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with non-compact cross-section are considered, the
warping e2ects are neglected. In [5,6] a non-linear
one-dimensional polar model of compact beam is
derived, capable of studying interactions between
5exural and torsional motions occurring in beam-like
structures in several internal resonance conditions.
Even if the linear warping contribution is consid-
ered, attention is again paid to the case of compact
cross-sections.
In this paper, a non-linear beam model is devel-

oped as an internally constrained three-dimensional
continuum, suitable to study three dimensional large
amplitude oscillations. By focusing attention on open
cross-sections without any assumption of its symme-
try, the e2ects of the torsional curvature on the elon-
gation of the longitudinal 6bers and the non-linear
torsional warping of the section are considered. The
warping is expressed in terms of the displacements of
the shear center of the section by extending the Vlasov
theory [7] to the non-linear 6eld. This is similar to the
approach found in some papers devoted to non-linear
theory of a thin-walled beam [8–10]. In particular, in
[10], where a moderate rotation theory of thin-walled
composite beams is proposed, the series expansion of
the rotation tensor has been truncated at the second
order only. The beam considered here is shear and ax-
ially undeformable; these internal constraints lead to
a model whose deformed con6guration is described
by two displacements only plus the torsional rotation.
The equations of motion are derived by the Hamilton
principle; they simplify remarkably if the cross-section
has one or two symmetry axes. By estimating the or-
der of magnitude of the various terms and retaining
only the leading ones, simpler reduced equations are
drawn. This is an extension of the model proposed in
[11] for the study of the interaction between torsional
and axial motions with comparable frequencies. Fi-
nally, by applying the Galerkin procedure, a discrete
form of the equations of motion is obtained, in view
of studying non-linear dynamic coupling phenomena
dealt with in Part II [12].

2. Kinematics

2.1. Displacement 8eld

An initially straight thin-walled beam with an
open cross-section, arbitrary restrained at the ends, is

considered (Fig. 1). The following hypotheses are
assumed:

(H.1): the beam cross-section is rigid and remains or-
thogonal to the centroid axis in the deformed
con6guration (shear indeformable beam);

(H.2): a non-rigid displacement 6eld is superimposed
to the previous one, having components both
normal and tangential to the cross-section in
the deformed con6guration (non-linear warp-
ing);

(H.3): (a) the shear strains on the middle surface
of the thin-walled beam identically vanish
(Vlasov condition); moreover, (b) the exten-
sional and shear strains of the cross-section
plane also vanish (indeformability of the sec-
tion in its own plane);

(H.4): the beam is axially inextensible.

A reference frameOx1x2x3 is introduced, where x1 and
x2 are section principal axes, x3 contains the centroid
axis and O is the centroid of an end cross-section
(Fig. 1). A unit base vector b= {̃b1; b̃2; b̃3}, solid with
the (not warped) section in the deformed con6guration
is considered, with b̃3 tangent to the centroid axis. Let
us denote b = {̃b1; b̃2; b̃3} as the triad solid with the
section in the undeformed con6guration, oriented like
the xi-axes. The displacement vector ũP = ÕP − ÕP
of the generic point P ≡ (x1; x2; x3) can be expressed
as the sum of a rigid and a non-rigid displacement
namely:

ũP = ũC + (R − I)[(x1 − x1C )̃b1 + (x2 − x2C )̃b2]

+R

3∑
i=1


ib̃i: (1)

In Eq. (1) R is the rotation tensor (̃bi = Rb̃i); I the
identity tensor, C ≡ (x1C ; x2C ) the shear center and

̃=

∑3
i=1 
ib̃i the warping vector, whose components

are measured in the deformed con6guration. In matrix
form Eq. (1) reads as

uP = uC + (R− I)(x− xC) + R
; (2)

where u = {u1 u2 u3}T; x = {x1 x2 0}T and

 = {
1 
2 
3}T: To make the kinematical de-
scription unique, the warping vector must describe
neither a translation nor a rotation. This requirement
is satis6ed if the following orthogonality conditions
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Fig. 1. Beam section before and after deformation, and unit vector triads.

hold:∫
A

3 dA= 0;

∫
A

3x1 dA= 0;

∫
A

3x2 dA= 0;

∫
A

1 dA= 0;

∫
A

2 dA= 0;

∮
[
2(x1 − x1C )− 
1(x2 − x2C )] dA= 0: (3)

Eqs. (3)1; (3)4 and (3)5 ensure 
 is not a transla-
tion, Eqs. (3)2 and (3)3 assure 
 is not a rotation for
any 
3 �=0, Eq. (3)6 prevents 
 from being a purely
torsional rotation. Eqs. (3)1–(3)3 coincide with the
Vlasov linear conditions, even though 
 will be found
here to be a non-linear function of the displacement
components.
The orthogonal rotation matrix R describes the po-

sition of the base b with respect to the base b (b=Rb).
The matrix R is obtained through three successive el-
ementary 6nite rotations around three di2erent axes
and is expressed as R = R1R2R3. As illustrated in
Fig. 2,R1 describes the 6rst rotation #1 around the axis
b̃1; R2 describes the second rotation #2 around the
axis b̃′2 and R3 describes the third rotation #3 around
the axis b̃′′3 ≡ b̃3. The terms of the ith column of R
are the components of the unit vector b̃i with respect
to the base b (b= RTb).

Fig. 2. Rotational sequences used to describe the orientation of
the cross-section axes.

The displacements 6eld (2) is described by six func-
tions of the abscissa z:=x3 and of the time t, i.e. ui(z; t)
and #i(z; t) (i=1; 2; 3), and by the three warping func-
tions 
i(x1; x2; z; t). However, the shear indeformabil-
ity condition (hypothesis H.1) makes it possible to
express the 5exural rotations #1 and #2 in terms of the
spatial derivatives of the displacements ui, thus reduc-
ing the number of independent displacement variables.
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Fig. 3. Shear indeformability: geometrical interpretation.

From Fig. 3 the following relationships are drawn:

tg#1 =− u′2
1 + u′3

; tg#2 =
u′1√

u′21 + (1 + u′3)2
: (4)

Hypotheses H.3 and H.4 will be used in the sequel.
It will be shown that they permit to eliminate the warp-
ing components 
i and the longitudinal displacement
u3, respectively, thus reducing to three (u1; u2; #3) the
number of independent variables.

2.2. Curvature and angular velocity

Before analyzing the strain 6eld, the curvatures of
the beam are 6rst de6ned. The curvature matrix C,
referred to the undeformed base b is

C= RTR′; (5)

where (·)′=@=@z. The result is an antisymmetric matrix
whose independent components are

�1 = cos#2 cos#3#′
1 + sin #3#′

2;

�2 =−sin #3 cos#2#′
1 + cos#3#′

2;

�3 = sin #2#′
1 + #′

3: (6)

�1 and �2 will be referred to as 5exural curvatures and
�3 as torsional curvature.
The angular velocity matrix W, referred to the un-

deformed base b, is also an antisymmetric matrix and
it is given by a similar relation

W = RTṘ; (7)

where the dot denotes time di2erentiation. Its scalar
components are

!1 = cos#2 cos#3#̇1 + sin #3#̇2;

!2 =−sin #3 cos#2#̇1 + cos#3#̇2;

!3 = sin #2#̇1 + #̇3: (8)

2.3. Strain 8eld

The Green–Lagrange strain matrix E = [�ij] is as-
sumed as the deformation measure. It is de6ned by

ds2 − ds2 = 2 dxT du + duT du= : 2 dxTE dx; (9)

where ds and ds are the deformed and undeformed
length of a material segment, respectively. By dif-
ferentiating Eq. (2) and substituting it into Eq. (9),
the strain components �ij are drawn in terms of
the derivatives of the displacements ui(z; t); #i(z; t)
and 
i(x1; x2; z; t). However, taking into account the
shear-indeformability and after considerable algebra,
it is possible to show (see Appendix A) that the
strains �ij can be expressed as a function of the curva-
tures �i and of the elongation eC = (ds=ds− 1) of the
shear-center axis, i.e. of the generalized strain mea-
sures of the one-dimensional polar beam model, in
addition to the derivatives of the warping functions.
The strains assume the following expressions:[
�11 �12
�21 �22

]
=
[


1;1 1=2(
1;2 + 
2;1)
1=2(
2;1 + 
1;2) 
2;2

]

+
1
2

[

2
3;1 
3;1
3;2


3;2
3;1 
2
3;2

]
+ O(
2

i );

(
�13
�23

)
=
(−�3(x2 − x2C )

�3(x1 − x1C )

)
+ (1 + eC)

(

3;1


3;2

)

+
(


1;3


2;3

)
+ [�1(x2 − x2C )

−�2(x1 − x1C ) + 
3;3]
(


3;1


3;2

)

+
3

(
�2

−�1

)
+ O(
2

i ; �3
i);

(10)
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�33 = [eC + �1(x2 − x2C )− �2(x1 − x1C ) + 
3;3]

+ 1
2 [eC + �1(x2 − x2C )− �2(x1 − x1C ) + 
3;3]2

+ 1
2�

2
3[(x1 − x1C )

2 + (x2 − x2C )
2]

−�3[�1(x1−x1C )+�2(x2−x2C )]
3+O(�j
i);

where i = 1; 2; eC = u′3 + 1=2(u′21 + u′22 ) and �ij =
2�ij. Terms of higher order, depending on the in-plane
warping 
i, have not been made explicit in Eqs. (10)
since they will be found to be unessential for further
analysis; indeed 
i = O(
2

3) (i = 1; 2); follows from
Eq. (10)1 and hypothesis H.3b. If the warping e2ects
are neglected, Eqs. (10) becomes formally equal to the
strain displacement relationships of the linear beam
theory; however, here the curvatures �i and the elonga-
tion eC are non-linear functions of the displacements.
Moreover, a new term proportional to the squared tor-
sional curvature �3 appears in the longitudinal strain
�33; it represents the non-linear elongation of the lon-
gitudinal 6bers of the beam due to the torsional rota-
tion of the section. Finally, the in-plane strains only
depend on warping, since the cross-section is rigid in
bending and torsion.
Some approximations are introduced to simplify re-

lations (10). Since the second square bracketed term
in the longitudinal strain �33 is the square of the 6rst
term, it is neglected. Moreover, cubic terms of the
kind �i�3
3; (i = 1; 2) are neglected too since they
are of the same order of �3
i. Finally, the elonga-
tion eC in the �13; �23 components is also neglected
with respect to unity. Therefore, the approximated
Green–Lagrangian strains read as

�11 =
1;1 + 1=2
2
3;1;

�22 =
2;2 + 1=2
2
3;2;

�12 =
1;2 + 
2;1 + 
3;1
3;2;

�13 =−�3(x2 − x2C ) + 
3;1 + 
1;3 + [�1(x2 − x2C )

−�2(x1 − x1C ) + 
3;3]
3;1 + 
3�2;

�23 = �3(x1 − x1C ) + 
3;2 + 
2;3 + [�1(x2 − x2C )

−�2(x1 − x1C ) + 
3;3]
3;2 − 
3�1;

�33 = eC + �1(x2 − x2C )− �2(x1 − x1C ) + 
3;3

+ 1
2�

2
3[(x1 − x1C )

2 + (x2 − x2C )
2]: (11)

Fig. 4. Local abscissa c and shear center position C.

2.4. Non-linear warping functions

In order to obtain a one-dimensional model, the de-
pendence of the warping functions 
i(x1; x2; z; t) on
the transversal coordinates x1 and x2, should be de-
termined in advance by enforcing suitable kinemati-
cal conditions. In the Vlasov linear theory the unique
warping component 
3(x1; x2; z; t) is approximated by
a function 
∗

3 (c; z; t) (Fig. 4) where c is a curvilinear
abscissa along the middle line of the section, under
the hypothesis that 
3 is constant along the (small)
thickness. Moreover, the dependence of 
∗

3 on c is
determined by requiring that the shear strain along
the middle line of the section vanishes. Here, in the
non-linear problem, the same Vlasov assumption is
considered (hypothesis H.3a). In addition, in order to
evaluate the in-plane warping components 
1 and 
2,
the in-plane strains �11; �22 and �12 are required to van-
ish on the whole section (hypothesis H.3b). In general
no function having this property exists, since the plane
strain problem is overdetermined; however, as shown
in Appendix B, such functions 
i do exist if 
3

∼= 
∗
3

is constant along the thickness (i.e. if the beam is thin
walled) and can themselves be considered constant
along the thickness, i.e. 
1

∼= 
∗
1 and 
2

∼= 
∗
2 .

To evaluate the warping functions 
k (k = 1; 2; 3)
(stars are omitted), the strains �3c; �cc; �nn; �cn are 6rst
evaluated, where n is the (inward) normal to the mid-
dle line at P. By using the known rules �3c=�13 cos  +
�23 sin  ; �cc = �11 cos2  + �22 sin

2  + �12 cos  sin  
(and similar ones), where  is the slope of the tan-
gent to the middle line at P (Fig. 4), and enforcing the
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kinematical conditions H.3, the following equations
are derived:

�3c =
@
3

@c
− �3 r + (
1;3 cos  + 
2;3 sin  )

+
3(�2 cos  − �1 sin  )

+
@
3

@c
[�1(x2 − x2C )− �2(x1 − x1C ) + 
3;3]

= 0;

�cc =
@
1

@c
cos  +

@
2

@c
sin  +

1
2

(
@
3

@c

)2
= 0;

�cn =−@
1

@c
sin  +

@
2

@c
cos  = 0: (12)

In Eq. (12)1 x1=x1(c) and x2=x2(c) are the paramet-
ric equations of middle line and r=r(c) is the distance
from the shear center C of the tangent to the middle
line at P (Fig. 4). In Eq. (12)3 @
3=@n = 0 has been
accounted for; 6nally, the condition �nn = 0 is identi-
cally satis6ed, since @
1=@n= @
2=@n=0. It is worth
noting that Eqs. (12)2 and (12)3 are formally similar
to that governing the linear kinematic problem of the
solid line undergoing an extensional distorsion (e.g.
termal variation) �cc=−1=2(@
3=@c)2; in this context,
the emergence of the in-plane warping is recognized
as a consequence of the occurrence of the out-of-plane
warping. Most importantly, Eqs. (12) show that 
1

and 
2 are second-order variables with respect to 
3,
thus justifying the omission of their square in Eqs.
(11)4–(11)6.
Previous remarks suggest a perturbation approach

to the solution of Eqs.(12). Since the curvature �i

are small, a perturbation parameter � is introduced
through the ordering �i = ��̃i; �̃i = O(1). Then, the
warping functions are expanded as 
3=�
31+�2
32+
O(�3) and, consequently 
j=�2
j2+O(�3); (j=1; 2).
The following pertubation equations up to �2-order are
obtained (tilde omitted):

Order �:
@
31

@c
= �3r;

Order �2:
@
12

@c
cos +

@
22

@c
sin  =−1

2

(
@
31

@c

)2
;

@
22

@c
cos  − @
12

@c
sin  = 0;

@
32

@c
= (
12;3 cos  + 
22;3 sin  )

−
31(�2 cos  − �1 sin  );

− @
31

@c
[�1(x2 − x2C )

−�2(x1 − x1C ) + 
31;3]: (13)

By integrating in sequence the previous equations,

31; 
j2 (j=1; 2) and 
32 are evaluated; then, by ab-
sorbing the parameter �, the following perturbation
solution is drawn:


1 = �7�2
3 + �− (x2 − x2C );


2 = �8�2
3 + !− (x1 − x1C );


3 = �1�3 + (�2 − �3)�1�3 + (�4 − �5)�2�3

+ �6�3�′
3 − �9 ′ + "1[1 + �1(x2 − x2M )

−�2(x1 − x1M )]− �3"′1�1

+ "2 + �′(x1 − x1M ) + !(x2 − x2M ): (14)

In Eqs. (14)1;2 a rigid rotation has been added to
the solution of Eqs. (13)1;2, that otherwise would be
lost because of the approximations introduced (see
Appendix B). In Eqs. (14) �i = �i(c) (i = 1; : : : ; 9)
are warping functions, depending on the cross-section
shape; they are not all independent and are de6ned
to within a constant (see Appendix C). Moreover, M
is the principal origin of the sectorial area (Fig. 4)
[7] and � = �(z; t); ! = !(z; t); "1(z; t); "2(z; t) and
 (z; t) are integration arbitrary functions of z and t.
Since �1 coincides with the sectorial area, the linear
part of 
 is formally identical to that of the linear
theory; however, here �3(z; t) represents a non-linear
torsional curvature.
As shown in Appendix C, warping is described by

�1 and six independent warping functions, namely $i=
$i(c) (i = 1; : : : ; 6), so that Eq. (14) is rewritten as


1 = $4�2
3 + �(z)− (x2 − x2C );


2 = $5�2
3 + !(z) + (x1 − x1C );

4pt]
3 = �1�3(1− "′1) + $1�1�3 + $2�2�3 + $3�′
3�3

−$6 ′ + �′x1 + !′x2

+ "1(�1x2 − �2x1) + "̃2; (15)
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where "̃2=−�′x1M−!′x2M−"1�1x2M+"1�2x1M+"1+"2.
By imposing the conditions given by Eqs. (3)1; (3)4
and (3)5; "̃2; �; ! are obtained together with the arbi-
trary constants; Eqs. (3)2 and (3)3 allows determina-
tion of "1�1 and "1�2; Eq. (3)6 determines  . By ne-
glecting "′1 with respect to unity, the following 6nal
form of the warping is obtained:


1 = $̃4�
2
3;


2 = $̃5�
2
3;


3 = �1�3 + $̃1�1�3 + $̃2�2�3 + $̃3�
′
3�3; (16)

where the new functions $̃i are de6ned in Appendix C.
By replacing Eqs. (16) in Eq. (11)6, the only

non-vanishing strain �33 is determined

�33 = eG + �1x2 − �2x1 + �′
3�1 +

1
2�

2
3s

2

+ (�1�3)′$̃1 + (�2�3)′$̃2 + (�3�′
3)

′$̃3; (17)

where eG = eC − �1x2C + �2x1C is the longitudinal
strain of the centroid axis and s2 is the square of the
distance between the shear center of the section and
the generic point P. The 6rst four terms of Eq. (17)
are formally equal to those of the Vlasov linear theory,
with non-linear 5exural and torsional curvatures. The
6fth term describes the elongation due to torsion, and
the remaining terms account for non-linear warping.
When the beam undergoes no torsional curvature, all
the linear and non-linear warping terms vanish.

2.5. Inextensibility condition

The beam is assumed to be inextensible (hypothe-
sis H.4). In compact beam theory, such a property is
modeled by requiring the generic element of the cen-
troid axis to maintain its initial length. However, this
condition seems to be inadequate to describe the be-
havior of a thin-walled beam, due to the presence of
warping and torsional elongation, which in principle
both induce longitudinal deformation of the centroid
axis. Therefore, the inextensibility condition is intro-
duced by requiring the mean value on the cross-section
of the longitudinal strain (17) to vanish, i.e.∫

A
�33 dA= 0: (18)

By taking into account that the warping functions
�1 and $i satisfy Eq. (3)1, from Eq. (18) it follows that

eG =− 1
2�

2
3'

2
C; (19)

where 'C is the cross-section polar radius of inertia
with respect to the shear center C.
Eq. (19) shows that the strain of the centroid axis

is not zero, but it is a second-order quantity. It is not
a2ected by warping, but only by the torsional strains,
and represents the so-called non-linear torsional short-
ening of the beam. With Eq. (19), Eq. (17) reads as

�33 = �f + �t + �(1)
 + �(2)
 ; (20)

where

�f = �1x2 − �2x1; �t = 1
2�

2
3(s

2 − '2
C);

�(1)
 = �′
3�1;

�(2)
 = (�1�3)′$̃1 + (�2�3)′$̃2 + (�3�′
3)

′$̃3 (21)

are the 5exural, torsional, 6rst- and second-order
warping longitudinal strains, respectively. The use of
Eq. (19) permits the elimination of the u3-variable;
by recalling the de6nition of eG, Eq. (19) is written as

u′3 +
1
2 (u

′2
1 + u′22 )− �1x2C + �2x1C + 1

2�
2
3'

2
C = 0;

(22)

where �i = �i(u1; u2; u3; #3; t), after having used the
shear indeformability conditions (4). Eq. (22) is a
non-linear algebraic equation in the unknown u′3,
which is solved by a perturbation method. By intro-
ducing the ordering u1 = �ũ 1; u2 = �ũ 2; #3 = �#̃3, and
expanding the unknown as u3 = �u(1)3 + �2u(2)3 + �3u(3)3 ,
the following perturbation equations are obtained up
to the �2-order (by omitting the tilde):

u′(1)3 − �(1)
1 x2C + �(1)

2 x1C = 0;

u′(2)3 + 1
2 (u

′2
1 + u′22 )− �(2)

1 x2C + �(2)
2 x1C

+ 1
2�

(1)2

3 '2
C = 0;

u′(3)3 − �(3)
1 x2C + �(3)

2 x1C + �(1)
3 �(2)

3 '2
C = 0; (23)

where �(k)
i is the �k -order part of �i. By solving the

sequence of Eqs. (23), the terms of the series expan-
sion of u′3 are calculated. Finally, by absorbing the
perturbation parameter �, a solution of the type

u′3 = f(u1; u2; #3; t) (24)

is obtained, not shown here for purpose of brevity [13].
This internal constraint, valid for thin-walled beams,
is more complicated than that for compact beams.
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However, it reduces to the simplest one if the
cross-section has two symmetry axes and the torsional
elongation e2ects are neglected.

3. Equations of motion

3.1. Order-three equations

The equations of motion of the thin-walled beam
are obtained via the generalized Hamilton principle.
Since approximated order-three equations are sought,
order-three expansions of the kinematic relationships
are directly used in the functional. It reads as

)H =
∫ t2

t1

∫ l

0
{)L(u1; u2; u3; #3; t) + Q1)u1

+Q2)u2 + Q#)#3

+ )[.(f(u1; u2; #3; t)− u′3]} dz dt
∀()u1; )u2; )u3; )#3); (25)

where l is the length of the beam, L=T−U is the La-
grangian for unit length, T is the kinetic energy and U
is the elastic potential energy; moreover, Q’s are gen-
eralized distributed non-conservative forces spending
work on the associated virtual displacements and . is
a Lagrangian multiplier associated with the inextensi-
bility constraint (24). This latter has to be taken into
account in the variational principle since the velocity
u̇ 3, which appears in the kinetic energy T , cannot be
directly eliminated by means of Eq. (24). On the con-
trary, the constraints (4) and (24), as previously said,
have already been employed to eliminate #1; #2 and
u3 in the elastic potential energy U .
By neglecting the warping inertia e2ects, the kinetic

energy reads as

T =
1
2

∫ l

0

3∑
i=1

(mu̇2iO + Ii!2
i ) dz

	 1
2

∫ l

0

(
3∑

i=1

mu̇2i + mx2C u̇ 1#̇3 − mx1C u̇ 2#̇3

+
1
2

IC#̇
2
3

)
dz; (26)

where u̇ iO is the ith velocity component of the cen-
troid O; m the mass per unit length of the beam, Ii

the cross-section mass-moment with respect to the
xi-axis and IC the polar mass-moment with respect to
the shear center. In Eq. (26) use has been made of
Eq. (2) (with 
=0) and Eqs. (8). The rotation matrix
R and the angular velocities (8) have been linearized
and, as is usual in slender beams, 5exural rotatory in-
ertia terms have been neglected. It can be shown (see
Section 3.2) that the order of magnitude of the terms
neglected is small with respect to the retained terms.
By restricting the analysis to isotropic beams and

neglecting the contribution of the Poisson ratio, the
elastic potential energy per unit length reads as

V =
1
2

∫
A
[G(�231 + �232) + E�233] dA

=
1
2
GJ�2

3 +
1
2
EI1�2

1 +
1
2
EI2�2

2 +
1
2
E6�′2

3

+
1
2
E
∫
A
[�2t + �(2)

2


 + 2(�f�t + �f�
(1)

 + �f�

(2)



+ �t�
(1)

 + �t�

(2)

 )] dA; (27)

whereG and E are elastic moduli,GJ is the St. Venant
torsional sti2ness, EIi are 5exural sti2ness and E6
the warping torsional sti2ness of the linear theory. In
Eq. (27), �31 and �32, (which are not zero out of the
section middle line) are assumed to contribute to the
St. Venant torsional elastic term only; i.e. they are
approximated by the linear part of Eqs. (11)5;6, in
which 
3 is taken equal to the more re6ned solution
of the Neumann problem, which takes account of the
variation along the thickness. In addition, use has been
made of Eqs. (20) and (21).
By substituting Eqs. (26) and (27) in the Hamilton

principle and making the variations, Eq. (25) assumes
the following form:∫ t2

t1

∫ l

0

{
2∑

i=1

(Qi)ui + Hit)u̇ i + Hi1)u′i

+Hi2)u′′i + Hi3)u′′′i + Hi4)u′′′′i ) + H#t)#̇3

+H#0)#3 + H#1)#′
3 + H#2#′′

3 + H#3)#′′′
3 = 0;

mu̇ 3)u̇ 3 − .)u′3 + [f(u1; u2; #3)− u′3)).

}

×dz dt = 0;

∀()u1; )u2; )u3; )#3; ).); (28)
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where the functions H� = H�(u1; u2; u3; #3; .; t) have
complicated expressions, reported in [13]. By per-
forming integrations by parts, the following four equa-
tions are obtained from Eq. (28), in addition to Eq.
(24)

m Nu 3 − .′ = 0 (29)

and

m1 Nu 1 + mx2C N#3 − Q1

=− H ′
11 + H ′′

12 − H ′′′
13 + H ′′′′

14 :=G′
1;

m2 Nu 2 + mx1C N#3 − Q2

=− H ′
21 + H ′′

22 − H ′′′
23 + H ′′′′

24 :=G′
2;

IC N#3 + mx2 Nu 1 − mx1 Nu 2 − Q#

=H#0 − H ′
#1 + H ′′

#2 − H ′′′
#3= : G# (30)

with the relevant boundary conditions:

(Wi1)ui +Wi2)u′i +Wi3)u′′i +Wi4)u′′′i )|l0 = 0;

(W#0)#3 +W#1)#′
3 +W#2)#′′

3 )|l0 = 0; (31)

where Wi1 = Hi1 − H ′
i2 + H ′′

i3 − H ′′′
i4 ; Wi2 = Hi2 −

H ′
i3 + H ′′

i4 ; Wi3 = Hi3 − H ′
i4; Wi4 = Hi4 (i = 1; 2) and

W#0=H#1−H ′
#2+H ′′

34; W#1=H#2−H ′
#3; W#2=H#3.

From Eq. (29) the physical meaning of . emerges,
which represents the inertial longitudinal forces due
to the assumption of the inextensibility of the beam.
By integrating Eq. (29) and using Eq. (24), the La-
grangian multiplier is 6rst evaluated in terms of the
displacements:

.=
∫ z

l
m
∫ z

0
[f(u1; u2; #3) dz + u3(0))]:: dz

+G(l) (32)

then it is substituted in Eqs. (30) and (31). A set
of three integro-di2erential equations in the un-
known u1; u2; #3 is 6nally drawn. They constitute
order-three equations of motion suitable to study
5exural–torsional motions of thin-walled beams with
open cross-section.

3.2. Discussion of the equations

When the equations of motion (30) and the relevant
boundary conditions (31) are expressed in terms of
the independent displacement components u1; u2; #3,

Table 1
Coupling terms in the elastic potential energy

No symmetries One symmetry Two symmetries

�f�t Yes Yes No

�f�
(2)

 Yes Yes No

�t�
(1)

 Yes No No

�t�
(2)

 Yes Yes Yes

the equations contain some hundreds of terms, such
that they can be handled only by an algebraic manip-
ulator. These equations simplify if the cross-section
has one or two symmetry axes. Referring to the com-
pact form of the elastic potential energy, Eq. (27), it
is easy to check that, if symmetries are present, some
coupling terms between longitudinal strains of di2er-
ent nature vanish. From Table 1 it is seen that, for
mono-symmetric cross-sections, coupling between
torsional elongation and linear warping disappears.
For double symmetric cross-sections, coupling be-
tween 5exure and torsional elongation and 5exure
and non-linear warping also vanish. However, tor-
sional elongation and non-linear warping are always
coupled.
Another type of analysis which has been performed

on the equations of motion (30) and (31) consists of
evaluating the order of magnitude of the various terms.
The analysis is conducted with the aim to simplify the
equations, by retaining only the most important terms.
To this end, the equations of motion and the relevant
boundary conditions are 6rst put in non-dimensional
form by introducing the following quantities:

ũ 1 =
u1
l
; ũ 2 =

u2
l
; #̃3 =

h
l
#3 =

#3

'
;

z̃ =
z
l
; t̃ = !t: (33)

In Eq. (33) ! is a linear frequency of the beam and
h is a characteristic dimension of the cross-section,
introduced to render the torsion #̃3 of the same order
of the displacements ũ i when ui = O(#3h). The tilde
will be omitted in the sequel.
No ordering scheme is introduced on the three con-

6guration variables, which still remain of the same or-
der, namely O(u1) =O(u2) =O(#3h) = �, where � is
a small quantity. The order of magnitude of the spa-
tial and time derivatives of the generic con6guration
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Table 2
Order of magnitude of the terms of the potential energy

Linear terms Quadratic terms Cubic terms

�2f O(1)� O(1)�2; O(h2=l292)�2 O(1)�3; O(h2=l292)�3

�2t — — O(1)�3; O(h2=l292)�3

�(1)
2


 + �(2)
2


 O(1)� O(h2=l292)�2 O(h2=l292)�3

�t�f — O(1)�2 O(1)�3; O(h2=l292)�3

�t�
(1)

 — O(1)�2 O(h2=l292)�3

�t�
(2)

 — — O(h2=l292)�3

�f�
(1)

 + �f�

(2)

 — O(h2=l292)�2 O(h2=l292)�3

variable u(z; t) is evaluated according to the following
rules:
@nu
@tn

= O(�);
@nu
@ zn

= O(9n�) (34)

by assuming u to be a bi-periodic function of time fre-
quency 1 and spatial frequency 9. The order of magni-
tude of the various contributions to the elastic poten-
tial energy (27), thus obtained, is showed in Table 2.
It is found that, among the quadratic terms, the lead-

ing order contributions are of purely 5exural nature
and of torsional–5exural and torsional–linear warping
nature; among the cubic terms, the 6rst two types of
terms and the purely torsional elongation terms are im-
portant. Therefore, the torsional elongation and linear
warping play an important role in the description of
the mechanical behavior of thin-walled beams with an
open cross-section, while the non-linear warping con-
tribution is less important with respect to the previous
ones. Terms depending on the Lagrangian multiplier
are found to be negligible; longitudinal inertia forces
and non-linear inertia contributions produce higher or-
der e2ects and the relevant terms can be omitted in the
kinetic energy (26). This is in accordance with [3,6]
where only the linear rotational inertia contribution
are considered.
After having retained only the leading order terms,

the reduced equations of motion contain about 50
terms yet, if no symmetries exist.

3.3. Discrete model

The reduced equations of motion are discretized ac-
cording to the Galerkin procedure. The independent
displacements vector u={u1; u2; #3}T is expressed as a

linear combination of given z-function vectors fk(z)=
{fk1(z); fk2(z); fk3(z)}T and unknown t-function co-
eQcients qk(t):

u(z; t) =
n∑

k=1

qk(t)fk(z): (35)

The functions fk(z) are chosen as eigenfunctions
of the linearized equations and boundary conditions.
Since for a generic cross-section even the linear equa-
tions are coupled, all the components of fk(z) are dif-
ferent from zero.
From the equations of motion (30) and boundary

conditions (31) the following variational dimension-
less equation is drawn, where the tilde is omitted for
simplicity:∫ 1

0
{−G1)u′1 + (−� Nu 1 − '�x̃2C N#3 + Q1))u1

−G2)u′2 + (−� Nu 2 + '�x̃1C N#3 + Q2))u2

+ (G# − '2; N#3 − '�x̃2C Nu 1 + '�x̃1C Nu 2

+Q#))#3} dz + {(W12)u′1 +W13)u′′1 +W14)u′′′1 )

+ (W22)u′2 +W23)u′′2 +W24)u′′′2 )

+ (W#0)#3 +W#1)#′
3 +W#2)#′′

3 )}|10 = 0; (36)

where

� =
m
GJ

!2l4; ;=
IC!2l2

GJ
; x̃1C =

x1C
l

;

x̃2C =
x2C
l

(37)

are non-dimensional quantities describing transla-
tional and rotational masses and the coordinates of
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the shear center, respectively. By substituting Eqs.
(35) into Eq. (36) and vanishing separately terms
in )qk ; 3n ordinary di2erential equations of motion
follow. By limiting the expansion (35) to n=3 terms
(e.g. by assuming a group of three modes with sim-
ilar wave-length), three non-linear equations of the
following type are obtained:

Nqh + !2
h qh =

3∑
i=1

3∑
j=1

chijqiqj +
3∑

i=1

3∑
j=1

3∑
k=1

×chijkqiqjqk + fh (h= 1; 2; 3); (38)

where !h is the hth linear frequency, fh the hth modal
force, and chij and chijk are coeQcients depending on
eigenfunctions. In the general case all quadratic and
cubic terms appear in each equation of motion.
If the cross-section has a symmetry axis, e.g. x1,

Eq. (35) becomes

u(z; t) =


f11(z)

0
0


 q1(t) +


 0

f22(z)
f32(z)


 q2(t)

+


 0

f23(z)
f33(z)


 q3(t) (39)

and the discretized equations of motion (38) read as

Nq1 + !2
1q1 = c1q22 + c2q23 + c3q2q3 + c4q1q22

+ c5q1q23 + c6q1q2q3 + f1

Nq2 + !2
2q2 = c7q1q2 + c8q1q3 + c9q32 + c10q33

+ c11q21q2 + c12q21q3 + c13q2q23

+ c14q22q3 + f2

Nq3 + !2
3q3 = c15q1q2 + c16q1q3 + c17q32 + c18q33

+ c19q21q2 + c20q21q3 + c21q2q23

+ c22q22q3 + f3: (40)

If the cross-section has two symmetry axes, Eq. (35)
is written as

u(z; t) =




f1(z)q1(t)

f2(z)q2(t)

f3(z)q3(t)


 (41)

and the discretized equations of motion (38) become

Nq1 + !2
1q1 = c1q2q3 + c2q1q23 + f1;

Nq2 + !2
2q2 = c3q1q3 + c4q2q23 + f2;

Nq3 + !2
3q3 = c5q1q2 + c6q33 + c7q21q3

+ c8q22q3 + f3: (42)

In Eqs. (40)1 and (42)1 the q31-term is not present,
since it is of higher order, as discussed previously.
Although the case of two symmetry axes is the most
similar to the case of compact cross-section beams
studied in [1], in Eq. (42)3 the q33 term is also present
and this is due to the purely torsional elongation e2ect.
Terms in Eqs. (38) and (40) involve many di2erent
internal resonance conditions, which will be discussed
in Part II of this paper. However, it must be stressed
here that the kind of non-linear terms in Eqs. (38) and
(39) remains unchanged if the warping and the tor-
sional elongation e2ects are omitted, so that such de-
formations do not introduce new internal resonances.
On the contrary, they strongly a2ect the coeQcients of
Eqs. (38) and (40) and therefore are important to cor-
rectly describe the non-linear behavior of the beam.

4. Conclusion

A non-linear one-dimensional model of a thin-
walled beam with open cross-section and shear
and axially undeformable has been developed. The
Green–Lagrange tensor has been adopted as a strain
measure; its components depend only upon the strain
quantities of the one-dimensional polar beam model,
in addition to the warping. The Vlasov kinemati-
cal hypothesis, which was formulated in the linear
framework, has been extended to the non-linear 6eld;
in particular, the in-plane displacements, which arise
as a second-order e2ect of the out-of-plane classical
warping, have been accounted for. The constraint of
in-plane indeformability of the cross-section makes
it possible to express warping in terms of the cur-
vatures of the beam. Consequently, the independent
displacement components necessary to describe the
beam deformed con6guration reduce to three, two
transversal translations of the shear-center axis and
one torsional rotation.
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Three di2erential equations of motion, containing
quadratic and cubic non-linearities, have been ob-
tained via the Hamilton principle. These equations
are rather complex and can be handled only by an
algebraic manipulator. Symmetries produce great
simpli6cations. An analysis has been conducted to es-
timate the order of magnitude of the terms appearing
in the equations, which made it possible to discuss
the relative importance of the di2erent contributions
and to omit several terms. In particular, non-linear
warping does not signi6cantly a2ect the behavior of
the beam, since its magnitude is small with respect to
the other non-linear terms.
Finally, discrete equations have been obtained for

a three-mode approximation able to describe cou-
pling phenomena in three-dimensional motion. It has
been found that even in the most general case of
no-symmetry axis, warping and torsional elongation
do not add any new kind of terms to the discrete equa-
tions but they a2ect the values of the coeQcients. In
particular torsional elongation produces a remarkable
modi6cation of the coeQcients. Therefore, it is ex-
pected that torsional elongation, more than non-linear
warping, would play an important role in the descrip-
tion of the responce of the thin-walled beam. The
matter will be discussed in Part II [12].
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Appendix A. Strain–displacement relationships

With the aim to obtain the deformation 6eld ex-
pressed in terms of the torsional and 5exural curva-
tures, a suitable partitioning of the displacement 6eld
(2) is developed as follows:(

v

w

)
=

(
vC
wC

)
+

[
Ryy − I Ryz

Rzy Rzz − I

](
y − yC

0

)

+

[
Ryy Ryz

Rzy Rzz

](

y


z

)
;

(A.1)

where v = {u1 u2}T and w = {u3} are the displace-
ment components of the point P in the plane of the
section and out-of-plane, respectively, y = {x1 x2}T
and z = {x3} are the in-plane and out-of-plane co-
ordinates of P; 
y = {
1 
2}T and 
z = {
3} are
the in-plane and out-of-plane warping functions, yC =
{x1C x2C}T are the coordinates of the shear center, Rij

are sub-matrices of matrix R.
From Eq. (A.1), after di2erentiation, it follows that(
dv

dw

)
=

(
[v′C+R′

yy(y−yC)] dz+(Ryy−I) dy

[w′
C + R′

zy(y − yC)] dz + Rzy dy

)

+




(Ryy
y;y + Ryz
z;y) dy

+(Ryy
y + Ryz
z); z dz

(Rzy
y;y + Rzz
z;y) dy

+(Rzy
y + Rzz
z); z dz


 :

(A.2)

By substituting du = {dv dw}T and dx = {dy dz}T
in Eq. (9) the strain matrix E is obtained. Taking into
account the orthogonality property of R (i.e. RTR =
RRT = I) and de6nition (5) of the curvature matrix
C, and using the following identities proved in [13]:

(Ryy − RT
yy) = skew[Ryy] = 0;

(y − yC)T(R′T
yyR

′
yy + R′T

zyR
′
zy)(y − yC)

= (y − yC)T(CT
yyCyy + CT

zyCzy)(y − yC);

(R′T
yzR

′
yy + R′T

zzR
′
zy)(y − yC) = CT

yzCyy(y − yC);

(R′T
yzR

′
yz + R′T

zzR
′
zy) = CT

yzCyz (A.3)

the components of the matrix E become

Eyy = 1
2(


T
y;y + 
y;y) + 
T

z;y
z;y + O(
2
y);

2Eyz = [Cyy(y − yC)] + [RT
yyv

′
C + RT

zy(1 + w′
C)]

+
T
z;y[R

T
zz(1− w′

C) + RT
yzv

′
C]

+Cyz
z + 
T
z;yCzy(y − yC) + 
T

z;y
z;z

+
y;z + O(
2
y;C�$
y): (A.4)
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Ezz = (eC+1=2e2C)+[v′TC R′
yy+(1+w′

C)
TR′

zy](y−yC)

+1=2(y − yC)T(CT
yyCyy + CT

zyCzy)(y − yC)

+ [(1 + w′
C)

TR′
zz + v′TC R′

yz]
z + CT
yzCyy

×(y − yC)
z + 1=2CT
yzCyz
2

z

+[(1 + w′
C)

TRzz + v′CRyz]
z;z

+Czy(y − yC)
z;z + 1=2
2
z; z + O(C�$
y);

where (�; $ = y; z) and the following relation (eC +
1=2e2C)=w′

C+1=2(v′2C +w′2
C ) has been used, with eC the

elongation of the shear-center axis. Terms of higher
order have not been reported for sake of simplicity.
The shear indeformability condition, in matrix form,

reads as

t = (1 + eC)Rb3; (A.5)

where t = {v′C 1 + w′
C}T is a vector tangent to the

shear-center axis in the actual con6guration and b3 =
{0 1}T is the unit vector aligned with the axis in the
undeformed con6guration. From (A.5) it follows that

v′C = (1 + eC)Ryz;

1 + w′
C = (1 + eC)Rzz : (A.6)

By using Eqs. (A.6), the strains (A.4) further sim-
plify into

Eyy = 1
2(


T
y;y + 
y;y) + 
T

z;y
z;y + O(
2
y);

2Eyz = Cyy(y − yC) + 
T
z;y[(1 + eC)

+Czy(y − yC) + 
z;z]

+Cyz
z + 
y;z + O(
2
y; C�$
y):

Ezz = (eC + 1=2e2C) + (1 + eC)Czy(y − yC)

+1=2(y − yC)T(CT
yyCyy + CT

zyCzy)(y − yC)

+CT
yzCyy(y − yC)
z + 1=2CT

yzCyz
2
z

+(1 + eC)
z;z + Czy(y − yC)
z;z

+1=2
2
z; z + O(C�$
y): (A.7)

Eqs. (A.7) show that the strains depend only on
the curvatures Cij, on the elongation eC , and on the

warping 
. By posing

Eyy =
[
�xx �xy
�yx �yy

]
; 2Eyz =

{
�xz
�yz

}
; Ezz = �zz

(A.8)

and recalling the de6nition of the curvatures �i:

C= RTR′ =
[
Cyy Cyz

Czy Czz

]
=


 0 −�3 �2

�3 0 −�1

−�2 �1 0


 ;

(A.9)

expressions (10) are 6nally obtained.

Appendix B. The cross-section in-plane strain
problem

The cross-section in-plane indeformability condi-
tion (hypothesis H.3b), requires the strains �11; �22 and
�12 (Eqs. (11)1–(11)3) identically vanish on the sec-
tion, i.e. the following equations are satis6ed:


1;1 =− 1
2


2
3;1;


2;2 =− 1
2


2
3;2;


1;2 + 
2;1 =−
3;1
3;2: (B.1)

Eqs. (B.1) are a set of three linear di2erential equa-
tions in the two unknowns 
1 = 
1(x1; x2; z; t) and

2 = 
2(x1; x2; z; t) in which 
3 = 
3(x1; x2; z; t) can
be considered as a ‘known’ term. It constitutes the
classical plane strain problem of the linear continuum
mechanics. Since the problem is overdetermined, it
generally does not admit solution, unless the compat-
ibility equation (
1;1);22 + (
2;2);11 = (
1;2 +
2;1);12
is satis6ed. For problem (B.1) it reads as∣∣∣∣ 
3;11 
3;12


3;12 
3;22

∣∣∣∣= 0 (B.2)

i.e., it requires that the Hessian of the out-of-plane
warping 
3 identically vanishes in the section. There-
fore, from a geometrical point of view, condition (B.2)
demands one of the two principal curvature of the
warped section is everywhere zero. It is worth notic-
ing that such a condition is not satis6ed by the solu-
tion of the Neuman problem∇2
3 =0, since it entails

3;11
3;22 ¡ 0. In contrast, it is satis6ed if, according
to Vlasov, 
3 is assumed constant along the (small)
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thickness of section, since one of its principal curva-
tures vanishes in each point.
To solve Eqs. (B.1) it is convenient to resort to

curvilinear coordinates (c; n), with c a curvilinear ab-
scissa along the cross-section middle line and n the
(inward) normal distance along the chord. The change
of coordinates reads as

x1(c; n) = x01(c)− n sin  (c);

x2(c; n) = x02(c) + n cos  (c); (B.3)

where (x01(c); x
0
2(c)) are the coordinates of a point P

0

on the middle line and  (c) the slope of the tangent
at P0. By rotating the strain tensor in the new base
and expressing its components (�cc; �nn and �cn) in the
new coordinates (c; n), the undeformability conditions
(B.1) transform as follows:

�cc :=
1

1− n=R
(
1; c cos  (c) + 
2; c sin  (c))

+
1
2
(
3; c)2 = 0;

�nn :=−
1; n sin  (c) + 
2; n cos  (c) + 1
2 (
3; n)2

= 0;

�cn :=
1

1− n=R
(
2; c cos  (c)− 
1; c sin  (c))

+ (
1; n cos  (c)− 
2; n sin  (c)) + 
3; c
3; n

= 0; (B.4)

where R:=(d =dc)−1 is the curvature radius of the
middle line of the section at P0. If 
3 is constant along
the thickness, then 
3; n ≡ 0 and Eqs. (B:4)2;3 become
homogeneous; at the same order of approximation,
even
1 and
2 can be assumed constant, so that �nn=0
is identically satis6ed. Finally, by neglecting n=R with
respect to the unity, Eqs. (12)2 and (12)3 are obtained,
fromwhich
1(c; z; t) and
2(c; z; t) are drawn as func-
tions of the ‘known’ component 
3(c; z; t). It can be
observed that 
1 and 
2 are found to within a rigid
motion (see Eqs. (14)2 and (14)3); this latter is an ex-
act solution for the complete Eqs. (B.4), but not for
the approximated Eqs. (12)2 and (12)3.

Appendix C. Non-linear warping functions

Warping functions in Eq. (14) are

�1(c) =
∫ c

0
r(c) dc;

�2(c) =
∫ c

0
�1(c) sin  (c) dc + T�2;

�3(c) =
∫ c

0
�′1(c)(x2(c)− x2C ) dc + T�3;

�4(c) =
∫ c

0
�′1(c)(x1(c)− x1C ) dc + T�4;

�5(c) =
∫ c

0
�1(c) cos  (c) dc + T�5;

�6(c) =
∫ c

0
[�1(c)r(c) + 2�7(c) cos  (c)

+2�8(c) sin  (c)] dc + T�6;

�7(c) =−1
2

∫ c

0
r2(c) cos  (c) dc + T�7;

�8(c) =−1
2

∫ c

0
r2(c) sin  (c) dc + T�8;

�9(c) =
∫ c

0
[x2(c) cos  (c)

− x1(c) sin  (c)] dc + T�9: (C.1)

The independent non-linear shape warping func-
tions in Eq. (15) are

$1(c) = �2(c)− �3(c)

=−2�3(c) + �1(c)(x2(c)− x2C ) + T$1;

$2(c) = �4(c)− �5(c)

= 2�4(c)− �1(c)(x1(c)− x1C ) + T$2;

$3(c) = �6(c) + T$3; $4(c) = �7(c) + T$4;

$5(c) = �8(c) + T$5; $6(c) = �9(c) + T$6; (C.2)

where T�i are integration constants and T$1 = T�2 −
T�3; T$2 = T�4 − T�5; T$3;4;5;6 = T�6;7;8;9. The warping
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functions in Eq. (16) are de6ned as

$̃i = $∗
i − T$i − ki1x1 − ki2x2; i = (1; 2; 6);

$̃3 = $∗
3 − T$3 − k31x1 − k32x2 − 2$̃6k45;

$̃4 = $∗
4 − T$4 − k45x2;

$̃5 = $∗
5 − T$5 + k45x1; (C.3)

where $∗
j are functions (C.2) in which the constants

T$j=0. The quantities T$j; ki1; ki2; k45; (j=1; : : : ; 6) (i=
1; 2; 3; 6) are

T$j=

∫
A $∗

j dA

A
; ki1 =

∫
A $∗

i x1 dA
I2

; ki2=

∫
A $∗

i x2 dA
I1

;

k45 =

∫
A($

∗
5x1 − $∗

4x2) dA
(I1 + I2)

; (C.4)
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