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Abstract. Ion diamagnetic effects on collisionless magnetic reconnection are investigated by
means of numerical simulations of a Hamiltonian gyrofluid model. The work is focused in
particular on the effects of inhomogeneous density equilibria in the large ∆′ regime. The linear
growth rates predicted by asymptotic theory are recovered. Nonlinearly the island shape is
strongly modified and the flow changes its typical four-cell structure into a simpler two cell one.
Contrary to the resistive reconnection process, we find that in Hamiltonian (i.e. collisionless)
reconnection the width of the final saturated island is independent from the diamagnetic effects
and the magnetic island grows up to the equilibrium scale length.

1. Introduction
Due to its implication in many physical phenomena ranging from auroras in astrophysical
plasmas to sawtooth crashes in Tokamak plasma [1, 2, 3], magnetic reconnection is widely
studied in many different regimes and, consequently, with many different approaches. Here
we are interested in high temperature and low β plasmas dominated by a strong guide field,
characteristic of the Tokamak configuration. The high temperatures that characterize plasma
close to ignition lead us to focus on the collisionless regime for the reconnection process, in which
the electron inertia is the dominant mechanism for the decoupling between the plasma and the
magnetic field motion. In the collisionless regime one of the main features of the reconnection
process is the formation of narrow layers, whose width is well below the ion Larmor radius
scale [4, 5]. This aspect raises also the question of which is the more appropriate physical
description to be adopted. Here, as a compromise between the gyrokinetic description, accurate
but computationally costly, and the fluid description that neglects all the sub-Larmor radius
dynamics, we adopt the gyrofluid model described in [6]. In this framework we are interested in
analyzing diamagnetic effects, generated by equilibrium ion pressure gradients, on the magnetic
island evolution. In particular, among such diamagnetic effects, we focus on the island rotation
and on the stabilization of the dominant mode when the diamagnetic frequency exceeds the
linear growth rate [7, 8]. Moreover, we address the problem of nonlinear saturation, which
results in an incomplete reconnection process and, hence, a saturated island. Indeed, one of the
issues in sawtooth crashes is why the reconnection process ends before the sawtooth crash, as for
instance shown in the ASDEX experiment [9]. A number of numerical simulations of the internal
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kink mode and sawtooth oscillations, with various degrees of sophistication, physical models
and simplifying assumptions, have also been conducted in order to interpret the experimentally
observed sawtooth dynamics. [10, 11, 12, 13]. While electron inertia is always invoked to account
for the fast reconnection process at the start of the sawtooth crash, the possibility to reach a
saturated island has been explored in connection with different effects.
Island saturation was observed in numerical simulations in the resistive regime in Ref. [11],
where a relation between the island width and the diamagnetic frequency was found following a
quasi-linear approach. While in the collisionless regime a rapid rotation of the plasma core itself
was shown to be responsible for incomplete reconnection whenever the equilibrium profile of the
plasma pressure is sufficiently steep Ref. [12]. Here we find that the final saturated island is
independent from the diamagnetic effects and the magnetic island grows up to the equilibrium
scale length. Unlike [8], in this paper we focus mainly on the ion dynamics and we neglect the
electron temperature effects.
The paper is organized as follows. In Sec. 2 we review the model equations. Sec. 3 compares
the ion density gradient and gyroradius effects on the stability and rotation frequency of the
linear dominant mode with theoretical predictions. In Sec. 4 the nonlinear phase is analyzed.
We conclude in Sec. 5.

2. The model
We consider the two-dimensional version of the Hamiltonian gyrofluid model described in Ref.[6]
and adopted also in Ref.[8]. The model equations are

∂ni
∂t

+ [Φ, ni] = 0, (1)

∂ne
∂t

+ [φ, ne]− [ψ,∇2ψ] = 0, (2)

∂

∂t
(ψ − d2e∇2ψ) + [φ, ψ − d2e∇2ψ] + ρ2s[ψ, ne] = 0, (3)

ne = Γ
1/2
0 ni + (Γ0 − 1)φ/ρ2i . (4)

The first two equations represent the continuity equations for the ion guiding centers and the
electrons respectively. The third equation is the Ohm’s law. The system is closed by the quasi-
neutrality relation (4). In Eqs.(1)-(4) ni is the ion guiding center density, ne the electron density,
φ the electrostatic potential, ψ the poloidal magnetic flux function, de the electron skin depth,

ρs the sonic Larmor radius and Φ = Γ
1/2
0 φ is the gyro-averaged electrostatic potential. For our

analysis the Padé approximant version Γ
1/2
0 = (1− ρ2i∇2/2)−1 of the gyro-average operator will

be adopted, where ρi is the ion Larmor radius. Given a Cartesian coordinate system (x, y, z),
we assume all the fields be translationally invariant along z and we define the canonical bracket
between two generic fields f and g by [f, g] = ẑ ·∇f×∇g. Eqs. (1-4)are normalized respect to the
Alfvén time and to a magnetic equilibrium scale length L. Dependent variables are normalized
in the following way:

ni =
L

d̂i

n̂i
n0
, ne =

L

d̂i

n̂e
n0
, ψ =

Âz

BL
, φ =

ρ̂2s
L2

L

d̂i

eφ̂

Te
,

where carets denote dimensional variables, di is the ion skin depth, n0 a background density
amplitude, Az the magnetic potential, e the unit charge, B a characteristic toroidal magnetic
field amplitude and Te the electron temperature, which is assumed to be constant.
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3. Growth rate and rotation frequency in the linear phase
The model equations are solved over the domain {(x, y) : −π ≤ x < π,−aπ ≤ y < aπ}, where
we prescribe the value of the number a at each simulation. The grid is composed by 1024×128
points and double periodic boundary conditions are imposed on the field perturbations, which
are the quantities that the code advances in time according to a third order Adams-Bashfort
scheme. The equilibrium configuration is specified by the following expressions:

nieq(x) = n′0x, neeq(x) = n′0x, ψeq(x) =
11∑

n=−11
an exp(inx), (5)

where n′0 is a constant and the an are the Fourier coefficients of the function f(x) = A/ cosh2 x,
where A is a parameter determining how strong is the guide field respect to the poloidal magnetic
field.
The equilibrium (5) is perturbed in ni with a four-cell pattern disturbance of the form
ñi ∝ cos(x + y/a) − cos(x − y/a). The field φ is also perturbed according to (4), in such a
way that the initial perturbation on ne is zero.
Linearly we assume the fields, ψ, φ, ne and ni to behave as f(x) exp(iky + λt), where f(x) is
the amplitude of the perturbation, k = 1/a the wave vector, and λ = γ + iω (here we adopt a
different sign convention respect to Ref. [8]). The growth rate, γ, and the rotation frequency, ω,
then correspond to the real and imaginary part, respectively, of the complex frequency λ. The
set of equations, once linearized, yield the definitions: ω∗e = kn′0ρ

2
s and ω∗i = −ω∗eρ2i /ρ2s.

In Ref. [8] we presented linear results including both ion and electron diamagnetic effects, while
in this paper we focus only on the ion effects. Hence, we set ρs and ω∗e to 0 and only the ρi scale
length will be retained in our set of equations. The linear theory in Ref. [7] gives a dispersion
relation (see eq. (9) in Ref. [7]), valid in the asymptotic limit ρi � de and ∆′de >> (de/ρi)

1/3,
where ∆′ is the standard tearing stability parameter [14]. This relation, once split into its real
and imaginary part, gives the rotation frequency and the growth rate for the dominant mode
according to:

γ2 ≈ γ20 −
(
ω∗i
2

)2

, (6)

ω ≈ ω∗i
2
, (7)

where γ0 = 2ky(2deρ
2
i /π)1/3. In Fig. 1 the numerical growth rates and the rotation frequencies

are plotted versus their analytical values for a simulation campaign carried out adopting A = 1,
a = 2, (yielding ∆′ = 59.9), de = 0.1, ρi = 0.2 and n0 ranging in the interval [0,11], which
corresponds to −0.24 < ω∗i < 0. We can see that, while for moderate values of ω∗i the
difference between analytical and numerical values remains constant, close to the region of
marginal stability such difference increases. In particular numerical simulations indicate that the
stabilization is reached with a value of ion diamagnetic frequency smaller than that predicted by
the theory. We remark, however, that relations (6) and (7) are valid in an asymptotic regime, and
for the choice of parameters corresponding to Fig. 1, we had ρi only slightly grater than de, and
∆′de exceeding only five times the value of (de/ρi)

1/3. Since diminishing de is computationally
costly, we increased the box size to better satisfy the asymptotic conditions. In Fig. 2 we show
the results reporting data from a simulation campaign with A = 1, a = 4, which corresponds to
∆′ = 240.1, de = 0.15, ρi = 0.25 and same values of n0 corresponding now to values of ω∗i in
the range [-0.172,0]. For these runs ∆′de is 40 times the value of (de/ρi)

1/3, and the agreement
with the analytical theory is considerably improved also when approaching marginal stability.
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Figure 1. Comparison between the growth rates (right panel) and the rotation frequencies (left
panel) obtained from the numerical simulations (circles) and the analytical values (diamonds)
obtained from eqs. (6) and (7). The simulations have been carried out assuming A = 1, a = 2,
de = 0.1, ρi = 0.2 and n′0 ranging from 0 to 11.

Figure 2. Comparison between the growth rates (right panel) and the rotation frequencies (left
panel) obtained from the numerical simulations (circles) and the analytical values (diamonds)
obtained from eqs. (6) and (7). The simulations have been carried out assuming A = 1, a = 4,
de = 0.15, ρi = 0.25 and n′0 ranging from 0 to 11.

4. Nonlinear evolution
Saturation of the magnetic island induced by diamagnetic effects has been found in the resistive
regime by Biskamp [11], where, following a quasi-linear approach, the island width is found
to saturate at small amplitudes depending on the values of the diamagnetic frequency ω∗i and
of the resistivity parameter η. In Ref. [12] the authors show that in the collisionless regime
a partial reconnection process with island width larger with respect to the one determined in
Ref. [11], is possible provided the value of the poloidal β parameter is large enough and the
diamagnetic frequency is larger than the nonlinear growth rate. In this section we analyze the
long term evolution of the reconnection process in order to investigate the possibility to reach a
finite amplitude saturated island width resulting in partial reconnection of the plasma core. In
our simulation we always find that the reconnection process evolves until the magnetic island
is of the order of the equilibrium magnetic field scale length and proceeds up to the integration
domain. So, no evidence of a partial reconnection process is found.
We believe that this difference is due to the intrinsic quasi-explosive behavior of magnetic
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reconnection in the collisionless regime, first identified in Ref. [4]. In this regime, a typical
feature is that after the linear phase the growth rate accelerates in such a way that the magnetic
island reaches a macroscopic amplitude on a time that is of the order of the inverse linear growth
rate [15]. In Fig. 3 the growth rates for a collisionless and a resistive case are compared. The
two runs have been performed in order to have similar linear growth rate, replacing the electron
inertia into the Ohm’s law with a value of resistivity such that η ≈ γd2e. From this figure it is
clear that while the collisionless case has a growth rate which increases after the linear phase,
the resistive case goes smoothly towards saturation. In this respect, we are not in contradiction
with Ref. [12]. Rather, we observe that the condition that ω∗i is greater than the maximum
growth rate attained in the nonlinear phase, prescribed in Ref. [12] is only feebly satisfied for
our parameters.

Figure 3. Comparison between the growth rate of a collisionless (solid line) and a resistive
case (dashed line) having approximately the same linear growth rate. The collisionless case has
a quasi-explosive behavior right after the linear phase. The simulations have been carried out
setting A = 0.03, a = 2, ρi = 0.2, n′0 = 0.4, de = 0.15 for the collisionless case and η = 0.0001
for the resistive case.

The nonlinear evolution of the reconnection process is described in Fig. 4, where the stream
function φ for three different values of ω∗i are shown. Superimposed to the plasma flow are the
contour lines of the magnetic flux. For each run we have chosen to show a time step well into the
nonlinear phase right after the maximum growth rate has been reached. From Fig. 3, besides

Figure 4. Comparison between the plasma flow at three different values of the diamagnetic
frequency. From the left to the right ω∗i = 0,−0.078,−0.172, corresponding to n′0 = 0, 5, 11
respectively. The simulations have been carried out assuming a = 4, de = 0.15, ρi = 0.25.
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observing that the magnetic island has reached a macroscopic amplitude comparable with the
scale length of the equilibrium magnetic field, we can also appreciate two different aspects of
the reconnection process in this regime. First of all we observe that there is a strong nonlinear
modification of the equilibrium magnetic field, due to the growth of the ky = 0 wave number.
Second, the plasma flow changes its structure from the typical four-cell one at ω∗i = 0 into a
two-cell one when increasing ω∗i. There is a progressive loss of symmetry in the y-direction
related to the increasing value of the ion density equilibrium gradient.

5. Conclusions
We have investigated numerically a gyrofluid model for magnetic reconnection in collisionless
regimes including ion diamagnetic effects. According to the linear theory of Ref. [7], we find
stabilization for sufficiently high values of ω∗i and a propagation of the magnetic island in the
ion direction drift. The agreement with the linear theory improves providing the asymptotic
conditions for which the theory is valid are adequately satisfied. In contrast to the work
presented in Ref. [8], here we focused on the difference between the saturation mechanism
in the resistive regime considered in Ref. [11] and in the collisionless regime. We find that
while in the resistive regime it is possible to achieve a saturated state, characterized by a finite
island amplitude, corresponding to a partial reconnection process, in the collisionless regime, the
magnetic island can grow up to the magnetic flux equilibrium scale length and to the integration
domain, corresponding to a full reconnection process. Nonlinearly, the flow changes its topology
from a symmetric four-cell structure into an asymmetric two-cell structure, when increasing the
ion density equilibrium gradient.
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