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Optimizing XML querying using type-based
document projection

VÉRONIQUE BENZAKEN ∗ GIUSEPPE CASTAGNA†

DARIO COLAZZO ‡ KIM NGUYỄN§

Technical Report

Abstract

XML data projection (or pruning) is a natural optimization for main memory
query engines: given a query Q over a document D, the subtrees of D that are not
necessary to evaluate Q are pruned, thus producing a smaller document D′; the
query Q is then executed on D′, hence avoiding to allocate and process nodes that
will never be reached by Q.

In this article, we propose a new approach, based on types, that greatly im-
proves current solutions. Besides providing comparable or greater precision and
far lesser pruning overhead, our solution —unlike current approaches— takes into
account backward axes, predicates, and can be applied to multiple queries rather
than just to single ones. A side contribution is a new type system for XPath able
to handle backward axes. The soundness of our approach is formally proved. Fur-
thermore, we prove that the approach is also complete (i.e., yields the best possible
type-driven pruning) for a relevant class of queries and Schemas. We further val-
idate our approach using the XMark and XPathMark benchmarks and show that
pruning not only improves the main memory query engine’s performances (as ex-
pected) but also those of state of the art native XML databases.

1 Introduction

Main-memory XML query engines are often the primary choice for applications that
do not wish or cannot afford to build secondary storage indexes or load a database
before query processing. One of the main optimisation techniques recently adopted in
this context is XML data projection (or pruning) [31, 14].

The idea behind document projection is very simple yet very powerful. Given a
query Q and a document D, sub-trees of D that are not necessary to evaluate Q are
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pruned, thus yielding a smaller document D′. Then Q is executed over D′, hence avoid-
ing to allocate and process nodes that will never be reached by navigational specifica-
tions in Q. This ensures that evaluation over D′ is equivalent to and more efficient than
the evaluation over D.

As shown in [31, 14], XML navigation specifications expressed in queries tend
to be very selective, especially in terms of document structure. Therefore, pruning
may yield significant improvements both in terms of execution time and in terms of
memory usage: as a matter of facts, for main-memory XML query engines, very large
documents can not be queried without pruning.

1.1 State of the art

Marian and Siméon [31] propose that the actual data-needs of an XQuery query Q (that
is, the part of data that is necessary to the execution of the query) is determined by stat-
ically extracting all paths in Q. These paths are then applied to D at load time, in a
streaming fashion, in order to prune unneeded parts of data. The technique is powerful
since: (i) it applies to most of XQuery core, (ii) it can be applied to a set of queries over
the same document, and (iii) it does not require any a priori knowledge of the structure
of D. However, this technique suffers some limitations. First, the document loader-
pruner can manage neither backward axes nor path expressions with predicates which,
especially the latter, can contain precious information to optimise pruning. Second,
the advantage described in point (iii) becomes a big drawback when “//” occurs in
paths since, in that case, the technique does not behave efficiently in terms of loading
time and pruning precision (hence, memory allocation). Indeed, when a // is present
in a projection path, the pruning process requires to visit all descendants of a node in
order to decide whether the node contains a useful descendant. Worst, pruning time
tends to be quite high and it drastically increases (together with memory consumption)
when the number of // augments in the pruning path-set. In their technique, pruning
actually corresponds to computing a further query whose time and memory occupation
may be comparable to those required to compute the original query. In particular, in
this technique every occurrence of // may yield a full exploration of the tree (e.g., see
in [31] the test for the XMark [37] query Q7 which only contains three // steps and for
which just computing the pruning takes longer than executing the query on the original
document). Therefore, pruning execution overhead and its high memory footprint may
jeopardise the gains obtained by using the pruned document. Third and finally, the pre-
cision of pruning drastically degrades (down to being nullified) for queries containing
the XPath expressions descendant ::node[cond], which are often used in practice.

Motivated by efficient XML stream processing, Green et al. [26] introduced a
framework for discarding sequences of SAX events in an XML data stream. Although
their approach allows them to prune an input stream with respect to sets of queries, the
language they handle is restricted to forward linear XPath expressions (that is, XPath
expressions with only child and descendant axes and without predicates).

Bressan et al. [14] introduce a different and quite precise XML pruning technique
for a subset of XQuery FLWR expressions. The technique is based on the a priori

knowledge of a data-guide for D. The document D is first matched against an abstract
representation of Q. Pruning is then performed at run time, it is very precise, and,
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thanks to the use of some indexes over the data-guide, it ensures good improvements
in terms of query execution time. However, the technique is one-query oriented—in
the sense that it cannot be applied to multiple queries—, it does not handle XPath
predicates, and cannot handle backward axes (recall that the encodings of [36] are
defined for XPath, and no extension to XQuery-like languages is known). Also, the
approach requires the construction and management of the data-guide and of adequate
indexes.

Improving the work by [31], we proposed in [6] a preliminary type-based approach
to document pruning where a query is run over a DTD to statically determine the query
need. Unlike [31], their approach remains precise and efficient in the presence of back-
ward axes. It is, however, limited to DTD’s and uses approximations for nested or
conjunctive predicates which jeopardize the precision of their pruning algorithm.

1.2 Our contribution

In this article, we improve and extend a previous work ([6]) in several important as-
pects. First and foremost we generalized a former definition of type projectors by us-
ing as projectors sets of production rules (as opposed to the sets of non-terminals used
in [6]) of regular tree grammars (as opposed to the DTDs used in [6]). This generaliza-
tion was far from being straightforward. In particular, we had to prove the applicability
of our technique to the more general framework under consideration (cf. Section 3.2).
However the result is worth the effort since the advantages of this generalization are
twofold. On the one hand using regular tree grammars allows us to compute type pro-
jectors for every kind of XML schema formalism we are aware of as, for instance,
DTDs, XMLSchemas, CDuce and XDuce types, Relax-Core and TREX schemas. On
the other hand, inferring grammar production rules rather than grammar non-terminals
allows us to compute context-aware and, thus, more precise projectors. More precisely,
the new type projectors introduced in this work can prune a subtree not only based on
its tag (as it was done in [6]), but also on any structural condition expressible by a reg-
ular tree language. So for instance our pruning process may decide to prune just one of
two trees generated by the same non-terminal, because they appear in different contexts
(in [6] either both trees were pruned or they were both preserved). Therefore these new
projectors are both more general and can perform much finer-grained pruning. Second,
although we develop the theory of type projection for a simplified data-model and re-
stricted forms of XPath expressions, we thoroughly detail how to tackle many of the
peculiarities of the XML [39] and XPath [40] specifications, including the handling of
attributes, the presence of absolute axes in XPath predicates or a wide range of pre-
defined XPath functions (all absent in [6]). The path language we formally study ex-
tends the one in [6] with top-level unions of paths, predicate conjunctions (“and”) and
arbitrarily nested predicates (in our previous work, we formally treated only non-nested
predicates and resorted to an approximation in the case of nested predicates). Third, we
provide an extensive list of experiments showing the overall benefits of type projection
for a wide range of queries and query engines. These experiments supersede the early
benchmarks realised in [6] and show that despite the advances in XML query technolo-
gies in the recent years, our static analysis can significantly improve the performances
(both in time and memory consumption) of many different XML query engines.
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Our technique combines the advantages of the previously mentioned works while re-
laxing their limitations. Unlike [31, 14, 26], our approach accounts for backward
axes, performs a fine-grained analysis of predicates, allows (unlike [14]) for dealing
with bunches of queries, and (unlike [31]) cannot be jeopardised by pruning overhead.
Our solution provides in all cases comparable or greater precision than the other ap-
proaches, while it requires always negligible or no pruning overhead. Moreover, con-
trary to [31, 14], our approach is formally proven to be sound (i.e., pruning does not
alter the result of queries) and, furthermore, is also complete (i.e., it produces the best
possible type-driven pruning) for a substantial class of queries and DTDs.

We introduce our framework in three steps. In the first step, we consider a sim-
plified version of XPath, dubbed XPathℓ, which correspond to structural queries (that
is path expressions whose (possibly nested) predicates only contains disjunctions and
conjunctions of paths). We define for XPathℓ a static analysis that determines a set
of typing rules, a type projector, that is then used to prune the document(s). One of
the particular features of this approach is that our pruning algorithm is characterised
by a constant (and low) memory consumption and by an execution time linear in the
size of the document to prune. More precisely, a pruning based on type projectors is
equivalent to a single buffer-less one-pass traversal of the parsed document (it simply
discards elements not generated by any of the rules in the projector). So if embedded in
query processors, pruning can be executed during parsing and/or validation and brings
no overhead at all, while if used as an external tool it requires a time always smaller
than or equal to the time used to parse the queried document. Soundness and (partial)
completeness results for the static analysis are stated.

The second step consists of extending the analysis to full XPath (more precisely, to
XPath 1.0), that is, we need to show how to deal with missing axes as well as the Core

Library Functions that may occur in predicates. This is done by associating to each
XPath query Q a XPathℓ query P that soundly approximates Q, in the sense that the
projector inferred for P by the static analysis developed at the first step is also a sound
projector for Q.

The final step of our process is to extend the approach to XQuery (hence, to XPath
2.0). This is obtained in the same way as done in [31], by defining a path extraction
algorithm. Our path extraction algorithm improves and extends in several aspects (in
particular, in terms of extracted paths’ selectivity) the one of [31]. It also computes the
XPathℓ approximation of the extracted paths so that the static analysis of the first step
can be directly applied to them.

We prove some important closure properties that guarantee that type projections
can always be performed at load time during the validation process, and this without
any overhead. In particular for XML documents typed with DTDs or XML Schemas
the document can be pruned in streaming.

We gauged and validated our approach by testing it both on the XPathMark [22]
and on the XMark [37] benchmarks. The result of this validation confirmed what was
expected: thanks to the handling of backward axes and of predicates the precision of
our pruning is in general noticeably higher than that of current approaches; the pruning
time is linear in the size of the queried document and has a very low memory foot-
print; the time of the static analysis is always negligible (lower than half a second on
the hardware we used for our benchmarks described in Section 9) even for complex
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queries and DTDs. But benchmarks also brought unexpected (and quite pleasant) res-
ults. In particular, they showed that type-based pruning brings benefits that go beyond
those of the reduced size of the pruned document: by excluding a whole set of data
structures (those whose type names are not included in the type projector), the pruning
may drastically reduce the resources that must be allocated at run-time by the query
processor. For instance, our benchmarks show that for several XMark and XPath-
Mark queries our pruning yields a document whose size is two thirds of the size of the
original document, but the query can then be processed using three times less memory
than when processed on the original document. This is a very important gain, especially
for DOM-based processors, or memory sensitive processors. Not only our approach is
relevant in the case of main memory query engines such as Saxon but it is also shown
to be useful for native query engines as efficient as MonetDB [13]. Even in the latter
case our experiments demonstrate the relevance of type projection as a complementary
optimisation technique. Indeed, this is not totally surprising as type projection can be
thought of as a way of defining clustering policies in the same line as what was done
in the context of object-oriented databases [9, 5, 8]. Clustering and indexing are well-
known complementary tools used in the context of query optimisation.

While the present work tackles the problem of query optimization by the mean of
type projection, it also features a more general and directly reusable result: the defin-
ition of a new type system for XPath. In particular, this type system is able to handle
precisely backward axes. This, on its own, constitutes a contribution of this work. In
particular the precision of type inference for backward axes goes beyond what is pro-
posed in the XQuery Static Semantic recommendation ([21], which essentially leaves
the result of a backward step untyped).

1.3 Plan of the article

The article is organised as follows. Section 2 introduces basic definitions and nota-
tions: data model, types, validation. Section 3 presents type projectors, type-based
projection, and several theoretical (closure) properties. In Section 4 we define XPathℓ

and its semantics. In Section 5 we present our type projectors inference algorithm for
XPathℓ and state its formal properties. In Section 6 we extend our approach to full
XPath and in Section 7 to XQuery. In Section 8 we discuss how to apply our technique
to other typing policies as well as to un-typed documents. Section 9 presents our imple-
mentation and reports the results of our benchmarks. We finally conclude in Section 10
by presenting the perspectives of this work. All the proofs for the stated results can be
found in the electronic appendix that can be accessed in the ACM Digital Library. .

2 Notations

2.1 Data Model

For the sake of concision and clarity we present our solution for a simplified version
of the XQuery data model where we do not consider node attributes. However, attrib-
utes are fully supported in our implementation through a trivial encoding, documented

5



in Section 6. An instance of the XQuery data model can then be generated by the
following grammar:

Definition 2.1 (Data model)

Tree t ::= si | li[ f ] Forest f ::= () | f , f | t

Essentially, an instance of the XQuery data model is an ordered sequence of labelled
ordered trees (ranged over by t). That is, an ordered forest (ranged over by f ), where
each node has a unique identifier (ranged over by i) and where () denotes the empty
forest. Tree nodes are labelled by element tags (ranged over by l) while, without loss
of generality, we consider only leaves that are text nodes (that is, strings, ranged over
by s) or empty trees (that is, elements that label the empty forest).

We define a complete partial order � on forests (and thus on trees) by relating a
forest with the forests obtained either by adding or by deleting subforests:

Definition 2.2 (Projection (�)) Given two forests f and f ′ we say that f ′ is a projec-
tion of f , noted as f ′ � f , if f ′ is obtained by replacing some subforests of f by the

empty forest. In other terms � is the smallest pre-congruence on forests that contains

()� f for all f .

We also define a notion of good formation, with respect to the data model given in
Definition 2.1:

Definition 2.3 (Good formation) A forest is well formed if every identifier i occurs

in it at most once. Given a well-formed forest f and an identifier i occurring in it,

we denote by f @i the unique subtree t of f such that t = si or t = li[ f
′]. The set of

identifiers of a forest f is then defined as Ids( f ) = {i | ∃ t. f @i = t}

Henceforth we will consider only well-formed forests and confound the notions of a
node with that of the identifier of the node.

Definition 2.4 (Root id) Let t be a tree. If t = si or t = li[ f ], we define RootId(t) = i.

2.2 Types and validation

In this work, we present our approach for an abstract model of types, namely regular

tree grammars. It is well known that regular tree grammars encompass most of the
features of well established schema specifications such as DTDs, XMLSchemas, Re-
laxNG definitions, XDuce and CDuce’s regular expression types. This is for instance
documented in [34], from where we borrow the definition of regular tree grammar:

Definition 2.5 (Regular tree grammar) A regular tree grammar is a pair (S ,E) where

S is a set of distinguished names (actually, non-terminal meta-variables) and E is a

set of production rules of the form {X1 → R1, . . . ,Xn → Rn} such that:

1. each Ri is either the terminal String—denoting string content—, or the terminal

Any—denoting any tree—, or l[ r ] where l ranges over valid element names and

r is a regular expression on the non-terminal symbols X1,. . . , Xn, that is:

RegExp r ::= ε | r r | r r | r ∗ | Xi

(henceforth, we use r+ for r r∗ and r? for ε|r);
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2. S ⊆ {X1, . . . ,Xn} is the set of start symbols;

3. for any two production rules with the same left hand side Xi → l[r] and Xi → l′[r′],
we have l 6= l′.

The intuition is that a regular tree grammar describes (i.e., it “types”) a set of trees of
the data-model. Notice that the left-hand sides of the rules in E do not need to be pair-
wise distinct. Allowing two rules to have the same left-hand side allows us to freely
take the union of two sets of rules and also simplifies some definitions. Furthermore,
given a regular tree grammar, it is always possible to equivalently rewrite it so that con-
dition 3 holds: if there are two rules Xi → l[r] and Xi → l[r′] then they can be merged
into a single rule, Xi → l[r|r′].

Definition 2.6 (Names of a regular expression) Given a regular expression r we de-

note by Names(r) the set of non-terminals occurring in it, namely:

Names(ε) = ∅

Names(r1 r2) = Names(r1)∪Names(r2)
Names(r1 | r2) = Names(r1)∪Names(r2)

Names(r∗) = Names(r)
Names(X) = {X}

By extension, given a set of rules E = {X0 → R0, . . . ,Xn → Rn}, we define

Names(E) =
⋃

i∈{0,...,n}

Names(Ri)

Definition 2.7 (Defined name) Given a rule X → R, we call X the defined name of the

rule and we note Dn(X → R). By extension, given a set E = {X0 → R0, . . . ,Xn → Rn}
we define

Dn(E) = {X0, . . . ,Xn}

Note that in general, Names(E) ⊆ Dn(e). We also say that r is a regular expression
over (S ,E), if r is a regular expression over names in Dn(E). We will denote by L(r)
the language recognized by the regular expression r. We will use W, X , Y, Z to range
over names. We use Greek letters to range over sets of rules. As (S ,E) represents a
regular tree grammar we shall use π to stress that the set of rules is a type projector

(cf. Definition 3.1) and κ and τ to stress that the set is used as a context or as a type,
respectively (cf. Section 5.1). Last, we use S to range over sets of (node) identifiers.

We illustrate the syntax of regular tree grammars with the following example:

Example 2.8 (Regular tree grammar for the bibliography DTD) The bibliography
DTD (taken from the XML Query use cases [17]) can be written as a regular tree
grammar ({X},E), with unique start symbol X and the following set E of rules:

X → bib[Book∗]
Book → book[Title, (Author+ | Editor+), Publ]
Title → title[String]

Author → author[String]
Editor → editor[String]

Publ → publisher[String]
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This regular tree grammar “types” all XML documents (i.e., trees of the data model)
that are rooted in a bib element, that contains a possibly empty list of book elements,
each one containing a list starting with a title element containing a string, followed
by a non-empty homogeneous list formed either by author elements or editor ele-
ments, and ended by a publisher element.

The concept of typing an XML document by a regular tree grammar is formalized
by the notion of validity defined as follows:

Definition 2.9 (Valid Trees) A tree t is valid with respect to a type (S ,E), if there

exists a mapping (interpretation) I from Ids(t) to E such that:

1. Dn(I(RootId(t))) ∈ S

2. for each i in Ids(t), if t@i = si then I(i) = X → Any or I(i) = X → String

3. for each i in Ids(t), if t@i = li[t1, ..., tn], then either:

– I(i) = X → Any and ∀1 ≤ i ≤ n,∃Xi such that I(RootId(ti)) = Xi → Any

– or I(i)=X → l[r] and Dn(I(RootId(t1))), . . . ,Dn(I(RootId(tn))) ∈ L(r).

In this case, we say that t is I-valid with respect to (S ,E) and denote it by t ∈I (S ,E).

For instance the following tree (in which we omit the node identifiers)

bib[

book[

title["Divina Commedia"], author["Dante"], publisher["Ludovico Dolce"]

]

]

is valid with respect to the type ({X},E) defined in Example 2.8. There exist various
techniques and algorithms to validate XML trees against regular tree grammars (for
instance, by using tree automata: cf. Algorithm 4.4 in [34]). Note however that due to
our use of regular tree grammars, the interpretation I might not be unique and that a
validating algorithm will generate—for a document t and a type (S ,E)—one possible
interpretation such that t is I-valid with respect to (S ,E).

Given a tree t valid with respect to a type (S ,E), we can use subsets of E to project
that tree. Essentially, from the rules in E we compute another set of “simpler” rules
which denotes only the nodes to be kept. At the beginning of the section we defined the
projection of a forest as a forest obtained by replacing some subforests by the empty
tree. Here we define an analogous concept for types, called erasure according to which
a type is obtained from another by replacing some non-terminals by the empty regular
expression.

Definition 2.10 (Erasure of a regular expression) Let r be a regular expression and

N a set of names. We define the erasure of r with respect to N and we write r|N the

regular expression inductively defined as:

ε|N = ε
(r1 r2)|N = r1|N r2|N

(r1 | r2)|N = r1|N | r2|N

(r∗)|N = (r|N)∗
X |N = X if X ∈ N

X |N = ε if X /∈ N
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We generalize this notion to production rules of a grammar:

Definition 2.11 (Erasure of a rule) Let X → R be a production rule, and N a set of

names. We define the erasure of X → R with respect to N, noted (X → R)|N , as:

(X → l[ r ])|N = X → l[ r|N ]
(X → String)|N = X → String

(X → Any)|N = X → Any

We recall that String and Any are special terminals denoting string and any content,
respectively. We can finally define the erasure of a grammar:

Definition 2.12 (Erasure of a tree grammar) Let (S ,E) and (S ′,E ′) be tree gram-

mars. We say that (S ′,E ′) is an erasure of (S ,E), noted (S ′,E ′) <: (S ,E), if and

only if all the following conditions hold

1. S ′ ⊆ S ;

2. if X → String ∈ E ′, then X → String ∈ E;

3. if X → Any ∈ E ′, then X → Any ∈ E;

4. for all rules X → l[ r′ ] ∈ E ′, there exists a rule X → l[ r ] ∈ E such that r′ = r|N
for some N ⊆ Names(r).

Note that in the definition above, the set N can be different for different rules.
We conclude this section by recalling some definitions taken from [34] that will be

useful for establishing further results.

Definition 2.13 (Competing non-terminals) Let (S ,E) be a tree grammar. Let A,B∈
Names(E) be two non-terminals such that A 6= B. A and B are competing if and only

if there exist A → l[ r ] ∈ E and B → l′[ r′ ] ∈ E such that l = l′.

The definitions that are actually interesting are those of local and single-type tree gram-
mars, which can be defined in terms of competing non-terminals:

Definition 2.14 (local tree grammar) A regular tree grammar (S ,E) is a local tree

grammar if and only if:

• |S | ≤ 1

• E does not contain any competing non-terminals

• For all Y ∈ Names(E) there is exactly one rule in E whose left-hand-side is Y .

Definition 2.15 (single-type tree grammar) A regular tree grammar (S ,E) is a single-
type tree grammar if and only if:

1. For all X → l[ r ] ∈ E, if A, B in Names(r) and A 6= B, then A and B are not

competing

2. no pair of distinct non-terminals in S is competing.

The interest of these two definitions is that—as shown in [34]—they characterize the
structural constraints that can be expressed by the two most widespread schema form-
alisms, namely DTDs (which roughly correspond to local tree grammars) and XML
Schemas (which are, essentially, single-type tree grammars).
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3 Type projectors

In this section we shall first precisely define what type projectors are and then establish
some useful closure results on type projectors.

3.1 Definition

Definition 3.1 (Type Projector) Given a type (S ,E), a (possibly empty) set of rules

π ⊆ E is a type projector if and only if (S ∩Names(π),π) is a regular tree grammar

erasure of (S ,E).

A type projector is thus a set of rules obtained from the type (S ,E) by erasing some
rules and some non-terminals in the remaining rules.

A type projector for a given type describes a particular pruning for XML documents
of that type, that is, a type driven projection:

Definition 3.2 (Type Driven Projections) Let π be a type projector for (S ,E) and

t a forest such that t ∈I (S ,E). The π-projection of t, noted as t\Iπ , is defined as

follows:

()\Iπ = ()
si\Iπ = si if I(i)→ String ∈ π or I(i)→ Any ∈ π
si\Iπ = () if I(i)→ String 6∈ π and I(i)→ Any 6∈ π

li[ f ]\Iπ = li[ f ] if I(i)→ Any ∈ π
li[ f ]\Iπ = li[ f\Iπ ] if I(i)→ l[r] ∈ π andI(i)→Any 6∈ π
li[ f ]\Iπ = () if I(i)→ l[r] /∈ π andI(i)→Any 6∈ π

( f , f ′)\Iπ = ( f\Iπ),( f ′\Iπ)

In words, pruning erases (by replacing it by an empty forest) every node that cannot be
derived by a rule in π .

Lemma 3.3 Let π be a type projector for (S ,E). Then for every tree t ∈I (S ,E) it

holds (t\Iπ)� t.

As the knowledgeable reader might have already noticed, validation (as in Defini-
tion 2.9) and type-driven projection are quite similar. Given a tree t and a type (S ,E),
a validation algorithm builds an interpretation I of t with respect to that type. More
precisely, the algorithm associates to each node of t a non terminal of E . If it can-
not find at least one, validation fails and the tree is not valid with respect to (S ,E).
A type-driven projecting algorithm works exactly in the same way but when a node
cannot be associated with a name it is simply discarded together with the associated
subtree. Projecting a document can be seen as an instance of validation. This observa-
tion allows us to determine the complexity of type-driven projection, given a particular
type projector π . If π is a local tree grammar or a single-type tree grammar (that is, a
DTD or an XML-Schema, see [34]) then projection can be performed in a streaming
fashion. On the contrary, if π ends up being a general tree grammar, then projection
might require in the worst case to keep the whole tree in memory (see our remark at
the end of Section 3.2, for how to use type projection in this particular setting).

10



3.2 Closure properties

The fact that if a type projector is a DTD or an XMLSchema, then type-driven projec-
tion can be done efficiently is already a good thing. However, we can show a stronger
result: a type projector inherits the properties of the type it was deduced from. This
is important since in practice if someone chooses to use DTDs or XML-Schemas to
specify their documents, the projection process should not be more expensive than the
validation process.

Indeed, a nice property of the erasure of a type is that it preserves both the local
tree and single type property. In other words, the erasure of a DTD remains a DTD and
the erasure of an XML-Schema remains an XML-Schema.

Proposition 3.4 (Erasure preserves locality) Let (S ,E) be a local tree grammar and

(S ′,E ′) a regular tree grammar. If (S ′,E ′) <: (S ,E) then (S ′,E ′) is a local tree

grammar.

Proposition 3.5 (Erasure preserves single-typedness) Let (S ,E) be a single-type

tree grammar and (S ′,E ′) a regular tree grammar. If (S ′,E ′)<: (S ,E) then (S ′,E ′)
is a single-type tree grammar.

Last but not least, we show that if two projectors coming from the same type enjoy
the local (resp. single-type) property, then their union is also local (resp. single-type).
This property of type projectors is instrumental to our approach. Indeed, given a set of
paths, we will compute a type projector for it by taking the union of all the type pro-
jectors of the individual paths. However, if taking the union of type projectors caused
the loss of local or single-type properties, the interest of extending our approach to sets
of paths (and thus to XQuery or to bunches of queries) would be quite limited. The key
observation here is that, while in general local and single-type tree grammars are not
closed under union, two type-projectors that come from the same type share a common
structure and therefore are not completely independent from one another. In particular
computing the union of two type projectors for the same type cannot introduce com-
peting non-terminals. In terms of term-rewrite systems, we can say that the union of
two type projectors does not introduce a critical pair (of non-terminals).

Proposition 3.6 (Union closure of local type projectors) Let (S ,E) be a local tree

grammar. Let (S1,E1) and (S2,E2) be two tree grammars such that (S1,E1) <:
(S ,E) and (S2,E2)<: (S ,E). Then (S1 ∪S2,E1 ∪E2) is a local tree grammar.

Proposition 3.7 (Union closure of single-type type projectors) Let (S ,E) be a single-

type tree grammar. Let (S1,E1) and (S2,E2) be two tree grammars such that (S1,E1)<:
(S ,E) and (S2,E2) <: (S ,E). Then (S1 ∪S2,E1 ∪E2) is a single-type tree gram-

mar.

To conclude this presentation of the formal properties of type-projectors we could
note that a third category of deterministic regular tree grammars, namely restrained-

competition tree grammars (see [34]), is not closed under erasure. However, pruning
may still be computed in a streaming fashion. Indeed, it is known (see for instance
[32]) that restrained-competition tree grammars allow one to type a document using a
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one pass pre-order traversal. Therefore, when meeting the opening tag of an element,
the pruning process knows its type and can therefore use the type-projector to decide
whether to keep it or not. All the other schema specifications that we are aware of
(XDuce and CDuce regular expression types, TREX, Relax Core,. . . ) possess the full
expressive power of regular tree languages which, as it is well-known, are closed un-
der erasure and union (see for instance [19]). This means that type driven projection
proposed here can be applied to these kinds of schemas, as well. However, projection
remains as expensive as validation which, for these particular schemas, implies that the
whole document might need to be loaded into memory to actually decide which sub-
trees must be pruned. Practical solutions to this problem are discussed in Section 8.2

4 XPathℓ

In XPath, queries are expressed by defining a path of steps separated by “/”. For
instance,

Q = /descendant::author/child ::text[self ::node= ”Dante”]/
parent ::book/child ::title

is the query that returns all titles of books whose author is "Dante". First, the naviga-
tional part instructs to descend to all text nodes whose parent is an author (by following
the path /descendant::author/child ::text), then the predicate selects those nodes
that are the string "Dante" (with the test self ::node ="Dante"), and finally the navig-
ation ascends to the book element and descends to the title.

The inference rules we define in Section 5 do not work directly on queries such
as Q. The rules are defined for a subset of XPath that we dub XPathℓ and introduce
in this section. XPathℓ (for XPath ℓight) includes forward and backward axes and a
special kind of predicates. In order to statically analyse Q (or any other XPath query
that is not in XPathℓ), we will find an XPathℓ query that approximates Q soundly with
respect to the pruning inferred (Section 6), and use it to deduce the pruning for Q.
Of course, these approximations, as well as those we introduce later on, will only be
used to determine the pruning: the pruned document will be queried by the original
query. Therefore we are going to proceed as follows. In this section we define XPathℓ,
which is roughly equivalent to the structural subset of positive core XPath, without
absolute paths. Then in Section 5, we introduce our type and type-projector inference
algorithms, which work on XPathℓ queries. To complete the treatment of XPath we
show in Section 6 how to compute a sound approximation of a query Q with respect
to type projection. In other words, given a (full) XPath query Q, we will compute an
XPathℓ query Q′ such that the type projector inferred from Q′ preserves the semantics
of Q.

Let us start with defining XPathℓ paths and their semantics. From now on, “path”
refers to an XPathℓ query as defined hereafter unless otherwise specified (our XPathℓ

queries are sometimes called “twig queries” or “tree patterns” in the literature).

Definition 4.1 (XPathℓ path) An XPathℓ path is a term inductively generated by the
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following grammar:

Path ::= Step | Path/Path | Path Path

Step ::= Axis::Test | Axis::Test[Cond]
Axis ::= self |child |descendant|parent |ancestor
Test ::= tag | node | text

Cond ::= Cond or Cond | Cond and Cond | Path

where tag is a meta-variable ranging over element tags.

As customary, “and” takes precedence over “or” and the path delimiter “/” takes pre-
cedence over the top-level union “ ”. We will also use the (possibly indexed) meta-
variables P and C to range over paths and conditions, respectively.

The formal semantics of paths is inductively defined on the productions of Defin-
ition 4.1. First, we formalise Test filtering as the set of nodes that satisfy a given test.
Then Axis selection as the set of nodes reachable from some context nodes by follow-
ing some Axis. Finally, we combine these notions to define the semantics of paths. The
definitions comply with the semantics of XPath 1.0 (see [40]).

Definition 4.2 (Node test semantics) Given a tree t and a set of nodes S ⊆ Ids(t) we

define:

S::t l = S∩{i ∈ Ids(t) | t@i = li[ f ]}
S::tnode = S

S::ttext = S∩{i ∈ Ids(t) | ∃s, t@i = si}

Definition 4.3 (Axes selection) Given a tree t and a set of nodes S ⊆ Ids(t) (called

context nodes), we define JAxisKt(S) as the set of nodes obtained by applying Step to

each node in S:

JselfKt(S) = S

JchildKt(S) =
⋃

i∈S{i′ | (i, i′) ∈ Edg(t)}
JparentKt(S) =

⋃

i∈S{i′ | (i′, i) ∈ Edg(t)}
JdescendantKt(S) =

⋃

i∈S{i′ | (i, i′) ∈ Edg(t)+}
JancestorKt(S) =

⋃

i∈S{i′ | (i′, i) ∈ Edg(t)+}

where Edg(t) is the edge relation of t, that is

Edg(t) = {(i, i′) | t@i = li[ f , t
′, f ′] ∧ RootId(t ′) = i′}

and Edg(t)+ denotes its transitive closure.

Since predicates may contain paths and conversely, path and predicate semantics are
mutually defined.

Definition 4.4 (XPathℓ semantics) Given t, a set S ⊂ Ids(t) and a path P, we define

the evaluation of path P over the set of context nodes S as the function JPKt (S) defined

as:

JAxis::TestKt (S) = (JAxisKt (S))::tTest

JAxis::Test[C]Kt (S) = (JAxisKt (S))::tTest∩{i ∈ S | Checkt [C](i)}

JPath1/Path2Kt (S) = JPath2Kt(JPath1Kt(S))

JPath1 Path2Kt (S) = JPath2Kt(S)∪ JPath1Kt(S)
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where Check_[_](_) is the Boolean function defined as:

Checkt [Path](i) = JPathKt({i}) 6=∅

Checkt [C1 or C2](i) = Checkt [C1](i)∨Checkt [C2](i)
Checkt [C1 and C2](i) = Checkt [C1](i)∧Checkt [C2](i)

It is easy to see that the last definition is well founded since terms are inductively
generated by the productions of the grammar in Definition 4.1.

Although the paths in XPathℓ are quite simple, defining rules for their static analysis
is challenging: the simultaneous presence in a single step of axes, tests, and predicates
can cause a case explosion in the definition of the analysis. This is not a problem for
a static analyzer, but it is a problem for a human reader. Fortunately, for the human
reader, XPathℓ paths can be further simplified and transformed into equivalent normal
forms in which all non trivial axes, tests and predicates are distributed over different
steps. The idea is then to normalize paths before passing them to the static analyzer so
that the definition of the latter can result much simpler. The normal forms that will be
analyzed by the static analysis of Section 5 are defined as follows:

Definition 4.5 (Single step normal form) Let P be an XPathℓ query. The single step
normal form of P, noted Snf(P), is defined as:

Snf(Axis :: node) = Axis :: node
Snf(self ::Test) = self :: Test

Snf(self ::node[C]) = self ::node[SnfC(C)]
Snf(Axis :: Test) = Axis :: node/self ::Test (if Axis 6= self∧Test 6= node)

Snf(Axis :: Test[C]) = Axis :: node/self ::Test/self ::node[SnfC(C)]
(if Axis 6= self∧Test 6= node)

Snf(P1/P2) = Snf(P1)/Snf(P2)
SnfC(C1 or C2) = SnfC(C1) or SnfC(C2)

SnfC(C1 andC2) = SnfC(C1) and SnfC(C2)
SnfC(P) = Snf(P)

It is clear from this definition that P and Snf(P) have the same semantics. Indeed, if
we have a step

Axis :: Test[C]

then its single step normal form

Axis :: node/self ::Test/self ::node[SnfC(C)]

only makes the order of node selection more explicit1. For a given set of context nodes
S, we first select all nodes that can be reached by the Axis. Then we keep only nodes
that match the Test. Finally, we normalize the predicate C by putting every path it
contains in single-step normal form (through the use of the auxiliary function SnfC).

1As an aside, note that this kind of equivalence does not hold for full XPath be-
cause of the position() function. Indeed, descendant :: a[position() = 1] and
descendant ::node/self ::a[position() = 1] do not return, in general, the same result. The
former returns the first “a”-node in pre-order while the latter returns all the “a”-nodes of the document.
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5 Static Analysis

In this section we define deduction rules to statically infer from an XPathℓ path P and
a type (S ,E) a type-projector for any input document valid with respect to (S ,E).
We show that the analysis is sound, and that it enjoys completeness for a large class of
queries when E is a ∗-guarded and non-recursive local tree grammar (see Definition 5.6
later on). Soundness means that executing the query on the original document and on
the document pruned by the inferred projector yields the same result. Completeness
means that the analysis infers the best correct projector, that is, that if we take a type
projector smaller (i.e., more selective) than the inferred one, then there exists a doc-
ument validating (S ,E) for which the result of the two executions is not the same.
When the conditions on schemas or on queries are relaxed, then the analysis is still
sound but it may be not complete. Nevertheless, as we will formally illustrate, it is still
very precise.

In order to define our static type-projector inference algorithm we proceed in two
steps.

1. Given a path P and a regular expression grammar (S ,E) the rough idea is to
use a type system to associate P with the set of all trees that may appear in the
result of applying P to a document validating (S ,E). In order to achieve a great
precision, we then “type” P by the set of all rules of E that validate any tree in
the result.2 This is done in Section 5.1.

2. Next, we use the type system defined in the previous point to define inference of
type projectors. In particular we use the cases in which the previous type system
returns an empty set of rules to determine the points in which pruning must be
performed. This is done in Section 5.2.

5.1 Type inference

Given a path Path and a schema (S ,E) we want to find a subset of rules in E that can
type all the nodes that can occur in the result of Path when applied to the RootId of a
tree validating (S ,E). Formally, we want to infer a set τ ⊆ E such that

∀t ∈I (S ,E), I(JPathKt(RootId(t)))⊆ τ (1)

The equation above states the soundness of the analysis. In words it says that if we
take any tree t valid for (S ,E) and we apply the path Path to its RootId, then the type
τ inferred in the type systems defines every rule interpreting a node in the result. As
usual, soundness alone is not interesting since there always are sets that trivially satisfy
it (notably, the set of all rules in E). What we aim at is an analysis that is as selective
as possible, that is, an analysis that is precise enough to guarantee, on a large class of
types and for a large class of queries, that whenever the path semantics is empty over
all possible instances of the input type, then the inferred type τ is empty, as well:

∀t ∈I (S ,E), I(JPathKt (RootId(t)))=∅ =⇒ τ=∅ (2)

2This yields a finer-grained analysis since different rules may generate the same tree but in different
contexts.
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(the converse is a consequence of (1) ). In other terms we want that if there does not
exist any instance of the type that matches the path, then the path is typed by the empty
set.

The precision described by (2) will then be used during the inference of type-
projectors to discard elements that are useless in the evaluation of Path, that is, all
the sub-trees of the original document that cannot be matched by Path.

We start by inferring types for single-step paths without predicates.

Definition 5.1 (Unconditional Single Step Typing) The type of an unconditional single-

step query Axis::Test for the schema (S ,E) is given by:

TE(AE(S ,Axis),Test)

where axes are typed as:

AE(τ,self) = τ

AE(τ,child) =
⋃

Y→R∈τ

{Z → R′ ∈ E | Z ∈ Names(R)}

AE(τ,parent) =
⋃

Y→R∈τ

{Z → R′ ∈ E | Y ∈ Names(R′)}

AE(τ,descendant) = τ ′∪AE(τ
′,descendant) where τ ′ = AE(τ,child)

AE(τ,ancestor) = τ ′∪AE(τ
′,ancestor) where τ ′ = AE(τ,parent)

and tests are typed as:

TE(τ,node) = τ
TE(τ,a) = {Y → R ∈ τ | R = a[R′] or R = Any}

TE(τ,text) = {Y → R ∈ τ | R = String or R = Any}

This definition introduces two typing operators. Firstly, AE(τ,Axis) returns all the
rules that can be reached from names in τ following Axis. If Axis is self, child or
descendant, our definition coincide with the static semantics of XQuery and XPath,
as defined by Draper et al. in [21]. However, Draper et al.’s static semantics is much
less precise than ours when dealing with backward axes. Translated in our formalism,
the type of parent and ancestor for any τ would be {X → Any} for some name
X3. Secondly, TE(τ, test) restricts the rules in τ to only rules which type elements
compatible with test.

The soundness of this definition, that is, the property stated by Formula (1) is given
by the following lemma.

Lemma 5.2 Let t be a tree I-valid with respect to the schema (S ,E). For every

S ⊆ Ids(t) and type τ , if I(S)⊆ τ , then

I(JAxisKt (S))⊆ AE(τ,Axis) and I(S::tTest)⊆ TE(τ,Test)

3More precisely parent :: test and ancestor :: test return the union type element()|document() in-
dependently of test; where element() is the type of any element node and document() is the type of the
document node which we don’t consider in our data-model.
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It is easy to check that the property stated by Formula (1) is a direct consequence of
Definition 4.4 and the composition of the two properties of the lemma above.

The presence of upward axes makes the typing of composed paths much more
difficult. To ensure precision, that is the property stated by Formula (2), we have to be
careful in dealing with types in which an element may occur in the content of different
elements. The crux of the matter is that a given name X might be reachable by two
distinct paths from a start symbol (even when very simple types such as DTDs are
considered). When navigating upward from X with single step typing alone, the two
possible sets of ancestor may end-up in the result type. This behaviour does not take
into account the fact that on a tree (that is, an instance of the type) there is only one path
from the root to a node of type X . This can be illustrated by the following grammar
rooted at A:

A → a[B C], B → b[D], C → c[D],D → d[ ]

and observe that D is a child of both B and C. Now consider the path

self ::a/child ::b/child ::d/parent ::node

applied to documents of the above type, then the precise type that this path should have
is {B → b[D]}. However if we naively iterate Definition 5.1, we obtain at the first step
{A → a[B C]}, onto which we apply child ::b, which yields {B → b[D]} to which we
apply child ::d, which yields {D → d[ ]}, to which we finally apply parent :: which
returns {B → b[D], C → c[D]}, which is sound but imprecise. This is due to the fact
that the single step typing blindly selects all rules associated with a name which can
generate Z, here all the rules associated with Y .

To solve this problem we introduce particular sets of rules, called contexts, to be
updated at each step and containing rules already encountered in previous steps. We
then use them to refine type inference for upward axes. In the previous example, when
typing the first two steps we build a context

{A → a[B C], B → b[D]}

indicating that for the moment the two rules are the only ones visited by the traversal.
Then, we use Definition 5.1 to type parent ::node thus obtaining {B → b[D], C →
c[D]}, as before, but this time we intersect it with the context, thus obtaining the pre-
cise answer {B → b[D]}. Intuitively a context has the grammar productions that type
ancestors of nodes that are (currently) selected by the query.

We now formalize this idea:

Definition 5.3 (Type inference) Let (S ,E) be a type and P an XPathℓ query in single

step normal form. Let τ and κ be two sets of rules of E. If the deduction system in

Figure 1 deduces for a path P the judgment,

(τ,κ) ⊢E P : (τ ′,κ ′)

then we say that P has type (Dn(τ ′),τ ′).

The idea underlying the judgments of the definition is that if the system proves

(τ,κ) ⊢E P : (τ ′,κ ′)
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Single Step

Axis ∈ {self,child,descendant}
(down-axis)

Σ ⊢E Axis :: node : (AE(Σtyp,Axis) , Σctx ∪AE(Σtyp,Axis))

Axis ∈ {parent,ancestor}
(up-axis)

Σ ⊢E Axis :: node : (AE(Σtyp,Axis))∩Σctx , AE(Σctx,Axis)∩Σctx

Test 6= node
(test) (*)

Σ ⊢E self :: Test : (τ,(Σctx ∩AE(τ,ancestor))∪ τ)

(*) where τ = TE(Σtyp,Test)

(∀Xi → Ri ∈ Σtyp) ({Xi → Ri},Σctx) ⊢
Cond
E C : bi

(predicate) (**)
Σ ⊢E self :: node[C] : (τ , (Σctx ∩AE(τ,ancestor))∪ τ)

(**) where τ = {Xi → Ri |bi = true}

Predicates

Σ ⊢Cond
E Ci : bi op ∈ {or, and}

(boolean)
Σ ⊢Cond

E C1 op C2 : b1 op b2

Σ ⊢E P : Σ′

(path)
Σ ⊢Cond

E P : Σ′
typ 6=∅

Composed paths

Σ ⊢E Step : Σ′′ Σ′′ ⊢E Path : Σ′

(seq)
Σ ⊢E Step/Path : Σ′

Σ ⊢E Path1 : (τ1,κ1) Σ ⊢E Path2 : (τ2,κ2)
(union)

Σ ⊢E Path1 Path2 : (τ1 ∪ τ2,κ1 ∪κ2)

Figure 1: Inference rules for XPathℓ queries

then from an input set of rules τ and an input context κ the application of P returns
an output set of rules τ ′ and an updated context κ ′. In other terms τ is (the production
part of) a type that approximates the current nodes, κ is the context that was visited
to type them, τ ′ is (the production part of) a type that approximates the set of nodes
reachable from the current ones by following P, and κ ′ is the additional context visited
to reach them. In Figure 1 environments—that is pairs of sets of rules—are ranged over
by Σ for concision. Σ being a pair (τ,κ), we use Σtyp to denote its first projection (i.e.,
the “type” component τ) and Σctx to denote the second projection (i.e., the “context”
component κ).

The first two rules implement our main idea: when we follow an axis Axis, we
compute the type by AE(Σtyp,Axis); if the axis is a downward one, then we add this
type to the current context, otherwise if the axis is an upward one, then we intersect
it with the current context (both for the type part and for the context part). The rule
for (test) discards from the current set of rules those that do not satisfy the test: the
type is computed by TE(Σtyp,Test), while the context is obtained by removing all the
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rules that were in there just because they generated one of the discarded nodes; to do
so it generates (the type of) all ancestors of the nodes satisfying the test, and intersects
them with the current context. The fourth rule, (predicate), is the most difficult one.
It uses the auxiliary Boolean judgement _ ⊢Cond

_ _ : _. This judgment simulates the
evaluation of XPath conditions at the level of types: if a path yields a non empty-type
(rule (path)) then its Boolean value is true. Rule (boolean) combines the truth value
of the sub-conditions according to the operator at issue. This auxiliary judgement is
then used in the (predicate) rule to discard from Σtyp all rules for which the predicate
never holds. The context is then computed as in the deduction rule (test), by discarding
from it all rules that generated only rules discarded from Σtyp. The deduction rule (seq)

chains the result of one step to the following one. Lastly, the rule (union) handles the
top-level union operator “ ”.

Let us illustrate how the algorithm works on an example. Consider the grammar

{A → a[B|C|E],B → b[D],C → c[ ],D → d[ ],E → b[ ]}

rooted in A, and the path

child ::node/self ::b/self ::node[child ::node/self ::d]

Notice that the path above is nothing but the single step normal form of

child ::b[child ::d]

We start from an initial environment

Σ = ({A → a[B|C|E]},{A → a[B|C|E]})

in which both the context and the type component contain all the rules whose left hand
side is a root of the grammar (in this case we have just one rule). The first step is typed
with the (down-axis) rule, giving the result Σ1 where

Σ1
typ = {B → b[D],C → c[ ],E → b[ ]}

and
Σ1

ctx = {A → a[B|C|E],B → b[D],C → c[ ],E → b[ ]}

The second step is typed by applying the rule (test), which returns Σ2:

Σ2
typ = {B → b[D],E → b[ ]}

and more interestingly, the context

Σ2
ctx = {A → a[B|C|E],B → b[D],E → b[ ]}

Indeed, the intersection of Σ1
ctx with the name generated by the ancestors of B, namely

A yields exactly {A → a[B|C|E]} to which we add the result of the current step:

{B → b[D],E → b[ ]}
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As we said, this intersection ensures that we only keep in the context rules from which
we can derive the current type. In this example, the rules for C which was introduced by
the wildcard step child ::node is removed by the typing of the more restrictive step
self ::b. The third step is typed by the (predicate) rule. Intuitively, this rule types
independently the path child ::node/self ::d and keeps in the result only the input
rules for which the path yields a non-empty result which, in this case, is the rule for B:

Σ3
typ = {B → b[D]}

As before, the context is purged from rules that do not generate the current type:

Σ3
ctx = {A → a[B|C|E],B → b[D]}

Before stating the main theorems of type inference, namely soundness and complete-
ness, let us first show that the inference rules of Figure 1 form indeed an algorithm.

Lemma 5.4 (Termination of type inference) Let (S ,E) be a type, P a path, and Σ
and Σ′ two environments. If there is a derivation for the judgment Σ ⊢E P : Σ′, then this

derivation is unique and finite. Furthermore, the algorithm runs in time O(|E|d ×|P|),
where d is the maximum number of nested predicates.

The complexity result of type inference is consistent with those of related problems.
For instance [4] studies the problem of the satisfiability of XPath queries over a DTD
for various fragments of XPath. For instance, satisfiability of forward XPath (child,
descendant) without predicates is polynomial, which corresponds for us to the case
where d = 1 (no nested predicates). For even slightly richer fragments, with either
child and parent or child, descendant and predicates, satisfiability is NP-Hard
(see again [4]). Since exact type inference would imply satisfiability (a query is sat-
isfiable if and only if its output type is not empty), one may rightfully wonder why
for instance our algorithm runs in polynomial time for the fragment with child and
parent (without predicates). The reason is that our algorithm is not complete in the
general case (thus not exact) and that it might return a non-empty output type for an un-
satisfiable query. We argue that our algorithm seems to be a good compromise between
complexity and precision. This claim is further supported by our experimental results
(Section 9).

We can now proceed to prove the soundness of the type system.

Theorem 5.5 (Soundness of type inference) Let (S ,E) be a type and P a path. Let

E0 = {X → R | X → R ∈ E,X ∈ S }. If (E0,E0) ⊢E P : (τ,κ) then:

τ ⊇
⋃

t∈I(S,E)

I(JPKt (RootId(t)))

The type system is sound. It is also complete for a particular class of schemas, namely
local tree grammars that are ∗-guarded, non-recursive, and parent-unambiguous. Form-
ally, we have the following definition:

Definition 5.6 Let (S ,E) be a local tree grammar.
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1. E is ∗-guarded if for each Y → l[r] in E, the regular expression is a product

r = r1 · · · rn and whenever ri contains a union, then ri = (r′)∗;

2. E is non-recursive if for all Y → R ∈ E, Y 6∈ Dn(AE({Y → R},descendant));

3. E is parent-unambiguous if for all Y → R ∈ E:

AE({Y → R},parent)∩AE(AE({Y → R},parent),ancestor) =∅

Non-recursiveness and ∗-guardedness are properties enjoyed by a large number of
commonly used DTDs. As an example, the reader can consider the DTDs of the XML
Query Use Cases [17]: among the ten DTDs defined in the Use Cases, seven are both
non-recursive and ∗-guarded, one is only ∗-guarded, one is only non-recursive, and
just one does not satisfy either property. Beyond the XML Query use cases, it seems
that ∗-guardedness is commonly enjoyed by DTDs (e.g., Table 3 in [18] shows that in
most cases where a union is used, it is ∗-guarded). Concerning the parent-unambiguous
property, although DTDs satisfying this property are less frequent (five on the ten DTDs
in [17]), its absence is in practice not very problematic since, as we will see, only the
presence of the parent axis may hinder completeness in that case.

Before stating the completeness of type inference, we illustrate on simple examples
what happens when the conditions do not hold. For ∗-guardedness, consider the gram-
mar

X → a[ B|C ], B → b[ ], C → c[ ]

rooted in X , together with the path:

child ::node/self ::b/parent::node/child ::node

For the first two steps, our algorithm would determine the exact type and context:

Σ2 = ({B → b[ ]},{X → a[ B|C ],B → b[ ]})

For the parent step, the type and context are:

Σ3 = ({X → a[B|C ]},{X → a[ B|C ]})

which are also exact. However, the last step induces the final type:

Σ4
typ = {B → b[ ],C → c[ ]}

and the context:
Σ4

ctx = {X → a[ B|C ],B → b[ ],C → c[ ]}

This is not exact because a document matching the first part, child ::node/self ::b

does not have any “c” tag and therefore the rule C in the output type is superfluous:
this query will never return a node with type C for a document of the considered type.
Note that the condition that unions in regular expressions must be guarded must also
hold for rules, namely that there must not be two rules Y → l[r1] and Y → l′[r2] in the
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input type. Indeed these two rules behave like an un-guarded union and therefore jeop-
ardize completeness. Local tree grammars forbid such rules and are thus an essential
condition of the input type for completeness to hold.

The recursiveness of the schema also interacts with the parent axis in a way that
prevents completeness of type inference. Consider the grammar:

{A → a[ B ], B → b[ B? ]}

and the path expression:

child ::node/self ::b/child ::node/self ::b/parent ::node

Our type inference algorithm deduces on the second self ::b step that the output
type is be {B → b[B?]}. However, the last step, parent ::node is typed with a type

{A → a[ B ], B → b[ B? ]}

this is because in the grammar, A is a name reachable from B with a parent axis. How-
ever, consider any document valid with respect to this grammar. Either it has only one
b element, in which case the result is empty, since we try to match two levels of b’s with
the query. Or it has at least two b’s and then the output is always a b node (the topmost
one). Therefore, an a node is never part of the result, while the type A is returned by
our algorithm. Lastly, with the following parent-ambiguous grammar

{A → a[ B | C ],B → b[ ],C → c[B]}

the algorithm fails to type exactly (but the output type is still sound) the query:

child ::node/self ::c/child ::node/self ::b/parent::node

By a similar reasoning, we can see that the algorithm returns the rules

{A → a[B|C],C → c[B]}

while only nodes with tag c can be returned by this query.
Intuitively, the reason why completeness does not hold in the three previous ex-

amples is that there are chains of derivations in the grammar that may not reflect actual
paths in a document. For instance in the last example, in a document “a[ b[ ] ]”, the
derivation “AC B” has no interpretation (since there are no c-nodes). In this case, there
exists a valid document which does not contain all the paths described by the possible
derivations in its type. Therefore, the type inference algorithm will use rules which are
actually not part of the interpretation of some documents of the type at issue. Fortu-
nately, if a local tree grammar is ∗-guarded, non-recursive, and parent-unanbiguous,
then there always exists a document in which all the sequences of derivations in the
grammar are instantiated by some path. We call such a document a witness of the
grammar. We prove the existence of such a witness before stating the completeness
theorem.
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Lemma 5.7 (Witness of a grammar) Let (S ,E) be a non-recursive, ∗-guarded, parent-

unambiguous local tree grammar. There exists a document t, I-valid with respect to

(S ,E) such that:

∀X → R ∈ E,∃i ∈ Ids(t) such that I(i) = X → R

we call such a document a witness of the schema (S ,E).

We are now equipped to state (and prove) the completeness theorem:

Theorem 5.8 (Completeness of type inference) Let (S ,E) be a ∗-guarded non-recursive

and parent unambiguous local tree grammar, and P a path. Let

E0 = {X → R | X → R ∈ E, X ∈ S }.

If (E0,E0) ⊢E P : (τ,κ) then:

τ ⊆
⋃

t∈IE

I(JPKt(RootId(t)))

One of the main reasons why completeness does not hold in general is because
the intersections performed by the type rule for parent are not powerful enough to
guarantee precision for a recursive or parent-ambiguous grammar. In a nutshell, this
happens because in the presence of a parent-ambiguous grammar the type analysis
may produce contexts containing false parent types (with respect to the current type
τ). This suggests that in order to be more precise, instead of sets of rules, contexts
should rather be sets of chains of names, computed and opportunely managed by the
type analysis. However, we feel that (i) managing sets of chains instead of simple sets
of rules dramatically complicates the treatment, due to the interaction of recursive axes
like descendant and recursive grammars, (ii) the problem may arise only for queries
that use parent axis and the concomitance of parent-ambiguity may make the event rare
in practice, (iii) the loss of precision seems to be negligible in most cases, (iv) even
though it would be possible to obtain more precise results for a larger class of gram-
mars, it is well known that exact type-inference for XPath routinely escapes regular
tree languages and therefore all existing formalisms to type XML: at some point, an
approximation in the type inference process is necessary to remain in the realm of reg-
ular types. Therefore we considered that such a small gain did not justify the dramatic
increase in complexity needed to relax the condition on the type for completeness to
hold. Indeed, completeness is just some icing on the cake since, while it helps to gauge
the precision of the approach, its absence does not hinder its application.

Of course, the completeness theorem is only stated for XPathℓ queries and does not
account for full XPath queries. Yet it illustrates how precise our type system is in the
best case. We will show on various examples that on less favorable cases for schemas
or for XPath queries which need to be approximated, type inference still remains very
precise.
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5.2 Type-Projection inference

In this section we use the type inference of the previous section to infer type-projectors.
Once more, naive solutions do not work. For instance, for simple paths Step1/. . ./Stepn,
we may consider as type projector with respect to (S ,E) the set

⋃

i∈{1,...,n}

τi ∪{Xi → Ri | Xi ∈ S }

where for i ∈ {1, . . . ,n}:

Σ ⊢E Step1/. . ./Stepi : (τi,−)

with Σ = {Xi → Ri | Xi ∈ S },{Xi → Ri | Xi ∈ S } (we use “−” as a placeholder for
uninteresting parameters). This definition is sound but not precise at all, as can be seen
by considering the query descendant :: node/Path: the use of the above union yields
a set containing τ1 defined as

Σ ⊢E descendant :: node : (τ1,−)

that is, all descendants of the root start symbols in S (no pruning is performed). In-
stead, we would like to discard, at least, all rules that are descendants of S but that are
not ancestors of a node matching Path. These are the rules

Y → R ∈ TE(AE(S ,descendant),node)

such that
({Y → R},κ) ⊢E descendant :: node/Path : (∅,−)

for some appropriate context κ . A similar reasoning applies to ancestor.
As for the type inference, we define type-projector inference by a judgment and

associated inference rules:

Definition 5.9 (Type-projector inference) Let (S ,E) be a type and P an XPathℓ query

in simple step normal form, and τ and κ be subsets of E. If the deduction system in

Figure 2 proves the judgment

(τ,κ) E P : π

then the type-projector induced by π is the grammar:

(S ∩Dn(π),{(X → R)|Dn(π) | X → R ∈ π})

Obtaining a type projector from a set of rules returned by the judgment is straightfor-
ward. In essence, the derivation collects in π the rules of E that are sufficient to answer
the query. Since in general not all rules in E are kept, then the rule in π may use names
that are not defined in π . Therefore, the erasure operation (defined in Definition 2.10)
simply removes references to names not defined by any rule in π (the definition of R|S
is straightforward: it is R where every occurrence of a name in S is replaced by ε).

The rules in Figure 2 reflect the intuition we gave earlier. At each step, we execute
the type inference algorithm on the current set of rules and accumulate only those for
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Base and induction

Σ ⊢E Step : (τ,κ)
(p-step) if τ 6=∅

Σ E Step : τ ∪κ

Σ E P1 : τ1 Σ E P2 : τ2
(p-union)

Σ E P1 P2 : τ1 ∪ τ2

(p-erase) if no other rule applies
Σ E P : ∅

({X1 → R1},κ)E P : τ1 . . . ({Xn → Rn},κ)E P : τn
(p-iterate) if n ≥ 2

({X1 → R1, . . . ,Xn → R1} , κ)E P :
⋃

i=1..n

τi

Path Rules

({Y → R},κ) ⊢E self ::Test : Σ Σ E P : τ
(p-test) if Σtyp 6=∅

({Y → R},κ)E self ::Test/P : {Y → R}∪ τ

({Y → R},κ) ⊢E self ::node[C] : Σ

Σ E P : τ

∀Pi ∈C Σ E Pi : τi if Σtyp 6=∅
(p-predicate)

({Y → R},κ)E self ::node[C]/P : {Y → R}∪ τ ∪
⋃

i

τi

({Y → R},κ) ⊢E Axis :: node : (τ,κ ′)
(p-single)

(for i = 1..n) ({Xi → Ri},κ
′) ⊢E P : Σi (τ ′,κ ′) E P : τ ′′

(*)
({Y → R},κ)E Axis :: node/P : {Y → R}∪ τ ′∪ τ ′′

(*) where Axis ∈ {parent,child}, τ = {X1 → R1, . . . ,Xn → Rn},
τ ′ = {Xi → Ri | i = 1..n, Σi

typ 6=∅}, τ 6=∅, and τ ′ 6=∅

({Y → R},κ) ⊢E Axis :: node : (τ,κ ′)
(p-many)

(for i = 1..n) ({Xi → Ri},κ
′) ⊢E Axis :: node/P : Σi (τ ′,κ ′) E s(Axis) :: node/P : τ ′′

(**)
({Y → R},κ)E Axis :: node/P : {Y → R}∪ τ ′∪ τ ′′

(**) where Axis ∈ {ancestor,descendant},
τ = {X1 → R1, . . . ,Xn → Rn},
τ ′ = {Y → R}∪{Xi → Ri | i = 1..n, Σi

typ 6=∅},τ 6=∅, τ ′ 6=∅,
s(descendant) = child, and s(ancestor) = parent.

Figure 2: Inference rules for type-projectors

which the resulting type is not empty. Informally, each rule preserves the following
properties:

well-formedness: if a rule Y → R is added to the type projector π then there must
be a rule X → R′ ∈ π such that Y ∈ Names(R′).
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precision: given a path P and a rule Y → R. If ({Y → R},−) ⊢E P : (∅,−) then
Y → R must not be added to the projector.

Let us explain how the different rules preserve these properties. The easiest case
is the one of a query consisting of a single step, handled by the Rule (p-step). In this
rule, we just apply the type inference algorithm to determine the output type of the
results. The resulting projector is the set of rules in the results to which we add their
upward context κ , that is the rules linking the results to a start symbol. The rules (p-

union) and (p-iterate) are only inductive cases which allows us to handle respectively
top-level union and projectors applied to a set of rules. In particular, (p-iterate) splits
the checking of a path over all the possible rules specified in the type component of
the environment (each one identifies a different set of current nodes). This allows us
to define the so-called “Path Rules” in much a simpler way since they can be written
for environments in which the type component is just a singleton. The Path Rules
actually perform the projection and they all follow the same scheme. The Rule (p-

test) handles a simple node test. If the type inference returns some non-empty type
Σtyp for the step, then we can compute the projector for the continuation P and add its
result to the rule for the current node. The Rule (p-predicate) is similar: the type Σtyp

returned by the type inference is the set of nodes for which the predicate is satisfied.
We then recursively compute the projector for the continuation P as well as for the
paths Pi j occurring in the predicate. In the end, we return the union of all the computed
projectors to which we add the rule for the current node. Again we only do this if
the type inference returned a non-empty type. The following rules handle the actual
navigation. They are split in two sets, one for the parent and child axes another for
their recursive variant, ancestor and descendant. Since they are the most delicate
rules let us explain them in detail. The two cases are similar. In the Rule (p-single),
the algorithm first retrieves all the rules matching the axis (child or parent). These
rules are collected in τ and the analysis yields a current context κ ′. Then, by using
n calls to the type inference algorithm (n being the number of rules in τ), it collects
among τ only the rules which are a suitable starting point for the rest of the path, that
is all the rules yielding a non-empty result type when typed against P. These rules are
collected in τ ′ which, as it can be easily seen, a subset of τ . Finally, τ ′ and κ ′ are used
as the environment to infer the projection with the rest of the path. The (p-many) rule
handles the recursive axes, descendant and ancestor. The rule is almost the same
as Rule (p-single) with the exception that it does not test whether the continuation P

yields a non empty result on the node but on a descendant (or ancestor) of the node,
to ensure that we put not only the correct rules in the projector but also the rules leading
to them, and therefore that we maintain well-formedness. If for any of these rules one
of the side conditions does not hold, then the rule (p-erase) is applied and returns an
empty projector for the current path.

We illustrate hereafter the behavior of type-projection inference by unrolling it on
an example. Consider the grammar:

{A → a[(B|C)∗], B → b[D],C → c[E], D → d[E], E → e[ ]}

with start symbol A and the path P:

descendant::node/self ::e/ancestor::node/self ::b
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which is the single step normal form of

//e/ancestor::b

To ease the reading, we identify every rule with the non-terminal it defines. Therefore
in what follows when we write, say, A in types or contexts, we actually mean A →
a[(B|C)∗]. The algorithm computes the type projector for P as follows. The initial
environment is ({A},{A}). We apply the rule (p-many) for the first step. The first
premise computes the type of descendant ::node applied to A, which returns the type
and context (these instantiate the (τ ′,κ ′) of the rule):

({B,C,D,E},{A,B,C,D,E})

Then the second premise filters out the unwanted names and keeps only those for which
the whole path may succeed. This gives us an intermediary type: {B,D,E} (and un-
changed context) onto which we can compute the projector for the path:

child ::node/self ::e/ancestor ::node/self ::b

the final result for this rule will be the projector for the above path to which we add
{A} (i). At this point, since the input type contains many rules, we can apply the rule
(p-iterate) which will apply the continuation path on {B}, {C} and {D}. It is easy to
see that on {B} the side condition for the rule (p-single) is not fulfilled, since the type
inference returns empty. The rule (p-erase) applies and returns an empty projector.
The projection continues with only {C} and {D} left (the context is unchanged until
now, {A,B,C,D,E}). First let’s consider the derivation for {D}. The current step is
child ::node which was introduced by the previous (p-many) rule. On this step, we
apply the rule (p-single). This rule adds {D} (ii) in the final projector and continues by
computing a projector from {E} using the path:

self ::e/ancestor ::node/self ::b

When we apply the same rule to {C} however, while the first premise returns a non
empty type, the second one returns an empty result, since from a node with type C the
path

child ::node/self ::e/ancestor ::node/self ::b

yields an empty result. Thus the rule is not applied and the result of the projector for
the remaining path for the node type {C} is the empty projector. We continue with
our only set, {E}. We compute the projector for self ::e which adds {E} to the final
projector (iii) and computes the projector for the path:

ancestor ::node/self ::b

It is easy to to see that these will return {B} as a projector (iv). If we summarize, we
obtain from (i, ii, iii, and iv) the set of rules

π = {A → a[(B|C)∗], B → b[D],D → d[E], E → e[ ]}
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The actual type projector is:

(S ∩Dn(π),{(X → R)|Dn(π) | X → R ∈ π})

that is:
({A},{A → a[B∗], B → b[D],D → d[E], E → e[ ]})

This example shows how both precision and well-formedness are preserved:

well-formedness: what we obtained at the end is a valid type without unneeded rules.

precision: although the query references e nodes explicitly, we do not naively keep all the e

nodes but only those that are useful to compute the query, namely those occurring
below a b node.

We can now present the formal properties of type-projection inference

Lemma 5.10 (Termination of type-projector inference) Let (S ,E) be a type, P a

path, and Σ and Σ′ environments. The judgment Σ E P : Σ′ has a unique and finite

derivation. Furthermore the algorithm runs in time O(|E|o(d) × |P|2) where d is the

maximum number of nested predicates.

The lemma above states that the rules in Figure 2 describe a terminating algorithm
(the complexity result is a straightforward consequence of the one given by Lemma 5.4.
If one ignores the recursive calls to the typing algorithm, it is clear that during pro-
jection inference, one perform at most O(|E|) operations and performs at most one
recursive call to a strict sub-path of the argument path). We show now that they com-
pute a type-projector by formalizing the “well-formedness” property that we outlined
above. The intuition is that when the output type for a step is computed (e.g., in the first
premise of the rule (p-predicate)), then the context corresponding to this computation
is kept and passed as a parameter for the inference of the remainder of the path. On
the last step, (rule (p-step)) the context is added to the type projector. There, it ensures
that whenever a rule Y → R is added to the type-projector, all the rules needed to derive
Y → R from the start symbols are added to the type-projector as well. This is what we
formally state by the following lemma:

Lemma 5.11 (Well-formedness of type-projector inference) Let (S ,E) be a type,

τ , τ ′, and κ sets of rules, and P a path. If (τ,κ) E P : τ ′, then (τ,κ) ⊢E P : (τ ′′,κ ′′)
implies κ ′′ ⊆ τ ′.

We can now state the soundness of type-projection inference:

Theorem 5.12 (Soundness of type-projector inference) Let (S ,E) be a type and P

an XPathℓ query. Let S be the set of rules: S = {X → R | X ∈ S }. If

(S,S)E P : τ

then τ is a type-projector for (S ,E) and for every t ∈I (S ,E) we have:

JPKt\Iτ(RootId(t)) = JPKt (RootId(t))
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In words, if τ is the projector inferred for a query P and a grammar (S ,E), then
for every tree t validating the grammar, the result of executing P on t or on its pruned
version t\Iτ is the same.

Completeness requires not only completeness of the type system (∗-guarded, non-
recursive, and parent-unambiguous DTDs), but also the following condition on queries:

Definition 5.13 An XPath query Q is strongly-specified if:

i. its predicates do not use backward axes,

ii. along Q and along each path in the predicates of Q there are no two consecutive

(possibly conditional) steps whose Test part is node

iii. each predicate in Q does not contain any or or and operator. Furthermore any

path in a predicate does not terminate by a step whose Test is node.

For instance, among the following queries, only the first two are strongly-specified:

— descendant::node/self ::a/ancestor::node
— descendant::node[child ::b]/self ::a/parent ::node
— descendant::node/ancestor::node/self ::a

— descendant::node[child ::b/child ::node]/self ::a

— child ::a[descendant::node/parent::b/child ::c]

In the third query, there are two consecutive steps with a “node” test, which violate
condition (ii). In the fourth query the predicate contains a path ending with “node”—
failing to satisfy condition (iii)—and for the last query, the predicate contains backward
axes, which violates condition (i).

Once more, we are in presence of a very common class of queries: for instance,
almost all paths in the XMark and XPathMark benchmarks are strongly specified.

If all the conditions are met, then we can show that our algorithm is complete, in the
sense that it infers the best possible sound projector. In words, if we remove any rule
(and its consequences) from a projector inferred for a path P and a grammar (S ,E),
then we obtain a projector for which there exists a tree t validating the grammar for
which the execution on t and on its pruned version yield different results. Formally:

Theorem 5.14 (Completeness of projector inference) Let (S ,E) be a non-recursive,

parent-unambiguousand ∗-guarded local tree grammar, and let P be a strongly-specified

XPathℓ path. Let S be the set of rules: S = {X → R | X ∈ S }. If

(S,S)E P : τ

then there exists t ∈I (S ,E) such that for each Y → R ∈ τ , if π = τ \ ({Y → R}∪
AE({Y → R},descendant)), then:

JPKt\Iπ (RootId(t)) 6= JPKt (RootId(t))

The fact that completeness may not hold for not ∗-guarded, non-recursive, or parent-
ambiguous local tree grammar, is a consequence of the analogous property of the type
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system. To see that also strong-specification is a necessary condition consider docu-
ments valid with respect to the following grammar rooted at X :

{X → a[Y,W ], W → c[ ],Y → b[Z], Z → d[ ]}

If we query a document of that type with the following non strongly-specified query

self ::a[child ::node]

which does not satisfy (iii), then {X ,Y} is an optimal projector for this query (once
more, we use a name to denote the rule that defines it), but the presence of the condition
child ::node forces the system to include also W in the inferred projector, thus break-
ing completeness. A similar reasoning applies for self :: a[child :: b or child :: c],
which does not satisfy condition (iii) because of the presence of an “or” in the predic-
ate. Concerning the presence of backward axes in predicates, consider the query

self ::a[descendant::node/ancestor::a]

which does not satisfy condition (i). An optimal projector for this query on the same
grammar is {X ,Y}. However, since the ancestor condition is true for all descendants
of a nodes, {W,Z} is included in the projector as well. Finally, with a similar reasoning
on the same grammar, it is clear that the query

descendant::node/ancestor::node/self ::a

for which condition (ii) does not hold, jeopardises completeness. The first step selects
all the rules in the grammar that can be derived from the start symbol (that is, all the
rules). None of these rule are discarded by the projector-inference since for none of
them, the output type of “ancestor::node/self ::a” is empty. The point here is
that for the given grammar, there is no need to keep all the nodes, but only one child
of the root. Indeed, having one element below the root guarantees that the sequence
descendant::node, ancestor::node is not empty and therefore that the root can be
selected.

Of course, it is possible to state completeness for other classes of queries but, once
more, this seems a satisfactory compromise between simplicity and generality.

Lastly, seeing as the typing algorithm developped in Section 5.1 is mainly used
during type-projector inference to soundly approximate whether a sub-query yields an
empty result (and therefore determine that the node it touches may be absent without
changing the semantics of the whole query), one may wonder why we did not reuse
available algorithms for XPath statisfiability (for instance those used in [4] to establish
the complexity results of that problem) or even readily available implementations (such
as the µ-calculus SAT solver of Genevès et al, [25], [24]). The reason for devising our
own algorithm is twofold. Firstly, as stated in the discussion following Theorem 5.4,
our complexity result is better (which is understandable since we do not achieve com-
pleteness and do not consider negation in XPathℓ) than using an XPath-SAT algorithm
as a blackbox. Since type-inference is used repeatedly during type-projector inference,
the runtime behaviour of the emptiness check is instrumental to the practicality of our
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approach. Second and maybe more importantly, as one can see in Figure 2, type-
projector inference re-uses not only the result type of a subquery but also the context

in which this type is obtained. Re-using the typing context ensures both the soundness
and the precision of the approach. We believe that tailoring existing algorithms or im-
plementations to fit our needs would have been much more difficult than building our
own ad-hoc typing procedure.

6 Extension to full XPath

The formal developments of the previous section only deal with the XPathℓ language.
This language allows one to express structural queries, that is, queries whose predic-
ates contain only conjunctions or disjunctions of paths. In this section we show how to
translate a (full) XPath query into a (set of) XPathℓ queries and perform type-projection
inference for the latter that is sound for the former. In other terms, we show that our
translation is a sound approximation with respect to type-projection. Finally, we also
show how to encode the XPath axes not present in XPathℓ and how to extend our the-
oretical framework to handle most XML and XPath peculiarities (attributes, absolute
paths,. . . )

6.1 Handling XPath predicates

We extend Definition 4.1 to XPath 1.0 paths ([40]):

Definition 6.1 A path is a finite production of the following grammar:

Path ::= Step | Path/Path | Path Path

Step ::= Axis::Test | Axis::Test[Cond]
Axis ::= self | child | descendant | parent | ancestor
Test ::= tag | node | text
Cond ::= Cond or Cond | Cond and Cond | Expr

Expr ::= Expr cmp Expr | Arith

Arith ::= Arith op Arith | Atom

Atom ::= f (Expr, . . . ,Expr) | Path | v

where tag ranges over element tags, cmp∈{=,!=,<=,<,>,>=}, op∈{+,-,*,div,mod},

f ranges over a set of built-in functions of the Core Function Library and v ranges over

values (strings, sequences, integers,. . . ).

We wish to provide a safe translation from an XPath query Q to an XPathℓ query P

that approximates Q and use it to infer a type projector. By safe we mean that the
type-projector inferred for P must not change the semantics of Q.

What exactly is an approximating query in this context? A naive approach to define
query approximation is to consider inclusion of the results. According to it the query P

translation of Q should always select more nodes than Q. However this works only as
long as we do not use non-structural conditions (that is, predicates that make a query
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be non-structural). This is clear for example when we use the negation function not.
Consider

descendant::a[not(child ::b)]

For all documents, the query descendant ::a returns more results than the query
above. However, a projector inferred for descendant ::a would discard b nodes not
occurring before an a node, and therefore possibly also some b nodes children of an
a node. In this way it would change the result of the original query. What the ap-
proximating query needs to reflect cannot be defined in terms of inclusion of results
but rather in terms of data-need. We must ensure that the approximation traverses at
least the same nodes as the original one to ensure that the former will not be pruned.
However, we want the approximation also to be as precise as possible. For instance
“descendant ::node” is a sound approximation for any XPath query but the projector
we infer from it is utterly imprecise: it performs no pruning.

As the reader will have understood, the tricky part is to approximate non-structural
conditions. We do it as follows:
Definition 6.2 (Approximation of a path) Let P and S respectively denote a path and

a set of paths of XPathℓ. Let P/S denote the set of XPathℓ paths defined as
⋃

P′∈S{P/P′}.

Given an XPath expression Q, its approximation P(Q) is the set of XPathℓ paths defined

as:

P(Q1 Q2) = P(Q1)∪P(Q2)
P(Axis ::Test/Q) = Axis ::Test/P(Q)

P(Axis ::Test[C]/Q) = Axis ::Test[C(C)]/P(Q)∪Axis ::Test/S(C)

where:
C(P) = P if P(P) = {P}
C(P) = self ::node if P(P) 6= {P}

C(C1 or C2) = C(C1) or C(C2)
C(C1 andC2) = C(C1) and C(C2)

C(C) = self ::node otherwise

and:

S(P) = ∅ if P(P) = {P}
S(P) = P(P) if P(P) 6= {P}

S(C1 or C2) = S(C1)∪S(C2)
S(C1 and C2) = S(C1)∪S(C2)

S(C1 op C2) = S(C1)∪S(C2)
S(C1 cmp C2) = S(C1)∪S(C2)

S( f (C1, . . . ,Cn)) = F( f (C1, . . . ,Cn))

and F(_) is the approximation of built-in functions (see Figure 3 for an excerpt).
The most technical point in the definition above is, as expected, the approximation of
conditions, implemented by the auxiliary functions C() and S(). To be precise, we
differentiate between purely structural paths and non structural paths. For a structural
path, P() does not introduce any approximation and returns the singleton containing
the path itself. Otherwise, a non-structural path is approximated by a set of paths.
The translation is non trivial when the path contains non structural conditions. Let us
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F(count(Q)) = P(Q)
F(last(Q)) = P(Q)
F(position(Q)) = P(Q)
F(string(Q)) = P(Q)/descendant-or-self :: node[text()]
F(number(Q)) = P(Q)/descendant-or-self :: node[text()]
F(not(Q)) = P(Q)
F(true()) = {self ::node}
F(false()) = {self ::node[self ::a and self ::b]}
F( f (v1, . . . ,vn)) = {self ::node} where vi is a value

Figure 3: Approximation of XPath functions

illustrate the rationale of the definition first by an example. The path

descendant ::a[(count(child ::b)>3 and child ::c) or descendant ::b]/child ::d

is approximated by the following set of two paths

{ descendant ::a[self ::node and child ::c or descendant ::b]/child ::d,
descendant ::a/child ::b}

The first is generated by an application of the function C(), while the second derives
from the application of S(). As we see, the arithmetic expression count(child ::b)>3
is approximated by the function C() into the self ::node path occurring in the first
path of the set. This condition is always true and therefore it is a sound approxima-
tion of the Boolean value of the expression (since the result is always true the type-
inference algorithm will never be able to deduce an empty output type for this sub-path
and therefore the type-projector inference algorithm will keep the rules associated with
this node). However this is not sufficient to ensure the safety of type projection. In-
deed for this test to be possible at run-time, the projected document must have the “b”
nodes that were below a nodes in the original document. This approximation is made
via the second path by the S() function and, in particular, by the F(count(child ::b)).
Of course, what the function actually does depends on the semantics of the built-in
function. For instance, count(P) returns the number of nodes selected by P, thus a
projector keeping the type of the nodes selected by P is sound. On the contrary, the
function string(P)when applied to a node set returns the concatenation of the string-
value of all the nodes in the set. The string-value of a node is the concatenation of all
the PCDATA elements occurring below it. Therefore a suitable approximation for
string(P) is not P but rather P/descendant ::text. Giving an approximation for
all the functions of the XPath Core Library is a tedious task. Although our prototype
implements approximation for all functions, in Figure 3 we just give an excerpt that
completely covers all the different techniques we used in our prototype to approximate
built-in functions.
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6.2 Other XPath features

We purposely left out from our definitions some features of XPath that would have
led to a much more intricate formalization process, in particular for what concerns
definitions of the algorithms and the proofs of the theorems. Here we illustrate how
these features can be either encoded or approximated within our framework.

descendant-or-self and ancestor-or-self axes These axes—that we used in
Figure 3—can be encoded exactly by using the “ ” operator. Precisely:

descendant-or-self ::Test[Cond]

can be equivalently written as:

(descendant ::Test[Cond] self ::Test[Cond])

Sibling axes We could have defined a sibling relation over node identifiers in the
same way as we defined the edge relation Edg in Section 4, and used it to deal with the
following-sibling and preceding-sibling axes natively. However we can also
approximate these axes using only “vertical” moves. So for instance:

following-sibling ::Test[Cond]′

becomes:
parent ::node/child ::Test[Cond]′

The transformation above approximates the following siblings of a node by all its sib-
lings, including itself. Our experiments showed that, as far as type-projection is con-
cerned, this kind of approximation does not yield any noticeable loss of precision in
practice.

preceding and following axes For these axes, we can directly use the W3C re-
commendation [40] and encode following accordingly. That is,

following ::Test[Cond]

becomes:

ancestor ::node/following-sibling ::node/descendant-or-self ::Test[Cond]

Document node The XPath data model enforces the presence of a document node,
the real root of the document which has no label and is selected by the initial “/” of an
XPath expression. It is of course possible to represent such documents in our frame-
work but we preferred to omit it here since it would cause many presentation issues
with little theoretical interest. In particular, the document node is never referenced by
the schema of the document.
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Absolute paths Absolute paths are paths with a leading /. They do not start their
evaluation from the current context node but from the root of the document. Our form-
alism easily allows us to encode absolute paths. First, if an absolute path occurs outside
of a predicate, as in:

P/(P1 /P2)/P′

then we can simply rewrite it as:

(P/P1/P′) (P2/P′)

Second, if the path /P occurs in a predicate, then we can replace it with self ::node (as
if it was a non structural condition) and add P(/P) to the global approximation. Direct
treatment of absolute paths would have further complicated Definition 6.2, where we
would have had to maintain a set of absolute approximations, modified only by absolute
paths and propagated at each function call. We chose not to clutter this definition (but
absolute paths are handled by our implementation).

attribute axis and attributes in the data-model and schema Conceptually, the
handeling the attribute axis is not very different from the child axis, and could be
encoded as such. For instance, a possible solution would be to encode an element

<e att="value" id="34" ><a/><b/></e>

as the tree:
e[ @[att[”value”] id[”34”] ] a[ ] b[ ] ]

by introducing a phony node with label @. If such a solution were retained then
we would also need to update the definitions of child and descendant to ignore
@ nodes, and add an attribute axis selecting only the content of such nodes.

As far as schemas are concerned, they need to reflect the uniqueness and unordered-

ness of a sequence of attributes within an element node. This can be done with a union
type. For instance, the document above could have type:

E → e[ ATTS A B ]
ATTS → @[(AT T ID) | (ID ATT )]
ATT → att[String]

ID → id[String]
A → a[ ]
B → b[ ]

this encoding however incurs an exponential blow-up in the size of the sequence of
attributes. Our implementation follows a much more pragmatic approach. Precisely,
even though attributes could be encoded in our approach we preferred to add an un-
ordered attribute construct directly at the grammar level and specialize type-inference
and type-projector inference rules for attributes.

id() function The id() function of XPath is peculiar in the sense that unlike other
functions, it does not take the context node as implicit argument (e.g., the position()
function returns the position of the context node within the current result set). Rather,
the expression “id("foo")” returns the node whose id is "foo" if it exists (a node
has id "foo" if it has an attribute named id whose value is "foo" and if this attribute
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has been declared with type ID in the Schema, [40]). We choose to approximate this
function in two steps. First, we rewrite it as an absolute path. Then we can let our
approximation algorithm handle the absolute path (with the technique described in
Section 6.2). For instance an expression such as

id("item34")/child ::name

can be rewritten as

/descendant:: ∗[@id="item34"]/child ::name

This rewrite technique was used in particular to handle queries C5-C7 of the XPath-
Mark benchmark (see Section 9).

7 Extension to XQuery

In this section we extend our technique to XQuery.

Definition 7.1 (XQuery)

FLOWR ::= FORLET return ExprS | ExprS

FORLET ::= FOR | LET

FOR ::= for $x in ExprS

LET ::= let $x := ExprS

ExprS ::= if ExprS then Cond else Cond | Cond

Cond ::= Cond or Cond | Cond and Cond | Expr

Expr ::= Expr cmp Expr | Arith

Arith ::= Arith op Arith | Atom

Atom ::= f (Expr, . . . ,Expr) | FLOWR/P | x | v

| FLOWR,FLOWR | <tag>FLOWR</tag> | ()
P ::= Step[Cond]/P | Step/P | Path

where x ranges over identifier names, and v, cmp, op, Path and Step are the same as

in Definition 6.1.

For the sake of clarity and concision we only considered formally a subset of the
XQuery grammar ([42]). In a nutshell, the definition of Atom (given in Section 6)
is extended with two new constructs: variables (ranged over by x, y, z in what follows)
and path applications FLOWR/P.

Note that XQuery constructs may occur inside a path expression (production P)
or not (production Path). Also, we consider neither queries that first construct new
elements and then navigate on them nor queries containing “order by” constructs.
XQuery queries are ranged over by q. The absence of the former is not really a problem.
For instance it is shown in [30] that composition-free XQuery —where such queries are
absent— is equivalent to Core XQuery, when considering only child and descendant
axes.

In order to apply the previous analysis to infer a projector for an XQuery query
q, we first extract a set of full XPath expressions from q. Then, we apply to each
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of these extracted paths the approximation function P(_) given in Definition 6.2 to
obtain an XPathℓ expression. We can finally use the projector inference algorithm of
Section 5.2 on the set of approximated paths, which is a sound type projector for the
original XQuery query q.

Path extraction is performed by the extraction function E(_,_,_), whose definition
is given in Figure 4. The extraction function has the form E(q,Γ,m) and performs a
straightforward recursive descent over its first parameter q which is the query at issue.
The second parameter Γ is an environment, that keeps track of bindings of the form
(x;P) in whose scope q occurs. Finally, m is a flag indicating whether q is a query that
serves to materialise the full content of the queried elements (m= 1) or if the query just
selects a set of nodes whose descendants are not needed (m = 0). Before explaining
the rules of Figure 4 in details, we introduce two auxiliary functions. The first one is
M(_,_) (Figure 5) which given a built-in XPath function and the position of one of its
arguments, returns a suitable value for the parameter m (intuitively, M( f , i) returns 1 if
f needs the full content of its itharguments and 0 otherwise). This function is similar
to the function F(_) introduced in Section 6, Figure 3.

The second one, E’(_,_,_) is defined mutually, together with E(_,_,_) and allows to
recursively traverse XQuery expressions and resolves the variable names they contain.
It works similarly to E(_,_,_) but do not return sets of XPath paths, but sets of particular
XQuery expressions which do not contain any variables.

Now that we have introduced environments and the auxiliary functions, we can
easily describe the rules in Figure 4. First, rules 1 and 2 form the basic case of the
recursive descent and return the empty set if the whole query consists of a constant.
Rules 3 and 4 straightforwardly apply the extraction recursively for the content of se-
quence (Rule 3) and element (Rule 4) constructors. Rules 5 and 6 handle the case of
variables bound in the environment Rules 7 and 8 add a constant path to the set of
extracted paths, according to the value of the parameter m. Note that in those rules,
Path refers to the corresponding entry in the grammar of Definition 6.1, that is it does
not contain any XQuery construct and only pure XPath ones. Paths containing XQuery
expressions are handled in the subsequent rules. Rule 9 handles the application of a
path FLOWR expression with a path P. Note that as previously the notations S1/S2

where S1 and S2 are sets of paths stands for:
⋃

P∈S1

⋃

P′∈S2

{P/P′}

The case of a simple step composed with a path expression is handled similarly by
Rule 10 and we recall that the notation Step/S where S is a set of path is syntactic
sugar for the set:

⋃

P∈S

{Step/P}

Rule 11 is more intricate, but its complexity is only bureaucratic. This rule allows the
extraction process to retrieve Full XPath expressions from a FLOWR expression. In the
present work, path extraction and path approximation are two separate processes. Path
extraction only occurs at the level of XQuery terms and returns sets of full XPath ex-
pressions (which reflects the exact path that may be evaluated during query execution).
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1. E((),Γ,m) = ∅

2. E(v,Γ,m) = ∅

3. E((q1,q2),Γ,m) = E(q1,Γ,m)∪E(q2,Γ,m)

4. E(<tag>q</tag>,Γ,m) = E(q,Γ,m)

5. E(x,Γ,1) =
⋃

(x;P)∈Γ

{P/descendant-or-self :: node}

6. E(x,Γ,0) =
⋃

(x; P)∈Γ

{P}

7. E(Path,Γ,1) = {Path/descendant-or-self :: node}

8. E(Path,Γ,0) = {Path}

9. E(FLOWR/P,Γ,m) = E(FLOWR,Γ,m)/E(P,Γ,m)

10. E(Step/P,Γ,m) = Step/E(P,Γ,m)

11. E(Step[Cond]/P,Γ,m) = (
⋃

q∈E’(Cond,Γ,m)

Step[q]) /E(P,Γ,m)

12. E(if q then q1 else q2,Γ,m) = E(q,Γ,0)∪E(q1,Γ,m)∪E(q2,Γ,m)

13. E(let $x := q1 return q2,Γ,m) = E(q2,Γ∪Γ′,m)
where Γ′ = {(x;P) | P ∈ E(q1,Γ,0)}

14. E(for $x in q1 return q2,Γ,m) = E(q1,Γ,0)∪E(q2,Γ∪Γ′,m)
where Γ′ = {(x;P) | P ∈ E(q1,Γ,0)}

1′. E’(Cond1 op Cond2,Γ,m) =
⋃

q∈E’(Cond1,Γ,m)

⋃

q′∈E’(Cond2,Γ,m)

{q op q′}

where op ∈ {and, or}

2′. E’(Expr1 cmp Expr2,Γ,m) =
⋃

q∈E’(Expr1,Γ,m)

⋃

q′∈E’(Expr2,Γ,m)

{q cmp q′}

where cmp ∈ {=,!=,<,>,>=,<=}

3′. E’(Arith1 op Arith2,Γ,m) =
⋃

q∈E’(Arith1,Γ,m)

⋃

q′∈E’(Arith2,Γ,m)

{q op q′}

where op ∈ {+,-,*,div,mod}

4′. E’( f (Expr1, . . . , Exprn ),Γ,m) =
⋃

q1∈E’(Expr1,Γ,M( f ,1))

. . .
⋃

qn∈E’(Exprn,Γ,M( f ,n))

{ f (q1, . . . ,qn)}

5′. E’(Atom,Γ,m) = E(Atom,Γ,m) Atom 6= f (q1, . . . ,qn)

Figure 4: XQuery path extraction

Approximation from XPath to XPathℓ is handled at the XPath level. The issues solved
by Rule 11 is to recursively traverse an XQuery expression, using a recursive call to
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M(count,1) = 0
M(last,1) = 0

M(string,1) = 1
M(number,1) = 1

M(position,1) = 0
M(not,1) = 0

Figure 5: Value of the parameter m for various built-in XPath functions

the auxiliary function E’(_,_,_) which builds a set of XPath conditions into which all
variable bindings have been resolved. Therefore what we obtain after E’(_,_,_) is a set
of XPath conditions free of any XQuery construct (especially variables). We can now
explain how E’(_,_,_) works. In Rules 1′ to 3′ use a recursive descent into the produc-
tion of the XQuery grammar, starting at the condition levels and reconstruct Boolean
XPath condition (1′), relational XPath expressions (2′) or arithmetic XPath expressions
(3′). More interesting is Rule 4′ which traverses the arguments of a function call and
uses the auxiliary function M(_) to determine a suitable value for m. Lastly, if the
input matches any other constructs Rule 5′ applies and recursively applies E(_,_,_) to
construct a set of XPath paths.

We can resume our description of E(_,_,_) for the remaining cases, the high level
constructs “if then else”, “let return” and “for return” handled by Rules 12,
13 and 14 respectively. Rule 12 recursively extracts paths on the Boolean test q, the
“then” case q1 and the “else” case q2. The only point of interests is that the Boolean
test cannot generate a result and therefore can be called with parameter m = 0. The
let binding handled by Rule 13 augments the environment Γ with the path extracted
from q1 and extracts the paths of query q2 in this augmented environment. Note that
the path bound to x are added to the final results by Rule 5 or 6 only if the variable is
used. On the contrary in Rule 14, for loops will perform their iterations even if the
bound variable is never used, as long as the paths extracted from q1 yield a non-empty
result. It is therefore mandatory to add the paths extracted from q1 to the final result.

These rules subsume and enhance the technique of Marian and Siméon [31]. In
particular, (i) the technique we use to exclude useless intermediate paths is simpler and
more compact, (ii) we do not need to distinguish between two kinds of extracted paths
but, more simply, we always manage a unique set of path expressions, and last but not
least, (iii) our path extractor can be used even if the user cannot access an XQuery to
XQuery-Core compiler, which is necessary for [31].

Before applying the extraction function E(_,_,_) to some query q we apply some
heuristics that rewrite q so as to improve the pruning capability of the inferred paths.
Among these heuristics the most important is the one that rewrites

for y in Q/descendant-or-self::node

return if C(y) then q else ()

into

for y in

Q/descendant-or-self::node[C(self :: node)]
return q
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whenever C(y) is a condition referring only to y and does not use external functions
(C(self :: node) is obtained by replacing self :: node for all occurrences of y free in
C). If we apply E(_,_,_) to the first query, then a path ending by the step

descendant-or-self ::node

is extracted thus annulling further pruning: the entire forest selected by Q is loaded in
main memory. This also happens with the approaches of Bressan et al. [14] and of
Marian and Siméon [31]. In ours and Marian and Siméon’s approach the query can be
rewritten as above, while this is not possible with Bressan et al. formalisms since their
subset of XQuery does not include predicates. However, Marian and Siméon’s path
based pruning degenerates (no further pruning is performed) also for the second query,
since the step

descendant-or-self ::node

ends up in the set of pruner paths, thus selecting all nodes. This is because their ap-
proach cannot manage predicates. In our approach, predicates are taken into account
and therefore only nodes satisfying C(y) are kept by the projector, thus yielding a very
precise pruning.

It is important to stress that despite their specific form the first kind of query is very
common in practice since they are generated from XQuery to XQueryCore compilation
of a non negligible class of queries or when rewriting upward axes into downward ones.
This latter observation shows that the application of rewriting rules of [36] to extend
Marian and Siméon’s approach to upward axes is not feasible since the rewriting may
completely compromise pruning.

8 Extension to other typing policies

8.1 Handling un-typed documents

Although the usage of schema is being more and more wide-spread, it still is interest-
ing to see how to perform type-based projection in an untyped world. A first, rather
blunt, approach is to consider a fixed corpus of un-typed documents. For such sets
of documents it is possible to infer a DTD. For instance, Bex et. al. propose several
automata-based methods to infer DTDs [11] and even XMLSchemas ([12, 10]). Once
a schema is inferred, our technique can be applied as-is.

More interestingly, this untyped problem can be reduced to a precise typing prob-
lem. Indeed, an un-typed document is nothing but a document of type ({X},{X →
Any}). If we apply the type inference-algorithm of Section 5.1 to such an input type,
then the result would be ({X},{X → Any}) itself (meaning that the nodes selected by
the query have type Any). Therefore in this case, since none of the intermediary steps
of the query results in an empty-type, the type-projector inference algorithm of Sec-
tion 5.2 cannot remove any rule from the input type which remains ({X},{X → Any}):
the input document cannot be pruned. However, even though the input type does not
contain any meaningful information, the query itself might. Imagine a query “//a/b”.
It is easy to deduce, by a simple examination of the query a projector which keeps
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only “b” nodes occurring below “a”-nodes. While the solution in this case is straight-
forward, solving this problem in general is a tricky issue. The solution for a forward
fragment of XPath can be found in [35] (cf. Chapter 7). Let us briefly outline it on our
example. The first issue is the representation of types. For such precise algorithms, reg-
ular tree grammars are not well suited. Indeed instead of the type ({X},{X → Any}),
it is more desirable to have a type ({X},E) where E is the set of rules:

{X → String, X → _[ X∗ ]}

where _ denotes the set of all possible tree labels. Then the result of a query //a/b

applied to a a tree of the above type (i.e., any XML tree) would be the type projector:

{X → _[ X+ ], X → a[ B+ ], B → b[ Y∗ ], Y → String, Y → _[ Y∗ ]}

Note that this type-projector is non-deterministic top-down. It matches (and therefore
keeps) any subtree t if and only if there is a subtree t ′ of t with tag “a” which itself has
a non-empty sequence of children tagged “b”. Nodes that are children of an “a” node
but whose tag is not “b” do not have any interpretation and therefore are discarded.

In [35], in order to achieve such a precise typing, the inference algorithm makes a
heavy use of CDuce’s type algebra (see [23] or, for an overview, [16]) in particular of
intersection and negation types. Also note that the projector above is not obtained by
erasing some of the rules of the original type but by the mean of set theoretic operations
. In fact, three new rules were created and intuitively they were obtained by intersecting
the initial “X → _[ X∗ ]” rules with a type “a[ B+]” which is the constraint represented
by the XPath query. Note also that contrary to our approach where new rules are only
erasures of existing ones (of which there only exists a finite number), special care must
be taken to not introduce infinitely many refined rules and ensuring the termination of
the algorithm becomes a very delicate issue.

8.2 Using regular tree languages as schemas

While our formal development remains in the very general case of regular tree gram-
mars, our implementation only focuses on DTDs. The main reason is that for DTDs
pruning is efficient memory-wise. For regular tree languages instead, validation (and
pruning) may need to visit the whole tree before deciding which node to prune. At first,
it seems that this completely defeats the purpose of pruning, but we argue that pruning
can still be of practical use in these cases.

Indeed, a way of addressing this problem is to temporarily store the document in
memory in the form of a succinct tree data-structure (based for instance on balanced
parenthesis: a survey of the most popular succinct tree representations can be found in
[2]). The final data-structure of the document can then be built from the temporary one,
by replaying a sequence of SAX events while traversing the temporary data-structure
and by not synthesizing events for pruned sub-trees. An alternative solution is to store
on disk the sequence of SAX events and process it backward, thus simulating a bottom-
up evaluation (validation of regular tree grammars and therefore projection can be done
in a deterministic bottom-up fashion). Such a technique was used in [29] to efficiently
evaluate node selecting queries bottom-up on documents up to 1 GB of size.
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9 Experiments

9.1 Prototype

To gauge the benefits of type-based projection, we have implemented our pruning al-
gorithm into a prototype (using the OCaml language, and the PXP library for XML and
DTD parsing). Our prototype takes as input an XQuery query, a DTD, and a document.
It then performs the path extraction described in Section 7 and computes for each ex-
tracted path its XPathℓ approximation, applying the rewriting rules given in Section 6.
Based on this set of paths, our program performs the static analysis described in Sec-
tion 5.2 and computes a type projector. Once this is done, the prototype parses the input
document, prunes it according to the inferred type-projector and serializes the result.

Besides what is included in the formal description of our algorithm, our prototype is
extended also to support the full set of XPath axes as well as attributes. If we call D the
input document and S the input DTD, then, assuming that D is well-formed, the pruning
process is performed in O(|D|) time and O(|S|) memory, where |D| and |S| denote the
size of D and S respectively. Indeed, the type projector associated with a DTD is at
most as big as the original schema (when no pruning is performed) and O(|S|) space
is required to store it in memory. Our prototype can also perform well-formedness
check and validation while pruning, in which case time complexity remains O(|D|)
and memory complexity becomes O(|S|+ log(|D|)) (it is well-known that checking
well-formedness during validation requires to keep a stack whose size is at most the
height of the document, see for instance [38]).

9.2 Benchmark suite

We used the XPathMark ([22, 41]) and XMark ([37]) benchmark suites. The former
consists of a large set of XPath queries while the latter provides XQuery queries to test
against.

9.2.1 Data-set

Both XPathMark and XMark use the XMark document generators. These documents
comply with the “auction” DTD representing an auction web-site. It defines 77 ele-
ment types and 15 attributes. This size and complexity is comparable to “real-life”
type definitions (for instance the XHTML transitional DTD also features 77 element
definitions). Because the “auction” DTD falls outside the conditions of our complete-
ness theorem (it features recursion and unguarded union), it is a very good test-case to
illustrate the precision we achieve in practice even when completeness does not hold.
The scalability of our approach was tested by using documents of varying size, ranging
from 12MB to 3GB. An important aspect of the XMark generator is that the propor-
tion of textual data versus tree structure stays the same, for all size of documents. We
report here some statistics of interest which we use later-on to gauge the precision of
our pruning algorithm. An XMark generated file consists of:

• 74% of text content (as PCDATA elements or attribute value)
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• 65% of all the text content (that is, 49% of the total file size) resides in a description
element or one of its descendants.

9.2.2 XPathMark queries

Since its original publication (in [22]), the XPathMark benchmark suite has evolved to
provide a very complete set of XPath queries. It provides in particular performance

test queries which provide computationally difficult queries. We highlight some of the
main design goals of this test suite (the complete rationale can be found in [41]):

1. queries simulate realistic query needs of a potential user of the the auction site;

2. queries are divided into groups according to the intrinsic computational com-
plexity of the corresponding evaluation problem. The XPath language can be
stratified in a number of fragments for which different complexity bounds are
known [3]. Comparing the theoretical computational complexity of the query
evaluation problem with the actual amount of resources consumed during query
evaluation might be, at least, a stimulating and instructive exercise;

3. queries are defined to challenge data scalability of the XML processing sys-
tem, that is the performance of the system as the data complexity (document
size) grows. In particular, the queries talk about document sections (like open
and closed auctions, items, people, descriptions) that become bigger when the
XMark document scaling factor increases. Moreover, the results of the queries
are small compared to the size, to prevent serialization to obfuscate obfuscates
the pure query processing time.

These three points are exactly those we aim to address with the present work. Indeed
our approach drastically increases the data scalability (3.) of XML processing systems
for realistic queries (1.) and potentially complex ones (2.). XPathMark queries are
divided in 5 groups, labeled from A to E that we briefly describe now.

Group A contains unary tree pattern queries. These queries use only child and descendant
axes, node tests equal to * or to a tag name, and filters (predicates). Conjunctive
and disjunctive Boolean operators are allowed, but negation, relational and arith-
metic operators and functions are disallowed. These queries fall therefore in the
category of queries that we handle without any approximation.

Group B contains the so-called core or navigational XPath queries. This fragment extends
Group A by admitting all XPath axes and negation. It mostly corresponds to
queries for which our algorithm introduces a very lightweight approximation
(we only need to approximate negations and those axes we did not treat formally
such as preceding).

Group C extends Group B with comparisons (=, !=, <, >, >=, <=) and the id() function.

Group D extends Group C by allowing all arithmetic operators and the agregate functions
sum() and count().

Group E contains all XPath 1.0 queries. In particular, it extends Group D by allowing all
functions (like position() and contains()).
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9.2.3 XMark test suite

To validate the extension of our approach to XQuery and in particular the path extrac-
tion algorithm, we use queries from the XMark benchmark suite ([37]). These queries
feature “for” expressions guarded by “where” conditions and make use of element
constructor to format their results. The corresponding code for the queries under con-
sideration is given in Figure 6.

A 1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

A 6 /site/people/person[profile/gender and profile/age]/name

B 1 /site/regions/*/item[parent::namerica or parent::samerica]/name

B 2 //keyword/ancestor::listitem/text/keyword

C 3 /site/people/person[profile/@income =

/site/open_auctions/open_auction/current]/name

C 4 /site/people/person[watches/watch/id(@open_auction)/seller/@person = @id]/name

D 1 /site/open_auctions/open_auction[(count(bidder) mod 2) = 0]/interval

D 2 count(//text) + count(//bold) + count(//emph) + count(//keyword)

E 5 /site/regions/*/item[preceding::item[100] and following::item[100]]/name

E 7 /site/regions/*/item[contains(substring-before(description,’eros’),’passion’)

and contains(substring-after(description, ’eros’), ’dangerous’)]/name

M 3 for $b in $doc/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2

<= $b/bidder[last()]/increase/text()

return

<increase

first="$b/bidder[1]/increase/text()"

last="$b/bidder[last()]/increase/text()"/>

M 6 for $b in $doc//site/regions return count($b//item)

M 7 for $p in $doc/site

return

count($p//description) + count($p//annotation) + count($p//emailaddress)

M 14 for $i in $doc/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

M 15 for $a in

$doc/site/closed_auctions/closed_auction/annotation/description/parlist/

listitem/parlist/listitem/text/emph/keyword/text()

return <text>$a</text>

Figure 6: XPathMark (A-E) and XMark (M) queries

9.3 Protocol

We have designed two experiments, based on two different XQuery engines to validate
our approach. For each engine and each query we described in the previous section we
applied the following protocol. First, we tested the engine against original documents
of increasing size and stopped when the query engine could not handle the input doc-
ument anymore. Then we repeated the experiment a second time but used a document
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
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Figure 7: Pruning ratio (% of the original file size) for XMark and XPathMark queries

pruned by our prototype as input for the query engine. We detail now our experimental
settings for the two engine we considered: Saxon-b/XQuery and MonetDB/XQuery.

9.3.1 Test machine

The experiments were performed on an desktop PC, with an Intel Core 2 Xeon 3Ghz
CPU, 3.5 GB of RAM and a S-ATA hard-drive. We used Ubuntu Linux 9.10 64bits
(featuring a 2.6.31 kernel) as operating system. The file-system used was ext3, with
default settings. The OS was allocated 6 GB of swap space and tests where done in
a reduced environment, where only essential services were running concurrently with
our experiments. In what follows, when timings are reported they are obtained by
removing the best and worst timing of 5 runs and averaging the remaining three. Also,
all the parameters we measured (running time, memory consumption, I/O operations,
. . . ) were measured in independent runs in order to have as little impact as possible
on the experiments. The memory consumption of a running program was measured by
monitoring the so-called “resident set size” field of the /proc/pid/statm pseudo file
(this fields summarizes the amount of private data mapped in physical memory by the
process, excluding shared segments such as shared libraries or shared mmaped files).
I/O operations where monitored using the iotop utility.

9.3.2 Saxon-b/XQuery

Saxon [28] is a popular XML library which implements various W3C standards (XPath,
XQuery and XSLT) and has full schema support. We used version 9.0 of the Saxon-b
XQuery engine (which is the Open Source one). Saxon being a main-memory query
engine we focused on the following measurement both for pruned and unpruned docu-
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ments: query answering time (excluding the parsing time of the document and serializ-
ation of the results, as reported by Saxon’s debugging flags) and memory consumption.
Saxon being written in Java, we used the latest version of the Sun’s JVM available
(1.6.0, 64 bit version) and set the amount of memory available to the JVM to the total
physical memory of the machine.

9.3.3 MonetDB/XQuery

MonetDB/XQuery [13] is a well established native XML database with full XQuery
support. Contrary to Saxon, MonetDB stores on disk an index allowing fast navig-
ation and query answering. In particular since it uses the disc as secondary storage,
MonetDB is not limited by the amount of physical memory (it uses as much memory
as possible to answer a query efficiently and performs its own page management by
mapping memory pages to the disk and reading them back when needed). Therefore
for such a query engine, speed is directly proportional to memory: the more memory is
available, the less swapping occurs between pages on disk and pages in main memory.
The three parameters we measured for MonetDB were the query answering time (again
we did not consider document parsing nor serialization time), the size of the generated
index on disk for a given document and the amount of I/O performed to answer the
query. Indeed since MonetDB tries to max out its memory use to favour query an-
swering time, measuring memory consumption does not reflect the actual scalability
improvement one could expect when pruning documents. Disk accesses on the con-
trary are the bottleneck for such an engine and their frequency directly impacts query
answering time.

9.4 Experimental results

9.4.1 Pruning precision

We gauged the precision of our pruning algorithm for the full set of XPathMark and
XMark queries by comparing the size of the pruned document (serialized on disk) with
the size of the corresponding original document. We report in Figure 7 the pruning
ratio in percent of the original file size for XPathMark (labelled A1 to E8) and XMark
(labelled M1 to M20) queries.

9.4.2 Saxon-b/XQuery

In our testing environment the biggest un-pruned document that the Saxon engine could
handle was 671 MB large. We report in Figure 8 the original size of the largest pruned

document Saxon could handle and the size of its projection (both in MB). Also, for a
document of size 671 MB, we report the running time and memory consumption for the
original and pruned version (as well as the size of the pruning). Lastly, we report the
speed-up factor obtained thanks to pruning and the memory improvement we achieved
(in percent of the original memory consumption) for the projected document. Due to
the lack of space, we do not detail all of the XPathMark and XMark queries but rather
for each category we give the “best performing query” –that is, the one for which we
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A 1 A 6 B 1 B 2 C 3 C 4 D 1 D 2 E 5 E 7 M 3 M 6 M 7 M 14 M 15
(i) 1.9 4.3 12.0 8.2 43.7 14.3 3.4 2.3 33.5 30.1 21.8 13.3 9.8 6.5 6.2
(ii) 3363 3363 3363 3363 3363 3363 3363 3363 3363 2242 3363 3363 3363 2242 3363
(iii) 447 67.6 50.5 571 68.3 137 65.5 297.25 60.8 605 92.8 9 121 605 67.6

(iv) 10 9 3 113 9 23 13 59 12 190 18 2 24 190 65
(v) 20 17 22 2.9 17 5.8 12.1 5.6 12.3 2.1 9 15.8 14.3 2.19 7.5
(vi) 3.7 5.5 2.2 22.2 3.7 8 5.4 9.7 7.44 22 9 1.8 4.9 29 15.2

(i): Computation of the type projector (ms)
(ii): Largest queryable document (MB).

We stopped our testing at 3363 MB
(iii): Pruned size (MB)

(iv): Pruned size for 671 MB (MB)
(v): Speed up (× faster)
(vi): Memory use in % of original
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Figure 8: Experimental results for the Saxon-b/XQuery engine

could achieve biggest speed-up– and the “worst performing query”, the one for which
the speed-up was the smallest.

9.4.3 MonetDB/XQuery

Since MonetDB makes use of the secondary storage (disk) to query arbitrarily large
documents, we chose a different approach to validate our pruning algorithm. We fixed
the size of the input document to 3363 MB and then indexed it into the MonetDB docu-
ment repository, yielding an index (on disk) of 4644 MB (as reported by the MonetDB
administrative interface). Then for each query, we pruned the 3363 MB document with
respect to the input query and indexed it. We summerize the results in Figure 9 (note
that we did not report the time spent computing the time projector, since it is the same
as in Figure 8. The first line in the table reports the size in MB of the index correspond-
ing to the pruned document. The second line reflects the ratio between the amount of
I/O operation performed by the MonetDB server for the pruned file and the amount of
I/O performed on the original file. We only take into account the amount of data read

from disk which helps us gauge the amount of data fetched from the index on disk into
main-memory. In this same figure, the graphics represent the absolute query answering
time in seconds for the original and pruned document.

Finally, the third line gives the speed-up in query answering achieved through prun-
ing. We were not able to run the query E5 on our version of MonetDB (the server
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A1 A6 B1 B2 C3 C4 D1 D2 E5 E7 M3 M6 M7 M14 M15
(i) 675 119 95 843 117 232 93 443 116 1073 138 14 111 1073 436
(ii) 0.5 0.5 0.3 24.8 0.5 45.4 10.0 100.0 - 59 1.1 84.7 50.8 54.0 94.0
(iii) 6.8 10.5 8.5 3.3 18.1 2.1 21.6 1.0 - 1.7 5.0 2.8 1.7 2.06 1.0

(i): Index size (MB) (ii): Amount of I/O (% of the original) (iii): Speed up (× faster)
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Figure 9: Experimental results for the MonetDB engine

segfaulted at some point during the query computation).

9.5 Interpretation

9.5.1 Type-projector inference

As already stated, our type-projector inference algorithm is very efficient for prac-
tical queries. For all the queries we tested and the XMark DTD, computing the type
projector took at most 49.4ms and about 15ms on average. We see that in practice,
computing a type projector adds little overhead (despite the theoretical complexity).
The analysis can therefore be performed also at run-time. We include the detail of the
timing of the type-projector computation for the selected set of queries that we study
in the following subsections.

9.5.2 Pruning precision

The results from Figure 7 shows that, for the vast majority of the queries we considered,
the document can be pruned to less than 10% of its original size. More precisely on the
58 queries we considered (20 XMark and 38 XPathMark queries):

• 47 queries yielded a projected document whose size was less than 5% of the
original

• 5 queries (M10, B3, B4, D2, E4) had a pruning ratio between 5% and 10%

• 2 queries (B2, E3) had a pruning ratio of 17.035%

• 4 queries (M14, E6, E7, E8) had a pruning ratio of 27.35%
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It should be noted that queries such as M14 return the content of a description

element, consisting of almost all the textual data contained in the original XMark doc-
ument. Since in these queries the value of the whole element is needed at runtime to
perform string searching operations, there is little that can be done from the point of
view of static pruning.

9.5.3 Saxon-b/XQuery

As we can see from the results in Figure 8 pruning the document before querying it al-
ways yields a speed-up and a reduction in memory use for a main memory engine such
as Saxon. Furthermore, query answring time always dominates projector-inference
time (several seconds for the former and less than 50ms for the latter).

On the one hand, for queries whose main bottleneck are string operations (such as
calls to the contains function in M14 and E7), document projection gives very little
speed-up. On the other hand, query A1 or C3 see a dramatic speed-up (20 and 17 times
faster than the original respectively). This shows that despite the various optimizations
built into the engine, a significant amount of time is often spent by iterating over “non-
relevant” nodes which are discarded by the pruning process.

On the side of memory consumption, pruning the document unsurprisingly reduces
memory usage drastically. Indeed, document projection reduces the number of ele-
ments and therefore simplifies the tree-structure of the XML document. This aspect is
critical for main-memory engines which often (as in the case of Saxon) represent the
document as a pointer-based data-structure (e.g., following the DOM model [20] where
each element is represented as a node which contains a pointer to its first child to the
next sibling, and to its parent). Indeed, we experienced for Saxon (but we observed sim-
ilar behaviour in other main-memory query engines) a 112MB XMark document would
occupy 430MB of RAM while the same document stripped of its data—amounting to
only 36MB on disk—would occupy 340MB of memory. As Figure 8 illustrates, our
pruning technique precisely addresses this issue, reducing in most cases the memory
consumption to a few percents of what is needed to handle an un-pruned file.

9.5.4 MonetDB/XQuery

MonetDB is known to be one of the fastest XML databases available. The efficiency of
the MonetDB/XQuery engine is essentially due to the stair-case join operation ([27])
which minimizes the amount of intermediate sets constructed to answer an XPath
query. Even so, the use of type-based document projection often improves query an-
swering time. In particular, as shown in Figure 9, a smaller index often yields less
I/O operations which in turn increases the speed of the query engine. On the contrary
for queries such as D2, M14 and M15, the document is already optimally indexed and
reducing the size of the index does not reduces the amount of I/O which explains why
for these queries the gain in speed is null. Yet for some queries the speed-up can be up
to twenty-folds (D1).
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9.5.5 Comparison with related work

These results are a clear-cut improvement over current technology. While we cannot
directly compare processing performances since no implementation of the other prun-
ing approaches is publicly available, we want to stress two points. First, for XMark
queries the pruning precision we achieve is equal or better than what is obtained with
other approaches (with the exception of query M10 for which [31] achieves a pruning
ratio of 4.5% where we could only prune the document down to 9.2% of its original
size). Second, performing pruning never is a bottleneck in our case thanks to the fact
that our solution consists of a single buffer-less traversal of the input document (on our
test machine we were able to efficiently prune arbitrary large documents, while in case
of [31] pruning can end up using as much memory as the execution of the query).

The experiments also illustrate that our approach retains a very high precision even
in the presence of complex XPath features (like backward axes and external functions).
While it is true that the technique of [36] could be used to allow Marian and Simeon’s
work to handle backward axes, it would still not be, to our sense, a satisfactory solution.
The first reason is that the rewrite rules given in [36] do not support the use of data-
value or negation in the filters of the original query (see [3]). For instance the query

descendant::keyword[not(ancestor:: item)]

cannot be written without backward axis. Second the query generated may be expo-
nentially bigger than the original one (and its computation takes exponential time in the
size of the original) and may introduce several predicates as well as descendant-or-self
axes. Both features degrades the pruning precision of [31].

10 Conclusion and future work

Our experiments show the clear advantages of applying our optimisation technique to
query XML documents, and the characteristics of our solution make it profitable in all
application scenarios. We discussed several aspects for which our approach improves
the state of the art: for performances (better pruning, greater speedup, smaller memory
footprint), for the analysis techniques (linear pruning time, negligible memory and time
consumption), for its generality (handling of full XPath), and, last but not least, for
the formal foundation it provides (correctness formally proved, limits of the approach
formally stated).

The present work extends and improves the current state of the art in several as-
pects. From a formal point of view, the use of regular tree grammars as schema model
makes the technique applicable to the various kind of schemas currently in use. Fur-
thermore, the closure properties that we proved ensure that type-based projection is at
most as expensive as validation for a given class of schema language. We also handle
a richer set of queries formally (in particular we handle nested predicates in XPathℓ)
and took special care to document how to encode or approximate several important
XPath idioms that were lacking from the formal presentation. On a practical level, we
have validated our approach against state of the art query engines, using realistic quer-
ies and data sets. In particular, not only did we test against an efficient main memory
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query engine (Saxon) but also demonstrated that our approach can be used to improve,
sometimes by a double digit factor, the performances of an already very optimized
disk-based XML database such as MonetDB/XQuery.

Future work will be pursued both at a formal and practical level. At a formal
level, one of the main shortcoming of our approach is its reliance on XPath syntax.
Indeed, even though we managed to isolate a fragment of XPath that we could formally
reason with, it still leaves us with a syntax-directed approach. The problem with this is
twofold. First, it makes the proofs and the specification of algorithms quite tedious and
unnecessarily intricate. Second and more importantly, our pruning inference algorithm
might yield different type projectors depending on the syntax of the original query.
For future work, we would like to tackle a semantic based approach. In particular
it seems worthwhile to consider more theoretically sound formalisms for tree queries
such as, for instance, MSO formula or tree automata. The latter in particular would
allow us to reuse our pruning algorithm for pattern-matching based languages (such
as the CDuce language [1] and its query language CQL [33, 7, 15]). It is also known
that tree-automata have better closure properties than XPath expressions and support
fine-grained set-theoretic operations (intersection, union, complement) that have been
used with success to devise very precise type-systems for XML [23].

At a practical level we would like to see a tighter integration between document-
projection and query engines. Firstly, although quite crude, our experiments show that
even a carefully designed indexed system such as MonetDB can benefit from document
pruning. It seems interesting to develop further such preliminary results and design a
projection aware XML index. In other words we would like to be able to equip any
native XML query engine optimizer with a type-projector component. In particular,
one could think of an index consisting of the original document together with its pro-
jected versions. Textual data could be shared between the main document and the
projected ones which would merely become a projected view of the tree structure of
the document. We make the hypothesis that the overhead of such pruned tree structures
would be quite small compared to the size of an XML index while providing significant
speed-up in query answering time.

Secondly, coupling our projection algorithm with early query answering techniques
would allow us to achieve further pruning, especially when runtime conditions are
involved. For instance we could use our type-inference algorithm to determine on what
type of elements a given built-in function is applied to; for instance in an expression
such as

contains(.//*, "foo").

This information could then be used to discard elements that do not match the predicate.
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A Detailed proofs

A.1 Type projectors

LEMMA ((3.3)) Let π be a type projector for (S ,E). Then for every tree t ∈I (S ,E)
it holds (t\Iπ)� t.

Proof The proof is a straightforward induction on t.

PROPOSITION (ERASURE PRESERVES LOCALITY (3.4)) Let (S ,E) be a local

tree grammar and (S ′,E ′) a regular tree grammar. If (S ′,E ′)<: (S ,E) then (S ′,E ′)
is a local tree grammar.
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Proof By contradiction, suppose that (S ′,E ′) is not a local tree grammar. By
Definition 2.12, S ′ ⊆ S therefore, |S ′| ≤ |S | ≤ 1.

• Then, either there exist two competing rules A → l[r′a] and B → l[r′b] in E ′.
Then by definition of erasure, there exist two rules A → l[ra] and B → l[rb]
in E such that r′a = ra|Na and r′b = rb|Nb

for some Na ⊆ Names(ra) and Nb ⊆
Names(rb). But then these two rules share the same label l, and therefore are
competing one with the other, which contradicts the fact that (S ,E) is a local
tree grammar.

• Or there exists two rules C → l[r1] and C → l′[r2] in E ′ with the same left hand-
side (and distinct labels). But then, by definition of erasure, there exists two
corresponding rules in E , C → l[r′1] and C → l′[r′2] such that ri = r′i|Ni

, i∈{1,2}
for some names Ni. Therefore there are two rules in E with the same left-hand
side, which contradicts the fact that (S ,E) is a local-tree grammar.

�

PROPOSITION (ERASURE PRESERVES SINGLE-TYPEDNESS (3.5)) Let (S ,E) be

a single-type tree grammar and (S ′,E ′) a regular tree grammar. If (S ′,E ′)<: (S ,E)
then (S ′,E ′) is a single-type tree grammar.

Proof By contradiction suppose that (S ′,E ′) is not a single-type tree grammar
and proceed by case analysis:

• either there exist two competing non terminals A and B in S
′. But by defini-

tion of erasure, S ′ ⊆ S and (S ,E) has two competing start symbols, which
contradicts the hypothesis that (S ,E) enjoys the single-type property.

• or there exists a rule X → l[ r′ ] and there exist two competing non terminals
A and B in Names(r′). Since (S ′,E ′)<: (S ,E), then there exists X → l[ r ]
such that r′ = r|N for some N ⊆ Names(r). But that means that A and B are in
Names(r), which implies that (S ,E) is not a single-type tree grammar, thus
contradicting our hypothesis.�

PROPOSITION (UNION CLOSURE OF LOCAL TYPE PROJECTORS (3.6)) Let (S ,E)
be a local tree grammar. Let (S1,E1) and (S2,E2) be two tree grammars such that

(S1,E1) <: (S ,E) and (S2,E2) <: (S ,E). Then (S1 ∪S2,E1 ∪E2) is a local tree

grammar.
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Proof Consider (S1 ∪S2,E1 ∪E2) and suppose, by contradiction, that it is not
local. First, remark that by definition of erasure, S1 ⊆ S and S2 ⊆ S , therefore
S1 ∪S2 ⊆ S and consequently |S1 ∪S2| ≤ |S | ≤ 1. Second:

• either we have two rules A → l[ra] and B → l[rb] (with A and B distinct).
By Lemma 3.4 we know that (S1,E1) and (S2,E2) are local tree grammars.
Then it must be that one of two rules at issue is in (S1,E1) and the other in
(S2,E2), otherwise one of the two grammars would not be local (it would
have the competing pair in its rules). Without loss of generality we can sup-
pose that A → l[ra] ∈ E1 and B → l[rb] ∈ E2. Since (S1,E1) <: (S ,E), then
by definition of erasure there exists a rule A → l[r′a] ∈ E with ra = r′a|N for
some N ⊆ Names(r′a). Similarly, there exists B → l[r′b] ∈ E with rb = r′b|N′ for
some N′ ⊆Names(r′b). But then, this means that we have two competing rules
in E , which contradicts the hypothesis that (S ,E) is a local tree grammar.

• or, there are two rules C → l[r1] and C → l′[r2] with the same left-hand side
and distinct labels in E1 ∪E2. Similarly to the previous case, we must have
C → l[r1] ∈ E1 and C → l′[r2] ∈ E2, otherwise (S1,E1) or (S2,E2) would
not be local. But then by definition of erasure, it means that there exists two
rules, C → l[r′1] ∈ E and C → l′[r′2] ∈ E such that ri = r′i|Ni

, i ∈ {1,2} for some
names Ni. This means that there are two rules in E with distinct labels and the
same left-hand side, which contradicts the assumption that (S ,E) is a local
tree grammar.

�

PROPOSITION (UNION CLOSURE OF SINGLE-TYPE TYPE PROJECTORS (3.7))
Let (S ,E) be a single-type tree grammar. Let (S1,E1) and (S2,E2) be two tree

grammars such that (S1,E1)<: (S ,E) and (S2,E2)<: (S ,E). Then (S1∪S2,E1∪
E2) is a single-type tree grammar.

Proof Consider (S1 ∪S2,E1 ∪E2) and suppose by contradiction that it does not
enjoy the single-type property. This implies that there exists a rule X → l[r], such that
Names(r) contains two competing non-terminals A and B. Moreover, by Lemma 3.5
we know that (S1,E1) and (S2,E2) are single-type tree grammars. Therefore X →
l[r] cannot be in E1 nor in E2 because they have the single-type property. The only
solution is that there exists a rule X → l[r1] in E1 with A ∈ Names(r1) and X → l[r2]
in E2 with B ∈ Names(r2), and that r = r1|r2 (remember that we identify two rules
with the same left-hand side and the same label by merging them into a single rule).
Therefore, by the definition of erasure, there exists a rule X → l[r′1] in E such that
A∈Names(r′1). Similarly, there exists a rule X → l[r′2] in E such that B∈Names(r′2).
Since we identify such rules, there is a rule X → l[r′1|r

′
2] in E . But then, this rule
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contains both A and B which are competing. This contradict the hypothesis that
(S ,E) is a single-type tree grammar.�

A.2 Static analysis

LEMMA (5.2) Let t be a tree I-valid with respect to the schema (S ,E). For every

S ⊆ Ids(t) and type τ , if I(S)⊆ τ , then

1. I(JAxisKt(S))⊆ AE(τ,Axis)

2. I(S::tTest)⊆ TE(τ,Test)

Proof The proof is done by case analysis on the possible axes (for (1.)) and tests
(for (2.)).

1. self: By Definition 4.3, we have that JselfKt (S) = S, therefore
I(JselfKt (S)) = I(S). By Definition 5.1, AE(τ,self) = τ . Since
I(S)⊆ τ by hypothesis, we can conclude that

I(JselfKt(S))⊆ AE(τ,self)

child: we suppose i′ ∈ JchildKt(S). Let us show that I(i′) ∈ AE(τ,child).
If i′ ∈ JchildKt(S) then by Definition 4.3:

∃i ∈ Ids(t) such that (i, i′) ∈ Edg(t)

By definition of Edg, this means that t@i = l[. . . t ′ . . .] and RootId(t ′) =
i′. Let us now call X → l[r] = I(i). Since t is I-valid with respect
to E and by Definition 2.9, we have that Dn(I(i′)) ∈ L(r), or equi-
valently that I(i′) = Y → R′ and Y ∈ Names(r), which implies that
I(i′) ∈ AE(τ,child) and therefore that

I(JchildKt(S))⊆ AE(τ,child)

descendant: we suppose i′ ∈ JdescendantKt(S). Let us show that I(i′) ∈
AE(τ,descendant). If i′ ∈ JdescendantKt(S) then by Definition 4.3:

∃i ∈ Ids(t) such that (i, i′) ∈ Edg(t)+

By definition of Edg this means that there exists a sequence i0, i1, . . . , in.
The property holds by induction on n with the base case n = 1 is the one
of child.

parent: dual of child

ancestor: dual of descendant
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2. By case on the test:

node: By Definition 4.2 we have:

node::tS = S

By Definition 5.1 we have TE(τ,node) = τ . Since I(S) ⊆ τ by hypo-
thesis, we have that:

I(S::tnode)⊆ TE(τ,node)

a (for some element name a): suppose i ∈ a::tS. Let us show that I(i) ∈
TE(τ,a). By Definition 4.2, we know that t@i = a[ f ] for some forest f .
Since t is I-valid with respect to E , then I(i) = Y and there exists a rule
Y → a[R] in E . Since i ∈ S, we also have that I(i) ∈ τ (by hypothesis).
By Definition 5.1, since Y → a[R] ∈ τ , then Y → a[R] ∈ TE(τ,a) and
therefore I(i) = Y ∈ TE(τ,a), hence

I(S::ta)⊆ TE(τ,a)

text: similar to the previous case.

�

LEMMA (TERMINATION OF TYPE INFERENCE (5.4)) Let (S ,E) be a type, P a

path, and Σ and Σ′ two environments. If there is a derivation for the judgment Σ ⊢E

P : Σ′, then this derivation is unique and finite. Furthermore, the algorithm run in time

O(|E|d ×|P|), where d is the maximum number of nested predicates.

Proof Uniqueness of the derivation is immediate, since the rules are syntax-
directed: at each step, at most one of the rules applies (if no rule applies, there
is no derivation and the output type is ∅). Finiteness can be shown by a simple
induction on the length of the path, noted l(P), that we define as follows:

l(Axis ::Test) = 1
l(Axis ::Test[C]) = 1+ ∑

P∈C

l(P)

l(P/P′) = l(P)+ l(P′)
l(P P′) = l(P)+ l(P′)

Basic case: The query has length 1, meaning it is a single step without predicate.
Then the only rules we can apply are (down-axis), (up-axis) or (test). These
rules have no premise, therefore the derivation is finite and has length 1.

Inductive case: If the query has several steps, then the rule (seq) applies. The
lengths of the queries in the premises of the rule are strictly less than the
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length of the query in the goal, by definition of l(_). By induction hypothesis
both premises have a finite derivation, therefore the goal can be derived with
a finite derivation.

Similarly, if the query is a top-level union, the typing rule (union) applies.

If the query is a single step with a predicate, then rule (predicate) applies.
We should first remark that there is a finite set of rules in Σtyp. Thus, there
are exactly |Σtyp| premises for this rule. Consider the condition C in the filter.
It contains n paths Pi, for i in 1..n. Each one of these path Pi is such that
l(Pi) < l(P), by definition of l(_). By induction hypothesis, every premise
has finite derivation, therefore the judgment in the goal of the rule has a finite
derivation.

As for the complexity result, consider at first the case where P does not contain any
predicate. The algorithm performs l(P) recursive calls. At each call, it performs
set-theoretic operations between subsets of the input type, which can be implemen-
ted in O(|E|), thus yielding a time complexity of O(|E|× |P|). However, if the path
contains a predicate, (that is if rule (predicate) is used) then type-checking is re-
cursively called for subpaths whose nesting decreases by one, for each rule in Σtyp

(which is at most E). This gives an overall complexity of O(|E|d × |P|), where the
depth of a path without predicate is 1. �

To proove soundness of type inference, we require an auxiliary definition:

Definition A.1 (Environment well-formedness) Let (τ,κ) be an environment and E

a set of rules. If τ ⊆ E and κ = τ ∪AE(τ,ancestor), then we say that (τ,κ) is well
formed with respect to E.

In other words, a context is well-formed if it contains only rules from which the names
in Dn(τ) are reachable. We say that a judgment Σ ⊢E P : Σ′ is well formed if both Σ
and Σ′ are well formed with respect to E . We can remark that the rules in Figure 1
are syntax directed —at most one rule apply for a given judgment— and they preserve
context well-formedness.

THEOREM (SOUNDNESS OF TYPE INFERENCE (5.5)) Let (S ,E) be a type and

P a path. Let E0 = {X → R | X → R ∈ E,X ∈ S }. If (E0,E0) ⊢E P : (τ,κ) then:

τ ⊇
⋃

t∈I(S,E)

I(JPKt (RootId(t)))

Proof We consider the following, more general judgment:

(τ,κ) ⊢E P : (τ ′,κ ′)

We show simultaneously the following properties:
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1. Soundness : for all tree t I-valid with respect to (S ,E) and all set S ⊆ Ids(t),
if I(S)⊆ τ then:

I(JPKt(S))⊆ τ ′

2. Context well-formedness, if

κ = τ ∪AE(τ,ancestor)

then
κ ′ = τ ′∪AE(τ

′,ancestor)

Property 1 is a generalization of the soundness property we are proving. Given a
set of context nodes S whose types are in τ , the type of JPKt (S) is in τ ′. Property 2
states that the algorithm preserves the well-formedness of contexts. We prove both
properties by induction on the depth of the typing derivation, which is finite by
Lemma 5.4:

Base case:

(down-axis): Property 1 is true by a direct application of Lemma 5.2. Prop-
erty 2 holds by definition of AE(_,_)

(up-axis): By Lemma 5.2:

I(JAxis ::nodeKt(S))⊆ AE(τ,Axis)

We must now show that I(JAxis ::nodeKt (S)) is in Σctx = κ , for it to be
in the intersection of both. Since κ is a well-formed context:

κ = τ ∪AE(τ,ancestor)

Let us first consider the case Axis = ancestor. We see that

I(Jancestor ::nodeKt(S))⊆ AE(τ,ancestor)

by Lemma 5.2, therefore

I(Jancestor ::nodeKt(S))⊆ κ

from which we can conclude

I(Jancestor ::nodeKt (S))⊆ (AE(τ,Axis))∩κ

For the case Axis = parent, it is sufficient to remark that since

κ = τ ∪AE(τ,ancestor)

then

κ = τ ∪AE(τ,parent)∪AE(AE(τ,parent),ancestor)

which proves Property 1. As for Property 2, κ is the set of rules used to
derive the context node type τ . AE(κ ,Axis) is the set of all the parent
rules (or ancestor rules) of the rules in κ . Consequently, the intersection
is still a well formed context.
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(test) : Similarly to the case of Rule (down-axis), Property 1 is a direct ap-
plication of Lemma 5.2. For Property 2, we can remark that

κ ′ = κ ∩AE(TE(τ,Test),ancestor)

contains all the rules leading to a node in τ for which Test succeeds
(including the ones of the selected node), therefore it is a well-formed
context.

Inductive case:

(predicate) : Let us consider:

Jself ::node[C]Kt(S)

By Definition 4.4, we have

Jself ::node[C]Kt(S) =
⋃

i∈T

i

where T is the set of ids satisfying the predicate:

T = {i|i ∈ S∧Checkt [C](i)}

Let us consider i ∈ T . We have that i ∈ S, and since i is part of an I-valid
tree t, there exists Xi → Ri = I(i). Now, by induction on the derivation
of

{Xi → Ri},κ ⊢Cond
E C : b

it is clear that if Checkt [C](i) and I(i) = Xi → Ri then b = true and
therefore, Xi → Ri ∈ τ ′, hence

I(Jself ::node[C]Kt(S))⊆ τ ′

which proves Property 1. Property 2 holds for the same argument as in
rule (test).

(sequence) : Property 1 is true by induction hypothesis on both premises.
Property 2 is true for the first premise, by induction hypothesis. In par-
ticular, Σ′′

ctx is a well-formed context. We can then apply the induction
hypothesis on Σ′′ and we have that Σ′

ctx is a well-formed context too.

(union) : is similar to the previous case.

�

LEMMA (WITNESS OF A GRAMMAR (5.7)) Let (S ,E) be a non-recursive, ∗-

guarded, parent-unambiguous local tree grammar. There exists a document t, I-valid
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with respect to (S ,E) such that:

∀X → R ∈ E,∃i ∈ Ids(t) such that I(i) = X → R

we call such a document a witness of the schema (S ,E).

Proof Since the tree grammar is non recursive and parent unambiguous, we can
prove the lemma by induction (I) on the height of the grammar, seen as a DAG.

Basic case: the grammar has height 1. It consists therefore of a single rule. The
rule is either X → String and a document si is a suitable witness; or the rule is
X → a[ ] for some label a and the document ai[ ] is a witness of the grammar.

Inductive case: Consider ({X},E) (the start symbol is unique since we consider a
local tree grammar). The rule for the start symbol X is X → a[r1 · · ·rn] for
some label a (since E is ∗-guarded, the rule must have this shape). We show
by induction (II) on the structure of the regular expression ri that there is a
witness for this regular expression.

Basic case: Either ri = ε , and therefore the empty forest () is a suitable wit-
ness. Or ri = Z. Then consider the grammar ({Z},E ′) where E ′ = {Y →
R |Y →R∈AE(descendant,Z)}, that is the restriction of E to Z. Then,
height(E ′)< height(E) since at least the rule associated with X is not in
E ′ (and because E is not recursive and parent unambiguous). Therefore,
by induction hypothesis (I) there exists a witness tz for Z.

Inductive case: Either ri = (r′i |r
′′
i )∗ and by induction hypothesis (II), there is

a witness t ′i for r′i and t ′′i for r′′i . Then, the forest t ′i , t
′′
i is a witness for ri

(the first iteration of ∗ matches ti and the second one matches t ′′i ).

Or ri = (r′i)∗ and r′i is not a union. Then by induction hypothesis (II),
there is a witness t ′i and t ′i is also a witness for ri. Or ri = r′ir

′′
i . By

induction hypothesis (II), there is a witness t ′i for r′i and t ′′i for r′′i . Then,
the forest t ′i , t

′′
i is a witness for ri.

Therefore, for each ri there is a witness ti. Then the tree a[t1 . . . tn] is a witness
of the rule X → a[r1 . . . rn].

�

The following corollary states that in a witness tree, all possible derivations of the
grammar are represented:

Corollary A.2 ( ) Let ({X},E) be a non-recursive,∗-guarded, parent-unambiguous local

tree grammar and t be its witness. Let {Y1 → R1, . . . ,Yn → Rn} ⊆ E. If Yi+1 → Ri+1 ∈
AE(child,{Yi → Ri}) for i ∈ 1..n− 1, then there exists {i1, . . . , in} ⊆ Ids(t) such that

∀i ∈ {2 . . .n},((ii−1, ii) ∈ Edg(t))∧I(idi−1) = Yi−1 ∧I(ii) = Yi
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Proof This is a direct application of Lemma 5.7. We know that for all Y → R ∈
E,∃i ∈ Ids(t)such that I(i) =Y → R. This is true in particular for {Y1, . . . ,Yn}. Con-
sider Yi and Yi+1. We have Yi+1 → Ri+1 ∈ AE(child,{Yi → Ri}) which means that
in E , there is a rule Yi → a[ri] for some label a and with Yi+1 ∈ L(ri). Consequently,
t@ii = a[. . . , idi+1, . . .]. Therefore, (ii, ii+1) ∈ Edg(t). �

THEOREM (COMPLETENESS OF TYPE INFERENCE (5.8)) Let (S ,E) be a ∗-

guarded non-recursive and parent unambiguous local tree grammar, and P a path. Let

E0 = {X → R | X → R ∈ E, X ∈ S }.

If (E0,E0) ⊢E P : (τ,κ) then:

τ ⊆
⋃

t∈IE

I(JPKt(RootId(t)))

Proof Like for the proof of Theorem 5.5, we consider the following, more general
judgment:

(τ,κ) ⊢E P : (τ ′,κ ′)

let t be the witness of E . We show that if τ ⊆ I(S) then, τ ′ ⊆ I(JPKt (S)). If this
holds for the witness t then it holds for the union of all trees I-valid w.r.t to E (which
contains t). Informally, this means that if the type τ “describes precisely” the nodes
in S, that is, if there are no unneeded rules in τ , then the type τ ′ describes exactly
the result of the query: for each rule in τ ′, there is a node in the result of the query
typed by that rule. We proceed by induction on the depth of the typing derivation:

Basic case:

(down-axis): self axis: We supposed τ ⊆ I(S). We have τ ′ = AE(τ,self) = τ .
We also have:

Jself ::nodeKt (S) = S

by Definition 4.1. Therefore, τ ′ ⊆ I(S) and so

τ ′ ⊆ I(Jself ::nodeKt(S))

descendant axis: Let us consider rules, X → R ∈ τ and Y → R′ ∈ AE({X →
R},descendant). By using Corollary A.2, we have that there exists a se-
quence: i1, . . . , in in t such that X → R = I(i1) and Y → R′ = I(in). We also
have that

∀i ∈ {1 . . .n− 1}, (ii, ii+1) ∈ Edg(t))
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thus (i1, in) ∈ Edg+(t) and therefore that

in ∈ Jdescendant ::nodeKt({i1})

Subsequently:

AE({X},descendant)⊆ I(Jdescendant ::nodeKt ({i1}))

child axis: is a particular instance of the previous case.

(up-axis) We only treat the case of the ancestor axis, of which the parent axis is
a particular instance. This case is the symmetric of the descendant axis. Let
X → R ∈ τ . Let Y → R′ ∈ AE({X},ancestor)∩κ . By using Corollary A.2,
we have that there exists a sequence: i1, . . . , in in t such that Y → R′ = I(i1)
and X → R = I(in). We also have

∀i ∈ {1 . . .n− 1},(ii, ii+1) ∈ Edg(t))

thus (i1, in) ∈ Edg+(t) and therefore

in ∈ Jancestor ::nodeKt({i1})

Thus, we have

AE({X},ancestor)⊆ I(Jancestor ::nodeKt({in}))

We must also show that if Y → R′ ∈ κ then
Y → R′ ∈ I(Jancestor ::nodeKt ({in}))
(because the output type is intersected with the context for this rule). This is an
immediate consequence of the well-formedness of contexts. κ is well-formed
only if κ ∈ τ ∪AE(τ,ancestor).

(test): is similar to the case self of Rule (down-axis).

Inductive case:

(predicate) First, since t is a witness, for each i ∈ S, there exists Xi → Ri ∈ τ .
Second, consider We consider the premise:

({Xi → Ri},κ) ⊢
Cond
E C : b

By induction on C and the derivation of ({Xi → Ri},κ) ⊢
Cond
E C : b, it is

clear than b ⇒ Checkt [C]({ii}) (for the basic case (rule (path)) we can ap-
ply the main induction hypothesis on the path which is an atom of C, and
the inductive case (rule (boolean)) is straightforward). Therefore, whenever
Xi → Ri ∈ τ ′, we have that b is true, thus Checkt [C]({ii}) and therefore
i ∈ Jself ::node[C]Kt ({i}), which proves τ ′ ⊆ I(Jself ::node[C]Kt(S))

(seq) : By applying straightforwardly the induction hypothesis on the premises.

(union) : By applying straightforwardly the induction hypothesis on the premises.

�
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LEMMA (TERMINATION OF TYPE-PROJECTOR INFERENCE (5.10)) Let (S ,E)
be a type, P a path, and Σ and Σ′ environments. The judgment Σ E P : Σ′ has a unique

and finite derivation.Furthermore the algorithm runs in time O(|E|o(d)×|P|2) where d

is the maximum number of nested predicates

Proof The uniqueness of the derivation follows from the fact that all the rules
are mutually exclusive (although not strictly syntax directed) thanks to their side
conditions.

To prove termination, we need some more care than for the type inference al-
gorithm. For the judgment:

Σ E P : Σ′

we give it as weight the triple (l(P),r(P), |Σtyp|) ordered lexicographically, where:

l(P) is the length of the path P, as defined previously

r(P) is the number of occurrences of a recursive step, that is the number of occur-
rences of descendant ::node or ancestor ::node in the P

|Σtyp| is the number of rules in the input

The proof is straightforward and consists that for every rule the weight strictly de-
creases in the premises:

Basic case: the base of induction is an application of (p-step) or (p-erase) does not
have any premises.

Inductive case: For the rules (p-union), (p-test) and (p-predicate), the weight
strictly decreases in l(P) in the premises. For the rule (p-iterate), |Σtyp|
strictly decreases in the premises, since in the conclusion the weight has
at least two for this component and exactly one in each of the premises.
Also, P is unchanged in the premises therefore l(P) and r(P) do not in-
crease. For the rule (p-many), the l(P) part is unchanged in the premises
since l(descendant ::node/P) = l(child ::node/P)= 1+ l(P) and r(P) de-
creases strictly.

The complexity result is a straightforward consequence of the one given by
Lemma 5.4. If one ignores the recursive calls to the typing algorithm, it is clear that
during projection inference, one perform at most O(|E|) operations and performs at
most one recursive call to a strict sub-path of the argument path. �

LEMMA (WELL-FORMEDNESS OF TYPE-PROJECTOR INFERENCE (5.11)) Let

(S ,E) be a type, τ , τ ′, and κ sets of rules, and P a path. If (τ,κ) E P : τ ′, then

(τ,κ) ⊢E P : (τ ′′,κ ′′) implies κ ′′ ⊆ τ ′.
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Proof We use a structural induction on the derivation of (τ,κ) E P : τ ′ which is
finite by Lemma 5.10.

Basic case: The property is trivially true for the rule (p-step) since the result is the
union of the output type and its associated context.

Rule (p-erase) can only be applied if the side conditions of the other rules fail,
which means in the case where the judgment (τ,κ) ⊢E P : (τ ′′,κ ′′) does not
hold. Therefore the lemma is true too in that case.

Inductive case:

(p-union) We suppose (τ,κ) ⊢E P1 P2 : (τ ′′,κ ′′). This means that the typing rule
(union) (cf. Figure 1) holds and that:

(τ,κ) ⊢E P1 : (τ ′′1 ,κ
′′
1 )

and
(τ,κ) ⊢E P2 : (τ ′2,κ

′′
2 )

let P1 produce a type-projector τ ′1 and P2 produce τ ′2; by induction hypothesis
κ ′′

1 ⊆ τ ′1 and κ ′′
2 ⊆ τ ′2. But since κ ′′ = κ ′′

1 ∪κ ′′
2 , we have κ ′′ ⊆ τ ′1 ∪ τ ′2 = τ ′

(p-iterate) similar to the previous case.

(p-test) we suppose

({Y → R},κ) ⊢E self ::Test/P : (τ ′′,κ ′′)

According to the (test) typing rule, this means that:

({Y → R},κ) ⊢E self ::Test : (τ1,κ1)

and
(τ1,κ1) ⊢E P : (τ ′′,κ ′′)

the induction hypothesis can be applied on the second premise of the rule (p-

test) and we have (τ1,κ1) E P : τ ′ with κ ′′ ⊆ τ ′. Since τ ′ ⊆ {Y → R}∪ τ ′,
we have κ ′′ ⊆ {Y → R}∪ τ ′ which proves this case.

(p-predicate) similar to the previous case, we can observe that the context resulting
of the typing of the first step is passed as argument for the inference of the
projector of the remainder of the path.

(p-single) similar to the previous case.

(p-many) we only treat the case for Axis = descendant, the case for ancestor
being similar. We suppose:

({Y → R},κ) ⊢E descendant ::node/P : (τ0,κ0) (*)
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and we want to show that κ0 ⊆ {Y → R}∪ τ ′∪ τ ′′. Let us write:

({Y → R},κ) ⊢E descendant ::node : (τ1,κ1) (1)

({Y → R}∪ τ1,κ) ⊢E child ::node : (τ2,κ2) (2)

then τ1 = τ2 an κ1 = κ2. Indeed:

(1)

{

τ1 = AE({Y → R},descendant)
κ1 = τ1 ∪κ

(2)

{

τ2 = AE({Y → R}∪ τ1,child)
κ2 = τ2 ∪κ

by definition of A_(_,_):

(1)

{

τ1 = AE({Y → R},child)∪AE(AE({Y → R},child),descendant)
κ1 = τ1 ∪κ

(2)

{

τ2 = AE({Y → R}∪ τ1,child)
κ2 = τ2 ∪κ

For (2), we have:

τ2 = AE({Y → R}∪ τ1,child)
τ2 = AE({Y → R},child)∪AE(τ1,child)
τ2 = AE({Y → R},child)∪AE(AE({Y → R},descendant),child)
τ2 = AE({Y → R},child)∪AE(AE({Y → R},child),descendant)
τ2 = τ1

κ2 = τ2 ∪κ = τ1 ∪κ = κ1

therefore, for the path P

({Y → R}∪ τ1,κ) ⊢E child ::node/P : (τ0,κ0)

by application of the (seq) typing rule. We can finally remark that

(({Y → R}∪ τ1)∩ τ ′,κ) ⊢E child ::node/P : (τ0,κ0)

all the rules ins τ1 \ τ ′ yield an empty projector. Therefore

(τ ′,κ) ⊢E child ::node/P : (τ0,κ0)

which allows us to apply the induction hypothesis on the third premise of (p-

many), which gives us κ0 ⊆ τ ′′, and therefore: κ0 ⊆ {Y → R}∪ τ ′∪ τ ′′

�

THEOREM (SOUNDNESS OF TYPE-PROJECTOR INFERENCE (5.12)) Let (S ,E)
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be a type and P an XPathℓ query. Let S be the set of rules: S = {X → R | X ∈ S }. If

(S,S)E P : τ

then τ is a type-projector for (S ,E) and for every t ∈I (S ,E) we have:

JPKt\Iτ(RootId(t)) = JPKt (RootId(t))

Proof By simple structural induction on the path. �

THEOREM (COMPLETENESS OF PROJECTOR INFERENCE (5.14)) Let (S ,E) be

a ∗-guarded, non-recursive, and parent-unambiguous local tree grammar, and P a

strongly-specified XPathℓ path. Let S be the set of rules: S = {X → R | X ∈ S }. If

(S,S)E P : τ

then there exists t ∈I (S ,E) such that for each Y → R ∈ τ , if π = τ \ ({Y →
R}∪AE({Y → R},descendant)), then:

JPKt\Iπ (RootId(t)) 6= JPKt (RootId(t))

Proof By induction on the length of the derivation which is finite. We use Theorem
5.8 to show that if we remove a name Y inferred by the type inference algorithm, then
we remove nodes from the result of the query applied to the projected document.
The fact that P is strongly specified is used for the treatment of predicates. Indeed,
it forces any path in a predicate to be matched exactly by one node. If a path in
a predicate could be matched by two (or more) nodes, then removing one of the
nodes would not change the semantics of the query, since there would still be a node
present to make the predicate succeed. �
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