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We study the asymptotic behaviour, as h tends to +∞, of the nonlinear system:

in a varying domain Ω h in R 2 . The boundary ∂Ω h contains an oscillating part like a comb with fine teeth periodically distributed in the first direction 0x 1 with period h -1 and thickness λh -1 , 0 < λ < 1.

We identify the limit problem where the operator -∆ is reduced to -∂ 2 ∂x 2 2 in the domain corresponding to the oscillating boundary.

INTRODUCTION

In this paper we consider the Ginzburg-Landau equation (GL h ):

-∆u h -u h + |u h | 2 u h = f in Ω h , u h : Ω h -→ R 2 ,
with homogeneous Neumann boundary condition, in a varying domain Ω h in R 2 . We are interested in a class of domains Ω h which have the shape of a comb with fine teeth periodically distributed in the first direction 0x 1 with period 1 h and thickness λ h , 0 < λ < 1 (see Fig. 1). The goal is to study the asymptotic behaviour of such problem when h tends to +∞ (see Theorem 2.1).

For general references about homogenization, we refer to [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF], [START_REF] Bakhvalov | Homogenization: Averaging Processes in Periodic Media, Mathematics and its Applications[END_REF], [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF], [START_REF] Maso | An Introduction to Γ-Convergence[END_REF], [START_REF] Sanchez -Palencia | Non-Homogeneous Media and Vibration Theory[END_REF] and [START_REF] Tartar | Partially written in F. MURAT, H-Convergence[END_REF]. In the scalar case, for this kind of domains with crenelated part of the boundary, the limit problem has been studied for the Laplace operator in [START_REF] Brizzi | Homogénéisation de frontière[END_REF], [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF], [START_REF] Gaudiello | Asymptotic Behavior of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary[END_REF] and for quasilinear operator, more generally for a monotone operator in [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF] and [START_REF] Blanchard | Homogenization of a Monotone Problem in a Domain with Oscillating Boundary[END_REF]. For reinforcement problems by a layer with oscillating thickness see [START_REF] Buttazzo | Reinforcement by a Thin Layer with Oscillating Thickness[END_REF], for problems related to the asymptotic behaviour of thin cylinders see [START_REF] Murat | Problèmes monotones dans des cylindres de faible diamètre[END_REF] and [START_REF] Murat | Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétèrogènes[END_REF].

An extensive study of Ginzburg-Landau equations is developed by Bethuel-Brezis and Hélein in [START_REF] Bethuel | Asymptotics for the Minimization of a Ginzburg-Landau Functional[END_REF] and [START_REF] Bethuel | Ginzburg -Landau Vortices[END_REF]. The limit behaviour of the Ginzburg-Landau equation in a perforated domain in R 3

with holes along a plane is studied in [START_REF] Khruslov | Homogenization of Boundary Problems for Ginzburg-Landau Equation in Weakly Connected Domains[END_REF].

In order to identify the limit problem of (GL h ), as h tends to +∞, the main steps are to establish a uniform estimate of u h in (L ∞ (Ω h )) 2 and to obtain an extension of u h on a fixed domain; this is the object of Section 3 and 4. Then, in Section 5, we find the limit problem where the operator -∆

is reduced to -∂ 2 ∂x 2 2
in the domain corresponding to the oscillating boundary. The main difficulty is to pass to the limit in the nonlinear term of the Ginzburg-Landau equation (see Remark 5.1).

For sake of completeness, we give also the limit behaviour of the previous Ginzburg-Landau equation with homogeneous Dirichlet boundary condition (for scalar problems with Dirichlet boundary condition in a domain with oscillating boundary see [START_REF] Blanchard | Homogenization of a Monotone Problem in a Domain with Oscillating Boundary[END_REF], [START_REF] Brizzi | Homogénéisation de frontière[END_REF], [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF], [START_REF] Dervieux | Identification de domaines et problèmes de frontières libres[END_REF], [START_REF] Lions | Some Aspects of Optimal Control of Distributed Parameter Systems[END_REF], [START_REF] Murat | Quelques résultats sur le controle par un domaine géométrique[END_REF], [START_REF] Pironneau | Sur les problèmes d'optimisation de structure en mécanique des fluides[END_REF] and [START_REF] Pironneau | Asymptotic Behavior, with respect to the Domain, of Solutions of Partial Differential Equations[END_REF]).

STATEMENT OF THE PROBLEM AND MAIN RESULT

Let a, b 1 , b 2 , α be in ]0, +∞[ such that 0 < α < a 2
and let us introduce the following domains in R 2 (see Fig. 1):

(2.1)

                 Ω =]0, a[×] -b 1 , b 2 [, Ω -=]0, a[×] -b 1 , 0[, Ω + =]0, a[×]0, b 2 [, Σ =]0, a[×{0}, Ω h = Ω -∪ h-1 k=0 1 h ]α, a -α[+ ak h × [0, b 2 [ h ∈ N, Ω + h = Ω + ∩ Ω h h ∈ N.
In the sequel, x = (x 1 , x 2 ) denotes the generic point of R 2 , χ A the characteristic function of a subset A of Ω and ṽ the zero-extension to Ω of any (vector) function v defined on a subset of Ω.

We recall that (2.2)

χ Ω + h ⇀ θ = a -2α a weakly ⋆ in L ∞ (Ω + ) and (2.3) χ Ω h ∩Σ ⇀ θ weakly ⋆ in L ∞ (Σ) as h diverges.
The aim of this paper is to study the asymptotic behaviour, as h tends to +∞, of the following homogeneous Neumann problem:

(2.4) -∆u h -u h + |u h | 2 u h = f in Ω h , Du h • ν = 0 on ∂Ω h , where f = (f 1 , f 2 ) is a given function in L 2 (Ω)
2 and ν denotes the exterior unit normal to Ω h .

Figure 1: the middle surface of our three-dimensional plate.

Problem (2.4) admits a weak solution

u h ∈ H 1 (Ω h ) 2 .
In fact, it is easy to see that a minimizing sequence of the following problem:

(2.5) inf

Ω h |Dv| 2 + 1 2 (1 -|v| 2 ) 2 -2f v dx : v ∈ H 1 (Ω h ) 2 is bounded in L 4 (Ω h )
2 and H 1 (Ω h ) 2 and then the infimum in (2.5) is achieved by u h satisfying the following variational equation :

(2.6)

     Ω h Du h Dv -u h v + |u h | 2 u h v dx = Ω h f v dx ∀v ∈ H 1 (Ω h ) 2 , u h = u (1) h , u (2) 
h ∈ H 1 (Ω h ) 2 .
The main result of this paper is given by the following theorem:

Theorem 2.1. For every h in N, let u h be a solution of Problem (2.4) with f in H 1 (Ω) 2 ∩(L ∞ (Ω)) 2
and let θ be defined by (2.2).

Then, for every h in N , there exists a linear extension -operator

P h ∈ L H 1 (Ω + h ) 2 , H 1 (Ω + ) 2 ,
a strictly increasing sequence of positive integer numbers {h k } k∈N and u in H

1 (Ω) 2 ∩ (L ∞ (Ω)) 2
(depending possibly on the selected subsequence) such that (2.7)

P h k u h k ⇀ u weakly in H 1 (Ω + ) 2 , u h k ⇀ u weakly in H 1 (Ω -) 2 ,
as k tends to +∞ and u is a solution of the following problem:

(2.8)

                       - ∂ 2 u ∂x 2 2 -u + |u| 2 u = f in Ω + , -∆u -u + |u| 2 u = f in Ω -, θ ∂u + ∂x 2 = ∂u - ∂x 2 on Σ, ∂u ∂x 2 = 0 on ]0, a[×{b 2 }, Du • ν = 0 on ∂Ω -\Σ.
Moreover the energies converge in the sense that (2.9)

lim k→+∞ Ω h k |Du h k | 2 -|u h k | 2 + |u h k | 4 dx = θ Ω + ∂u ∂x 2 2 -|u| 2 + |u| 4 dx + Ω - |Du| 2 -|u| 2 + |u| 4 dx.
The variational formulation of Problem (2.8) is given by (2.10)

           θ Ω + ∂u ∂x 2 ∂v ∂x 2 -uv + |u| 2 uv dx + Ω - DuDv -uv + |u| 2 uv dx = = θ Ω + f v dx + Ω - f v dx ∀v ∈ H 1 (Ω) 2 , u ∈ H 1 (Ω) 2 ∩ (L ∞ (Ω)) 2 .
Remark 2.2. If Problem (2.10) admits a unique solution, then convergences (2.7) and (2.9) hold true for the whole sequence. 

   u = 0 a.e. in Ω + , -∆u -u + |u| 2 u = f in Ω -, u = 0 on ∂Ω -.
Moreover the convergence of the energies holds.

A PRIORI L ∞ ESTIMATE

In this section, we establish an a priori norm-estimate for the solution u h of problem (2.4).

Let A be a bounded open set of R n . We shall denote by C b (A) the Banach space defined by

C b (A) = {v ∈ C(A) : v is bounded} provided with the L ∞ -norm.
The goal of this section is to prove the following result:

Proposition 3.1. For every h in N, let u h be a solution of Problem (2.4) with f in (L ∞ (Ω)) 2 .
Then u h is in (C b (Ω h )) 2 and there exists a constant c (independent of h) such that

u h (L ∞ (Ω h )) 2 c ∀h ∈ N.
To this aim, we begin by giving some preliminary results:

Lemma 3.2. Let u h , h in N, be a solution of Problem (2.4) with f in L 2 (Ω) 2 . Then, u h is in (C b (Ω h )) 2 .
Proof. Let us fix h in N and let us set

f h = u h -|u h | 2 u h + f a.e. in Ω h . Since u h belongs to H 1 (Ω h ) 2 and H 1 (Ω h ) is embedded into L p (Ω h ) for every p in [1, +∞[, it turns out that f h belongs to L 2 (Ω h ) 2 . Moreover, from (2.4) it follows that u h is a solution of -∆u h = f h in Ω h , Du h • ν = 0 on ∂Ω h .
Consequently there exists s in 3 2 , 5 3 such that u h belongs to (H s (Ω h )) 2 (see [START_REF] Grisvard | Controlabilité exacte des solutions de l'équation des ondes en présence de singularités[END_REF], Lemma 5.1 and Theorem 5.2). Finally, the thesis follows from the embeddings of

H s (Ω h ), with s > 1, into C b (Ω h )
(see [START_REF] Adams | Sobolev Spaces[END_REF], 7.57).

We recall the following well-known classical variational inequality and we give the proof for the reader's convenience. Then, it results that v 0 a.e. in A.

Proof. By the assumptions it follows that (3.1)

A DvDϕ + γvϕ dx 0 ∀ϕ ∈ H 1 (A) with ϕ 0 a.e. in A.

By choosing ϕ

= v -= -min{v, 0} in (3.1), it results - A |Dv -| 2 + γ|v -| 2 dx 0.
This inequality provides v -= 0 a.e. in A and consequently v 0 a.e. in A.

Now we can prove the main result of this section.

Proof of Proposition 3.1. Let us fix h in N.

Lemma 3.2 provides that (3.2) |u h | 2 ∈ H 1 (Ω h )
and consequently

(3.3) Ω h D(|u h | 2 )Dϕ dx = 2 Ω h u h Du h Dϕ dx ∀ϕ ∈ C 1 (R 2 ).
On the other hand, by choosing v = ϕu h in (2.6) with ϕ in C 1 (R 2 ), it results

(3.4)

Ω h |Du h | 2 ϕ dx + Ω h u h Du h Dϕ dx = = Ω h |u h | 2 (1 -|u h | 2 )ϕ + f u h ϕ dx ∀ϕ ∈ C 1 (R 2 ).
By combining (3.3) with (3.4) it follows that (3.5)

Ω h D(|u h | 2 )Dϕ dx = = 2 Ω h -|Du h | 2 + |u h | 2 (1 -|u h | 2 ) + f u h ϕ dx ∀ϕ ∈ C 1 (R 2 ).
If we set

(3.6) v h = 1 -|u h | 2 a.e. in Ω h , equation (3.5) provides that Ω h Dv h Dϕ dx = 2 Ω h |Du h | 2 -v h (1 -v h ) -f u h ϕ dx ∀ϕ ∈ C 1 (R 2 )
and consequently (3.7)

Ω h Dv h Dϕ + 2v h ϕ dx = 2 Ω h |Du h | 2 + |v h | 2 -f u h ϕ dx -2 Ω h f u h ϕ dx ∀ϕ ∈ C 1 (R 2 ) with ϕ 0. Now let us fix η in ]0, 1 2 [.

By applying the Young inequality it results

u h f = u (1) 
h f 1 + u (2) h f 2 η|u h | 2 + 1 η |f | 2 = η(1 -v h ) + 1 η |f | 2 a.e. in Ω h and consequently (3.8) -2u h f -2η + 2ηv h - 2 η f 2 (L ∞ (Ω)) 2 a.e. in Ω h .
By combining (3.7) with (3.8) we obtain (3.9)

Ω h Dv h Dϕ + 2(1 -η)v h ϕ dx -2 η + f 2 (L ∞ (Ω)) 2 η Ω h ϕ dx ∀ϕ ∈ C 1 (R 2 ) with ϕ 0. If we set c = -2 η + f 2 (L ∞ (Ω)) 2 η and (3.10) w h = v h -c a.e. in Ω h , since 0 < η < 1 2
and c < 0, from (3.9) it follows that (3.11) 

Ω h Dw h Dϕ + 2(1 -η)w h ϕ dx c (2η -1) Ω h ϕ dx 0 ∀ϕ ∈ C 1 (R
|u h | 2 1 -c a.e. in Ω h .
Since c does not depend on h, the thesis holds.

Corollary 3.4. For every h in N, let u h be a solution of Problem (2.4) with f in (L ∞ (Ω)) 2 . Then, there exists a constant c (independent of h) such that

u h (H 1 (Ω h )) 2 c ∀h ∈ N.
Proof. By choosing v = u h in (2.6) and by using Hölder's inequality, it results

Ω h |Du h | 2 dx Ω h |Du h | 2 + |u h | 4 dx = Ω h f u h dx + Ω h |u h | 2 dx f (L 2 (Ω)) 2 u h (L 2 (Ω h )) 2 + u h 2 (L 2 (Ω h )) 2 ∀h ∈ N
from which, by virtue of Proposition 3.1, the thesis follows.

Remark 3.5. For every h in N, let u h be a solution of Problem (2.4). By assuming f only in

L 2 (Ω)
2 (and without making use of Proposition 3.1), it is easy to prove the existence of a constant c (independent of h) such that

u h (L 4 (Ω h )) 2 c ∀h ∈ N. u h |u h | 2 L 4 3 (Ω h ) 2 c ∀h ∈ N. u h (H 1 (Ω h )) 2 c ∀h ∈ N.

EXTENSION RESULT

This section is devoted to prove the following result:

Proposition 4.1. For every h in N, let u h be a solution of Problem (2.4) with f in (L ∞ (Ω)) 2 ∩ H 1 (Ω) 2 .
Then, for every h in N, there exists a linear extension-operator

P h ∈ L H 1 (Ω + h ) 2 , H 1 (Ω + ) 2 such that (4.1) P h u h (H 1 (Ω + )) 2 c ∀h ∈ N,
where c is a constant independent of h.

In this section, if φ(x 1 , x 2 ) is a real function defined on Ω h , we assume φ extended on T h = k∈Z ((ka, 0) + Ω h ) in the following way: first we extend φ on (-a, 0) + Ω h by reflection, then we extend this function on T h by 2a-periodicity in the variable x 1 . Moreover, we define

(4.2) τ h φ : (x 1 , x 2 ) ∈ T h -→ φ(x 1 , x 2 ) -φ(x 1 + a h , x 2 ).
We recall the following extension result proved in [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF] Lemma 2.2:

Lemma 4.2.

[10] Let τ h , h in N, be defined by (4.2). Then, for every h in N, there exists a linear extension-operator

Q h ∈ L H 1 (Ω + h ), H 1 (Ω + ) such that Q h φ 2 H 1 (Ω + ) c φ 2 H 1 (Ω + h ) + τ h φ 2 H 1 (Ω + h ) + h 2 τ h φ 2 L 2 (Ω + h ) ∀φ ∈ H 1 (Ω + h ) ∀h ∈ N,
where c is a constant independent of φ and h.

Proposition 3.1 allows us to adapt the proof of Lemma 2.4 in [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF] to our nonlinear case and obtain the following estimate result:

Lemma 4.3. For every h in N, let τ h be defined by (4.2) and u h , be a solution of Problem (2.4)

with f in (L ∞ (Ω)) 2 ∩ H 1 (Ω) 2 .
Then there exists a constant c (independent of h) such that

τ h u (i) h H 1 (Ω + h ) c 1 h ∀h ∈ N ∀i ∈ {1, 2}. Proof. Let us fix i in {1, 2}.
For every h in N let us define

f (i) h = 2u (i) h -|u h | 2 u (i) h + f i a.e. in Ω h .
Let us observe that f

(i) h is in H 1 (Ω h ) since f is in (H 1 (Ω)) 2 and u h is in (H 1 (Ω h )) 2 ∩ (L ∞ (Ω h ))
2 by virtue of Lemma 3.2. Moreover, by using Proposition 3.1 and Corollary 3.4 we obtain the existence of a constant c, independent of h, such that

(4.3) ∂f (i) h ∂x 1 L 2 (Ω h ) c ∀h ∈ N. Since u (i)
h is the solution of -∆u

(i) h + u (i) h = f (i) h in Ω h , Du (i) h • ν = 0 on ∂Ω h , it turn out that τ h u (i) h is the solution of (4.4)                  -∆τ h u (i) h + τ h u (i) h = τ h f (i) h in k=-1,0 ((ak, 0) + Ω h ) , ∂ τ h u (i) h ∂ν = 0 on ∂   k=-1,0 ((ak, 0) + Ω h )   -({-a, a}×] -b 1 , 0[) , τ h u (i) h (•, x 2 ) is 2a-periodic in x 1 ∀x 2 ∈] -b 1 , 0[. By choosing τ h u (i)
h as test function in (4.4) and making use of Prop. IX.3 in [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF] and (4.3), it results 

τ h u (i) h H 1 (Ω h ) τ h u (i) h H 1    k=-1,0 ((ak, 0) + Ω h )    τ h f (i) h L 2    k=-1,0 ((ak, 0) + Ω h )    1 h ∂f (i) h ∂x 1 L 2    1 k=-2 ((ak, 0) + Ω h )    4 h ∂f (i) h ∂x 1 L 2 (Ω h )
Q h u (i) h H 1 (Ω + ) c ∀h ∈ N ∀i ∈ {1, 2},
where c is a constant independent of h. The estimate (4.1) follows from (4.5), by setting

P h = (Q h , Q h ) ∀h ∈ N.
Now let us prove that (5.10) z = θ|u| 2 u a.e. in Ω + , |u| 2 u a.e. in Ω -.

To this purpose, first let us verify that (5.11)

|P h k u h k | 2 → |u| 2 strongly in L 2 (Ω + ),
as k diverges. In fact, Hölder's inequality provides that

|P h k u h k | 2 -|u| 2 2 L 2 (Ω + ) 2 Ω + |P h k u h k -u| 2 |P h k u h k | 2 + |u| 2 dx 2 P h k u h k -u 2 (L 4 (Ω + )) 2 P h k u h k 2 (L 4 (Ω + )) 2 + u 2 (L 4 (Ω + )) 2 ∀k ∈ N,
from which, by virtue of (5.1) and definition (5.7), convergence (5.11) follows.

Since

u h k | u h k | 2 = u h k |P h k u h k | 2 a.e. in Ω + ∀k ∈ N,
by making use of (5.4), (5.3), (5.8), (5.7) and (5.11), we obtain z = θ|u| 2 u a.e. in Ω + . The identification of z on Ω -is similar.

By following arguments identical to those used in [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF] Proposition 2.2, it is easy to prove that (5.12) e = θ ∂u ∂x 2 a.e. in Ω + .

Arguing as in [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF], let us prove that (5.13) d = 0 a.e. in Ω + .

Let {w h } h∈N be a sequence in

H 1 (Ω + ) ∩ L ∞ (Ω + ) such that (5.14) w h → x 1 strongly in L ∞ (Ω + )
as h diverges and

Dw h = 0 a.e. in Ω + h ∀h ∈ N.
The existence of such sequence is proved in [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF] (see also [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF], Lemma 4.3). ¿From (2.6) it follows that (5.15)

Ω Du h k Dv -u h k v + | u h k | 2 u h k v dx = = Ω χ Ω h k f v dx ∀v ∈ H 1 (Ω) 2 ∀k ∈ N. By choosing v = w h k ϕ, with ϕ in (C ∞ 0 (Ω + ))
2 , as test function in (5.15) it results

(5.16)

Ω + w h k Du h k Dϕ -w h k u h k ϕ + w h k | u h k | 2 u h k ϕ dx = = Ω + χ Ω h k w h k f ϕ dx ∀ϕ ∈ C ∞ 0 (Ω + ) 2 ∀k ∈ N.
By passing to the limit, as k diverges, in (5.16) and by making use of (5.14), (5.5), (5.6), (5.12),

(5.3), (5.8), (5.7), (5.4), (5.10) and (2.2), it results

(5.17)

Ω + x 1 d ∂ϕ x 1 + x 1 θ ∂u x 2 ∂ϕ x 2 -x 1 θuϕ + x 1 θ|u| 2 uϕ dx = = Ω + θx 1 f ϕ dx ∀ϕ ∈ C ∞ 0 (Ω + ) 2 .
On the other hand, by passing to the limit in (5.15) with v = x 1 ϕ as test function and by making use of (5.5), (5.6), (5.12), (5.3), (5.8), (5.7) (5.4), (5.10) and (2.2) it results

(5.18)

Ω + x 1 d ∂ϕ x 1 + dϕ + x 1 θ ∂u x 2 ∂ϕ x 2 -x 1 θuϕ + x 1 θ|u| 2 uϕ dx = = Ω + θx 1 f ϕ dx ∀ϕ ∈ C ∞ 0 (Ω + ) 2 .
By comparing (5.17) with (5.18), we obtain

Ω + dϕ dx = 0 ∀ϕ ∈ C ∞ 0 (Ω + ) 2 ,
which implies (5.13).

By passing to the limit, as k diverges, in (5.15) and by making use of (5.2), (5.5), (5.13), (5.6),

(5.12), (5.3), (5.8), (5.7) (5.4), (5.10) and (2.2) we obtain that u is a solution of (2.10).

To prove the convergence of the energies, let us choose v = u h as test function in (2.6). Then, by virtue of (2.7) and (2.2), we obtain 

Remark 2 . 3 .

 23 If in Problem (2.4), instead of the Neumann boundary condition, we assume the Dirichlet boundary condition u h = 0 on ∂Ω h , it is easy to show that every sequence of zeroextension to Ω of solutions of the Dirichlet problem admits a subsequence which strongly converges in H 1 0 (Ω) 2 to a solution of the following problem:

Lemma 3 . 3 .

 33 Let A be an open subset of R n satisfying the segment property, γ a positive constant and v a function in H 1 (A) such that A DvDϕ + γvϕ dx 0 ∀ϕ ∈ C 1 (R n ) with ϕ 0.

1 .

 1 By choosing φ = u (i) h , i = 1, 2, in Lemma 4.2 and making use of Lemma 4.3 and Corollary 3.4 we obtain (4.5)

( 5 . 2 -|u| 2 +Remark 5 . 1 .

 52251 19) limk→+∞ Ω h k|Du h k | 2 -|u h k | 2 + |u h k | 4 dx = θOn the other hand, by choosing v = u as test function in (2.10)|u| 4 dx + Ω - |Du| 2 -|u| 2 + |u| 4 dx = = θ Ω + f u dx + Ω - f u dx.By comparing(5.19) with(5.20), the convergence of the energies (2.9) holds. Let us observe that the assumption f in (L ∞ (Ω)) 2 is used to obtain the uniform estimate in Proposition 3.1. This estimate together with the assumption f in (H 1 (Ω)) 2 allows us to obtain (4.3) in order to prove Lemma 4.3 and consequently Proposition 4.1. Thanks to Proposition 4.1, we have the strong convergence (5.1) in (L p (Ω + ))2 for every p in [1, +∞[, which allows us to pass to the limit in the nonlinear term of the Ginzburg-Landau equation (see(5.11)).

  2 ) with ϕ 0.

	Now observe that, by virtue of (3.10), (3.6) and (3.2), w h belongs to H 1 (Ω h ). Consequently, by
	virtue Lemma 3.3, from (3.11) we deduce that
	(3.12)	w

h 0 a.e. in Ω h .

By recalling the definitions (3.10) and (3.6), the last inequality provides
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and strongly in (L p (Ω + ))

(5.4)

(5.5)

)

as k diverges.

Since

3), (5.1) and (5.2) it follows that u + = u -a.e. in Σ and consequently

On the other hand, since

2), (5.1) and (5.3) it follows that (5.8) u + = u * a.e. in Ω + and consequently

where u is defined in (5.7).

By combining (5.1) and (5.2) with (5.7) and (5.9) we obtain (2.7).