The proof of (a) , being immediate, is omitted. To prove (b), we note that, for any t ≤ t0,

`c(t) = `(t) ≤ t2/8, since `∗(x) ≥ 2x2 for any positive x. Now `c(t) = t− log t− 1 + η(t0)

for t ≥ t0, and consequently (t/4)− `′c(t) = (t− 2)2/(4t). Hence t2/8− `c is nondecreasing

on [t0,∞[, whence t2/8− `c(t) ≥ (t20/8)− `c(t0) > 0. Hence (b) holds, wich completes the

proof of Proposition 3.1.

Proof of Theorem 3.2. By definition, ηc is concave. Hence

ηc(∆1t) + ηc(∆2t) + · · ·+ ηc(∆nt) ≤ nηc(Ant).
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Since ` ≤ `c,

`(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ n(Ant− 1− log t)− log(∆1 . . .∆n) + nηc(Ant).

It follows that

(4.13) `(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ n log(An/Gn) + n`c(Ant).

which, together with Lemma 4.1, implies Theorem 3.2(a). Theorem 3.2(b) follows from

the usual Chernoff calculation.

Proof of Theorem 3.3. Here we use the martingale decomposition. With the same

notations as in Lemma 4.1, let S = Zk − Z0 and T = Zn − Zk. Then

Z − IE(Z) = Zn − Z0 = S + T.

The random variables Z and T have a finite Laplace transform, and, from their martingale

decomposition together with (4.6),

LS(t) := log IE(exp(tS)) ≤ `(∆1t) + `(∆2t) + · · ·+ `(∆kt),(4.14)

LT (t) := log IE(exp(tT )) ≤ `(∆k+1t) + `(∆k+2t) + · · ·+ `(∆nt).(4.15)

Let L∗S and L∗T denote the Young transforms of LS and LT respectively. By Lemma 2.1

in Rio (1994), L∗−1
S+T ≤ L

∗−1
S + L∗−1

T . Hence

(4.16) IP
(
Z − IE(Z) > L∗−1

T (u) + L∗−1
S (u)

)
≤ exp(−u).

Next, by (4.15) together with (4.12),

LT (t) ≤ (σ2
n − σ2

k)−1(Dn −Dk)2`
(
(σ2
n − σ2

k)t/(Dn −Dk)
)
,

which ensures that

(4.17) L∗−1
T (u) ≤ (Dn −Dk)`∗−1

(
(σ2
n − σ2

k)u/(Dn −Dk)2
)
.

Now, for k = 1, LS(t) ≤ `(∆1t), whence L∗−1
S (u) ≤ ∆1`

∗−1(u). Theorem 3.3 in the case

k = 1 follows from both this inequality, (4.16), (4.17) and the strict monotonicity of `∗−1

on IR+ (which allows to replace > by ≥ in (4.16)). For k ≥ 2, from (4.14) and (4.13),

LS(t) ≤ k log(Ak/Gk) + k`c(Akt). Therefrom

(4.18) L∗−1
S (u) ≤ Dk `

∗−1
c

(
log(Ak/Gk) + (u/k)

)
.
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Theorem 3.3 follows then from both (4.16), (4.17), (4.18) and the strict monotonicity of

`∗−1 and `∗−1
c on IR+.

5. An inequality involving partitions

In this section we are interested in intermediate values of the deviation x. In the sketchy

Example 3.1, it appears that the McDiameter diameter is too big for intermediates values

of the deviation. In this section, we introduce a method which minimizes the effect of

variations of the values of the individual diameters ∆1,∆2, . . . ,∆n.

Definition 5.1. A family P of subsets of {1, 2, . . . , n} is called partition of {1, 2, . . . , n}
iff: (i) for any I in P, I 6= ∅; (ii) for any I and any J in P, either I ∩ J = ∅ or I = J .

We now define the McDiarmid diameter σ2(P) and the entropy H(P) of a partition P
as follows. Let |J | denote the cardinality of the finite set J . We set

(5.1) DJ =
∑
j∈J

∆j , AJ = |J |−1DJ and σ2(P) =
∑
J∈P
|J |A2

J .

Let the geometric means GJ and the entropy be defined by

(5.2) GJ =
(∏
J∈J

Aj

)1/|J|
and H(P) =

∑
J∈P
|J | log(AJ/GJ).

The so defined quantities satisfy σ2(P) ≤ σ2
n and H(P) ≥ 0. Furthermore H(P) = 0 if

and only if σ2(P) = σ2
n.

Theorem 5.1. Let the convex and differentiable function `0 be defined by

`0(t) = t2/8 for t ∈ [0, 2] and `0(t) = t− log t− (3/2) + log 2 for t ≥ 4.

For any positive t and any partition P of {1, 2, . . . , n},

(a) log IE
(
exp(tZ − tIE(Z))

)
≤ H(P) + (D2

n/σ
2(P))`0(σ2(P)t/Dn).

Consequently, for any x in [0, 1],

(b) IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
H(P)− (D2

n/σ
2(P))`∗0(x)

)
and, for any positive y,

(c) IP
(
Z − IE(Z) ≥ Dn`

∗−1
0

(
D−2
n min

P
σ2(P)(H(P) + y)

) )
≤ e−y.
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Remark 5.1. In Theorem 3.1(c), for small values of y, the optimal partition has a small

entropy and a large diameter, while, for large values of y, the optimal partition has a small

diameter and a large entropy.

Remark 5.2. The functions `∗0 and `∗−1
0 are explicit. More precisely

`∗0(x) = 2x2 for x ∈ [0, 1/2] and `∗0(x) = − log(1− x) + (1/2)− log 2 for x ∈ [1/2, 1],

`∗−1
0 (y) =

√
y/2 for y ∈ [0, 1/2] and `∗−1

0 (y) = 1− (
√
e/2)e−y for y ≥ 1/2.

Example 3.1 (continued). Let Q denote the quantile function of Z − IE(Z). For

p = e−9/2, Theorem 3.1(c) applied with P = {[1, 13], [14, 100]} (the optimal partition)

yields Q(p) ≤ 62.18, which improves the results of Section 3. For small values of p, the

optimal partition is P = {[1, 100]}. In this case Theorem 5.1 is less efficient than Theorem

3.2, since `∗−1
0 (y) > `∗−1

c (y). For example, let q = IP(Z − IE(Z) ≥ 75). Theorem 5.1(b)

yields q ≤ 3.0 10−7 instead of q ≤ 2.7 10−8 with Theorem 3.2. Recall that the McDiarmid

inequality yields q ≤ 1.1 10−2.

Proof of Theorem 5.1. By Lemma 4.1 together with (4.13),

log IE
(
exp(tZ − tIE(Z))

)
≤
∑
J∈P

∑
j∈J

`(∆jt) ≤ H(P) +
∑
J∈P
|J | `c(AJ t).

Now `c(t) ≤ min(t2/8, η(t0) + t− log t− 1) ≤ `0(t) for any positive t. Hence

(5.3) log IE
(
exp(tZ − tIE(Z))

)
≤ H(P) +

∑
J∈P
|J | `0(AJ t).

To complete the proof of Theorem 5.1, we proceed exactly as in the proof of Theorem 3.1:

since `0(0) = 0,

(5.4)
∑
J∈P
|J | `0(AJ t) =

∫ t

0

(∑
J∈P

DJ`
′
0(AJu)

)
du.

Now `′0(t) = t/4 for t ≤ 2 and `′0(t) = 1 − (1/t) for t ≥ 2, which ensures that `′0 is

continuous and increasing. `′′0(t) = 1/4 for t < 2 and `′′(0) = t−2 for t > 2, which ensures

that limt↓2 `
′′
0(t) = 1/4. Hence, by L’Hospital’s rule, `′0 is differentiable at point 2, and

`′′0(2) = 4. Consequently `′′0 is continuous and nonincreasing, which ensures that `′0 is

concave. It follows that ∑
J∈P

DJ`
′
0(AJu) ≤ Dn`

′
0(σ2(P)u/Dn).
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Integrating this inequality, we then get that

(5.5)

∫ t

0

(∑
J∈P

DJ`
′
0(AJu)

)
du ≤ (D2

n/σ
2(P))`0(σ2(P)t/Dn),

which, together with (5.3) and (5.4), implies Theorem 5.1(a). Theorem 5.1(b) follows

from the usual Chernoff calculation and Theorem 5.1(c) is an immediate consequence of

Theorem 5.1(b)
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Rio, Emmanuel (2001). Inégalités de concentration pour les processus empiriques de classes

de parties. Probab. theory relat. fields 119, 163-175.

14


