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which R = N) [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. This step requires the introduction of R phase-differences γ r , which remain constant during a periodic motion. Therefore, the fixed points of the (a n , γ r )-Reduced Amplitude Modulation Equations (RAME) actually are the periodic motions of the original system. The choice of the phases γ r is naturally suggested by the procedure itself, and is often justified in literature by invoking the need to render the AME autonomous [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. The number M of the RAME is called the codimension of the problem [START_REF] Luongo | On the reconstitution problem in the multiple time scale method[END_REF], since, in the system's parameter space, it is the codimension of the manifold on which N eigenvalues simultaneously cross the imaginary axis and, in addition, their imaginary parts satisfy R resonance constraints.

The possibility of reducing the AME to its codimension has the following remarkable meaning. Although the asymptotic motion develops in a 2N-dimensional space, its essential aspects (e.g., the existence of periodic motions and their stability) can be described in a smaller M-dimensional space, where the evolution equations are autonomous. The remaining 2N-M dimensions govern complementary aspects of the motion (e.g., the frequency corrections), not affecting the qualitative character of the solution [START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[END_REF].

Nevertheless, the aγ -form of the RAME still entails some computational difficulty. The equations appear in a non-standard form, since the γ -equations admit some amplitudes a h as factors which cannot be eliminated if a h identically vanish in some classes of motion. In such cases some γ -equations are identically satisfied and the relevant γ 's remain undetermined. This circumstance is an obvious consequence of having expressed the complex amplitudes A n in polar form, which in fact leaves the phase of zero undetermined. From a geometrical point of view such fixed points are not-isolated points, lying on a manifold in the (a n , γ r ) space. When the stability of these points is analyzed, the standard method fails, since some coefficients of the time-derivative δγ r vanish in the variational equation, so that more difficult ad hoc methods must be employed.

To overcome this drawback, it is customary in the literature to return to the complex AME and perform the following steps: first, the amplitudes A n are expressed in Cartesian (rather than polar) form; then, they are multiplied by suitable time-exponential factors, so to render the equation autonomous; finally, the variational equation is built up [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF][START_REF] Natsiavas | Modal interactions in self-excited oscillators under external primary resonance[END_REF][START_REF] Natsiavas | Free vibration in a class of self-excited oscillators with 1:3 internal resonance[END_REF][START_REF] Mitsi | Dynamics of nonlinear oscillators under simultaneous internal and external resonances[END_REF][START_REF] Di Egidio | Nonstationary nonplanar free motions of an orbiting string with multiple interna resonance[END_REF][START_REF] Luongo | Postcritical behavior of cables undergoing two simultaneous galloping modes[END_REF]. In these new variables the non-isolated fixed points of the aγ -form equations reduce to isolated points, so that the standard variational equation procedure works well.

Although the procedure described leads to correct results, it is unsatisfactory for the following reasons: (a) The use of different equations to analyze first steady-state solutions and then their stability is somewhat tedious from a computational point of view. (b) It appears suspicious that the stability analysis of some classes of motion should call for the enlargement of the space, from M to 2N, whereas the stability of some other classes can be analyzed in the smaller space. (c) The role of the time-exponential factors used in the complex variational equation has not been clarified and, above all, no general rules to determine them are available. On the other hand, it would be desirable to use suitable variables that allow the RAME to be put in standard form, in order to accomplish the whole analysis by the same equations. Moreover, it is worth noting that commercial software (e.g. AUTO) requires the equations are put in standard form.

This paper contributes to clarify the matter along the following lines. (1) It is shown that the search for the fixed points representative of the periodic motions and the analysis of their stability can be performed through a unique 2N-dimensional equation. This is obtained from the AME by expressing the complex amplitudes in Cartesian components on bases rotating with unknown angular velocities. It is explained that the exponential time factors used in the literature to obtain the variational equation represent the rotations of the bases; a rule to determine them is then given. [START_REF] Luongo | On the reconstitution problem in the multiple time scale method[END_REF] The problem of existence of a standard form for the RAME is then addressed. It is shown that, by using rotating bases and a mixed polar-Cartesian representation of the complex amplitudes, such a standard form does exist, although under restrective conditions. Thus, a procedure followed in the literature by referring to specific problems [START_REF] Gils | Hopf bifurcation with nonsemisimple 1:1 resonance[END_REF][START_REF] Nayfeh | Nonlinear normal modes of buckled beams: Three-to-one and one-to-one internal resonances[END_REF] is here generalized.

The Polar Form of Amplitude Modulation Equations

The asymptotic motion of a discrete or spatially continuous weakly nonlinear dynamical system in internal and external resonance conditions, according to the MSM [START_REF] Nayfeh | Nonlinear Oscillations[END_REF], reads

x(t) = N n=1 εA n (t 1 , t 2 , . . .)u n e iω n t 0 + O(ε 2 , ε h A 0 e iω 0 t 0 ) + c.c. , ( 1 
)
where x is the state vector, t the time, t k = ε k t (k = 0, 1, . . .) are time-scales, ε 1 a perturbation parameter, u n and ω n eigenmodes and eigenfrequencies of the linearized system, respectively, and A n (t 1 , t 2 , . . .) (n = 1, 2, . . . , N) are slow varying complex amplitudes. Moreover A 0 and ω 0 are the amplitude and the frequency of the hard (h = 1) or soft (h = 2, 3, . . .) excitations, respectively [START_REF] Nayfeh | Nonlinear Oscillations[END_REF].

The N linear frequencies ω n and the frequency excitation ω 0 satisfy the following resonance conditions

N n=0 k sn ω n = ε K s σ s , s = 1, 2, . . . , S, (2) 
where k sn ∈ Z are (small) integer numbers and σ s = O( 1) are detuning parameters. The integer K s := N n=0 |k sn | -1 is called the order of the s-th resonance [START_REF] Troger | Nonlinear Stability and Bifurcation Theory[END_REF]; this in fact appears for the first time in the perturbation process in the K s -th perturbation equation. The remaining n = N + 1, N + 2, . . . , modes, not involved in the S resonances [START_REF] Luongo | On the reconstitution problem in the multiple time scale method[END_REF], are assumed to decay in time, so that they do not contribute to the asymptotic motion [START_REF] Nayfeh | Nonlinear Oscillations[END_REF].

Generally, not all the S resonances (2) are independent; let us assume that the first R := rank[k sn ] of them are independent, the remaining Q := S -R conditions being linear combinations of the former (i.e. k qn = R r=1 c qr k rn , σ q = R r=1 c qr σ r , q = R + 1, R + 2, . . . , S).

The evolution of the amplitudes is governed by the AME, as furnished by the MSM [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. The equations are obtained by zeroing in the ε 2 -and higher order perturbation equations the nonlinear (and possibly the forcing) terms causing resonance, and by successively combining them according to the reconstitution procedure [START_REF] Luongo | On the reconstitution problem in the multiple time scale method[END_REF][START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF]. The nonlinearities of order K produce, at any step of the perturbation procedure, linear combinations of K products, whose factors are A n exp(iω n t) and A n exp(-iω n t); they read: 2) can be solved with respect to ω m , to furnish

n∈N ± A l n n exp i n∈N + (l n -l -n )ω n t, where N + = {0, 1, . . . , N}, N ± = {±0, ±1, . . . , ±N}, A -n := A n , l n ∈ N and n∈N ± l n = K. Now, if k sm = 0, Equation (
ω m = N n=0 k smn ω n ± ε K s σ s , k smn := ∓k sn + δ mn , s = 1, 2, . . . , S, (3) 
where the upper sign must be taken if k sm > 0 and the lower sign if k sm < 0. Therefore, nonlinearities would cause resonance on the m-th mode if l nl -n = k smn ∀n ∈ N + ; these terms therefore enter the AME. Moreover, terms as A m (A n A n ) k , A m (A i A i ) k i (A j A j ) k j , . . . , (n = 0, 1, 2, . . . , N; (k, k i , k j ) = 0, 1, . . .), produced by odd nonlinearities, although not associated with any resonance, must be removed from the right hand member of the perturbation equations, in order to allow solvability. Therefore, the AME read

A m = L m A m (A n A n ) k , . . . , n∈N ±
A l smn n e ∓iσ s t , . . . , m = 1, 2, . . . , N, [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF] in which the exponents l smn are (generally not unique) solutions of

l smn -l sm,-n = k smn , n∈N ± l smn = K, l smn ∈ N, K ∈ [K s , K max ]. (5) 
In Equation ( 4), the prime denotes differentiation with respect to the reconstituted true time t, the parameter ε has been reabsorbed and L m is a complex linear operator with constant coefficients. Moreover K max is a prefixed maximum order of the resonance accounted for, and one (or more) terms are present for each K and for each of the S resonance conditions in which ω m is involved (i.e. for which k sm = 0). The complex AME can be put in real form by adopting a polar representation for the amplitudes

A 0 = 1 2 a 0 e iϑ 0 , A n (t) = 1 2 a n (t) e iϑ n (t ) , n = 1, 2, . . . , N, (6) 
where a n (t) are real amplitudes, ϑ n (t) are phases and a 0 and ϑ 0 are the constant amplitude and phase of the excitation, respectively. By substituting Equation ( 6) in Equation ( 4), accounting for Equation ( 32 ) and separating real and imaginary parts, it follows that

a m = m a m a 2k n , . . . , n∈N ± a l smn n exp(∓iγ s ), . . . , a m ϑ m = m a m a 2k n , . . . , n∈N ± a l smn n exp(∓iγ s ), . . . , m = 1, 2, . . . , N, (7) 
where

m (•) = Re[L m (•)] and m (•) = Im[L m (•)]
(with the numerical coefficient 1/2 absorbed), a -n = a n and

γ s := n∈N + k sn ϑ n + σ s t, s = 1, 2, . . . , S. (8) 
In Equations ( 7) S new functions γ s appear. However, due to the linear dependence of the resonance conditions (2), only the first R of them are independent of the remaining ones; i.e.

γ s = {γ r , γ q } with γ r := N n=0 k rn ϑ n + σ r t, r = 1, 2, . . . , R, γ q := R r=1 c qr γ r , q = R + 1, R + 2, . . . , S, (9) 
where the constant coefficients c qr are known.

A differentiation of Equations ( 91 ) and substitution of Equations ( 72 ) leads to

N j ∈J r a j γ r = n∈N + k rm     N j ∈J r j =m a j     m a m a 2k n , . . . , n∈N ± a l smn n exp(∓iγ s ), . . . + σ r , J r = {j |k rj = 0}, r = 1, 2, . . . , R (10) 
since ϑ 0 = 0.

The N real-amplitude Equations (7 1 ) and the R phase-combination Equations (10) (with γ q expressed as functions of γ r via Equation ( 92 )) constitute a differential system of M := N + R autonomous equations in the M (a m , γ r )-unknowns. Since M is generally less than 2N, except for particular cases of forced systems in which M = 2N, these equations will be referred to as Reduced Amplitude Modulation Equations (RAME). The integer M is called the codimension of the problem [START_REF] Luongo | On the reconstitution problem in the multiple time scale method[END_REF].

RAME have a remarkable property: their fixed points a m = 0, γ r = 0 are periodic solutions for the original dynamical system, i.e. x(t + T ) = x(t) with T the generally unknown period. In fact, Equations ( 72 ) and a m = const, γ r = const entail

ϑ n = ν n t + ϕ n , n = 0, 1, 2, . . . , N, ( 11 
)
where ν n are frequency corrections, ϕ n initial phases and the dummy equation ϑ 0 = ν 0 t + ϕ 0 with ν 0 = 0, has been appended. By substituting Equations [START_REF] Nayfeh | Nonlinear normal modes of buckled beams: Three-to-one and one-to-one internal resonances[END_REF] in Equation ( 91 ), since this is satisfied for any t, it follows that

n∈N + k rn ν n + σ r = 0, n∈N + k rn ϕ n = γ r , r = 1, 2, . . . , R. (12) 
Both Equations ( 12) have meaningful consequences. In fact, a combination of Equations (2) (with ε reabsorbed) and Equation ( 121 ) leads to

n∈N + k rn n = 0, r = 1, 2, . . . , R, (13) 
where n := ω n + ν n (n = 0, 1, 2, . . . , N) are nonlinear frequencies. Equations [START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF] show that nonlinearities adjust the frequencies in such a way that the resonance conditions among the nearly-resonant linear frequencies are satisfied with no detunings by the nonlinear frequencies. Since these are in rational ratios, the motion (1)

x(t) = n∈N + 1 2
a n u n e i( n t +ϕ n ) + c.c. + higher-order terms [START_REF] Luongo | Classes of motion qualitative analysis for multiresonant systems: I. An algebraic method, II. A geometrical method[END_REF] is periodic. A consequence of Equation ( 122 ) is the following: since γ r assume a finite number of known values in [0, 2π), Equation ( 122 ) is a system of R linearly independent algebraic equations in the N unknown initial phases ϕ n . Consequently, L := N -R phases remain arbitrary and therefore there exist ∞ L periodic motions which differ from each other in the values of the initial phases. However, higher degrees of arbitrariness can exist in particular cases, in which the amplitudes are also involved, in addition to the phases. A very important class of such systems is represented by the (forced or unforced) conservative systems, for which the linear operators L m appearing in the AME (4) are purely imaginary. Consequently the phase-combinations γ r appear only as arguments of sinus in Equations (7 1 ); moreover, terms independent of γ r are present only in Equations ( 72 ), together with cosines terms. Thus, by requiring sin γ r = 0 (r = 1, 2, . . . , R), N equations are satisfied by R ≤ N unknowns, and therefore L amplitudes remain arbitrary. In conclusion, for conservative systems, periodic motions constitute families of 2(N-R) parameters, half of which are initial phases and the remaining half amplitudes.

It is worth noting that, due to the fact that phases ϑ n vary linearly in time, the complex amplitudes A n do not remain constant during a periodic motion; therefore, a periodic motion is not a fixed point for the complex AME (4) or for its polar representation [START_REF] Mitsi | Dynamics of nonlinear oscillators under simultaneous internal and external resonances[END_REF].

Although the reduction of the AME to its codimension simplifies the mathematical problem, it still entails a drawback, due to the fact that the AME are not in standard form. Let us assume that a set of H amplitudes a h (e.g. h = 1, 2, . . . , H ) exists in which if a h = 0 ∀t the arguments of h and h (h = 1, 2, . . . , H ) identically vanish. Then, from Equations ( 72 ) and [START_REF] Gils | Hopf bifurcation with nonsemisimple 1:1 resonance[END_REF] it follows that all the phases ϑ h (h = 1, 2, . . . , H ) and the phase-differences γ r involving the phases ϑ h remain undetermined. Therefore, such periodic motions are represented in the M-dimensional space (a n , γ r ) by manifolds of non-isolated points. When their local stability is analyzed, the standard method based on the variational equation fails, since the coefficients of δγ r vanish.

The circumstance illustrated is not a special case; on the contrary it is often met in practice. To overcome the drawback it is customary to analyze the stability of such (incomplete) classes of motion by taking the variation of the complex AME (4) and introducing a suitable change of variable in order to render the variational equations [START_REF] Benedettini | Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions[END_REF][START_REF] Natsiavas | Modal interactions in self-excited oscillators under external primary resonance[END_REF][START_REF] Natsiavas | Free vibration in a class of self-excited oscillators with 1:3 internal resonance[END_REF][START_REF] Mitsi | Dynamics of nonlinear oscillators under simultaneous internal and external resonances[END_REF][START_REF] Di Egidio | Nonstationary nonplanar free motions of an orbiting string with multiple interna resonance[END_REF][START_REF] Luongo | Postcritical behavior of cables undergoing two simultaneous galloping modes[END_REF] autonomous. As will be shown in Section 3, such a procedure is a special case of a general method illustrated later.

The Rotating Form of Amplitude Modulation Equations

It has been observed in the previous section, that the complex amplitudes A n (n = 1, 2, . . . , N), do not remain constant during a periodic motion. They are represented on the complex plane by vectors rotating with constant (and unknown) angular velocities ν n . However, such vectors appear as fixed vectors to N observers, each being solid with a base rotating with angular velocity ν n . This circumstance suggests the introduction of the following change of variable

A n = B n (t) e iν n t , n = 0, 1, . . . , N (15) 
in order to obtain a form of AME that admits the periodic motions as fixed points. By substituting Equation (15) in the AME (4), and using Equation (3 2 ), it follows that

B m + iν m B m = L m (B m (B n B n ) k , . . . , n∈N ± B l smn n , . . .), m = 1, 2, . . . , N (16) 
provided that the auxiliary parameters ν n satisfy Equation (12 1 ), i.e.

n∈N + k rn ν n + σ r = 0, r = 1, 2, . . . , R (17) 
once linear dependence on the remaining resonance conditions (q = R + 1, R + 2, . . . , S) has been accounted for.

Equations ( 16) will be referred to as the rotating (bases) form of the AME. Due to the choice (17) of parameters ν n , the fixed points B m = 0 (m = 1, 2, . . . , N) of Equation ( 16) describe periodic motions.

It is worth noting that Equations ( 16) are autonomous. However, not all the changes of variables which lead to autonomous equations admit fixed points with this property. For example, if the detunings σ r were all zero, the AME (4) would be autonomous, but the previous property would not hold.

The rotating base AME have a powerful property: they naturally lead to real equations expressed in standard form. In fact, by using the Cartesian representation

B n = 1 2 (u n + iv n ) (18)
instead of the polar representation, Equations ( 16) read

u m -ν m v m = m (u m + iv m )(u n + iv n ) 2k , . . . , n∈N ± (u n + iv n ) l smn , . . . , v m + ν m u m = m (u m + iv m )(u n + iv n ) 2k , . . . , n∈N ± (u n + iv n ) l smn , . . . , m = 1, 2, . . . , N. ( 19 
)
They are a system of 2N equations in the 2N unknowns (u n , v n ) in which N unknown parameters ν n appear. However, since they must satisfy R ≤ N resonance conditions (17), L = N -R of them remain arbitrary. If Equations ( 19) must be numerically integrated for given initial conditions, the arbitrary ν n 's can be set equal to zero. In this way, however, periodic motions are not represented by u m = const, v m = const and no advantages are gained by the change of variable (15). In contrast, if periodic solutions must be sought, the steady version of Equations ( 19) must be solved together with Equations (17). It is easy to prove that L initial phases ϕ n = arctan(v n /u n ) remain undetermined according to the results drawn by the polar form of the AME, while the parameters ν n assume determined values (see Appendix A for an example). As an exception, if the system admits incomplete solutions, in which u h = v h = 0 for some h's, the associated parameters ν h are left undetermined by Equations (19) since the relevant equations identically vanish. In some particular cases (especially for small N-R, see [START_REF] Di Egidio | Nonstationary nonplanar free motions of an orbiting string with multiple interna resonance[END_REF]) they can be evaluated by Equations (17); since they represent the frequency corrections of modes of zero amplitudes, they do not have a physical meaning. In contrast, in more general cases, Equations (17) are not sufficient to evaluate all the ν h , so that some of them remain undetermined. This circumstance has some consequences on stability, as will be explained soon.

The stability of the steady solutions is analyzed by performing the variation of Equations (19). For complete solutions, no problem arises, since all the ν h 's have been determined. In contrast, for incomplete solutions, some arbitrariness still exists. However, it is easy to prove the undetermined parameters ν's do not affect the (orbital) stability of the steady solution. In fact, the perturbations δA and δB are still related by Equation (15), i.e. δA n = δB n exp(iν n t). Since the δB n are governed by constant coefficient equations, they vary in time as 2N m=1 c mn exp(λ m t), where λ m are the eigenvalues and c mn linear combinations of the components of the eigenvectors of the variational equation. Consequently, δA n = 2N m=1 c mn exp[(λ m + iν n )t]. Since the c mn cannot vanish simultaneously, if Re(λ m ) depended on the arbitrary ν n 's, δA n would not be unique for any given initial conditions. Therefore the arbitrariness can only affect the imaginary part of the eigenvalues λ m . In Appendix B an example of the procedure is given which also illustrates the mechanism leading δA n to be independent of the arbitrariness.

The procedure illustrated suggests the following comments. (a) When the stability of incomplete solutions is analyzed, the variational equation of Equations ( 19) does not present the pathology of the variational equation of the RAME. This property is a consequence of the fact that Equations (19), unlike the RAME, are expressed in standard form. (b) The variational equation of Equations ( 19) is precisely the equation used in the literature to investigate incomplete periodic solutions. As has been explained, it is usually employed after the RAME have been used to determine the periodic solutions. The present derivation has shown that the change of variable to be used to obtain a variational equation with constant coefficients is given by Equations ( 15). If some amplitude A h is zero, the associated ν h factors must be determined by Equations (17); if these are unable to determine all of them, the remaining ν h can be put equal to zero.

The rotating form of the AME therefore represents a general tool for the unitary analysis of steady solutions as well as their stability, both for complete or incomplete motions.

The Standard Form of Amplitude Modulation Equations

Although the procedure previously described, leading to the rotating form of the AME, gives insight into the problem and allows some computational difficulties to be overcome, it is not completely satisfactory. According to this procedure, the problem is governed by 2N equations (Equations ( 19)) depending on L free parameters, in comparison with the M = N + R equations of the reduced form (Equations (7 1 ) and ( 10)). Moreover, because of the presence of the undetermined parameters, they are not amenable to direct numerical integration. The reasons of the enlargement of the problem stand on the following two circumstances: (a) to obtain the rotating form of the AME, additional parameters ν n have been introduced through the change of variable (15); (b) unlike the RAME, where the evaluation of the phase-modulation follows that of the amplitudes and phase-combinations, in the rotating form of the AME it is not possible to split the analysis into two steps, but all the quantities must be determined together.

Here a new form of AME, that maintains the dimensions of the RAME is sought. The basic idea is to use a mixed representation. In order to try to separate some phase equations from the others, certain complex amplitudes must be expressed in polar form; however, in order to try to obtain standard form equations, Cartesian components in rotating bases must be used for the remaining complex amplitudes.

To achieve this, the following change of variable, more general than Equation (15), is introduced

A n = B n (t) e iα n (t ) , n = 0, 1, . . . , N, ( 20 
)
where α n (t) are unknown functions of time (except for the dummy α 0 ≡ 0). Equations (20) reduce to Equation (15) when α n (t) = ν n t + const; also make it possible to express some amplitudes in polar form by letting α n (t) ≡ θ n (t) and B n = 1/2a n . A substitution of Equations (20) in the AME (4) leads to

B m + iα m B m = L m B m (B n B n ) k , . . . , n∈N ± B l smn n , . . . , m = 1, 2, . . . , N (21) 
if the functions α n (t) are chosen in such a way that

n∈N + k rn α n + σ r t = 0, r = 1, 2, . . . , R. ( 22 
)
Other solutions, obtained by equating the left side of Equation ( 22) to 2kπ with k integer, are also possible; however, since they affect the unknowns α r only by a constant, they are unessential. The similarity among Equations ( 21) and ( 22), and Equations ( 16) and (17), should be noted.

If R < N, Equations ( 22) are not sufficient to determine all the functions α n , and L = N -R of them (e.g. the first L) remain undetermined. In order to avoid indeterminacies, they are taken as equal to the phases θ n of the associated amplitudes. By solving Equations ( 22) for the remaining α n 's, it follows that

α p = θ p , p = 1, 2, . . . , L, α q = L p=1 c qp θ p + d qr σ r t, q = L + 1, L + 2, . . . , N, (23) 
where c qp and d qr are constant coefficients. According to this choice, the amplitudes B p are assumed to be real (since they are associated with unknown exponents) while the amplitudes B q are assumed to be complex (since they are associated with 'known' exponents), i.e.

B p = 1 2 a p , p = 1, 2, . . . , L, B q = 1 2 (u q + iv q ), q = L + 1, L + 2, . . . , N. ( 24 
)
The phases θ p and the associated real amplitudes a p will be referred to as principal phases and principal amplitudes, respectively. From Equations (20), (23), and (24) it follows that

A p = 1 2
a p e iθ p , p = 1, 2, . . . , L, A q = 1 2 (u q + iv q ) e iα q , q = L + 1, L + 2, . . . , N.

In conclusion, the unknowns of the problem are still 2N, as in the original problem: the L principal phases θ p , the L principal amplitudes a p , and the 2(N -L) = 2R components u q and v q of the complex amplitudes B q , measured in bases each rotating with a time law given from Equation ( 23 (u n + iv n ) l spn , . . . , u qα q v q = q (u q + iv q )a 2k m , (u q + iv q )(u n + iv n ) 2k , . . . , L m=0 a l sqm m N n=L+1 (u n + iv n ) l sqn , . . . , v q + α q v q = q (u q + iv q )a 2k m , (u q + iv q )(u n

+ iv n ) 2k , . . . , L m=0 a l sqm m N n=L+1 (u n + iv n ) l sqn , . . . , (26) 
in which, due to Equations (23 2 )

α q = L p=1 c qp θ p + d qr σ r . ( 27 
)
Equations ( 26) will be referred to as the mixed form of the AME. Unlike the rotating form, it does not contain arbitrary quantities. To obtain periodic motions, a p = u p = v p = 0 must be enforced, together with θ p = ν p = const. Hence, by solving 2N algebraic equations, the 2N unknowns (a p , ν p , u q, v q ) are evaluated. By substituting θ p = ν p t + ϕ p in Equations ( 232 ), where the ϕ p 's are L arbitrary initial phases, α q = ν q t + ϕ q is drawn, with the frequency corrections ν q univocally determined and the initial phases ϕ q depending on ϕ p . Similarly to the original AME, and due to the presence of the principal phases, periodic motions are not fixed points for the mixed form of the AME. To remove this drawback it is necessary to eliminate these phases from the equations. However, this operation is not always possible, as will be explained. Let us introduce the following fundamental hypothesis: the L principal amplitudes a p do not vanish in any motions. In this case Equations (26 2 ) can be divided by a p = 0 and put in the standard form θ p = θ p (a m , u n , v n ). By using these equations in Equations ( 27), α q = α q (a m , u n , v n ) follows. Therefore Equations (26 1 ), (26 3 ) and (26 4 ) become a standard form system y = f(y, t) of M = N + R equations in the M unknowns y = (a p , u q , v q ) T . This will be referred to as the standard form of the AME. Once the unknowns have been determined, from Equations (26 2 ) the evolution of the principal phases θ p is first drawn and, from Equation (23 2 ), that of the phases α q is finally obtained.

The standard form of the AME has the same peculiarities as the reduced form, namely: (a) it has the smallest dimension M (equal to the codimension of the problem) and, (b) it admits periodic motions as fixed points a p = u p = v p = 0. In addition, it suffers no problems when the stability of incomplete classes of motion (i.e. u h = v h = 0 for some h's) is analyzed. Appendices C and D illustrate the application of the procedure.

The standard form of AME is the most suitable for a study of the evolution of the amplitudes. However, to obtain it, it is necessary to select L principal amplitudes that do not vanish in any class of motion. If, in contrast, some of the principal amplitudes vanish in particular classes, the standard form is unable to give correct information about those motions. In these circumstances it would be possible to build more than one standard form, each valid for some classes of motion. However, such a procedure could be inconvenient from a computational point of view.

The standard form, when it exists, also has the following pathology. Although a p = 0 by hypothesis, it can become small in some motions. In these cases, small denominators entailing numerical problems appear in the standard form, since in Equation (26 2 ) θ p is affected by a small coefficient. The problem can be overcome by adopting a master-and slave-amplitude representation, in which the non-principal (slave) amplitudes admit the principal (master) amplitude as factors. A general treatment of the problem will not be developed here, but the basic idea is outlined by an example in the Appendix C.

Conclusions

Alternative forms of Amplitude Modulation Equations (AME) governing the asymptotic dynamics of multiresonant systems have been discussed. The AME have been derived (to whitin their coefficients) under general simultaneous internal and external resonance conditions. By using polar, Cartesian and mixed representation for the complex amplitudes, different sets of real equations have been obtained. Their effectiveness in analyzing periodic motions and their stability has been described, above all when incomplete solutions (i.e. solutions in which some amplitudes identically vanish) have been studied. Finally, some illustrative examples have been worked out. The following conclusions are drawn:

1. The polar form (the most popular one) is also the most significant, due to the physical meaning of the variables, i.e. real amplitudes and phase-combinations. However, due to its non-standard normal form, it does not permit the stability of incomplete solutions to be analyzed. 2. In the rotating form the complex amplitudes are expressed through Cartesian components in suitably rotating frames. The equations are well-suited to find periodic solutions and are in standard normal form, so that no problems arise in analyzing stability. However, they are not amenable to direct numerical integrations. Moreover, they call for an enlargement of the state-space with respect to the polar form, since they simultaneously describe the evolution of both amplitudes and phases, rather than of phase-combinations. Therefore, their importance is chiefly conceptual, since they systematically explain the use of changes in variables which have been used in the literature to overcome the problems of the polar form. 3. The mixed (i.e. polar and Cartesian) form, leads to standard normal form equations suitable to analyze the stability of incomplete solutions. However, such a standard form does not always exist, since it is conditional on the finding of a suitable number of (principal) amplitudes which are different from zero in any motion. If this is not the case, more than one standard normal form should be sought, each one valid for some classes of motion. 4. The possible occurrence of small denominators in the standard normal form is highlighted.

A strategy to overcome the problem is only sketched here; it could be the subject for future work.

The previous findings have illustrated the expedience of creating a tool that is able to ascertain in advance (i.e. before solving any forms of the AME) whether or not the system admits non-vanishing principal amplitudes, in order to proceed or not with the construction of the standard form. This subject is addressed in a companion paper, in which a method answering the problem is developed [START_REF] Luongo | Classes of motion qualitative analysis for multiresonant systems: I. An algebraic method, II. A geometrical method[END_REF].

δA 1 + 1 2 ic 1 a 2 δ Ā1 e iσ 1 t = 0, δA 2 = 0, δA 3 + 1 2 ic 4 a 2 δ Ā4 e iσ 2 t = 0, δA 4 + 1 2 ic 5 a 2 δ Ā3 e iσ 2 t = 0. ( 35 
)
The rotating form of the variational equation is obtained by performing the change of variable δA n = δB n e iν n t (n = 1, . . . , 4) where the coefficient ν n satisfies the following conditions

ν 2 = 2ν 1 -σ 1 , ν 2 = ν 3 + ν 4 -σ 2 . ( 36 
)
Since ν 2 = 0, Equations (36) furnish ν 1 = σ 1 /2 and ν 3 = σ 2ν 4 , with ν 4 being arbitrary. The rotating form of (35) then reads From Equation (38), λ 1,2 = ± (c 2 1 a 2 2σ 2 1 )/4 is obtained, from which the monomodal solution is stable if a 2 < a 2c := σ 1 /c 1 . From Equation (39)

δB 1 + 1 2 iσ 1 δB 1 + 1 2 ic 1 a 2 δ B1 = 0,
λ 1,2 = i ν 4 - σ 2 2 ± 1 2 σ 2 2 -c 4 c 5 a 2 2 , λ 3,4 = λ1,2 (40) 
is drawn. When a 2 ≤ a 2c := σ 2 /( √ c 4 c 5 ) the four eigenvalues lie on the imaginary axis, and the solution is stable to (A 3 , A 4 )-perturbations. At a 2 = a 2c two couples of eigenvalues coalesce, after which they become complex conjugate, two of them with positive real parts. Therefore, the monomodal solution loses stability at a 2 = a 2c , irrespective of the value fixed for the arbitrary parameter ν 4 . This, therefore, can be put equal to zero, since the change of variable in the amplitudes is performed. It can be shown, that according to the comments of Section 3, the evolution of the perturbations δA n = δB n e iν n t (n = 3, 4) does not depend on ν 4 . The question is not trivial, since δA n vary in time according to exponents exp[(λ m + iν n )t], some of which depend on ν 4 . Therefore it is to be expected that there exists a mechanism involving the eigenvectors φ m of the variational matrix, which cancels the effects of such exponents. The general solution of the variation equation reads However, since the eigenvectors are found to be of the following type

δA
φ k = (α k + iβ k β k -iα k γ k -iδ k δ k + iγ k ) T , φ k+2 = φk , k = 1, 2, (42) 
it follows that φ k1 + iφ k2 = 0, φk3 + i φk4 = 0 while φk1 + i φk2 = 0, φ k3 + iφ k4 = 0, i.e. the coefficients of the exponents depending on ν 4 vanish.

δB 3 + i(σ 2 -ν 4 )δB 3 + 1 2 ic 4 a 2 δ 4 + iν 4 δB 4 + 1 2 ic 5 a 2 δ 1 2 1 2 (c 1 a 2 + σ 1

 3242421121 B4 = 0, δB B3 = 0,(37)having ignored the trivial Equation (35 2 ). By letting δB n = (x n + iy n ) e λt , two uncoupled eigenvalue problems follow, governing stability to A 1 -or (A 3 , A 4 )-perturbations of A 0 2 , respectively λ (c 1 a 2σ 1 )

  iφ k2 ) e iν 3 t (φ k3 + iφ k4 ) e iν 4 t e λ k t + d k ( φk1 + i φk2 ) e iν 3 t ( φk3 + i φk4 ) e iν 4 t e λk t , (41) where φ kj is the j -th component of φ k and c k , d k are arbitrary constants. Since ν 3 + ν 4 = σ 2 , λ k + iν 3 and λk + iν 4 are independent of ν 4 ; in contrast, ν 3 + λk and ν 4 + λ k depend on ν 4 .

	3 δA 4	=	k=1 2	c k	(φ k1 +
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Appendix A: An Example of AME in the Rotating Form

As an example, a system is considered under R = 2 simultaneous internal combination and primary external resonance conditions, namely: ω 3 = ω 1 + ω 2 + εσ 1 , ω 0 = ω 3 + εσ 2 . The relevant complex AME, up to order-two are [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] 2i

since other non-independent conditions like ω 0 = ω 1 + ω 2 + ε(σ 1 + σ 2 ) would lead to terms A 0 Ā1 , A 0 Ā2 which are of higher order, being the excitation of soft type (A 0 A i , i = 1, 2, 3). In Equations (28), the damping coefficients µ n are allowed to assume negative values (self-excitation). By using A n = B n e iν n t and requiring, in accordance with Equations ( 17)

By expressing the rotating amplitudes in Cartesian components, B n = (u n + iv n )/2, Equations (30) lead to

Equations (31) are a system of equations in the six unknowns (u n , v n ), depending on one of the ν m -parameters (m = 1, 2), left arbitrary by the algebraic Equation (29 1 ). It can be checked, however, that such a parameter must assume a specified value in order for the steady version of Equations (31) to admit a solution, while a v m /u m ratio (m = 1, 2) remains undetermined.

To prove this, it is easier to work directly on Equations (30). By requiring B n = 0, solving and ignoring the trivial solution, it follows that

By separating in Equations (32 3 ) the real and imaginary parts, two real equations are obtained

Equations ( 332 ), together with Equations (29), univocally determine the parameters ν n ; Equation (33 1 ) then furnishes the modulus of B 3 , while its phase ϕ 3 is still unknown. From Equation (32 2 ), however, ϕ 3 and |B 2 | are successively determined and, finally, from Equation (32 1 ) a 1 and a relation between ϕ 1 and ϕ 2 are drawn. Therefore one phase remains undetermined.

In particular, if A 0 = 0 (free self-excited oscillations), also Equations (32 2 ) leads to equations similar to (33). The two homogenous equations, together with the only resonance condition (29 1 ), again univocally determine the parameters ν n . A unique relation among ϕ 1 , ϕ 2 and ϕ 3 is found from Equation (32 1 ), so that two phases remain undetermined.

If, in a second particular case, µ n = 0 while A 0 = 0 (undamped forced system), Equation (32 2 ) identically vanishes and one of the ν m 's (m = 1, 2) remains undetermined. From Equation (33 1 ) and Equation ( 32 In a third particular case, if µ n = 0 and A 0 = 0 (free undamped oscillations), both the ν m 's (m = 1, 2) remain undetermined. Equations (32 2,3 ) furnish only the modulus of B 2 and B 3 , while from Equation (32 1 ) a 1 and a relation between ϕ 1 , ϕ 2 and ϕ 3 are obtained, all of them as functions of the undetermined ν m 's. Therefore ∞ 4 solutions exist.

These cases are examples of the validity of the statements of Section 2 regarding the degree of arbitrariness of the periodic solutions of forced and unforced conservative systems.

Appendix B: Stability Analysis of Incomplete Motions by the Rotating Form of AME: An Illustrative Example

Let us consider a system with quadratic nonlinearities in which N = 4 modes are involved in

that entail the third order (dependent) resonance condition 2ω 1 = ω 3 + ω 4 + σ 2σ 1 . Up to order-three, by neglecting terms as A m (A n Ān ), the AME read

where the c i coefficients are assumed to be real, as occurs in conservative systems. Equations (34) admit the monomodal solution (A 0 1 , A 0 2 , A 0 3 , A 0 4 ) = (0, (1/2)a 2 , 0, 0) with frequency correction ν 2 = 0. Its stability is governed by the variational equation

Appendix C: Standard Form of AME for a 1:2 Internally Resonant System

An example of the procedure illustrated in Section 4 is given here. The AME governing the free vibrations of a system in the 1:2 resonance condition

Since N = 2, R = 1, it is necessary to choose L = N -R = 1 principal amplitudes. From Equation (43), it follows that A 2 = 0 in any motion, while the same property does not hold for A 1 . Therefore A 2 must be taken as the principal amplitude. Equation ( 22) reads α 2 -2α 1 + σ = 0. By taking α 2 = ϑ 2 , α 1 = (ϑ 2 + σ )/2 follows. Therefore, the mixed representation Equation ( 22) to be used is

By substituting it in Equations ( 43), four real equations in the unknowns (a 2 , ϑ 2 , u 1 , v 1 ) are drawn. The equation governing the ϑ 2 -evolution reads

which, after substitution into the other three equations, leads to the following standard form AME

Although a 2 = 0, if it is small in some motions, small denominators appear in Equations (46), as a consequence of Equation (45). To eliminate these terms, the following alternative representation is adopted

in which A 1 plays the role of slave amplitude and A 2 that of master amplitude, since A 1 cannot exist without A 2 . From Equations ( 43) and ( 47)

and

follow, as counterparts of Equations ( 45) and (46). Equations (49) do not suffer the numerical problems of Equations ( 46); however, it is necessary to use variables (u 1 , v 1 ) and a 2 , which in general are not of the same order of magnitude. The procedure illustrated here should be generalized for more complex problems. It has already been adopted in [START_REF] Gils | Hopf bifurcation with nonsemisimple 1:1 resonance[END_REF], where, however, its use was suggested an account of the nature of the problem, rather than for reasons of mathematical convenience.

Appendix D: Standard Form of AME for a 1:2 Internally and a 1:1 Externally Resonant System

The previous system is considered again, with the mode-2 now excited by a sinusoidal force of frequency ω 0 ω 2 . The resonance conditions are ω 2 = 2ω 1 + εσ 1 and ω 0 = ω 2 + εσ 2 . The AME (43) modify as follows [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] -

since, as in the example of the Appendix A, the dependent resonance conditions are of higher order. Since R = N = 2, it is L = N -R = 0, so that no principal amplitudes need be sought, i.e. all the complex amplitudes must be expressed in Cartesian form. Equation ( 22) read: α 2 -2α 1 + σ 1 = 0, -α 2 + σ 2 = 0. By solving them α 1 = (σ 1 + σ 2 )/2, α 2 = σ 2 are found and, therefore, the change of variable to be used is

(u 1 + iv 1 ) e (i/2)(σ 1 -σ 2 )t , A 2 = 1 2 (u 2 + iv 2 ) e iσ 2 t . (51)

From Equations ( 50) and (51), the standard form equations follow