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Abstract

The ultra-fast control of large polyatomic molecules in the gas and condensed phases entails

working with a randomly oriented ensemble. During the short control period, little reorientation

may occur especially for cases in the condensed phases. This paper addresses the degree to which

all members of the ensemble may be simultaneously controlled with respect to their internal motion

by a single laser pulse. It is shown that all members of the ensemble are fully controllable if any one

member is. Numerical optimal control simulations also show that excellent quality full ensemble

control can be achieved even with reasonable constraints placed on the control fields. Although

the full ensemble may be controlled to a high degree, the control mechanism is likely to differ for

each ensemble member.
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I. INTRODUCTION

There is much interest in the control of molecular dynamics phenomena including chem-

ically reactive processes in large polyatomic molecules [1]. Recent experiments [2–8] have

demonstrated the feasibility of meeting these goals especially through the use of closed loop

adaptive techniques [9] operating directly in the laboratory. Successful experiments range

from the manipulation of diatomic molecules out through large polyatomic molecules and

even protein complexes, with studies in the gas and liquid phase environments. The shaped

laser pulses involved can operate over a time-scale of approximately 1ps or even less. Theo-

retical [10, 11] and experimental [12] work has shown that molecular re-orientation can take

place for small molecules in the gas phase, especially after the pulses are over due to rota-

tional coherences that are generated. However, large polyatomic molecules are expected to

undergo little re-orientation during the pulse period especially in the confined environment

of condensed phases. The adaptive control experiments will seek a single optimal control

field that manipulates the internal dynamics of all members of the randomly oriented molec-

ular ensemble as best as possible. This paper addresses whether the control field must strike

a compromise in trying to manipulate the full ensemble of randomly oriented molecules.

Although each member of the molecular ensemble is identical, in the presence of the

control electric field vector this symmetry is broken, as the field will interact in a distinct

way with each molecule that is oriented differently. Thus, the problem of controlling the

internal dynamics of the entire ensemble with a single field is very similar to the prob-

lem of controlling a collection of physically distinct molecules. The latter topic has been

the subject of controllability and optimal control analyses[13, 14]. In the present work, an

ensemble of randomly oriented identical molecules is first subjected to a controllability anal-

ysis in Section II. This analysis shows that if any member of the ensemble is controllable

then the entire ensemble should be controllable. This very strong positive result is rather

counterintuitive and it arises as a result of the nonlinearity of quantum control.

The practical reality of fully controlling an ensemble of randomly oriented molecules is

explored in Section III with optimal control simulations on a model system. The formal

theoretical conclusions on controllability in Section II are confirmed to an excellent degree

in the simulations even while working with limitations placed on the controls. However, it

is observed that different members of the ensemble evolve to each have a distinct control
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mechanism while still achieving similar yields in the target state. Finally, Section IV presents

a brief summary of the findings and comments on their significance.

II. ORIENTATIONAL ENSEMBLE CONTROL

A. The ensemble quality control index

Consider an ensemble of molecules exposed to an ultrafast laser control electric field

ε(t) such that little rotational motion of any molecule occurs during the laser pulse. This

condition can depend on the pulse length, field strength and the sample medium; satisfaction

of this condition is the fundamental assumption in this work. The assumption will be

increasingly valid for larger molecules and especially in condensed phase environments. The

goal here is not to explicitly model such complex circumstances, but rather to understand

what may happen to the ensemble under optimal control in the laboratory. The unperturbed

Hamiltonian H0 will now just depend on the internal molecular degrees of freedom and the

control goal is to optimally manipulate the internal dynamics of the molecules. Each member

of the ensemble is characterized by the angle θ between the dipole operator µ and the field

vector ε(t) producing the Hamiltonian H = H0 − cos(θ)µε(t). The molecules evolve under

the Schrödinger equation

ih̄
∂

∂t
|Ψ(t, θ)〉 = (H0 − cos(θ)µε(t)) |Ψ(t, θ)〉 (1)

Ψ(t0, θ) = Ψ0(θ).

A more general formulation would employ the density matrix with the Liouville equation

ih̄
∂

∂t
ρ(t, θ) = [H0 − cos(θ)µε(t), ρ(t, θ)] (2)

ρ(t0, θ) = ρ0(θ).

The two formulations can be expressed conveniently using the time evolution operator

U(t, t0)θ given by

ih̄
∂

∂t
U(t, t0)θ = (H0 − cos(θ)µε(t))U(t, t0)θ (3)

U(t0, t0)θ = I.
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as Ψ(t, θ) = U(t, t0)θΨ(t0, θ) and ρ(t, θ) = U(t, t0)θρ(t0, θ)U(t, t0)
†
θ. The molecules are as-

sumed to be described in terms of a discrete basis of dimension N .

An important question is whether a single laser field ε(t) is able to simultaneously control

the full internal dynamics of the ensemble of differently oriented molecules. Of course, one

preliminary requirement is that the laser field be capable of controlling at least one individual

member at some angle θ̄. This requirement has been addressed in different contexts [15–

19] and the criterion can be adapted to the present situation involving the N -dimensional

matrices of the operators H0 and cos(θ)µ with θ being a parameter. Suppose that for

one value θ̄ the matrices H0 and cos(θ̄)µ span the Lie algebra u(N) (or su(N) if both

matrices are traceless). Then this selected set of molecules is controllable in the sense that

from any initial state Ψi (of unit norm ‖Ψi‖L2 = 1) any other state Ψf (of unit norm

‖Ψf‖L2 = 1) can be attained with some laser field ε(t). The same conclusion holds for

the density matrix representation, provided that the target density matrix ρf fulfills the

compatibility requirement that ρf = UρiU
† where U is a unitary matrix.

It is interesting to note that this latter criterion does not depend on the particular value

of the angle θ̄: if individual controllability holds for one value θ̄ then it will hold for any other

angle θ′ 6= ±π/2. This can be seen by a simple scaling argument: let ε(t) be the control that

achieves the target for θ̄ ; then ε′(t) = cos(θ′)∗ε(t)/cos(θ̄) will drive molecules oriented with

angle θ′. Thus, if one member of the ensemble is individually controllable, then any other

member is as well (provided that cos(θ′) 6= 0). However this observation does not yet permit

drawing a conclusion about the controllability of the full ensemble with the same laser field.

Above, the laser field needed to be rescaled in order to steer an ensemble member at a

different orientation. In contrast, here we seek to assess whether a single laser field exists

that can simultaneously control the full ensemble of differently oriented molecules.

For simplicity the system will be expressed in the wave function formulation but all that

follows can be adapted to the density matrix. In the case of all the molecules oriented at an-

gle θ0, the control objective at time T can be formulated as maximizing |〈Ψ(T, θ = θ0), Ψf〉|
2.

Here |Ψf〉 is the final target state (e.g. a particular molecular excitation). Similarly, optimal

control over an ensemble of molecules with orientation distribution η(θ) can be expressed

as maximizing the cost functional
∫ π
0 |〈Ψ(T, θ), Ψf (θ)〉|

2η(θ)dθ where we consider a general

dependence of the target state |Ψf (θ)〉 upon the orientation parameter θ. This includes

the important case when the target is the same for all molecules |Ψf (θ)〉 = |Ψf〉. Addi-
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tionally, the target may be an orientational subset of the ensemble (e.g. those molecules

oriented along the field at θ = 0), provided that the laboratory feedback signal for optimiza-

tion is sensitive to molecular orientation. A similar treatment also follows for extremizing

〈Ψ(T, θ)|O(θ)|Ψ(T, θ)〉 where O(θ) is a Hermitian objective operator, as establishing control-

lability for |Ψ(T, θ)〉, ∀θ implies that the expectation value of an arbitrary O(θ) may also be

controlled. In the remainder of the paper the common case of a three dimensional uniform

distribution will be considered with η(θ) = sin(θ) arising from the polar volume element. In

addition the cost functional is normalized so that a value of zero means no control and a

value of 1 means perfect control for the full ensemble. We obtain the following quality index

Q(ε) which depends on the control field ε:

Q(ε) =

∫ π
0 |〈Ψ(T, θ), Ψf (θ)〉|

2 sin(θ)dθ
∫ π
0 sin(θ)dθ

=
1

2

∫ π

0
|〈Ψ(T, θ), Ψf (θ)〉|

2 sin(θ)dθ

=
1

2

∫ 1

−1
|〈Ψ(T, x), Ψf (x)〉|2dx (4)

where x = cos(θ). The integral should be approximated well by a sum having modest

sampling over the angular variable x, because the integrand is expected to only slowly vary

as a function of x. Thus, we have for xk = cos(θk), k = 1, ...,M and sk = xk − xk−1

Q(ε) =
1

2

M
∑

k=1

|〈Ψ(T, xk), Ψf (xk)〉|
2sk. (5)

The simulations will report the quality index in percent as 100×Q(ε). The physical goal is

to maximize the quality control index Q(ε) over the field. The first question to consider is

whether a collection of M identical molecules with different spatial orientations is in principle

fully controllable and this matter is addressed in the Section II B below.

B. Controllability analysis

The eigenvalues of the internal Hamiltonian H0 are denoted by λa, a = 1, ..., N with the

transition frequencies ωab = λa − λb. It is assumed that a basis has been selected such that

H0 is diagonal. A graph associated with the system can be constructed [15] by drawing

an edge between any two states coupled by the dipole µ: G = (V,E), V = {1, ..., N},

E = {(i, j); µij 6= 0}. A molecule of orientation angle x̄ = cos(θ̄) is controllable [19] if the

operators H0 and x̄µ span the Lie algebra u(N) (or su(N) if both matrices are traceless). The

collection of molecules with orientations x1, ..., xM (all nonzero) is wave function controllable
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if from any initial state Ψ(t = 0, xk) = Ψi(xk), 100% overlap with any final states Ψf (xk),

k = 1, ...,M can be attained at some final time T for Ψ(T, xk), k = 1, ...,M .

The following fundamental controllability theorem is for the full ensemble of molecules:

Theorem. Suppose the Hamiltonian H0 describes controllable molecules at one value of the

orientation angle x̄ = cos(θ̄) (thus for any x 6= 0) and that

ωab 6= ωa′b′ , for all (a, b) 6= (a′, b′), (6)

Then, if |x1|,...,|xM | are all different (and nonzero) the collection of molecules with orienta-

tions x1, ..., xM is wave function controllable. If however there exist k,k′ such that xk = −xk′

but the graph G has at least one odd length cycle (which includes, for example, the case where

all non-diagonal entries of µ are nonzero), then the same conclusion holds. In all controllable

cases the collection of molecules is also density matrix controllable.

The proof of the Theorem is given in Appendix A. Accepting the result, the reader may

skip to Section III presenting a numerical illustration of the Theorem’s consequences.

Finally, it should still be noted that controllability of a finite-dimensional subsystem, no

matter how large the dimension, need not imply controllability of the infinite-dimensional

system.

Having proved the result above for the bilinear setting of quantum mechanics, it is in-

teresting to compare with the analogous result in the linear case. Using Kalman’s crite-

rion [20, 21] it can be seen that controllability of an ensemble of M systems

dxk/dt = Akxk + ε(t)bk, k = 1, ...,M (7)

requires, in addition to individual member controllability, that the spectra of the free evo-

lution operators Ak be all distinct (see [22] for similar results in infinite dimensional cir-

cumstances). This condition is certainly not satisfied in the present context as the internal

Hamiltonians H0 are all identical. However, due to the bilinear nature of the Schrödinger

equation, controllability is still present. One can conclude that full ensemble control of

quantum systems is a nonlinear phenomena.

Remark 1. The Theorem is not the only controllability criteria available in this setting.

Other approaches can also be considered, that, for example, involve consideration of the

eigenvalues of the dipole moment µ. An additional class of results could be obtained, along

6



the lines in [17, 23], for settings where hypothesis (6) is not true but the dipole moment

takes a simple form (e.g., the representation where the dipole matrix is diagonal, but that of

H0 is not diagonal).

The assumptions underlying the Theorem are not very restrictive, and are often expected

to be valid. In addition, the criteria above is only sufficient and controllability may still be

true in other situations not covered by this result. We can thus conclude that at least one

field will exist that can control the full ensemble, except at the singular point x = 0.

III. ILLUSTRATIVE EXAMPLE

This Section aims to illustrate the Theorem above with a simple quantum control exam-

ple. Among issues of practical importance are the total time and the maximal field intensity

required to control an ensemble of molecules. Asking the control field to steer the full en-

semble of molecules to the target at the same time T is a more demanding task than the

traditional consideration of control of a single ensemble member. Intuitively, it is expected

that the total time required to achieve control may be larger than for any one ensemble

member; in the illustration below T is held fixed. As the external field ε(t) is multiplied by

the orientation parameter x, and we expect ensemble members in the neighborhood around

x = 0 to be more difficult to control when constraints are placed on the field intensity.

As a test case consider control of a model describing vibrational excitation of the OH

bond [24]. Other multilevel model systems were also treated, and the same general behavior

and conclusions were found for controlling ensembles of randomly oriented molecules. The

numerical simulations were performed by initially finding an optimal control field for the case

x = 1. Starting from this solution as an initial guess another optimization was performed

over the ensemble of uniformly distributed molecules with orientations x1 = −1,...,xM = 1.

In both cases all of the molecules were initially in the ground state |1〉 and the target state was

|3〉 . The quality index Q(ε) for this process in Eqn.(4) was maximized. The optimization

algorithm was a combination of tracking and a monotonic procedure [25], although we expect

that similar results can be obtained with other monotonic algorithms [24]. In order to achieve

physically relevant solutions it proved useful to slow down the convergence of the algorithm.

This procedure is helpful to avoid large field intensities and also can be realized, in the case

of the algorithm described in [26]. Atomic units are used in all of the calculations below.
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FIG. 1: The target yield P (x) of OH vibrational excitation for different orientations x = cos(θ).

The yield P (x) from a field optimized at x = 1 produced the quality control index Q(ε) = 49%.

The associated field is given in Fig. 2. The yield P (x) for full ensemble control of was required

to optimize a sample of M = 31 orientations uniformly distributed over the interval [−1, 1]. The

resultant quality index is Q(ε) = 85% and the associated optimal field is given in Fig. 3.

.

Consider OH with unperturbed Hamiltonian H0 = − ∆
2m

+V where m is the reduced mass

of the system and V is a Morse potential [24]:

V (r) = D0[e
−β(r−r0) − 1]2 − D0, D0 = 0.1994, β = 1.189, r0 = 1.821. (8)

The dipole moment is taken as:

µ(r) = µ0re
−r/r∗ , µ0 = 3.088, r∗ = 0.6. (9)

The target time is T = 2 × 105 a.u. (≃ 4.84ps). Since the characteristic rotational time

(i.e. the inverse of the rotational constant) for OH is 1.77ps, the results presented here under

the assumption of no reorientation during the pulse should represent a worst case control

scenario as partial alignement of the molecule along the field would aid the control process.

The results for the case where all the molecules are oriented at x = 1 is given in Figs. 1

and 2. Although the optimal control is performed at x = 1, the same field in Fig. 2

was applied to the full ensemble of molecules over −1 ≤ x ≤ 1 producing the population
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FIG. 2: The optimal field for OH that controls the x = 1 oriented sample. The control perfor-

mance is given in Fig. 1 for the field applied to molecules at any orientation. The field fluence is
∫ T
0 ε(t)2dt = 0.64.

.

distribution P (x) shown as a dashed line in Fig. 1. The latter distribution gradually goes

to zero as x → 0. The overall quality index of Q(ε) = 49% is rather good showing that

approximately one half of the full ensemble of molecules can be controlled by the field

determined at x = 1. There is also evident reflection symmetry with respect to x = 0 for

control at different orientations. This behavior may be related to the system operating in

the regime where the rotating wave approximation is valid. Some remnants of this behavior

showed up in the other calculations, but the symmetry was not exploited and it is likely not

generally valid for complex systems.

An ensemble consisting of M = 31 uniformly sampled orientations over the interval [−1, 1]

was subjected to optimal control. The control outcome is given in Fig. 1 and the associated

optimal field is shown in Fig. 3. The yield distribution P (x) in Fig. 1 is much enhanced over

that achieved with the field at x = 1 applied over −1 ≤ x ≤ 1. As a result, the new quality

index Q(ε) shows that 85% of the ensemble has been controlled. Naturally, those ensemble

members near x = 0 are more difficult to control. The enhanced control is at the expense

of increasing the field fluence upon comparison of Figs. 2 and 3; even higher quality control
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indexes can be attained by further relaxing the fluence cost. The field structure has changed

upon comparison of Figs. 2 and 3, but a simple scaling analysis of the field intensities is

insightful. Consider the point x = 0.14 which has a yield of P (0.14) = 96% for the full

ensemble control in Fig. 1. To achieve this same yield the field in Fig. 2 determined at x = 1

would need to be scaled to a fluence of 0.64 · (1/0.14)2 = 32.67, which is comparable to the

value of 50.68 in Fig. 3. The optimal field in Fig. 3 operates effectively at all x values, while

a different scaling of the field in Fig. 2 would be needed for each x value to get the same

results. This example clearly confirms the Theorem in Section II, and Q is only kept from

approaching 100% by constraints placed on the field fluence.
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FIG. 3: The optimized field for OH that controls the full ensemble of molecules sampled at M = 31

orientations. The performance of the field is given in Fig. 1. The field fluence is
∫ T
0 ε(t)2dt = 50.68.

.

The high quality overall yield of 85% for the full orientational ensemble in Fig. 1 arising

from the field in Fig. 3 comes with distinct control mechanisms at the different x values. This

behavior is evident, for example, considering the controlled dynamics at x = 0.14, 0.54 and

1.0 shown in Figs. 4-6. In each case the yield P (x) is approximately 96% but the dynamical

paths taken by these three ensemble members are very different in Figs. 4-6. For example,

in Fig. 4 at x = 0.14 the target state is reached rather directly by the process |1〉 → |3〉

while at x = 1 in Fig. 6 the state |2〉 plays a strong role and state the |4〉 is also involved.
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FIG. 4: Evolution of the populations of OH for x = 0.14 with the optimal field controlling the full

ensemble of randomly oriented molecules. This figure, upon comparison with Figs. 5 and 6, shows

that the single field in Fig. 3 controlling the full ensemble induces distinctly different dynamics

reaching the same target for differently oriented ensemble members.

.

Even more dramatic is the high degree of oscillatory structure in the population dynamics

in amongst the four states in Fig. 5, and especially Fig. 6, which is absent in Fig. 4. Yet,

all three ensemble members reach the same final target yield of ∼ 96% in state |3〉 at time

T . This diversity of dynamical behavior has important implications for attempts at extract-

ing and understanding the control mechanisms in the commonly occurring circumstance of

manipulating randomly oriented ensembles of molecules. In particular, it is evident that

mechanisms will have to be understood in a ensemble averaged sense.

IV. CONCLUSION

This paper addresses the feasibility of controlling all members of an ensemble of ran-

domly oriented molecules subjected to a single ultra-fast laser control pulse. Naturally,

those molecules whose dipole is closer to being orthogonal to the applied field are more

difficult to control. Except for the null set of molecules, whose dipole is exactly perpen-
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FIG. 5: Evolution of the populations of OH for x = 0.54 (see Figure 4).

.

dicular to the field, all ensemble members can in principle be controlled by a single field

as established by the Theorem proved in this paper. Numerical optimal control simula-

tions verified this behavior to a practical degree. It is reasonable to also anticipate that

some partial re-alignment as well as dynamic polarization will occur to likely beneficially

ease the management of the more difficult to control fraction of the ensemble aligned ini-

tially perpendicular to the field. This situation could also be aided by the introduction of

multi-polarization control fields [27].

In the laboratory, the closed loop adaptive control experiments will naturally seek out

the best field to control all of the molecules in the medium taking into consideration orien-

tational effects as well as laser beam spatial inhomogeneities[28]. This work indicates that a

single field may be found which can give an excellent yield while simultaneously managing

all of the ensemble members. This behavior is most encouraging for achieving maximum

control in a bulk medium. However, understanding the control mechanism under these cir-

cumstances may present a complex matter for analysis. This work, and an analogous prior

study considering spatial field effects [28], shows that each of the dynamically distinguish-

able members of the ensemble may follow a physically distinct pathway (i.e., mechanism) in

reaching the same final target state. Thus, care will be needed to extract and understand
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FIG. 6: Evolution of the populations of OH for x = 1.0 (see Figure 4).

.

mechanistic insights from experiments carried out over randomly oriented ensembles as well

as with laser beam spatial inhomogeneities. Just as the control process is an ensemble av-

erage, the control mechanism may also have to be viewed as having an ensemble average

character.
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APPENDIX A: PROOF OF THE THEOREM

Neither in the wave function nor in the density matrix representation does an overall

phase play any role because only observable expectation values are considered. Thus we

can safely suppose that both H0 and µ are traceless. We will denote in the following by

diag(d1, ..., dP ) the matrix obtained by setting d1,...,dP on its diagonal. Here d1,...,dP may

be complex numbers or square matrices.

Equation (1) is a collection of Schrödinger equations for xk = cos(θk), k = 1, ...,M or,
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equivalently, a large system with block diagonal entries:

ih̄
∂

∂t
|Ψ(t)〉 = (H0 − Bε(t)) |Ψ(t)〉 (A1)

where H0 = diag(H0, ..., H0) is a MN × MN matrix constructed from M replicas of H0

and B = diag(x1µ, ..., xMµ). Following a result from [29] (that can be used because of the

compact setting), it suffices to prove that the Lie algebra L generated by the matrices iH0

and iB equals ⊕M
k=1su(N).

We label by e(a,b) the N × N matrix whose entry at line a and column b is 1 and

all others are zero and denote Y(a,b) = i
(

e(a,b) + e(b,a)

)

, S(a,b) =
(

e(a,b) − e(b,a)

)

and Da =

i
(

e(a,a) − e(a+1,a+1)

)

. Note that S(a,b), Y(a,b), (a < b, a, b = 1, N) and Da (a = 1, ..., N − 1)

form a basis for su(N). We index by ξ ∈ Ξ (of cardinality K) the entries ξ = (a, b) , a < b

of the matrix µ that are non-zero: µξ=(a,b) 6= 0 and denote by ξ† the pair (b, a).

Consider now adℓ
iH0

iB, ℓ = 1, ..., 2K where adℓ
XY = [X, ..., [X,Y ]...] are the commutators

taken ℓ times. A straightforward computation shows that adℓ
iH0

iB is the block diagonal

matrix diag(x1adℓ
iH0

iµ, ..., xKadℓ
iH0

iµ). Since H0 is diagonal, adℓ
H0

µ = (ωℓ
abµab)a,b=1,...N . One

can therefore explicitly list all commutators adℓ
iH0

iB, ℓ = 1, ..., 2K and compute their co-

efficients in the basis {diag(x1eξ, ..., xMeξ), diag(x1eξ† , ..., xMeξ†); ξ ∈ Ξ}. For instance, the

coefficient of the diag(x1eξ, ..., xMeξ), in the development of adℓ
iH0

iB is iℓ+1(ωξ)
ℓµξ and that

of diag(x1eξ† , ..., xMeξ†) is iℓ+1(−1)ℓ(ωξ)
ℓµ∗

ξ . These coefficients can be put into a 2K × 2K

matrix




















(iωξ1)iµξ1 . . . (iωξK
)iµξK

(iωξ1)iµ
∗
ξ1

. . . (iωξK
)iµ∗

ξK

(iωξ1)
2iµξ1 . . . (iωξK

)2iµξK
−(iωξ1)

2iµ∗
ξ1

. . . −(iωξK
)2iµ∗

ξK

. . .

(iωξ1)
2Kiµξ1 . . . (iωξK

)2KiµξK
−(iωξ1)

2Kiµ∗
ξ1

. . . −(iωξK
)2Kiµ∗

ξK





















. (A2)

The determinant of this matrix can be computed explicitly. Although straightforward, this

computation is cumbersome and we will not reproduce it here (see also [18]). It suffices to say

that the determinant is zero only when |ωξ| = |ωξ′| for some ξ 6= ξ′. Since this is prevented

by hypothesis, the determinant is non-null which implies that adℓ
iH0

iB, ℓ = 1, ..., 2K are

independent. Since all such matrices live in a 2K-dimensional vector space spanned by

{diag(x1Sξ, ..., xMSξ), diag(x1Yξ, ..., xMYξ); ξ ∈ Ξ} then they generate this space. We have

therefore obtained that S = span{diag(x1Sξ, ..., xMSξ), diag(x1Yξ, ..., xMYξ); ξ ∈ Ξ} ⊂ L.
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We now use the commutators of members of S to prove that additional matrices belong

to the Lie algebra L. This builds on the standard commutation relations among

For a 6= b 6= c 6= a : [S(a,b), S(b,c)] = S(a,c), [S(a,b), Y(b,c)] = Y(a,c),

[Da, S(a,b)] = Y(a,b), [Da, Y(a,b)] = S(b,a), [S(a,a+1), Y(a,a+1)] = Da. (A3)

Consider a path i1, ..., iL in the graph G (vertices are not necessarily unique). Recall that,

since at least one individual system is controllable, the graph G is connected [16] ; thus, a

path exists between any two vertices.

We have seen that any diag(x1S(iℓ,iℓ+1), ..., xMS(iℓ,iℓ+1)) is in L. By iterating the commu-

tators of these matrices as in Eqn. (A3) one obtains that diag((x1)
LS(i1,iL), ..., (xM)LS(i1,iL))

is in L too. Since for any path i1, ..., iL in G the path i1, ..., iL, iL−1, iL of length L+2 is also

in G it follows that diag((x1)
L+2jS(i1,iL), ..., (xM)L+2jS(i1,iL)) is in L for any j ≥ 0. As be-

fore, we select vectors for j = 0, ...,M and notice that, in the basis (S(i1,iL), 0, ..., 0),...,

(0, ..., S(i1,iL), 0, ..., 0),..., (0, ..., S(i1,iL)) the coefficients form a Vandermonde type matrix

((xk)
L+2j)k,j=1,...K . Then the vectors are independent as soon as |xk| 6= |xk′| for k 6= k′

which implies that

(S(i1,iL), 0, ..., 0), ..., (0, ..., S(i1,iL), 0, ..., 0), ..., (0, ..., S(i1,iL)) ∈ L.

The same can be done for (0, ..., Y(a,b), 0, ..., 0), and from here by standard commutation rela-

tions, all other remaining elements (0, ..., Da, 0, ..., 0) are recovered. Thus, L = ⊕M
k=1su(N).

Further care is needed when |xk| repeats in the list of orientation parameters (i.e. xk′ =

−xk for some k, k′). In this situation, as soon as one cycle of odd length q exists in the

graph, all elements diag((x1)
L′+jqS(i1,iL), ..., (xM)L′+jqS(i1,iL)) for j ≥ 0 can also be generated

for some L′ large enough. By the same arguments above one obtains again that all basis

elements of the form (0, ..., S(i1,iL), 0, ..., 0) belong to L which ends the proof.
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