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Abstract 

 

We investigate the potential of structural changes and long memory (LM) properties in returns and 

volatility of the four major precious metal commodities traded on the COMEX markets (gold, silver, 

platinum and palladium). Broadly speaking, a random variable is said to exhibit long memory beha-

vior if its autocorrelation function is not integrable, while structural changes can induce sudden and 

significant shifts in the time-series behavior of that variable. The results from implementing several 

parametric and semiparametric methods indicate strong evidence of long range dependence in the dai-

ly conditional return and volatility processes for the precious metals. Moreover, for most of the pre-

cious metals considered, this dual long memory is found to be adequately captured by an ARFIMA-

FIGARCH model, which also provides better out-of-sample forecast accuracy than several popular 

volatility models. Finally, evidence shows that conditional volatility of precious metals is better ex-

plained by long memory than by structural breaks.  
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1. Introduction   

Over the last few decades, international financial markets have experienced a succes-

sion of serious crisis of different causes and origins. The 1987 stock market crash originated 

in the United States and affected the world’s equity markets. The 1997-1998 Asian crisis 

started in South Asian economies as a result of short-term capital flows and then spread to 

other emerging equity and commodity markets. The 2001 U.S. recession was caused by the 

collapse of the dot com stocks and triggered a push toward greater bank liquidity. Finally, the 

2007-2010 global financial crisis which originated in the United States was sparked by the 

subprime real estate crisis, and then turned into a world financial crisis. Most of these crises 

are characterized by high volatility and contagion (Forbes and Rigobon, 2002; Lee et al., 

2007; Markwat et al., 2009). Moreover, recent studies suggest that these crises stoked greater 

correlations between the world’s equity markets, in particular in periods of high and extreme 

volatility, and thus lowered the diversification benefit potential from investing in traditional 

stocks (Chan-Lau et al., 2004; Diamandis, 2009).  

The highly volatility and widespread contagion have prompted investors to consider al-

ternative investment instruments as a part of diversified portfolios in order to be used as a 

hedge to diversify away the increasing risk in the stock markets. Oil and major precious met-

als including gold, palladium, platinum and silver thus emerged as natural desirable asset 

classes eligible for portfolio diversification. They offer different volatilities and returns of 

lower correlations with stocks, at both sector and market levels (Arouri and Nguyen, 2010; 

Daskalaki and Skiadopoulos, 2011; Arouri et al. 2010,2011,2012). It should be noted that 

when risk aversion mounts, in particular when the stock markets experience signs of instabili-

ty or when the price of oil exhibit long swings because of economic uncertainties and geopo-

litical tensions, the majority of investors is directed towards the precious metals, being 

viewed as the refugee or safe haven asset in time of crises. Meanwhile, we observe severe 

speculations on the prices of these precious metals and high elasticity of substitution among 

them in both consumption and inputs, given the recent increase in their economic uses in the 

jewelry, electronic and auto industries. Investigating the price dynamics of precious metals is, 

therefore, of great interest to investors, traders and policy makers.   

A large volume of literature deals with oil and other energy price dynamics. These stu-

dies have shown significant spillover effects between different commodity prices as well as 

nonlinearities, asymmetries and other distributional characteristics such as time-varying con-

ditional moments, volatility clustering and long-persistence of commodity price returns (Sa-
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dorsky, 2006; Agnolucci, 2009; Akram, 2009; Lescaroux, 2009; Browne and Cronin, 2010). 

However, only a few attempts have studied the dynamics and distributional characteristics of 

precious metal prices. So far, modeling volatility properties of precious metals is still of ma-

jor interest in the financial economics literature as volatility forecast is an important input for 

asset valuations, hedging, and risk management. One should note that long memory (LM) and 

structural breaks are at the heart of the debate regarding volatility modeling. While persis-

tence in volatility models deals with exponential decays in the autocorrelation of conditional 

variance, long memory in volatility processes requires models accommodating volatility per-

sistence over long horizons. But, a presence of structural breaks may reduce the persistence 

of volatility and hinder the prediction process.  

In this article, we extend the existing literature on the dynamics of precious metals pric-

es by examining the relevance of structural breaks and long memory in modeling the condi-

tional returns and volatilities for four major precious metals (gold, silver, palladium, and pla-

tinum) traded on the commodity exchange (COMEX) of the New York Mercantile Exchange. 

Empirically, three long memory tests are implemented to examine the long-range dependence 

in the conditional mean and variance processes of these precious metals, while a modified 

version of Inclan and Tiao (1994)’s iterated cumulative sum of squares (ICSS) algorithm is 

used to detect structural changes in the precious metals time series data. Our results show that 

long memory is an important empirical feature for the precious metal series, and that the con-

clusions do not change when potential structural breaks are controlled for. In six out of the 

eight cases, we find significant evidence that the double long memory and the ARFIMA-

FIGARCH class models are more suitable to describe the time-variations in the return and 

volatility of precious metals. The out-of-sample analysis indicates that the ARFIMA-

FIGARCH class models provide more accurate volatility forecasts in most cases than other 

competing GARCH-based models. 

Our research thus constitutes a good venue for understanding the distributional charac-

teristics of precious metals’ volatility and has important implications for financial and policy 

decisions. First, the strong evidence of long memory we found in precious metals implies that 

the linear return/volatility models are misspecified and cannot be properly used for policy 

analysis and forecasts. Moreover, accounting for the long memory in a GARCH process re-

duces volatility persistence. This result is useful for option traders who use volatility in pric-

ing of Call/Put options based on the Black-Scholes formula. Second, testing for the long 

memory property for the precious metals permits to detect the size of the long memory coef-
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ficient. A large coefficient size may indicate that the metal has long positive or negative 

strays from equilibrium. Thus, the metal with such characteristic is not a good hedge in a 

group that is known for its safe-haven property. Here comes ultimately the importance of 

specification of the mean and variance equations in the volatility models. Finally, the LM-

based GARCH models have better forecasting quality than the standard GARCH models. 

Choi and Hammoudeh (2009), for instance, reach similar conclusions for oil and refined 

products markets.  

The remaining part of the article is organized as follows. Section 2 presents a review of 

the literature. Section 3 describes the empirical framework. Section 4 presents the data used. 

Section 5 discusses the empirical results. Section 6 provides some concluding remarks. 

 

2. Review of Literature 

Most of past studies of the precious metals can essentially be divided into two major 

categories. The first category has been concerned with the responses of precious metal prices 

to changes in international institutional and macroeconomic factors (Kaufmann and Winters, 

1989; Rockerbie, 1999; Christie–David et al., 2000; Heemskerk, 2001; Ciner, 2001; and Bat-

ten et al. 2010). For example, Sjaastad and Scacciavillani (1996) find that fluctuations of 

floating exchange rates of major currencies, following the breakdown of the Bretton Woods 

currency arrangements, have led to price instability in the world gold market over the period 

from January 1982 to December 1990. Batten et al. (2010) find volatility of the precious met-

als (gold, silver, platinum and palladium) to be sensitive to macroeconomic factors (business 

cycle, monetary environment and financial market sentiment) but with different degrees. The 

overall results are consistent with the view that precious metals are too distinct to be consi-

dered a single asset class, or represented by a single index. Gold volatility is shown to be ex-

plained by monetary variables, but this is not true for silver. Platinum and palladium appear 

to more likely act as a financial market instrument than gold. Gold also seems to be highly 

sensitive to exchange rate and inflation, which implies that the yellow metal is the best hedge 

during inflationary pressures and exchange rate fluctuations. In fact, Hammoudeh, Malik and 

McAleer (2011) suggest that an optimal portfolio of precious metals that minimizes risk 

should be dominated by gold. 

The second category includes generally more recent studies that have examined the is-

sues of price volatility modeling and information transmission for a broader set of precious 
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metals, oil and industrial commodities. Some of these studies have considered the implica-

tions of the estimated results for portfolio diversification and hedging strategies involving 

precious metals. To start, Baffes (2007) finds evidence of strong responses of precious metal 

prices to crude oil price over the period 1960-2005, which is not always confirmed by subse-

quent studies (e.g., Hammoudeh et al., 2009). Note however that this study uses annual data 

and oil price is represented by an equally weighted average of Brent, WTI (West Texas In-

termediate) and Dubai prices. Hammoudeh and Yuan (2008) employ GARCH-based models 

to examine the properties of conditional volatility for three important metals (gold, silver, and 

copper) while controlling for shocks from world oil prices (WTI) and three-month US Trea-

sury bill interest rate. They focus particularly on the following volatility characteristics: per-

sistence, asymmetric reaction to the good and bad news, and transitory and permanent com-

ponents. Using daily three-month futures prices of  the three commodities, these authors find 

evidence that conditional volatility of gold and silver is more persistent, but less sensitive to 

leverage effects than that of copper. This result suggests, on the one hand, the importance of 

accurate volatility modeling especially when gold and silver are used as underlying assets in 

financial derivatives contracts, and on the other hand the valuable contribution of these two 

metals in down markets and crisis times. In addition, a rise in short-term interest rates leads to 

a reduction in the volatility of metals markets, while an increase in the oil prices negatively 

affects the volatility of some metals. In a related study, Sari et al. (2010) examine linkages 

among four precious metals, WTI oil price and dollar/euro exchange rate. The empirical re-

sults from their short- and long-run analysis based on generalized impulse responses and va-

riance decompositions are consistent with evidence of weak long-run relationships, but strong 

short-run feedbacks. Spot metal prices are indeed found to be strongly related to exchange 

rate, but only weakly driven by oil price movements. When considering the case of an emerg-

ing market (Turkey), Soytas et al. (2009) find that spot prices of domestic precious metals 

(gold and silver) are significantly Granger-caused in the short run by domestic interest rate, 

but not by the changes in the world oil prices (Brent). There is also evidence of unidirectional 

causality from Turkish Lira/US dollar exchange rate to gold spot prices, thus confirming the 

reverse and hedging role of gold against exchange rate during crises. As for the long-run 

analysis, no relationship is found between world oil prices and domestic markets. Finally, 

based on a multivariate VARMA-GARCH model, Hammoudeh, Yuan, McAleer, and 

Thompson (2010) document weak volatility spillovers across precious metals, but strong sen-

sitivity of metal volatility to exchange rate variability. They further point out the role of gold 

as a hedge against exchange rate risk when optimal weights and hedge ratios are computed.       
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Even though past studies have considerably contributed to improving our understanding 

of metal price volatility and spillovers based on various extensions of GARCH models (Tully 

and Lucey, 2007; Hammoudeh and Yuan, 2008; Watkins and McAleer, 2008; Hammoudeh, 

Yuan and McAleer, 2010), they generally have a major drawback by assuming a stable struc-

ture of parameters in the metal volatility process
1
. Differently, the potential of structural 

breaks is ignored, which might then lead to the detection of “spurious” long memory if long 

memory is examined (Diebold and Inoue, 2001; Perron and Qu, 2007). Specifically, this as-

sumption implies that the unconditional variance of metal returns is constant, while precious 

metal markets are very sensitive to fluctuations in supply, demand, and other macroeconomic 

conditions as reported in previous studies (Radetzki, 1989; Batten et al., 2010; Hammoudeh, 

Yuan and McAleer, 2010). Moreover, episodes of world geo-political tensions, the Gulf wars, 

the Asian crisis, worries over Iranian nuclear plans, and the current global economic weak-

nesses also affect metal prices. These shocks can obviously cause sudden breaks in the un-

conditional variance of metal returns and, thus, in the parameters of the GARCH dynamics 

used to model and forecast metal volatility. This possible misspecification should ultimately 

bias both empirical results and their implications. All in all, neglecting structural breaks in the 

GARCH parameters induces upward biases in estimates of the persistence of GARCH-based 

conditional volatility (Mikosch and Stărică, 2004; Hillebrand, 2004). 

We should not finish this literature review without indicating that the recent literature 

on volatility forecasts finds more support for the FIGARCH model over other competing vo-

latility models. Currently, the published work on long memory-based volatility forecasts such 

as Tansuchat, Chang and McAleer (2009), and Young (2011) is applied primarily to non-

precious metal commodity. Our paper deals directly with this issue. 

 

3. Empirical Methodology 

In this section, we briefly present the tests of long memory and structural changes as 

well as the GARCH-type specifications we use to account for these stylized facts in the con-

ditional return and volatility of precious metals. 

 

                                                 
1
 The study of Watkins and McAleer (2008) can be viewed as an exception since the authors estimate a rolling 

GARCH-based volatility model for two non-ferrous metals in order to allow the model’s coefficients to change 

through time. Such approach, albeit intuitively interesting and meaningful, does not however permit to date the 

structural changes in the dynamics of metal volatilities. 
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3.1 Long memory tests 

Long memory is an important empirical feature of any financial variables. The presence 

of long memory in the data implies the existence of nonlinear forms of dependence between 

the first and the second moments, and thus the potential of time-series predictability. Testing 

for long memory property is an essential task since any evidence of long memory would sup-

port the use of LM-based volatility models such as FIGARCH.  

We test for long memory components in the return generating process and volatility of 

precious metals using the Geweke and Porter-Hudak (1983) (GPH), the Robinson and Hen-

dry (1999) Gaussian Semiparametric (GSP), and the Sowell (1992) Exact Maximum Likelih-

ood (EML) test statistics. These tests have been extensively used in the related literature. 

Note that for long memory in the volatility process, we apply these tests to metals’ squared 

returns, which are commonly regarded as a proxy of conditional volatility (Lobato and Savin, 

1998; Choi and Hammoudeh, 2009).  

Let 
t

r  be the precious metal return series. The GPH estimator of the long memory pa-

rameter d for 
t

r  can be then determined using the following periodogram: 
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where 1
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The Sowell (1992) EML estimator approach to test for long memory is based on the es-

timation of the ARFIMA(p,d,q) model using the exact maximum likelihood method. The log-

likelihood function takes the following form 

  rr
T

rLL
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T
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where r  is the vector of 
t

r ,   its covariance-variance matrix, and the EML estimators of the 

unknown parameter vector   are given by 

 


,maxargˆ rLL
T

  

3.2 The role of structural breaks 

Recent studies establish that structural breaks can severely affect the results of long 

memory tests and generate spurious long memory in the series (Choi and Zivot, 2006). When 

structural shifts are effectively present in a stationary short memory process, the estimate of 

the fractional differencing parameter in LM-based volatility models departs away from zero, 

and shocks to volatility process only decay at a slowly hyperbolic rate (Diebold and Inoue, 

2001; Perron and Qu, 2007). One would then conclude inaccurately in favor of a “spurious” 

long memory process.  
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To test for the possibility of structural breaks property in metal returns, we resort to the 

adjusted version of Inclan and Tiao (1994)’s iterated cumulative sum of squares (ICSS) algo-

rithm.
2
 Similar to most structural change tests, the Inclan-Tiao test assumes a normal distribu-

tion. For this reason, the unmodified ICSS test may produce spurious changes in the uncondi-

tional variance owing to size distortion when the series are leptokurtic and conditionally hete-

roscedastic. However, in the modified version of their test, Inclan and Tiao (1994) explicitly 

consider the fourth moment properties of the disturbances and the conditional heteroskedas-

ticity, via a nonparametric adjustment based on the Bartlett kernel. Under general conditions, 

the modified ICSS statistic exhibits the same asymptotic distribution. 

Formally, the null hypothesis of a constant unconditional variance of precious metal re-

turns, which can be modeled by a simple stable GARCH(1,1) specification, is tested against 

the alternative of presence of structural breaks in the unconditional variance. The ICSS em-

pirical statistic is given by 

kka
FTICSS
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  Under the assumption that return series are zero-mean, 

normally, independently and identically distributed, the asymptotic distribution of the ICSSa 

statistic is given by ,)(sup
*
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 where )1()()(
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cWcWcW   is a Brownian bridge and )(cW  

is the standard Brownian motion. 

 

                                                 
2
 Other structural breaks tests have been developed in the literature. Among these tests, CUSUM, and Bai and 

Perron (2003) tests are frequently used in empirical studies. The CUSUM test is originally designed for testing 

for variance changes and locating their locations in iid samples, but it does not disclose the exact number of 

breaks and their corresponding dates of occurrence. Similar to the ICSS test, the Bai and Perron (2003)’s testing 

procedure treats any break points as unknown and permits to test a fixed number of breaks, say m, versus the al-

ternative (m+l). However, Bai and Perron (2003) test has a size-distortion problem when heteroscedasticity is 

present in the data. In this paper, the modified version of the ICSS is used since it has been corrected for condi-

tional heteroscedasticity. 
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3.3 Long memory versus structural breaks 

Long memory and structural changes are often confused. Even though models that ac-

commodate these features separately provide a reasonable description of financial data, the 

features’ presence has different implications for financial modeling exercises. The LM phe-

nomenon suggests constant unconditional volatility, while the structural change implies a 

significant change in unconditional volatility and thus a structural break model is more plaus-

ible. Tests of long memory versus structural breaks are scarce. The existing literature on long 

memory and structural breaks suggests testing for long memory and structural breaks sepa-

rately and then estimating a long memory model with breaks, after concluding for the exis-

tence of long memory and structural breaks. Several attempts to discriminate between long 

memory and nonlinearity, we know of, include Van Dijk et al. (2002), Lahiani and Scaillet 

(2009), Baillie and Morana (2009), and Choi et al. (2010). Although these methods allow us 

to decide whether long memory or/and nonlinearity are present in the data, they are based on 

out-of-sample forecasting and model comparison. In this paper, we use the two tests proposed 

by Shimotsu (2006) to distinguish between long memory and structural breaks since these 

tests have the advantage to be the unique in-sample test of long memory against structural 

breaks, and they also present good power and size.  

The first test consists of estimating the long memory parameter over the full sample and 

over different subsamples, and seeks to examine whether the estimate of the full-sample long 

memory parameter is equal to the one of each subsample. Let b be an integer which splits the 

whole sample in b subsamples, so that each subsample has T/b observations.
3
 Let also )(ˆ i

d  (i 

= 1, 2, 3,…, b) be the local estimator of the true long memory parameter d0 computed from 

the i
th

 subsample, we then define the following expressions:  
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I  is a )( bb   identity matrix and 
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  is a )1( b  vector of ones. Following Hurvich 

and Chen (2000), and Shimotsu (2006), we test the constancy hypothesis of d (H0: d = d
(1)
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d
(2)

 = … = d
(b)

) against structural change hypothesis using the following Wald test statistics 

                                                 
3
 T/b is assumed to be an integer. 
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riodogram ordinates such that Tm  . We consider two values for b  in this study: b = 2 and 

b = 4. Note that the above Wald statistic follows a Chi-squared limiting distribution with 

1b  degree of freedom.  

The second test requires the estimation of the long memory parameter d, uses it to take 

the th
d  difference of the considered return series and tests for the stationarity of the diffe-

renced series and its partial sum using the Phillips-Perron test (
tZ ) and the KPSS test (

u ).
4
 

Under the assumptions presented in Shimotsu (2006), the two statistics, 
tZ  and 

u , converge 

towards  ),(
0

dsWP  and  ),(
0

dsWK  as T  where 
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Note that  ),(
0

drWP  is the standard Dickey-Fuller distribution when an intercept is 

included and     dssWsWdsWK ²)1()(),(
1

0
0   . ),( dsW  reduces to the standard Brownian mo-

tion )(sW  when 0d . )(dw  is a smooth weight function such that 2/11)(  dfordw  and 

4/30)(  dfordw . 

At the empirical stage, the above-mentioned tests are carried out as follows. For the 

first test, the full sample is split into b subsamples and the long memory parameter d
i
 is esti-

mated for each subsample i (i = 1,2,…,b). We consider two values of b for which the test 

shows good power and size: b = 2 and b = 4. Then, the mean of all d
i
, say 

i
d , is compared to 

the long memory parameter d̂  estimated over the full sample using Wald tests. As to the 

second test, the LM parameter d is estimated over the full sample and then used to take the d
th

 

difference of the original demeaned series. Finally, the stationarity of the resulting series is 

tested using the KPSS and Phillips-Perron tests.   

3.4 The ARFIMA-FIGARCH model  

ARCH/GARCH models have been extensively tested for fractional integration in the 

existing literature (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996, 1999). Past studies 

                                                 
4
 See Phillips and Perron (1988) and Kwiatkowski et al. (1992) for more details about unit root tests. 
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have generally found fractionally integrated models to fit the data better than standard volatil-

ity models such as GARCH(p,q), EGARCH(p,q), and IGARCH(p,q). More practically, a 

fractionally integrated process in both ARMA and GARCH (ARFIMA-FIGARCH) is suita-

ble for modeling any dual LM behavior of financial variables. The main advantage of this 

model is that it allows a finite persistence of the return and volatility shocks. The econometric 

specification of the ARFIMA(pm,dm,qm)-FIGARCH(pv,dv,qv) that will be fitted to each metal 

return series can be written as follows  

   

   
tt

d

ttt

tt

d

vLwLL

h

LrLL

v

m

)(11)(

)(1)(

2

2













            (7) 

where 
md  and 

vd  capture the presence of long memory in the conditional mean and variance 

of the series, respectively. 
tv  represents the skedastic innovation as measured by ttt hv 

2
 . 

Note that the ARFIMA(pm,dm,qm) process is nonstationary when 
md  ≥ 0.5, and is said to ex-

hibit long memory for 0<
md <0.5, and short memory for 

md = 0. The FIGARCH (pv,dv,qv) 

process is reduced to a standard GARCH when dv = 0 and to an IGARCH when dv = 1. 

The ARFIMA-FIGARCH model is estimated by using the quasi-maximum likelihood 

(QML) estimation method allowing for asymptotic normality distribution, based on the fol-

lowing log-likelihood function 
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Overall, our empirical approach accounts for long memory in both the mean and va-

riance dynamics of a financial time series. In particular, it permits to test long memory 

against structural breaks within an in-sample analysis and to show whether the long memory 

detected in the metal returns is real or is due to the presence of structural breaks and conse-

quently can be considered to be fallacious. Note that the adaptive FIGARCH (A-FIGARCH) 

model recently developed by Baillie and Morana (2009) is a natural extension of our LM vo-

latility process to incorporate the possibility that the intercept of the conditional variance ex-

periences structural change. However, their method requires an out-of-sample forecasting ex-

ercise to confirm the accuracy of the specification of conditional volatility process and may 

lead to conclude in favor of or against nonlinearity without suggesting the nature of this non-

linearity, i.e., structural break, threshold effects or smooth transition type. 
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4. Data and Stochastic Properties 

We use daily time series data for four major precious metal spot and three-month fu-

tures prices (gold, silver, platinum and palladium). These precious metals are traded on the 

COMEX (Commodity Exchange) in New York, and their prices are measured in US dollars 

per troy ounce. We use both spot and futures prices because some prices have different distri-

butional characteristics, stylized facts and are followed by different users like investors, trad-

ers, physical users and physical producers. The return series are computed as differences in 

log prices. Data were extracted from Bloomberg database and the whole sample period spans 

from January 4, 1999 to March 31, 2011. The in-sample estimation period covers the period 

from January 4, 1999 through December 31, 2009 and is used to estimate the models’ para-

meters. We set the out-of-sample period from January 1, 2010 through March 31, 2011 to 

evaluate the forecasting performance of the LM-based volatility model, benchmarked against 

several competing models.      

Table 1 summarizes the descriptive statistics for the spot and futures return series as 

well as their stochastic properties over the in-sample period. Among all the spot and futures 

returns for the four metals, we find that the highest average returns are for the spot platinum 

and three-month platinum futures (0.048%), followed closely by the average returns for the 

spot gold and three-month gold futures (0.046%). The spot and futures palladium returns 

yield the lowest average, i.e., 0.006% and 0.007%, respectively. It should be noted that for all 

the metals, the spot returns are not different from their corresponding futures counterparts, 

with the exception of palladium. 

Table 1. Descriptive Statistics for Returns 
 GOLD PALL PLAT SILV GOLD3M PALL3M PLAT3M SILV3M 

Mean (%) 0.046 0.006 0.048 0.042 0.046 0.007 0.048 0.042 

Min. (%) -7.143 -17.859 -17.277 -16.075 -7.573 -13.201 -14.417 -14.793 

Max. (%) 7.382 15.840 16.960 18.278 8.887 15.252 18.678 12.358 

Std. dev. 1.143 2.270 1.634 1.956 1.168 2.197 1.603 1.894 

Skewness -0.044 -0.265 -0.434 -0.477 0.244 -0.198 0.266 -0.807 

Kurtosis 8.504 6.781 16.059 9.158 9.167 7.681 18.959 11.224 

Risk-adjusted 

return 

0.040 0.003 0.029 0.021 0.039 0.003 0.030 0.022 

JB 3636.4
+++

 5531.1
+++

 20494.7
+++

 10143.3
+++

 4589.1
+++

 2638.8
+++

 30480.4
+++

 8404.6
+++

 

ARCH(5)                 209.2
+++

 149.4
+++

 141.6
++

 88.1
+
 146.6

+++
 188.347

+++
 201.5

+++
 171.7

+++
 

Q(5) 3.4 17.6
+++

 4.6 7.4 7.7 16.4
+++

 2.4 0.8 

Q²(5) 313.9
+++

 226.2
+++

 194.5
+++

 114.4
+++

 216.7
+++

 259.0
+++

 286.1
+++

 252.0
+++

 

Notes: this table reports the descriptive statistics of precious metal returns. GOLD, PALL, PLAT and SILV de-

note respectively the spot returns of the four precious metals: gold, palladium, platinum and silver. GOLD3M, 

PALL3M, PLAT3M and SILV3M are returns of three-month metal futures contracts. JB, ARCH, Q(5) and 

Q
2
(5) refer to the empirical statistics of the Jarque-Bera test for normality, ARCH test for conditional heterosce-

dasticity, Ljung-Box test for autocorrelation with five lags applied to raw returns, and Ljung-Box test for auto-

correlation with five lags applied to squared returns. 
+
, 

++
 and 

+++
 indicate rejection of the null hypothesis at the 

10%, 5% and 1% levels, respectively. 
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The daily unconditional volatility of all the spot and futures returns, as measured by 

standard deviations, is substantial, with values ranging from 1.143% (spot gold) to 2.270% 

(spot palladium). With respect to risk-return profile, spot and futures palladium returns have 

the highest volatility, but the lowest returns as indicated above, thus historically the higher 

risk for this precious metal is not compensated for by higher return. This finding also sug-

gests that palladium might not be a good hedge for portfolios of stocks, especially in times of 

crises and bear markets.  

The descriptive statistics also demonstrate that skewness is negative in all cases, except 

for three-month gold and platinum contracts, and that excess kurtosis is highly significant. 

Clearly, most of the precious metal returns have fatter tails and longer left tails (extreme neg-

ative returns) than the normal distribution. The Jarque-Bera test (JB) confirms these findings 

since it rejects normality. Results from the ARCH(5) tests for conditional heteroscedasticity 

provide strong evidence of ARCH effects in all the precious-metal return series, which in turn 

suggests the usefulness and suitability of GARCH-type models for modeling and forecasting 

their time-varying conditional volatility. Finally, the Ljung-Box tests, Q(5) and Q
2
(5), indi-

cate that autocorrelation is present for the (raw) returns of spot palladium and three-month 

palladium futures, but autocorrelation in squared returns is highly significant. These results 

typically show signs of high degree of persistence in the conditional volatility process of pre-

cious metals. It is worth noting that the Ljung-Box tests with different lag length indicate the 

presence of return autocorrelation for series other than palladium. 

 

5. Results and interpretations 

In this section, we discuss the in-sample results obtained from the autocorrelation func-

tion analysis, tests of long memory and structural breaks, and LM-based volatility models for 

precious metals’ spot and futures returns. We also report the results of the out-of-sample fo-

recasting analysis where LM-based volatility models are benchmarked against other compet-

ing volatility models  

5.1 Autocorrelation  

The distributional characteristics of the metal return series can be investigated further 

by analyzing the behavior of their autocorrelation functions. The results, displayed in Figures 

1 and 2, show that the autocorrelation functions of the raw returns are small and have no par-
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ticular form. Most of them stay inside the 95% confidence intervals. This is suggestive of 

their short memory property. The autocorrelation functions of the squared returns are howev-

er larger, and they remain positive and significant for many lags. More importantly, they ex-

hibit a very slow decay with a hyperbolic rate, indicating that the time series are strongly au-

tocorrelated up to a long lag. The only exception is observed for the three-month futures pal-

ladium contracts which show a faster decay. 

Figure 1. Autocorrelation Functions for Spot and Squared Spot Returns 
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Figure 2. Autocorrelation Function for Futures and Squared Futures Returns 
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Overall, our findings shed light on a very persistent behavior in metals squared returns. 

They are consistent with the common characteristics of squared returns widely documented 

for financial asset returns (Ballie et al., 1996; Bollerslev and Mikkelsen, 1996; Choi and 

Hammoudeh, 2009). In addition, it is well argued in the previous literature that these charac-

teristics are suggestive of LM dynamics, and that they can be spuriously generated when 

structural breaks are ignored in economic modeling of financial series. For example, Diebold 

and Inoue (2001) emphasize that infrequent stochastic breaks can create strong persistence in 

the autocorrelation structure of financial series.  

5.2 Results of long memory tests 

We apply the three LM tests (GPH, GSP and EML) to the raw and squared returns of 

the spot and futures prices of our four precious metals. The obtained results are reported in 

Table 2. For the (raw) return series, the tests used unanimously show evidence of LM pat-

terns for spot platinum, spot palladium and palladium futures as the null hypothesis of no per-

sistence is always rejected at levels ranging from 1% to 10%. Separately, while the GSP test 

concludes in favor of the presence of long memory for spot gold and platinum futures, the 

EML test provides evidence of long memory for spot silver. However, gold and silver futures 

returns do not have LM properties.  

Table 2. Results of LM Tests for Returns and Squared Returns 
 Returns  Squared returns 

 GPH GSP EML  GPH GSP EML 

GOLD -0.082 

[0.104] 

-0.064 

[0.082] 

-0.002 

[0.920] 

 0.622 

[0.000] 

0.549 

[0.000] 

0.187 

[0.000] 

GOLD3M -0.082 

[0.104] 

-0.060 

[0.105] 

-0.003 

[0.851] 

 0.538 

[0.000] 

0.475 

[0.000] 

0.179 

[0.000] 

SILV -0.002 

[0.960] 

-0.022 

[0.542] 

-0.052 

[0.000] 

 0.509 

[0.000] 

0.458 

[0.000] 

0.158 

[0.000] 

SILV3M 0.005 

[0.920] 

-0.022 

[0.549] 

-0.015 

[0.318] 

 0.545 

[0.000] 

0.529 

[0.000] 

0.176 

[0.000] 

PLAT 0.106 

[0.034] 

0.101 

[0.006] 

-0.025 

[0.067] 

 0.403 

[0.000] 

0.399 

[0.000] 

0.175 

[0.000] 

PLAT3M 0.065 

[0.194] 

0.104 

[0.005] 

-0.001 

[0.940] 

 0.517 

[0.000] 

0.542 

[0.000] 

0.119 

[0.000] 

PALL 0.096 

[0.056] 

0.087 

[0.018] 

-0.029 

[0.043] 

 0.325 

[0.000] 

0.309 

[0.000] 

0.181 

[0.000] 

PALL3M 0.092 

[0.067] 

0.081 

[0.029] 

-0.054 

[0.000] 

 0.433 

[0.000] 

0.381 

[0.000] 

0.199 

[0.000] 

Notes: this table reports the results from three LM tests: Geweke and Porter-Hudak (1983)’s GPH, Robinson 

and Hendry (1999)’s Gaussian Semiparametric (GSP), and Sowell (1992)’s Exact Maximum Likelihood (EML). 

The GHP and GSP tests were carried out with a bandwidth of T/16, where T refers to the total number of obser-

vations over the in-sample period. The associated p-values are given in brackets. GOLD, PALL, PLAT and 

SILV denote respectively spot gold, palladium, platinum and silver. GOLD3M, PALL3M, PLAT3M and 

SILV3M denote the corresponding three-month metal futures contracts. 
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The results for squared returns are sensitively different from those for the returns. In-

deed, long memory property is found to be highly significant for all the squared returns, 

whatever the LM tests used. Since squared returns are a good proxy for volatility, these find-

ings thus suggest that the conditional volatility of precious metals would tend to be range-

dependent, persist and decay slowly. Intuitively, this volatility persistence can be appropriate-

ly modeled by a FIGARCH process because it allows for long memory behavior and slow 

decay of the impact of a volatility shock.  

It is, however, important to note that the GPH and GSP estimates of the LM parameter 

d are higher than 0.5 for several spot and futures squared returns (e.g., gold, silver and plati-

num), and are in contrast to the usual findings. Many explanations for these unusual values of 

d are possible. They can firstly arise from the bias inherent in the GPH and GSP estimators. 

Another explanation, given by Granger and Hyung (2004), is related to the fact that long 

memory may be the result of various kinds of misspecifications and/or the presence of struc-

tural breaks. In this scheme of things, a greater accumulation of misspecifications naturally 

would lead to greater spurious long memory.
5
  

5.3 Evidence of structural breaks 

The results from the Inclan and Tiao (1994) test regarding the number and estimated 

break dates are reported in Table 3. They demonstrate that six out of the eight return series 

exhibit at least one structural break in their unconditional variance dynamics. Indeed, the 

ICSS algorithm detects four breaks for the spot gold, three breaks for the spot silver, silver 

futures and platinum futures, two breaks for the spot platinum, and one break for gold futures. 

Five of these indentified breaks are a priori associated with the 2008-2009 global financial 

crisis which was sparked by the US subprime and banking defaults that took place in July 

2007. This result can be explained partly by the “flight-to-quality” phenomenon which ap-

pears in times of crises when investors rush to buy less risky assets and financial contracts on 

safe assets such as gold and platinum. 

The aforementioned findings suggest that the evidence of long memory in the return 

volatility of six precious metal price series (spot and futures prices of gold, silver and plati-

                                                 
5
 We also estimated a FIGARCH(1,d,1) model for metal returns where the conditional mean is modeled by a 

simple AR(1) process. The results, not reported here for concision purpose, indicate that the estimates of the LM 

parameters d are large and highly significant for all the series, and they are very different from unity as well. 

This finding, in line with the results of long memory tests, thus raises the question about the robustness of LM 

evidence. The reason is that large values of d may be due to the ignorance of possibly structural changes in the 

dynamics of precious metal squared returns (Banerjee and Urga, 2005; Bhardwaj and Swanson, 2006).   
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num) may be overstated due to the presence of structural breaks which are not accounted for 

in the LM tests. The discrimination between long memory and structural breaks is however 

not an easy task. Several studies have examined the nature and causes of volatility persistence 

for financial series, but the results remain inconclusive. For instance, Bhardwaj and Swanson 

(2006) find that the LM models give better out-of-sample forecasts than ARMA, standard 

GARCH and related models. The LM models are also found to outperform models with occa-

sional breaks in out-of-sample analysis (Granger and Hyung, 2004). On the contrary, Choi 

and Zivot (2007) document that accommodating for structural breaks reduces the volatility 

persistence. 

Table 3. Results of Structural Break Tests 

 Number of breaks Break dates 

GOLD 4 09/17/1999; 10/05/1999; 10/29/1999; 02/02/2008 

GOLD3M 1 12/30/2005 

SILV 3 06/21/2000; 01/15/2001; 01/02/2004 

SILV3M 3 03/03/2000; 09/12/2001; 01/01/2004 

PALL 0 - 

PALL3M 0 - 

PLAT 2 08/13/2008; 01/06/2009 

PLAT3M 3 11/12/2001; 01/22/2008; 07/07/2009 

Notes: this table reports the results of the structural break tests based on the application of the modified ICSS al-

gorithm to the metal returns data over the in-sample period. GOLD, PALL, PLAT and SILV denote respectively 

spot returns for gold, palladium, platinum and silver. GOLD3M, PALL3M, PLAT3M and SILV3M represent 

the returns on the corresponding three-month metal futures contracts. 

 

Before moving to estimate the LM-based volatility models for precious metals, it is es-

sential to test for the relevance of long memory against structural breaks. For doing so, we re-

ly on the procedure proposed by Shimotsu (2006), which examines the null hypothesis of 

long memory against the alternative of a structural change. Two and four subsamples are 

considered since augmenting the number of hypothetical subsamples does not increase the 

power of the test. The results are reported in Table 4.   

Table 4. Tests of Long Memory versus Structural Breaks 

 
d̂  

d   W   
tZ  u  

 2b  4b   2b  4b   

GOLD 0.025 0.036 0.038  2.463 2.724  -2.590 0.145 

GOLD3M -0.001 0.001 0.003  0.013 0.243  -2.378 0.174 

SILV -0.004 -0.008 -0.021  0.358 6.838  -2.087 0.110 

SILV3M 0.017 0.016 0.011  0.001 2.462  -2.245 0.088 

PALL 0.025 0.025 0.021  0.492 1.160  -1.598 0.109 

PALL3M 0.011 0.004 -0.005  0.025 5.461  -2.403 0.054 

PLAT -0.009 -0.011 -0.033  0.676 13.368
*
  -2.289 0.062 

PLAT3M 0.039 0.041 0.035  0.025 7.289  -1.671 0.101 

Notes: this table reports the results of statistical tests of the LM hypothesis against structural change. b denotes 

the number of subsamples. W, tZ  and u  are the empirical statistics of the Wald, Phillips-Perron, and KPSS 
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tests, respectively. 
*
 indicates rejection of the null hypothesis of constancy of the LM parameter d at the 5% lev-

el. The critical values for the Wald test are 84.3)1(
2

95.0   and 82.7)3(
2

95.0  , respectively.   

 

The results of the Wald (W) test show that the constancy of the LM parameter d cannot 

be rejected for all the series regardless of the number of subsamples, except for platinum’s 

spot returns. This leads us to the conclusion that the evidence against long memory is not in-

vasive. Moreover, we see that for all the series the Philips-Perron test (
t

Z ) does not reject the 

null hypothesis of )(dI , while the hypothesis of stationarity cannot by rejected by KPSS test 

(
u

 ). Taken together, our findings suggest that not all the persistence we found in the squared 

returns and conditional volatility of the precious metals considered is due to the presence of 

structural change. The evidence of long memory we reported is thus not spurious for almost 

all series.  

5.4 Return and volatility modeling in presence of long memory  

The results of Table 2 and Table 4 show that the ARFIMA-FIGARCH class models can 

be used to reproduce the LM characteristics in the conditional mean and variance of precious-

metals return dynamics. In particular, the empirical evidence in Table 2 suggests an ARMA-

FIGARCH specification for the three-month gold and silver futures contracts, and an ARFI-

MA-FIGARCH specification for the remaining return series. With respect to the results of 

AIC and BIC information criteria, we select one lag for all the specifications and present the 

estimation results in Table 5.
6
  

We first find moderate evidence of persistence in precious metal returns since the LM 

parameter in the mean equation dm is at most significant at the 5% level (spot and three-

month platinum). Long memory evidence is however not found for spot silver, as suggested 

by the EML’s LM test. The value of dm is negative in all cases and ranges from -0.105 (spot 

gold) to -0.050 (three-month palladium). The small and negative values of the LM parameter 

typically imply that the return-generating processes rarely stray far from the mean and have 

strong tendency to revert to it quickly. 

The LM parameters in the conditional volatility processes are all positive and highly 

significant. Their relatively large values, ranging from 0.328 (three-month gold) to 0.957 

(three-month platinum), suggest that these metals’ volatility processes display little tendency 

                                                 
6
 We also use the Wald tests to examine the hypothesis that 1vd . The obtained results, not reported in the pa-

per, always underscore the rejection of this hypothesis at the 1% level.   
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to revert towards the volatility mean. Note that 
v

d  for the three-month platinum is very close 

to unity, and accordingly an IGARCH process seems to be more suitable for this metal. Final-

ly, it is observed that the ARFIMA-FIGARCH class model appropriately captures the price 

dynamics of the four precious metals in view of the results of specification tests. Indeed, the 

ARCH effects and autocorrelations no longer exist in the standardized residuals. 

Table 5. Evidence of Dual Long Memory from the ARFIMA-FIGARCH Class Model 
 GOLD GOLD3M SILV SILV3M PALL PALL3M PLAT PLAT3M 

m  0.034
**

 

(0.013) 

0.037
**

 

(0.016) 

0.014 

(0.019) 

0.017 

(0.026) 

0.061
*
 

(0.036) 

0.044 

(0.034) 

0.070
***

 

(0.014)  

0.064
***

 

(0.015) 

AR(1) 0.665
***

 

(0.095) 

0.956
***

 

(0.016) 

-0.353
*
 

(0.206) 

-0.382
*
 

(0.214) 

-0.213 

(0.179) 

-0.110 

(0.201) 

-0.320
*
 

(0.180) 

-0.160
**

 

(0.076) 

MA(1) -0.546
***

 

(0.095) 

-0.966
***

 

(0.016) 

0.296 

(0.383) 

0.360 

(0.264) 

0.297
*
 

(0.162) 

0.278
*
 

(0.159) 

0.369
**

 

(0.173) 

0.320
**

 

(0.157) 

md  -0.105
*
 

(0.058) 

---- -0.036 

(0.037) 

---- -0.057
*
 

(0.030) 

-0.050
*
 

(0.030) 

-0.065
**

 

(0.032) 

-0.065
**

 

(0.033) 

v  0.029
*
 

(0.015) 

0.070
*
 

(0.042) 

0.038
*
 

(0.021) 

0.057
*
 

(0.032) 

0.287
**

 

(0.149) 

0.143
**

 

(0.072) 

0.066
**

 

(0.031) 

0.006
**

 

(0.003) 
  0.358

***
 

(0.109) 

0.372
***

 

(0.107) 

0.280 

(0.069) 

0.377
***

 

(0.084) 

0.183
**

 

(0.086) 

0.333
***

 

(0.086) 

0.310
***

 

(0.097) 

0.153
***

 

(0.056) 

  0.750
**

 

(0.377) 

0.633
***

 

(0.109) 

0.749
***

 

(0.074) 

0.728
***

 

(0.095) 

0.532
***

 

(0.130) 

0.674
***

 

(0.133) 

0.630
***

 

(0.122) 

0.968
***

 

(0.009) 

vd  0.518
***

 

(0.104) 

0.328
***

 

(0.089) 

0.566
***

 

(0.099) 

0.465
***

 

(0.091) 

0.483
***

 

(0.168) 

0.527
***

 

(0.150) 

0.514
***

 

(0.106) 

0.957
***

 

(0.046) 

LLT -4101.154 -4273.3 -5485.437 -5422.223 -6096.875 -6060.360 -4947.781 -5123.715 

AIC 2.864 2.983 3.829 3.784 4.255 4.230 3.454 3.577 

SIC 2.881 2.998 3.846 3.799 4.272 4.246 3.471 3.593 

Q(5) 2.595 3.084 4.228 4.040 3.656 3.948 3.133 4.233 

ARCH(5) 0.300 0.434 1.424 1.180 0.126 0.689 0.165 0.145 

Notes: this table reports the results of the quasi-maximum likelihood estimation of the ARFIMA-FIGARCH 

class model for the daily metals spot and futures returns. m , v , md , and vd  refer to the constant terms and 

LM parameters of the mean and variance equations, respectively. GOLD, PALL, PLAT and SILV denote re-

spectively the log spot returns of the four precious metals: gold, palladium, platinum and silver. GOLD3M, 

PALL3M, PLAT3M and SILV3M are the returns on three-month metal futures contracts. Robust standard errors 

are given in parenthesis. Q(5) and ARCH(5) are the empirical statistics of the Ljung-Box and Engle (1982) tests 

for autocorrelation and conditional heteroscedasticity, respectively. 
*
, 

**
 and 

***
 denote significance at the 10%, 

5% and 1% levels, respectively.  

 

5.5 Forecasting evaluation  

We now turn to examine the ability of the ARFIMA-FIGARCH class model in fore-

casting the precious metals’ returns and volatility. This model’s out-of-sample forecasting 

performance is benchmarked against that of four competing GARCH-based models including 

GARCH, EGARCH, IGARCH and HYGARCH, which do not accommodate the properties 

of fractionally integrated time series. The mean equation specifications for all metals’ returns 

are the same as reported in subsection 5.4. That is, the ARMA specification is used for the 

three-month gold and silver returns, while the ARFIMA is used for the remaining series. Note 

that standard GARCH (Bollerslev, 1986) and IGARCH (Engle and Bollerslev, 1986) models 
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are special cases of FIGARCH model when the LM parameter is, respectively, equal to zero 

and one. The EGARCH model, introduced by Nelson (1991), has the advantage of allowing 

asymmetry in the reaction of conditional volatility to the sign of shocks to the return series. 

The hyperbolic GARCH model or HYGARCH proposed by Davidson (2004) is viewed as a 

more general version of the FIGARCH model with hyperbolic convergence rates, where 

shock amplitude and long memory are treated separately.  

The return and volatility forecasts of the benchmark and competing models are generat-

ed over the period from January 1, 2010 through March 31, 2011, yielding a total of 325 daily 

observations. The prediction error is then compared across models on the basis of three eval-

uation criteria commonly used in the previous literature (Kang et al., 2009; Weil et al., 2010). 

These criteria are the mean absolute error (MAE), root mean square error (RMSE), and 

Theil’s inequality coefficient (TIC). Let n be the number of forecasts, and 
t

y  and 
t

ŷ  the ob-

served and the predicted values of 
t

y  at time t. Here, 
t

y  refers alternatively to the metal re-

turn and volatility series. The evaluation criteria are given in Equations (8)-(10) below.  
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The best forecasting GARCH-based model is the one that generates the lowest predic-

tion error. The forecasting results for the return series are reported in Table 6, whereas those 

for the volatility series are presented in Table 7.  

Table 6 shows that the EGARCH model provides the best forecasts of the return series 

in 15 out of the 24 cases (or 62.5%) based on the three evaluation criteria. Indeed, this model 

is commonly selected by the MAE, RMSE and TIC criteria in four out of the eight precious 

metal price series. The FIGARCH-based model is identified as the second-best model since it 

is chosen by the return evaluation criteria in 12 out of the 24 cases (50%). It generates better 

forecasts than the EGARCH in only three cases (spot gold, spot platinum, and three-month 
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platinum). The other GARCH-based competing models (GARCH, IGARCH and HY-

GARCH) have the lowest prediction errors in only three out of the eight metal price series 

(spot palladium, three-month palladium, and three-month platinum). 

Table 6. Out-of-Sample Predictive Accuracy of Competing GARCH-Based Models for the Re-

turn Series  
 GOLD GOLD3M SILV  SILV3M PALL PALL3M PLAT PLAT3M 

FIGARCH(1,d,1) 

MAE 0.7318 0.7070 1.6170 1.4570 1.8260 1.7240 0.9267 0.9030 

RMSE 0.9772 0.9680 2.1360 1.9550 2.4750 2.3290 1.2484 1.2590 

TIC 0.9266 0.9584 0.9940 0.9902 0.9744 0.9770 0.9431 0.9486 

GARCH(1,1) 

MAE 0.7321 0.7074 1.6170 1.4590 1.8270 1.7240 0.9274 0.9032 

RMSE 0.9774 0.9684 2.1370 1.9570 2.4750 2.3290 1.2490 1.2590 

TIC 0.9281 0.9664 0.9970 0.9969 0.9761 0.9790 0.9485 0.9497 

IGARCH(1,1) 

MAE 0.7323 0.7076 1.6170 1.4590 1.8360 1.7240 0.9274 0.9030 

RMSE 0.9775 0.9685 2.1370 1.9570 2.4850 2.3290 1.2490 1.2590 

TIC 0.9298 0.9684 0.9970 0.9970 0.9740 0.9797 0.9490 0.9501 

EGARCH(1,1) 

MAE 0.7342 0.7054 1.6150 1.4520 1.8260 1.7240 0.9271 0.9034 

RMSE 0.9802 0.9673 2.1340 1.9510 2.4750 2.3280 1.2500 1.2620 

TIC 0.9462 0.9390 0.9844 0.9663 0.9732 0.9795 0.9478 0.9422 

HYGARCH(1,d,1) 

MAE 0.7369 0.7073 1.6170 1.4570 1.8260 1.7240 0.9272 0.9031 

RMSE 0.9815 0.9683 2.1360 1.9550 2.4750 2.3290 1.2490 1.2590 

TIC 0.9744 0.9646 0.9946 0.9903 0.9755 0.9798 0.9439 0.9470 

Notes: This table reports the results of the one-day out-of-sample prediction errors of metal return series for the 

benchmark FIGARCH(1,d,1) and the four competing models. For all models, the ARMA(1,1) specification is 

used for the conditional means of the three-month gold and silver, while the ARFIMA(1,d,1) specification is re-

tained for the remaining return series. A bold entry denotes the model that provides the lowest prediction error 

for each metal return. 

 

As for the volatility forecasts, Table 7 shows that the FIGARCH volatility model is se-

lected according to the three evaluation criteria for spot silver and future palladium, by at 

least two criteria for spot palladium, and future silver, and by one criterion for platinum fu-

tures. Taken together, the FIGARCH volatility model provides the best volatility forecasts in 

11 out of the 24 cases based on all the evaluation criteria for all the metals. The EGARCH 

model is the second-best volatility model and performs well for 9 out of the 24 cases includ-

ing spot platinum, spot and future gold. Each of the other GARCH-based competing models 

(GARCH, IGARCH and HYGARCH) has the lowest prediction errors in at most 2 out of the 

24 cases.   
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Table 7. Out-of-Sample Predictive Accuracy of Competing GARCH-Based Models for the Vola-

tility Series  
 GOLD GOLD3M SILV  SILV3M PALL PALL3M PLAT PLAT3M 

FIGARCH(1,d,1) 

MAE 1.731 1.589 2.044 1.382 1.223 1.327 1.531 1.812 

RMSE 1.733 2.345 1.521 1.931 1.159 1.693 1.460 1.031 

TIC 0.537 0.599 0.555 0.572 0.672 0.665 0.621 0.586 

GARCH(1,1) 

MAE 1.758 1.605 2.249 1.398 1.631 1.492 1.291 1.786 

RMSE 1.736 2.454 1.532 1.953 1.217 1.804 1.377 1.245 

TIC 0.529 0.592 0.596 0.574 0.661 0.673 0.635 0.599 

IGARCH(1,1) 

MAE 1.723 2.196 2.065 1.801 1.741 1.421 1.236 1.968 

RMSE    2.405 2.586 1.528 2.402 1.425 1.944 1.278 1.442 

TIC 0.593 0.596 0.584 0.554 0.672 0.669 0.694 0.583 

EGARCH(1,1) 

MAE 1.734 1.521 2.145 1.389 1.227 1.337 1.227 1.800 

RMSE 1.724 2.312 1.525 1.977 1.211 1.752 1.251 1.087 

TIC 0.528 0.589 0.593 0.521 0.683 0.667 0.587 0.701 

HYGARCH(1,d,1) 

MAE 1.713 1.578 2.945 1.921 1.441 1.901 1.643 1.792 

RMSE 1.747 2.392 1.798 2.107 1.241 1.935 1.374 1.207 

TIC 0.532 0.591 0.577 0.543 0.661 0.670 0.653 0.587 

Notes: This table reports the results of one-day out-of-sample prediction errors of the metal volatility series for 

the benchmark FIGARCH(1,d,1) and four competing models. For all models, ARMA(1,1) specification is used 

for the conditional means of the three-month gold and silver, while the ARFIMA(1,d,1) specification is retained 

for the remaining return series. A bold entry denotes the model with the lowest prediction error. 

 

To sum up, our forecast analysis shows that for predicting the return series, the 

EGARCH model is the best option seconded by the FIGARCH. The EGARH model works 

the best for the prediction of the silver and palladium spot and futures returns, as well as for 

the gold futures returns. However, the FIGARCH model is empirically identified as the rela-

tively best suitable model in terms of volatility forecasts. Our out-of-sample results thus indi-

cate that the LM evidence is not spurious, and hence accounting for this property in the AR-

FIMA-FIGARCH class models leads to improvement in the quality of forecasts for some 

precious metals’ spot and futures returns. It is finally worth noting that the superiority of the 

EGARCH-based models in some returns cases suggests that extending the ARFIMA-

FIGARCH models to accommodate the asymmetric volatility effects may increase their pre-

dictive power.   

 

6. Conclusion 

Within the context of the current financial crisis, there is an increasing interest by trad-

ers, investors, portfolio managers, physical users and producers, and policy makers to under-

stand better the performance and the distributional characteristics of increasingly important 
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asset classes. Such enhanced understanding should lead to better returns, greater benefits 

from portfolio diversification, more adequate pricing of derivatives and improvement in risk 

management strategies. Among these asset classes are the precious metals which consist of 

gold, silver, platinum and palladium. These precious metals have been very attractive for 

portfolio investments over the recent turbulent years owing to their role as reverse or safe ha-

ven assets and to the increase in demand for their economic uses.  

Several papers in the literature have addressed the issue of volatility modeling for pre-

cious metals, but none of them have explicitly investigated the nature and causes of the ob-

served volatility persistence. This paper is an attempt to fill this gap by testing the relevance 

of long memory against structural breaks in modeling the return and volatility for the spot 

and futures prices of those four precious metals.  

Using a battery of long memory and structural break tests and the Inclan and Tiao 

(1994) modified ICSS algorithm for dating structural breaks, we find that long memory is 

particularly strong and plays a dominant role in explaining the spot and futures price dynam-

ics for the four strategic metals. The selection tests also conclude in favor of long memory to 

the detriment of structural breaks. As such, investors in these precious metals markets can 

make use of the long-range dependence property to generate better understanding of higher 

profits through using past information and statistical models such as the linear ARFIMA 

processes that accommodate LM characteristics.  

Comparing the empirical results across the metals, the series of platinum futures returns 

exhibits the highest long memory in the variance equation, suggesting that the latter may ex-

perience long strays away from the mean. Thus, platinum is not a good hedging instrument 

during bear or crisis markets. Moreover, this series requires an IGARCH modeling for its 

conditional variance. Among the remaining metals, gold may serve as a good hedge during 

market downturns because its return has relatively short strays from its mean and variance, 

confirming the most pronounced safe haven status on this shinny metal. Finally, our out-of-

sample analysis indicates that the FIGARCH-based model is the best and the second best 

model in terms of the predictive power for the volatility and returns, respectively. Our find-

ings also point to the relevance of asymmetry in the dynamics of the precious metal returns 

and volatility as the EGARCH-based model is the best and second best model for predicting 

return and volatility, respectively. Thus, extending the ARFIMA-FIGARCH models to ac-

commodate for asymmetry in the return and volatility series may lead to an increase in their 

predictive power.  This empirical feature is left for our future research. 
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