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ABSTRACT
The problem of finding the optimal control in numerical
computer simulations of quantum control phenomena is
usually addressed through the introduction of monotoni-
cally convergent algorithms that are guaranteed to improve
the cost functional at each step. A recent extension of these
algorithms implements a search for a control with given
bounds. Within this context, this paper will present a gen-
eralisation of this algorithm to a more general class of local
in time constraints. Numerical results that illustrate some
of the properties of the algorithms introduced are given.
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1 Introduction

Armed with the successful demonstration of quantum con-
trol both in theoretical[5, 10, 4, 11] and experimental[1] en-
vironements, the challenges of this research area aim now
towards a deeper understanding of the phenomena at work.
Despite the fact that perfect simulation of practical-sized
systems remain an unatainable goal (due to the difficulty
to solve in multiple dimensions the Schrödinger equation)
the numerical computer simulations are priviledged tools
in this quest to shed some light on the experimetal find-
ings. Among the qualities required of the numerical simu-
lations in order to become as close to reality as possible
we can identify the need for findind suitablyconstraint
controls, either in a frequency/Fourier domain or in time
domain. In this paper we will provide a monotonic algo-
rithm that allows to find a quantum control when restric-
tions on the admissible values (of the controlling field) are
imposed. We will study two cases: bounded (continuous)
controls and discrete valued controls. While the importance
of the former type of restriction is evident from the experi-
mental point of view, the relevance of the latter choice, i.e.
discrete-valued controls, has only been recently[8, 9] seen
to lead to numerically efficient implementations. The tools

presented below can thus serve as alternatives to constraint
or combinatorial optimization.

2 Dynamical Equations

Denote byH0 the internal Hamiltonian of the system under
study and letψ0(x) be its initial state, (‖ψ0‖L2(Rγ) = 1)
wherex denotes the relevant coordinate variables. The
time-dependent Schrödinger equation allows to express the
stateψ(x, t) at any timet as the solution of the following
evolution problem

{

ih̄ ∂
∂t

ψ(x, t) = H0ψ(x, t)
ψ(x, t = 0) = ψ0(x),

(1)

If the isolated quantum systems does not follow a suit-
able dynamics its evolution can becontrolledby an external
interaction, e.g. a laser, taken here as an electric field mod-
eled by a coupling operator given by an amplitudeǫ(t) ∈ R

(at our choice) and a time independent dipole moment op-
eratorµ. Denote byH = H0−ǫ(t)µ; the controlled system
obeys now the equations

{

ih̄ ∂
∂t

ψ(x, t) = (H0 − ǫ(t)µ)ψ(x, t)
ψ(x, t = 0) = ψ0(x)

(2)

Within the optimal control approach the realization
of the goal is expressed through the introduction of a cost
functionalJ to be optimized; this cost functional depends
on the final (and possible any intermediary) stateψ(t) of
the system and of the controlǫ(t). In addition this cost
functional may include terms that penalize undesired ef-
fects. One simple example of cost functional is

J(ǫ) =< ψ(T )|O|ψ(T ) > −α

∫ T

0

ǫ2(t)dt (3)

whereO is the observable operator that encodes the goal.
Note that the term

∫ T

0
ǫ2(t)dt is a global penalization term

that prevents from using a too large laser fluence. Its action
is weighted by the parameterα > 0: a smallα will empha-
size the control objective while a largeα will rather tend to



economize on the laser energy and only secondary to reach
the target. Eachα will therefore give rise to a possibly
different optimizer ofJ that strike a balance, weighted by
α, between using a not too expensive laser fluence while
simultaneously ensuring the desired observable has an ac-
ceptable (large) value. In addition to theseglobal con-
straints the control may also be required to fulfill another
local constraintsthat may arise from physical or techno-
logical considerations. The following general framework
will be addressed in this paper:

ǫ(t) ∈ D(t) (4)

for predefined, possibly time dependent, admissible sets
D(t). Two remarkable particular cases can be identified

L∞constraints : |ǫ(t)| ≤ M for a given M ≥ 0 (5)

discrete valued constraints : ǫ(t) ∈ {e1, ..., eK} (6)

What is of interest for us here is to give efficient al-
gorithms that allow for optimizing the cost functionalJ

within the admissible class of controls.

Remark 2.1 Throughout this paper only local in time con-
straints will be enforced. Although this includes many
interesting cases, a separate question is how to enforce
global constraints on the controlling field such as fre-
quency/Fourier constraints. Very few works in this area
are available to day, we refer the reader to [3] for recent
approaches to deal with this setting.

In the general (non-constraint) case the maximiza-
tion of the cost functionalJ(ǫ) (under the constraint of the
Schr̈odinger equation (2) can be realized by writing down
the Euler-Lagrange critical point equations. Introduce an
adjoint stateχ(t, x) (used as a Lagrange multiplicator); the
following equations are thus obtained [10]:

{

ih̄ ∂
∂t

ψ(x, t) = (H0 − ǫ(t)µ)ψ(x, t)
ψ(x, t = 0) = ψ0(x)

(7)

{

ih̄ ∂
∂t

χ(x, t) = (H0 − ǫ(t)µ)χ(x, t)
χ(x, t = T ) = Oψ(x, T )

(8)

αǫ(t) = −Im < χ(t)|µ|ψ(t) > (9)

One efficient choice for solving in practice the criti-
cal point equations (7)-(9) is the monotonically convergent
iterative algorithm[2, 6, 10] that can be described by the
resolution of the following equations at stepk:

{

i ∂
∂t

ψk(x, t) = (H0 − ǫk(t)µ)ψk(x, t)
ψk(x, t = 0) = ψ0(x)

(10)

ǫk(t) = (1 − δ)ǫ̃k−1(t) − δ

α
Im〈χk−1|µ|ψk〉(t) (11)

{

i ∂
∂t

χk(x, t) = (H0 − ǫ̃k(t)µ)χk(x, t)
χk(x, t = T ) = Oψk(x, T )

(12)

ǫ̃k(t) = (1 − η)ǫk(t) − η

α
Im〈χk|µ|ψk〉(t) (13)

The most important property of this algorithm is given
in the following

Theorem 2.1 SupposeO is a self-adjoint positive semi-
definite observable. Then, for anyη, δ ∈ [0, 2] the algo-
rithm given in Eqns. (10)-(13) converges monotonically in
the sense thatJ(ǫk+1) ≥ J(ǫk).

Remark 2.2 In practice the monotonicity property is rel-
evant because it often helps providing good quality con-
trols with only very few resolutions of the time-dependent
Schr̈odinger equation (which is not the case of the gradient
or conjugated gradient algorithms).

The purpose of this paper is to show how the algo-
rithm in Eqns. (10)-(13) has to be adapted in order to treat
the constraints in Eqn. (4).

3 Monotonic algorithms for bounded con-
trols

When dealing with a restricted class of controls one can
take one of the two alternative approaches:

1/ either to write down the critical point equations for
the minimization of the cost functional within the admissi-
ble class of controls and then solve these equations

or
2/ to directly minimize the cost functional by taking

care to always remain within the admissible control set.
Note that when (and if) this method converges then the fi-
nal solution will be a critical point of the cost functional as
obtained by the first alternative.

We will choose in the following the second approach
and only use the critical point equations in Eqns. (7)-(9) as
a starting point to construct algorihms.

Let us remark that for any setD(t) a functionft :
D(t) × R → D(t) can be constructed such that

|ft(z, x) − x| ≤ |z − x|,∀z ∈ D(t), x ∈ R (14)

|ft(z, x) − x| < |z − x|,∀x ∈ R,∀z ∈ D(t)

such that D(t) ∩ {y ∈ R; |y − x| < |x − z|} 6= ∅. (15)

Indeed, we can set for instanceft(z, x) to any element of
D(t)∩{y ∈ R; |y−x| < |x−z|} when this set is not void
andft(z, x) = z otherwise.

This remark allows to state the following

Theorem 3.1 SupposeO is a self-adjoint positive semi-
definite observable. Then, if for anyt ft satisfies Eq.(14)
the algorithm

{

i ∂
∂t

ψk(x, t) = (H0 − ǫk(t)µ)ψk(x, t)
ψk(x, t = 0) = ψ0(x)

(16)

ǫk(t) = ft

(

ǫk−1(t),
1

α
Re

〈−µ

i
ψk(t), χk−1(t)

〉)

(17)

{

i ∂
∂t

χk(x, t) = (H0 − ǫk(t)µ)χk(x, t)
χk(x, t = T ) = Oψk(x, T )

(18)

converges monotonically in the sense thatJ(ǫk) ≥
J(ǫk−1) (and is such thatǫk(t) ∈ D(t),∀t ≤ T , k ≥ 1).



Proof We will use the following formula (see [7] for de-
tailed computations):

J(ǫk) − J(ǫk−1) =
〈

ψk(T ) − ψk−1(T )|O|ψk(T ) − ψk−1(T )
〉

+

α

∫ T

0

ǫk−1(t)2dt − α

∫ T

0

ǫk(t)2dt

+2Re
∫ T

0

(ǫk − ǫk−1)

〈−µ

i
ψk(t), χk−1(t)

〉

(19)

and thus with the notation

ηk(t) =
1

α
Re

〈−µ

i
ψk(t), χk−1(t)

〉

J(ǫk) − J(ǫk−1) =
〈

ψk(T ) − ψk−1(T )|O|ψk(T ) − ψk−1(T )
〉

+

α

∫ T

0

(

ǫk−1(t) − ηk(t)
)2

dt

−α

∫ T

0

(

ft(ǫ
k−1(t), ηk(t)) − ηk(t)

)2
dt (20)

and the conclusion of the theorem follows from the proper-
ties of the functionft.

Remark 3.1 Whenη = 0 the algorithm in Eqns. (10)-(13)
is a particular case of the algorithm in Eqns. (16)-(18) for
D(t) = R, ft(z, x) = (1 − δ)z + δx ∀t.

Using Thm. 3.1 one can derive many classes of mono-
tonically convergent algorithms for particular choices of
target setsD(t). Consider for instance the setD(t) as
in Eqn. (6) where we suppose the orderinge1 < e2 <

... < eK . This situation has been recently introduced in
[8, 9] in connection with fast algorithms to solve the time-
dependent Schrödinger equation in the quantum control
framework. Define the functionf by

f(z, x) =























e1 if x ≤ e1+e2

2
... ...

ek if ek−1+ek

2 < x ≤ ek+ek+1

2
... ...

eK if x >
eK−1+eK

2

(21)

Let us state the result that can be derived in this case

Theorem 3.2 SupposeO is a self-adjoint positive semi-
definite observable. Then, the algorithm

{

i ∂
∂t

ψk(x, t) = (H0 − ǫk(t)µ)ψk(x, t)
ψk(x, t = 0) = ψ0(x)

(22)

ǫk(t) = f

(

ǫk−1(t),
1

α
Re

〈−µ

i
ψk(t), χk−1(t)

〉)

(23)

{

i ∂
∂t

χk(x, t) = (H0 − ǫk(t)µ)χk(x, t)
χk(x, t = T ) = Oψk(x, T )

(24)

converges monotonically in the sense thatJ(ǫk) ≥
J(ǫk−1) within the class of controlsǫk that take only one
of the predefined set of valuese1, ..., eK .

An interesting situation arises when optimizing over
bounded class of controls (as in Eqns. (5) and (6)): as
bound on theL2 norm of the controlǫ becomes available,
e.g. for Eqn. (6):‖ǫ(t)‖L2(O,T ) ≤ M ·

√
T . This bound

can thus eliminate the need to penalize the term
∫ T

0
ǫ(t)2

in the cost functional (this is equivalent to settingα to 0 in
the definition of the cost functional). The Thm. 3.1 can be
extended to this case too:

Theorem 3.3 SupposeO is a self-adjoint positive semi-
definite observable. Define

J0(ǫ) =< ψ(T )|O|ψ(T ) >

and let for anyt < T gt : D(t) × R → D(t) be such that

x(gt(z, x) − z) ≥ 0 (25)

for anyz ∈ D(t), x ∈ R.
Then, the algorithm

{

i ∂
∂t

ψk(x, t) = (H0 − ǫk(t)µ)ψk(x, t)
ψk(x, t = 0) = ψ0(x)

(26)

ǫk(t) = gt

(

ǫk−1(t),Re

〈−µ

i
ψk(t), χk−1(t)

〉)

(27)

{

i ∂
∂t

χk(x, t) = (H0 − ǫk(t)µ)χk(x, t)
χk(x, t = T ) = Oψk(x, T )

(28)

converges monotonically in the sense thatJ0(ǫ
k) ≥

J0(ǫ
k−1) (and is such thatǫk(t) ∈ D(t),∀t ≤ T ).

Proof The proof is similar to the proof of Thm. 3.1.
Note finally that for anyD(t) a functiongt exists that

satisfies Eqn. (25).

3.1 Discussion on critical points

A legitimate question that arises in connection with the
conclusions of the Thms. 3.1, 3.2 and 3.3 concerns the
properties of the converged solutions. More preciselly,
since the increase in the cost functional is not guaranteed
to be strictly positive at each iteration, one can ask whether
J(ǫk) = J(ǫk−1) implies thatǫk is a local maximizer (or
local critical point) ofJ . In general the answer to this ques-
tion highly depends on the properties of the setsD(t) since
the definition of a “critical point” or “local optimizer” de-
pends on the structure ofD(t). In order to give an example
of analysis that can be developped to answer this question
we will take the situation in Thm. 3.3 for the constraints of
Eqn. (5). Denote by∇ǫJ0(t) = Re

〈−µ
i

ψ(t), χ(t)
〉

. In this
case the definition of a critical pointǫ can be expressed as:
ǫ is critical point forJ0 iff for any time t:







if e(t) = −M then∇ǫJ0(t) ≤ 0
if −M < e(t) < M then∇ǫJ0(t) = 0
if e(t) = M then∇ǫJ0(t) ≥ 0

(29)

On the other hand, it can be proven by the same computa-
tion as in Thms. 3.3 thatJ(ǫk) = J(ǫk−1) implies

η̃k(t)
[

gt(ǫ
k−1(t), η̃k(t)) − ǫk−1(t)

]

= 0,∀t ≥ 0,



where η̃k(t) = Re
〈−µ

i
ψk(t), χk−1(t)

〉

Or, choosing as
functiongt:

gt(z, x) =







z+M
2 if x > 0

z if x = 0
z−M

2 if x < 0

we obtain thatJ(ǫk) = J(ǫk−1) implies firstǫk = ǫk−1

and thatǫ = ǫk−1 satisfies Eqn. (29); thusǫk−1 is a critical
point ofJ0.

4 Numerical results

In order to test the algorithms presented above we have
performed some quantum control calculations on the case
of the O − H bond that vibrates in a Morse type poten-
tial. We refer the reader to [10] for the numerical de-
tails concerning this system. The goal is to localize the
wave packet at a given locationx′ at the final timeT =
131000a.u. ≃ 3.16ps ; this is expressed via the observable
O(x) = γ0√

π
e−γ2

0(x−x′)2 (x′ = 2.5) through the require-
ment that〈Ψ|O|Ψ〉 is maximized. The initial stateψ(0) is
the ground state of the internal HamiltonianH0.
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Figure 1. Example of optimal electric field found with the
algorithm given in Eqns. (26)-(28) ; as required the values
of the control fieldǫ(t) are all either−M or M (M =
0.005).

Numerical results are presented in the Figures 1, 2 and
3. As a particular case of both Eqn. (5) and (6) the values
of the control fieldǫ(t) are required to be all either−M or
M . The algorithm in Eqns. (26)-(28) is used forgt defined
by

g(z, x) =

{

−M if x ≤ 0
M if x > 0

The field succeeds into controlling the system as is
demonstrated in Figure 3 where the monotonic behaviour
is displayed.

5 Conclusion

Within the framework of local in time constraints for
quantum controls this paper proposes several monotoni-
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Figure 2. Zoom of the optimal electric field in Figure 1.
The optimal field acts through many tailored oscillations
between the two admissible values.
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Figure 3. The convergence of the observable
〈Ψ(T )|O|Ψ(T )〉 with respect to the number of itera-
tions of the algorithm in Eqns. (26)-(28); monotonic
behaviour is obtained in agreement with the Thm. 3.3.

cally convergent generic algorithms that at all times remain
within the admissible control set. Numerical results on par-
ticular cases are presented that demonstrate the monotonic-
ity property and the good quality of the controlling fields
after only very few iterations.
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